Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client TUV

Shenzhen

Certificate No. D2450V2-1014_Jun24

CALIBRATION CERTIFICATE

Object D2450V2 - SN:1014

Calibration procedure(s) QA CAL-05.v12

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date: June 06, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	26-Mar-24 (No. 217-04036/04037)	Mar-25
Power sensor NRP-Z91	SN: 103244	26-Mar-24 (No. 217-04036)	Mar-25
Power sensor NRP-Z91	SN: 103245	26-Mar-24 (No. 217-04037)	Mar-25
Reference 20 dB Attenuator	SN: BH9394 (20k)	26-Mar-24 (No. 217-04046)	Mar-25
Type-N mismatch combination	SN: 310982 / 06327	26-Mar-24 (No. 217-04047)	Mar-25
Reference Probe EX3DV4	SN: 7349	03-Nov-23 (No. EX3-7349_Nov23)	Nov-24
DAE4	SN: 601	22-May-24 (No. DAE4-601_May24)	May-25
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Joanna Lleshaj	Laboratory Technician	Apollesk
Approved by:	Sven Kühn	Technical Manager	SM

Issued: June 7, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-1014_Jun24

Page 1 of 6

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-1014_Jun24 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m	
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.0 ± 6 %	1.88 mho/m ± 6 %	
Head TSL temperature change during test	< 0.5 °C			

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.35 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.0 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-1014_Jun24

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.1 Ω + 0.5 jΩ			
Return Loss	- 28.0 dB			

General Antenna Parameters and Design

Electrical Delay (one direction)	1.147 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPFAG
Ivianulactured by	or End

Certificate No: D2450V2-1014_Jun24 Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 06.06.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:1014

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.88 \text{ S/m}$; $\varepsilon_r = 38.0$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 03.11.2023

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 22.05.2024

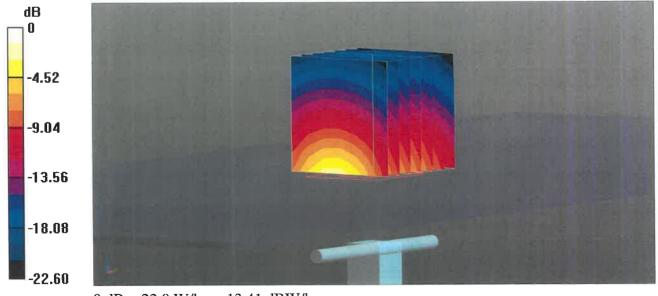
Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

• DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

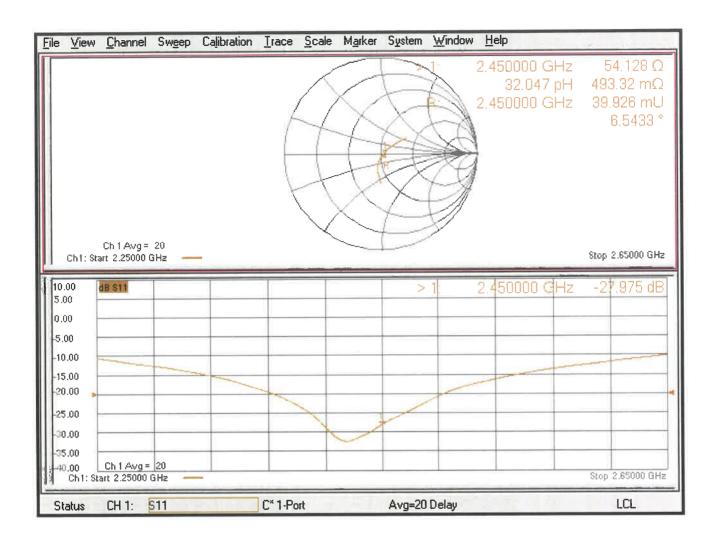
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 117.3 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.35 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm


Ratio of SAR at M2 to SAR at M1 = 50.4%

Maximum value of SAR (measured) = 22.0 W/kg

0 dB = 22.0 W/kg = 13.41 dBW/kg

Impedance Measurement Plot for Head TSL

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Auden

Taoyuan City

Certificate No.

