

ANNEX F: D835V2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: September 15, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Mar-24 30-Mar-23 (No. 217-03804/03805) Mar-24 30-Mar-23 (No. 217-03804) Mar-24 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 SN: 103245 30-Mar-23 (No. 217-03809) Mar-24 SN: 103245 30-Mar-23 (No. 217-03809) Mar-24 SN: 310982 / 06327 30-Mar-23 (No. 217-03809) Mar-24 SN: 310982 / 06327 30-Mar-23 (No. 217-03809) Mar-24 SN: 501 19-Dec-22 (No. DAE4-601_Dec22) Dec-23 Secondary Standards ID # Check Date (in house) Scheduled Check Sover sensor HP 8481A SN: My41093315 07-Oct-15 (in house check Oct-22) In house check: Oct In	Shanghai City CALIBRATION C	ERTIFICAT		
Calibration Procedure for SAR Validation Sources between 0.7-3 GH; Calibration date: September 15, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Prower meter NRP2 SN: 104778 30-Mar-23 (No. 217-03804/03805) Mar-24 Power sensor NRP-291 SN: 103244 30-Mar-23 (No. 217-03804) Mar-24 Power sensor NRP-291 SN: 103244 30-Mar-23 (No. 217-03805) Mar-24 Power sensor NRP-291 SN: 103244 30-Mar-23 (No. 217-03805) Mar-24 Power sensor NRP-291 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Power sensor NRP-291 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Power sensor NRP-291 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Power sensor NRP-291 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Power sensor NRP-291 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Power sensor NRP-291 SN: 310982 / 06327 30-Mar-23 (No. 217-03805) Mar-24 Power sensor NRP-291 SN: 310982 / 06327 30-Mar-23 (No. 217-03805) Mar-24 Power sensor NRP-291 SN: 310982 / 06327 30-Mar-23 (No. 217-03805) Mar-24 Power sensor NRP-291 SN: 30-Oct-14 (in house) Scheduled Check SN: 310982 / 06327 30-Mar-25 (No. 217-03805) Mar-24 Power sensor NRP-291 SN: 30-Oct-15 (in house check Oct-22) In house check: Oct 120 In house	Object	D835V2 - SN:4d	020	
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Prower meter NRP2 SN: 104778 30-Mar-23 (No. 217-03804/03805) Mar-24 Prower sensor NRP-Z91 SN: 103244 30-Mar-23 (No. 217-03804) Mar-24 Prower sensor NRP-Z91 SN: 103245 30-Mar-23 (No. 217-03809) Mar-24 Reference 20 dB Attenuator SN: BH9394 (20k) 30-Mar-23 (No. 217-03809) Mar-24 Type-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Reference Probe EX3DV4 SN: 7349 10-Jan-23 (No. EX3-7349_Jan23) Jan-24 DAE4 SN: 601 19-Dec-22 (No. DAE4-601_Dec22) Dec-23 Secondary Standards ID # Check Date (in house) Scheduled Check Secondary Standards ID # Check Date (in house) Scheduled Check Prower sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct Orower sensor HP 8481A SN: MY41093315 O7-Oct-15 (in house check Oct-22) In house check: Oct Prower sensor HP 8481A SN: MY41093315 O7-Oct-15 (in house check Oct-22) In house check: Oct All calibration the certificate. Name Function Signature	Calibration procedure(s)		edure for SAR Validation Source	es between 0.7-3 GHz
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Primary Standards SN: 104778 30-Mar-23 (No. 217-03804/03805) Mar-24 Power sensor NRP-Z91 SN: 103244 30-Mar-23 (No. 217-03804) Mar-24 Power sensor NRP-Z91 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03809) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03805) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03805) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03805) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03805) Mar-24 Prope-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No.	Calibration date:	September 15, 2	023	
All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date [Certificate No.) Scheduled Calibration Power meter NRP2 SN: 104778 30-Mar-23 (No. 217-03804/03805) Mar-24 Power sensor NRP-Z91 SN: 103244 30-Mar-23 (No. 217-03804) Mar-24 Power sensor NRP-Z91 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Reference 20 dB Attenuator SN: BH9394 (20k) 30-Mar-23 (No. 217-03809) Mar-24 Type-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Reference Probe EX3DV4 SN: 7349 10-Jan-23 (No. EX3-7349_Jan23) Jan-24 DAE4 SN: 601 19-Dec-22 (No. DAE4-601_Dec22) Dec-23 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check: Oct North Standard SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct Name Function Signature	This calibration certificate documer The measurements and the uncerti	nts the traceability to nati ainties with confidence p	onal standards, which realize the physical u	inits of measurements (SI). and are part of the certificate.
Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration				
Power meter NRP2 SN: 104778 30-Mar-23 (No. 217-03804/03805) Mar-24 Power sensor NRP-Z91 SN: 103244 30-Mar-23 (No. 217-03804) Mar-24 Power sensor NRP-Z91 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Reference 20 dB Attenuator SN: BH9394 (20k) 30-Mar-23 (No. 217-03809) Mar-24 Formall Stripe No. 217-03809 Mar-24 SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Reference Probe EX3DV4 SN: 7349 10-Jan-23 (No. EX3-7349_Jan23) Jan-24 DAE4 SN: 601 19-Dec-22 (No. DAE4-601_Dec22) Dec-23 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check: Oct Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct Name Function Signature Signature Signature Signature Signature Signature Signature				
Secondary Standards D# Check Date (in house) Scheduled Check Ower sensor HP 8481A SN: US37292783 Or-Oct-15 (in house check Oct-22) In house check: Oct Name Function Signature	Primary Standards	ID#	Cal Date (Certificate No.)	Schoduled Calibration
SN: 103244 30-Mar-23 (No. 217-03804) Mar-24	ower meter NRP2	SN: 104778		
Share Shar		SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
ype-N mismatch combination eference Probe EX3DV4 SN: 310982 / 06327 SN: 310982 / 06327 SN: 30-Mar-23 (No. 217-03810) Mar-24 SN: 7349 SN: 601 19-Dec-22 (No. DAE4-601_Dec22) Dec-23 econdary Standards D# Check Date (in house) Scheduled Check Dwer meter E4419B SN: GB39512475 SN: US37292783 O7-Oct-14 (in house check Oct-22) Dec-23 In house check: Oct Driver sensor HP 8481A SN: W341093315 O7-Oct-15 (in house check Oct-22) In house check: Oct Driver sensor HP 8481A SN: M341093315 SN: 100972 SN: 100972 SN: US41080477 SN: US41080477 SN: US41080477 SN: US41080477 SIgnature Mar-24 Mar-24 Mar-25 (No. 217-03810) Mar-24 Mar-24 Mar-26 (No. 217-03810) Mar-27 Mar-27 Mar-28 (No. 217-03810) Mar-24 Mar-29 Mar-		SN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
### SN: 7349 10-Jan-23 (No. EX3-7349_Jan23) Jan-24 ### SN: 601 19-Dec-22 (No. DAE4-601_Dec22) Dec-23 ### Check Date (in house) Scheduled Check ### In house check Oct-22 ### In house check: Oct ### In house check: Oct			30-Mar-23 (No. 217-03809)	Mar-24
AE4 SN: 601 19-Dec-22 (No. DAE4-601_Dec22) Dec-23 secondary Standards ID # Check Date (in house) Scheduled Check over meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct over sensor HP 8481A SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct		CONT CONT CO.	30-Mar-23 (No. 217-03810)	Mar-24
econdary Standards ID # Check Date (in house) Scheduled Check ower meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check: Oct ower sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct ower sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct etwork Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct Name Function Signature			10-Jan-23 (No. EX3-7349_Jan23)	Jan-24
ower meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check: Oct ower sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct ower sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct etwork Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct Name Function Signature	AE4	SN: 601	19-Dec-22 (No. DAE4-601_Dec22)	Dec-23
ower meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check: Oct ower sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct ower sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct etwork Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct Name Function Signature	econdary Standards	ID#	Check Date (in house)	Scheduled Chark
SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct ower sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct etwork Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct Name Function Signature	ower meter E4419B	SN: GB39512475		In house check: Oct-24
ower sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct In house check: Oct SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct In house check: Oct In house check: Oct Name Function Signature	ower sensor HP 8481A	SN: US37292783		In house check: Oct-24
F generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct letwork Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct ln house check: Oct Name Function Signature	ower sensor HP 8481A	SN: MY41093315	9. THE THE THE SET TO THE	In house check: Oct-24
letwork Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct Name Function Signature		SN: 100972		In house check: Oct-24
ognature Signature	letwork Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
ognature Signature		Name	Function	Cionatura
Tanth	Calibrated by:			Signature
				Touttes
Approved by: Sven Kühn Technical Manager	Approved by:	Suan Kühn	Taskelastitions	(