EX-7628 Jul24

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7628

Calibration procedure(s)

QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,

QA CAL-25.v8

Calibration procedure for dosimetric E-field probes

Calibration date

July 03, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) ℃ and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	26-Mar-24 (No. 217-04036/04037)	Mar-25
Power sensor NRP-Z91	SN: 103244	26-Mar-24 (No. 217-04036)	Mar-25
OCP DAK-3.5 (weighted)	SN: 1249	05-Oct-23 (OCP-DAK3.5-1249_Oct23)	Oct-24
OCP DAK-12	SN: 1016	05-Oct-23 (OCP-DAK12-1016_Oct23)	Oct-24
Reference 20 dB Attenuator	SN: CC2552 (20x)	26-Mar-24 (No. 217-04046)	Mar-25
DAE4	SN: 660	23-Feb-24 (No. DAE4-660_Feb24)	Feb-25
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-24)	In house check: Jun-26
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-24)	In house check: Jun-26
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-24)	In house check: Jun-26
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-24)	In house check: Jun-26
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

Name

Function

Signature

Calibrated by

Joanna Lleshaj

Laboratory Technician

Approved by

Sven Kühn

Technical Manager

Issued: July 03, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX-7628_Jul24

Page 1 of 22

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL tissue simulating liquid NORMx,y,z sensitivity in free space Sensitivity in TSL / NORM

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is

normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- *NORMx,y,z*: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900\,\text{MHz}$ in TEM-cell; $f > 1800\,\text{MHz}$: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-7628_Jul24 Page 2 of 22

July 03, 2024 EX3DV4 - SN:7628

Parameters of Probe: EX3DV4 - SN:7628

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k=2)$
Norm $(\mu V/(V/m)^2)$ A	0.65	0.59	0.65	±10.1%
DCP (mV) B	107.4	107.4	106.0	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		Α	В	С	D	VR	Max	Max
	-		dB	$dB\sqrt{\mu V}$		dB	m۷	dev.	Unc ^E
				·					k=2
0	CW	X	0.00	0.00	1.00	0.00	118.2	±1.4%	±4.7%
		Y	0.00	0.00	1.00		139.8		
		Z	0.00	0.00	1.00		128.3		
10352	Pulse Waveform (200Hz, 10%)	X	1.70	61.43	6.84	10.00	60.0	±3.0%	±9.6%
		Y	1.47	60.29	6.22		60.0		
		Z	1.63	61.03	6.45		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	0.83	60.00	5.11	6.99	80.0	±2.5%	±9.6%
		Y	0.82	60.00	4.96		80.0		
		Z	0.81	60.00	4.80		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	0.14	129.53	0.06	3.98	95.0	±2.7%	±9.6%
		Y	0.33	151.36	1.89		95.0		
		Z	0.01	123.95	0.39		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	10.36	156.63	14.04	2.22	120.0	±1.7%	±9.6%
		Y	9.11	159.01	17.48		120.0		
		Z	6.24	159.94	1.86	1	120.0		
10387	QPSK Waveform, 1 MHz	X	0.48	62.75	12.20	1.00	150.0	±3.5%	±9.6%
		Y	0.48	62.56	11.89		150.0		
		Z	0.46	61.57	10.98	1	150.0		
10388	QPSK Waveform, 10 MHz	X	1.26	65.67	13.71	0.00	150.0	±1.1%	±9.6%
		Y	1.25	65.45	13.51		150.0		
		Z	1.20	64.36	12.96	1	150.0		
10396	64-QAM Waveform, 100 kHz	X	1.60	63.67	15.22	3.01	150.0	±1.0%	±9.6%
		Y	1.64	64.12	15.51	1	150.0		
		Z	1.57	63.36	15.35		150.0	1	
10399	64-QAM Waveform, 40 MHz	X	2.74	66.17	14.99	0.00	150.0	±1.6%	±9.6%
		Y	2.74	66.14	14.92		150.0		
		Z	2.71	65.59	14.64	1	150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	3.82	66.54	15.43	0.00	150.0	±3.0%	±9.6%
		Y	3.83	66.53	15.40	1	150.0	7	
		Z	3.84	66.15	15.25		150.0	7	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Parameters of Probe: EX3DV4 - SN:7628

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
X	8.7	61.21	32.18	4.08	0.00	4.91	0.45	0.00	1.00
у	8.7	61.65	32.14	3.39	0.00	4.90	0.46	0.00	1.00
Z	9.5	68.81	33.25	2.96	0.00	4.90	0.25	0.00	1.00

Other Probe Parameters

Sensor Arrangement	, Triangular
Connector Angle	-50.1°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3–4 mm for an Area Scan job.

Certificate No: EX-7628_Jul24 Page 4 of 22

Parameters of Probe: EX3DV4 - SN:7628

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (<i>k</i> = 2)
750	41.9	0.89	9.99	10.47	9.84	0.34	1.27	±11.0%
835	41.5	0.90	9.70	10.17	9.56	0.34	1.27	±11.0%
900	41.5	0.97	9.48	9.94	9.34	0.34	1.27	±11.0%
1450	40.5	1.20	8.27	8.67	8.15	0.35	1.27	±11.0%
1640	40.2	1.31	7.98	8.36	7.86	0.35	1.27	±11.0%
1750	40.1	1.37	8.01	8.40	7.89	0.35	1.27	±11.0%
1900	40.0	1.40	7.77	8.15	7.66	0.35	1.27	±11.0%
2000	40.0	1.40	7.77	8.14	7.65	0.35	1.27	±11.0%
2300	39.5	1.67	7.51	7.87	7.40	0.35	1.27	±11.0%
2450	39.2	1.80	7.25	7.60	7.14	0.35	1.27	±11.0%
2600	39.0	1.96	7.29	7.64	7.18	0.35	1.27	±11.0%
3300	38.2	2.71	6.51	6.83	6.42	0.36	1.27	±13.1%
3500	37.9	2.91	6.56	6.87	6.46	0.36	1.27	±13.1%
3700	37.7	3.12	6.47	6.78	6.37	0.36	1.27	±13.1%
3900	37.5	3.32	6.44	6.75	6.35	0.36	1.27	±13.1%
4100	37.2	3.53	6.42	6.72	6.32	0.36	1.27	±13.1%
4200	37.1	3.63	6.34	6.65	6.25	0.36	1.27	±13.1%
4400	36.9	3.84	6.23	6.53	6.14	0.36	1.27	±13.1%
4600	36.7	4.04	6.10	6.39	6.01	0.36	1.27	±13.1%
4800	36.4	4.25	6.06	6.35	5.97	0.37	1.27	±13.1%
4950	36.3	4.40	5.96	6.24	5.87	0.35	1.27	±13.1%
5250	35.9	4.71	5.45	5.71	5.37	0.32	1.27	±13.1%
5600	35.5	5.07	4.95	5.19	4.87	0.29	1.27	±13.1%
5750	35.4	5.22	4.98	5.22	4.91	0.27	1.27	±13.1%

C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

Certificate No: EX-7628_Jul24 Page 5 of 22

F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$) and are valid for TSL with deviations of up to $\pm 10\%$ if SAR correction is applied.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

H The stated uncertainty is the total calibration uncertainty (*k* = 2) of Norm-ConvF. Therefore, the uncertainty stated is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