Certificate No: D835V2-4d020_Sep23

Page 1 of 6

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Issued: September 21, 2023

Report No.: EFTA25020087-IE-09-S1

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

IIac MRA

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

he reported uncertainty of measurement is stated as the standard uncertainty of me	asurement
nultiplied by the coverage factor k=2, which for a normal distribution corresponds to a probability of approximately 95%.	a coverage

Certificate No: D835V2-4d020_Sep23

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.1 ± 6 %	0.93 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	926	

\$AR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.49 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.75 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.62 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.36 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d020_Sep23

Report No.: EFTA25020087-IE-09-S1

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.6 Ω - 3.8 jΩ
Return Loss	- 28.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.390 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D835V2-4d020_Sep23

Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 15.09.2023

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d020

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.93 \text{ S/m}$; $\varepsilon_r = 42.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

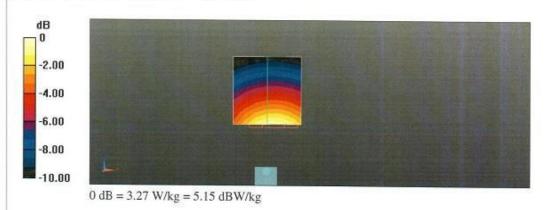
DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 10.01.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 19.12.2022
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

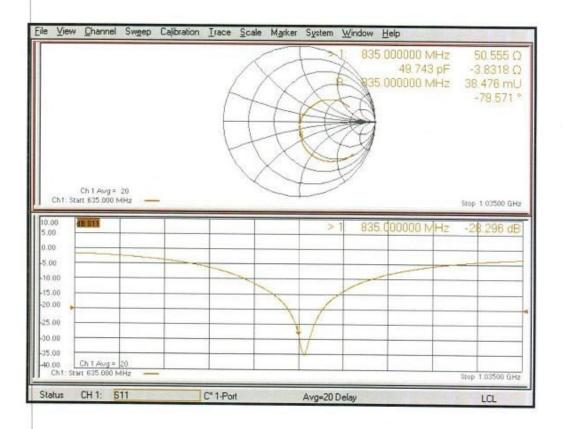
Reference Value = 66.58 V/m; Power Drift = -0.09 dB


Peak SAR (extrapolated) = 3.74 W/kg

SAR(1 g) = 2.49 W/kg; SAR(10 g) = 1.62 W/kg

Smallest distance from peaks to all points 3 dB below = 16 mm

Ratio of SAR at M2 to SAR at M1 = 66.4%


Maximum value of SAR (measured) = 3.27 W/kg

Certificate No: D835V2-4d020_Sep23

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D835V2-4d020_Sep23

Page 6 of 6

ANNEX G: D1750V2 Dipole Calibration Certificate

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 http://www.caict.ac.cn

E-mail: cttl@chinattl.com

Certificate No: Z22-60230 **AUDEN**

CALIBRATION CERTIFICATE

Object

D1750V2 - SN: 1023

Calibration Procedure(s)

Client

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

June 21, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Power sensor NRP8S	104291	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Reference Probe EX3DV4	SN 7464	26-Jan-22(SPEAG,No.EX3-7464_Jan22)	Jan-23
DAE4	SN 1556	12-Jan-22(CTTL-SPEAG,No.Z22-60007)	Jan-23
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-22 (CTTL, No.J22X00409)	Jan-23
Network Analyzer E5071C	MY46110673	14-Jan-22 (CTTL, No.J22X00406)	Jan-23

T-00-0187	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	21
Reviewed by:	Lin Hao	SAR Test Engineer	州九
Approved by:	Qi Dianyuan	SAR Project Leader	da

Issued: June 26, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z22-60230

Page 1 of 6

Report No.: EFTA25020087-IE-09-S1

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: cttl@chinattl.com http://www.caict.ac.cn

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORMx,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z22-60230

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: cttl@chinattl.com

Measurement Conditions

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 $\mathcal{C}m^3$ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.8 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.87 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.5 W/kg ± 18.7 % (k=2)

Certificate No: Z22-60230

Report No.: EFTA25020087-IE-09-S1

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: cttl@chinattl.com http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.6Ω- 1.40jΩ	
Return Loss	- 34.0dB	

General Antenna Parameters and Design

THE COURT OF THE CASE OF THE COURT OF THE CO	
Electrical Delay (one direction)	1.118 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Control of the Contro	

Certificate No: Z22-60230

Page 4 of 6

Date: 2022-06-21

SAR Test Report

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: cttl@chinattl.com http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1023

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.382$ S/m; $\epsilon_r = 41.1$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

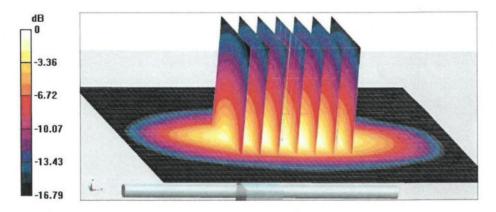
DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(8.52, 8.52, 8.52) @ 1750 MHz; Calibrated: 2022-01-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 92.55 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 16.9 W/kg

SAR(1 g) = 9.2 W/kg; SAR(10 g) = 4.87 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 55%

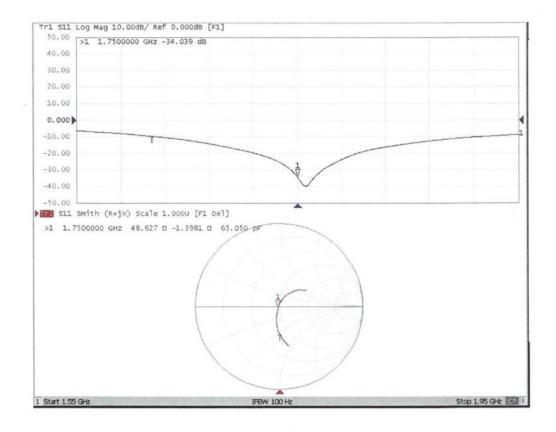
Maximum value of SAR (measured) = 14.2 W/kg

0 dB = 14.2 W/kg = 11.52 dBW/kg

Certificate No: Z22-60230

Page 5 of 6

💸 eurofins



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: cttl@chinattl.com

Impedance Measurement Plot for Head TSL

Certificate No: Z22-60230

Page 6 of 6

ANNEX H: D1900V2 Dipole Calibration Certificate

Add: No.52 HuaYuanBei Roud, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

Client TA(Shanghai) Certificate No: 23J02Z80017

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 5d060

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

September 12, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Power sensor NRP8S	104291	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Reference Probe EX3DV4	SN 3617	31-Mar-23(CTTL-SPEAG,No.Z23-60161)	Mar-24
DAE4	SN 1556	11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Jan-24
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	05-Jan-23 (CTTL, No. J23X00107)	Jan-24
NetworkAnalyzer E5071C	MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	A TON
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	2002

Issued: September 16, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 23J02Z80017

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: 23J02Z80017

Page 2 of 6

Report No.: EFTA25020087-IE-09-S1

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com

http://www.caict.ac.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.42 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	\$2 <u>000</u> 72	-

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.4 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.9 W/kg ± 18.7 % (k=2)

Certificate No: 23J02Z80017

Report No.: EFTA25020087-IE-09-S1

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.5Ω+ 6.32jΩ	
Return Loss	- 24.0dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.102 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Mandactured by	SPEAG

Certificate No: 23J02Z80017

Page 4 of 6

Date: 2023-09-12

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d060

Communication System: UID 0, CW; Frequency: 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.42$ S/m; $\varepsilon_r = 39.77$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

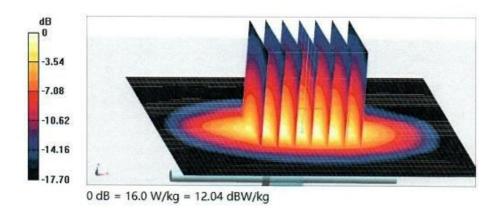
DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.14, 8.14, 8.14) @ 1900 MHz; Calibrated: 2023-03-31
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2023-01-11
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 96.76 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 19.4 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.25 W/kg

Smallest distance from peaks to all points 3 dB below = 9.2 mm

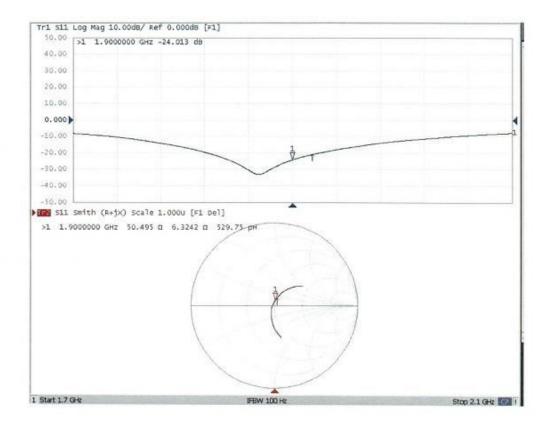
Ratio of SAR at M2 to SAR at M1 = 53%

Maximum value of SAR (measured) = 16.0 W/kg

Certificate No: 23J02Z80017

Page 5 of 6

💸 eurofins



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

Impedance Measurement Plot for Head TSL

Certificate No: 23J02Z80017

Page 6 of 6

ANNEX I: D2450V2 Dipole Calibration Certificate

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com

http://www.caict.ac.cn

Client

TA(Shanghai)

Certificate No:

23J02Z80018

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 786

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

September 12, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Power sensor NRP8S	104291	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Reference Probe EX3DV4	SN 3617	31-Mar-23(CTTL-SPEAG,No.Z23-60161)	Mar-24
DAE4	SN 1556	11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Jan-24
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	05-Jan-23 (CTTL, No. J23X00107)	Jan-24
NetworkAnalyzer E5071C	MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	31
Reviewed by:	Lin Hao	SAR Test Engineer	林路
Approved by:	Qi Dianyuan	SAR Project Leader	32

Issued: September 16, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 23J02Z80018

Page 1 of 6

Report No.: EFTA25020087-IE-09-S1

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: 23J02Z80018

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://www.caict.ac.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	(1 <u>01.02)</u>	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.6 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 18.7 % (k=2)

Certificate No: 23J02Z80018

Report No.: EFTA25020087-IE-09-S1

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.2Ω+ 3.34jΩ	
Return Loss	- 28.2dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.060 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: 23J02Z80018

Page 4 of 6

Report No.: EFTA25020087-IE-09-S1

Date: 2023-09-12

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 786

Communication System: UID 0, CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.809$ S/m; $\epsilon_r = 38.86$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

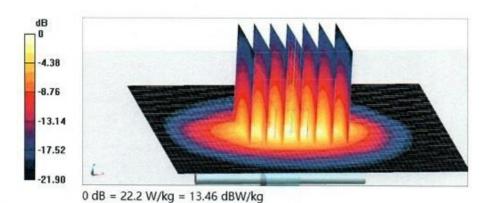
DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.68, 7.68, 7.68) @ 2450 MHz; Calibrated: 2023-03-31
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2023-01-11
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 100.7 V/m; Power Drift = -0.05 dB


Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.13 W/kg

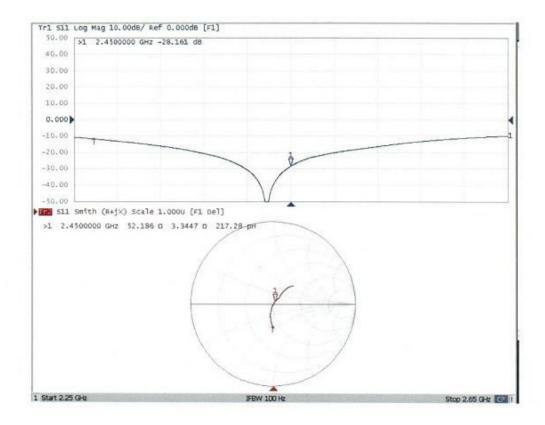
Smallest distance from peaks to all points 3 dB below = 8.5 mm

Ratio of SAR at M2 to SAR at M1 = 48.5%

Maximum value of SAR (measured) = 22.2 W/kg

Certificate No: 23J02Z80018

Page 5 of 6



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://www.caict.ac.cn

Impedance Measurement Plot for Head TSL

Certificate No: 23J02Z80018

Page 6 of 6

ANNEX J: D2600V2 Dipole Calibration Certificate

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191.
Tel: +86-10-62304633-2117
E-mail: cm@caict.ac.cn http://www.caict.ac.cn

Client: TA(Shanghai) Certificate No: 24J02Z000225

CALIBRATION CERTIFICATE

Object D2600V2 - SN: 1025

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

May 8, 2024

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	15-May-23 (CTTL, No.J23X04183)	May-24
Power sensor NRP6A	101369	15-May-23 (CTTL, No.J23X04183)	May-24
ReferenceProbe EX3DV4	SN 3846	31-May-23(SPEAG,No.EX-3846_May23)	May-24
DAE4	SN 1556	03-Jan-24(CTTL-SPEAG,No.24J02Z80002)	Jan-25
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	25-Dec-23 (CTTL, No. J23X13426)	Dec-24
NetworkAnalyzer E5071C	MY46110673	25-Dec-23 (CTTL, No. J23X13425)	Dec-24
OCP DAK-3.5(weighted)	1040	22-Jan-24(SPEAG, No.OCP-DAK3.5-1040_Jan24)	Jan-25

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	发 笔
Reviewed by:	Lin Jun	SAR Test Engineer	W.
Approved by:	Qi Dianyuan	SAR Project Leader	200

Issued: May 13, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: 24J02Z000225

Page 1 of 6

Report No.: EFTA25020087-IE-09-S1

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

CALIBRATION LABORATORY

Glossary:

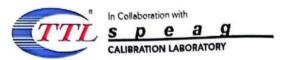
TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook


Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: 24J02Z000225 Page 2 of 6

Add: No.52 Hua Yuan Bei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: cmf@caict.ac.cn http://www.caict.ac.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	1.99 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	_	_

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	14.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.5 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.31 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.1 W/kg ± 18.7 % (k=2)

Certificate No: 24J02Z000225

Page 3 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.0Ω- 6.02jΩ
Return Loss	- 24.2dB

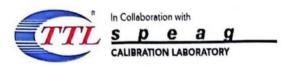
General Antenna Parameters and Design

Electrical Delay (one direction)	1.055 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.


Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: 24J02Z000225 Page 4 of 6

Report No.: EFTA25020087-IE-09-S1

Date: 2024-05-08

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1025

Communication System: UID 0, CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 1.985$ S/m; $\varepsilon_r = 38.52$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

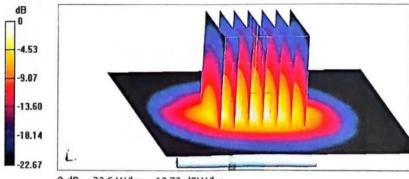
DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(6.72, 7.04, 7.5) @ 2600 MHz; Calibrated: 2023-05-31
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2024-01-03
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 102.9 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 28.9 W/kg

SAR(1 g) = 14 W/kg; SAR(10 g) = 6.31 W/kg

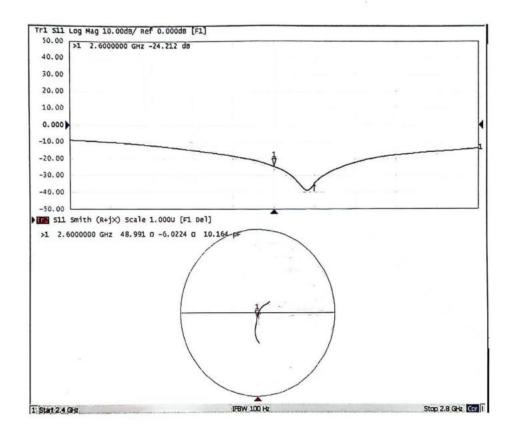
Smallest distance from peaks to all points 3 dB below = 8.5 mm

Ratio of SAR at M2 to SAR at M1 = 49.3%

Maximum value of SAR (measured) = 23.6 W/kg

0 dB = 23.6 W/kg = 13.73 dBW/kg

Certificate No: 24J02Z000225 Page 5 of 6


Report No.: EFTA25020087-IE-09-S1

Add: No.52 Hun Yunn Bei Rond, Hnidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.cnict.nc.cn E-mail: emf@caict.ac.cn

Impedance Measurement Plot for Head TSL

Certificate No: 24J02Z000225

Page 6 of 6

ANNEX K: D5GHzV2 Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

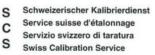
Auden

Certificate No: D5GHzV2-1203_Dec22

Object	D5GHzV2 - SN:1	203	
Calibration procedure(s)	QA CAL-22.v7 Calibration Proce	dure for SAR Validation Sources	between 3-10 GHz
Calibration date:	December 09, 20	22	
		onal standards, which realize the physical unit	
The measurements and the uncert	ainties with confidence pr	obability are given on the following pages and	d are part of the certificate.
All calibrations have been conducted	ed in the closed laborator	y facility: environment temperature (22 ± 3)°C	and humidity < 70%.
Calibration Equipment used (M&TE	E critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
	ID # SN: 104778	Cal Date (Certificate No.) 04-Apr-22 (No. 217-03525/03524)	Scheduled Calibration Apr-23
Power meter NRP			
Power meter NRP Power sensor NRP-Z91	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524)	Apr-23 Apr-23
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525)	Apr-23 Apr-23 Apr-23
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527)	Apr-23 Apr-23 Apr-23 Apr-23
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 31-Aug-22 (No. DAE4-601_Aug22)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 Aug-23
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 Aug-23 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 Aug-23 Scheduled Check In house check: Oct-24
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 Aug-23 Scheduled Check In house check: Oct-24 In house check: Oct-24
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 Aug-23 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 Aug-23 Scheduled Check In house check: Oct-24
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 Aug-23 Scheduled Check In house check: Oct-24
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name	04-Apr-22 (No. 217-03525/03524) 04-Apr-22 (No. 217-03524) 04-Apr-22 (No. 217-03525) 04-Apr-22 (No. 217-03527) 04-Apr-22 (No. 217-03528) 08-Mar-22 (No. EX3-3503_Mar22) 31-Aug-22 (No. DAE4-601_Aug22) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22)	Apr-23 Apr-23 Apr-23 Apr-23 Apr-23 Mar-23 Aug-23 Scheduled Check In house check: Oct-24

Certificate No: D5GHzV2-1203_Dec22

Page 1 of 9



Calibration Laboratory of Schmid & Partner

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1203_Dec22

Page 2 of 9

Report No.: EFTA25020087-IE-09-S1

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5850 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.4 ± 6 %	4.61 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	77.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.4 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1203_Dec22

Page 3 of 9

Report No.: EFTA25020087-IE-09-S1

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.9 ± 6 %	4.98 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.68 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.0 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1203_Dec22 Page 4 of 9

Head TSL parameters at 5850 MHz

The following parameters and calculations were applied.

AND	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.2	5.32 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	5.24 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5850 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.90 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1203_Dec22 Page 5 of 9

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	48.5 Ω - 3.2 jΩ	
Return Loss	- 29.0 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	51.7 Ω + 2.6 jΩ	
Return Loss	- 30.4 dB	

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	53.6 Ω + 4.3 jΩ
Return Loss	- 25.3 dB

Antenna Parameters with Head TSL at 5850 MHz

Impedance, transformed to feed point	$52.4 \Omega + 4.2 j\Omega$	
Return Loss	- 26.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.191 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D5GHzV2-1203_Dec22 Page 6 of 9

DASY5 Validation Report for Head TSL

Date: 09.12.2022

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1203

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5850 MHz

Medium parameters used: f = 5250 MHz: $\alpha = 4.61 \text{ S/m}$: $s_r = 36.4$: $\alpha = 1000 \text{ kg/m}^3$

Medium parameters used: f = 5250 MHz; σ = 4.61 S/m; ϵ_r = 36.4; ρ = 1000 kg/m³ , Medium parameters used: f = 5600 MHz; σ = 4.98 S/m; ϵ_r = 35.9; ρ = 1000 kg/m³ , Medium parameters used: f = 5750 MHz; σ = 5.14 S/m; ϵ_r = 35.7; ρ = 1000 kg/m³ , Medium parameters used: f = 5850 MHz; σ = 5.24 S/m; ϵ_r = 35.6; ρ = 1000 kg/m³ . Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(4.99, 4.99, 4.99) @ 5850 MHz; Calibrated: 08.03.2022
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 31.08.2022
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 73.31 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 26.3 W/kg

SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.24 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 70.6%

Maximum value of SAR (measured) = 17.6 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.76 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 29.4 W/kg

SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.30 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 67.9%

Maximum value of SAR (measured) = 18.9 W/kg

Certificate No: D5GHzV2-1203_Dec22 Page 7 of 9

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.15 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 29.7 W/kg

SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.19 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

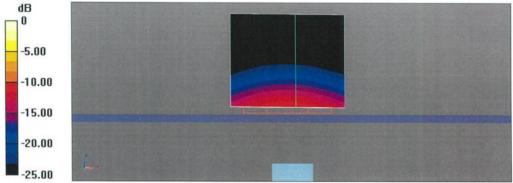
Ratio of SAR at M2 to SAR at M1 = 66.2%

Maximum value of SAR (measured) = 18.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5850 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.55 V/m; Power Drift = -0.03 dB

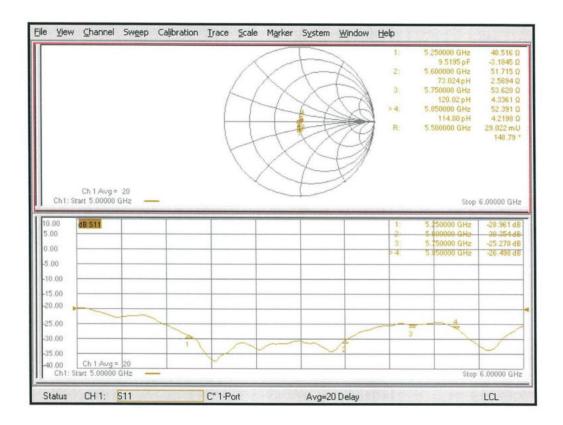

Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 7.90 W/kg; SAR(10 g) = 2.25 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 65.2%

Maximum value of SAR (measured) = 19.2 W/kg


0 dB = 19.2 W/kg = 12.84 dBW/kg

Certificate No: D5GHzV2-1203_Dec22

Page 8 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1203_Dec22

Page 9 of 9

ANNEX L: DAE4 Calibration Certificate (SN: 1317)

Calibration Laboratory of

Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

TA Shanghai City

Certificate No: DAE4-1317_Sep23

CALIBRATION CERTIFICATE DAE4 - SD 000 D04 BM - SN: 1317 Object QA CAL-06.v30 Calibration procedure(s) Calibration procedure for the data acquisition electronics (DAE) September 13, 2023 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Cal Date (Certificate No.) Scheduled Calibration Primary Standards SN: 0810278 29-Aug-23 (No:37421) Aug-24 Keithley Multimeter Type 2001 Secondary Standards Check Date (in house) Scheduled Check SE UWS 053 AA 1001 27-Jan-23 (in house check) In house check: Jan-24 Auto DAE Calibration Unit SE UMS 006 AA 1002 27-Jan-23 (in house check) In house check: Jan-24 Calibrator Box V2.1 Name Function Signature Dominique Steffen Laboratory Technician Calibrated by: Sven Kühn Technical Manager Approved by: Issued: September 13, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1317_Sep23 Page 1 of 5

Eurofins TA Technology (Shanghai) Co., Ltd.

TA-MB-06-003S

Page 227 of 233

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

 DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1317_Sep23

Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1.....+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Υ	Z
High Range	403.828 ± 0.02% (k=2)	404.593 ± 0.02% (k=2)	403.947 ± 0.02% (k=2)
Low Range	3.98059 ± 1.50% (k=2)	3.99254 ± 1.50% (k=2)	3.98124 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	332.0 ° ± 1 °
---	---------------

Certificate No: DAE4-1317_Sep23

Page 3 of 5

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	200035.87	-2.10	-0.00
Channel X + Input	20009.78	2.22	0.01
Channel X - Input	-20003.08	1.96	-0.01
Channel Y + Input	200038.43	1.12	0.00
Channel Y + Input	20007.38	0.01	0.00
Channel Y - Input	-20005.14	0.15	-0.00
Channel Z + Input	200035.44	-1.96	-0.00
Channel Z + Input	20007.06	-0.38	-0.00
Channel Z - Input	-20005.82	-0.50	0.00

Low Range	Reading (μV)	Difference (µV)	Error (%)
Channel X + Input	2002.30	-0.21	-0.01
Channel X + Input	202.91	0.62	0.31
Channel X - Input	-197.09	0.46	-0.24
Channel Y + Input	2001.50	-0.93	-0.05
Channel Y + Input	201.49	-0.69	-0.34
Channel Y - Input	-198.93	-1.28	0.65
Channel Z + Input	2002.15	-0.14	-0.01
Channel Z + Input	201.40	-0.60	-0.30
Channel Z - Input	-198.25	-0.54	0.27

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	12.18	10.32
	- 200	-9.53	-11.39
Channel Y	200	11.60	11.04
	- 200	-12.39	-13.28
Channel Z	200	1.85	2.16
	- 200	-3.72	-3.91

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200		1.45	-3.50
Channel Y	200	8.83		4.46
Channel Z	200	10.22	5.65	()

Certificate No: DAE4-1317_Sep23

Page 4 of 5

4. AD-Converter Values with inputs shorted
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15750	15569
Channel Y	16504	16920
Channel Z	16070	16718

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.33	-0.60	1.20	0.43
Channel Y	-0.09	-1.84	1.39	0.59
Channel Z	0.28	-0.95	2.09	0.54

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1317_Sep23

Page 5 of 5

ANNEX M: The EUT Appearance

The EUT Appearance are submitted separately.

ANNEX N: Test Setup Photos

The Test Setup Photos are submitted separately.

*****END OF REPORT *****