Parameters of Probe: EX3DV4 - SN:7628

Calibration Parameter Determined in Head Tissue Simulating Media

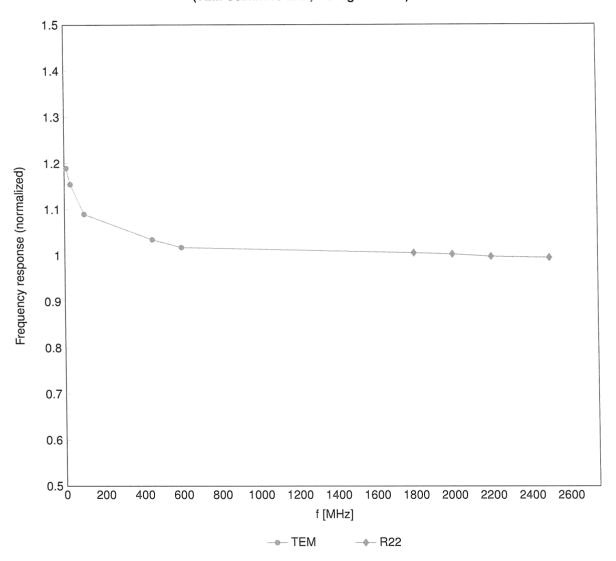
f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (<i>k</i> = 2)
6500	34.5	6.07	5.38	5.64	5.30	0.20	1.27	±18.6%

^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ± 700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$)

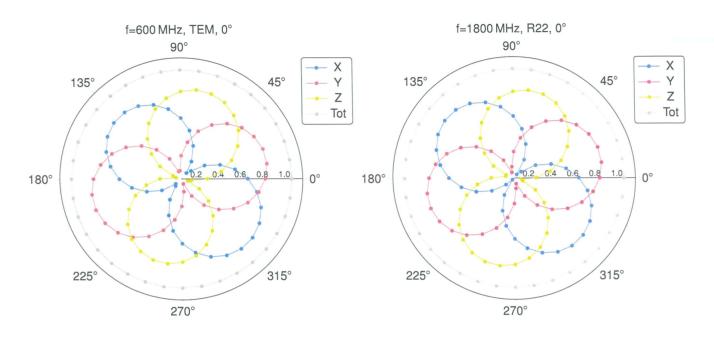
Certificate No: EX-7628_Jul24

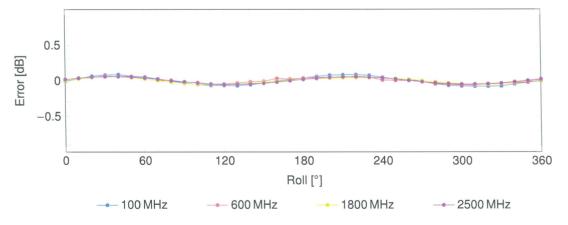
F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$) and are valid for TSL with deviations of up to $\pm 10\%$.


G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3–6 GHz; and below ±4% for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary.

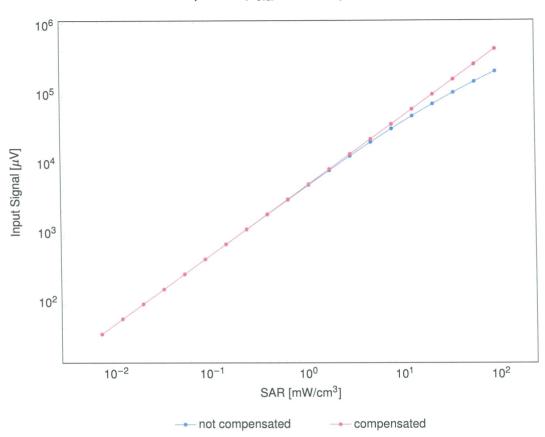
H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm-ConvF. Therefore, the uncertainty stated is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

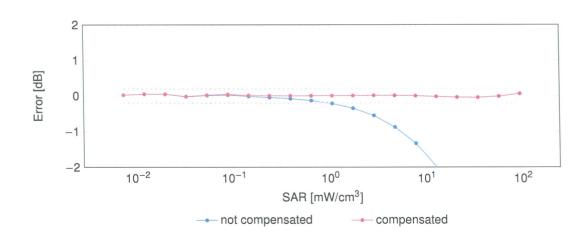

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

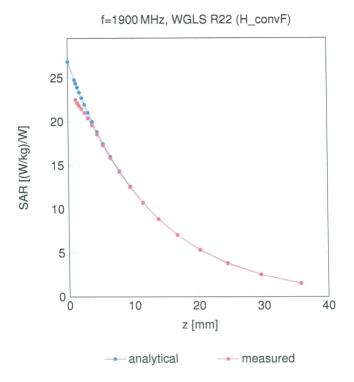


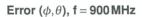


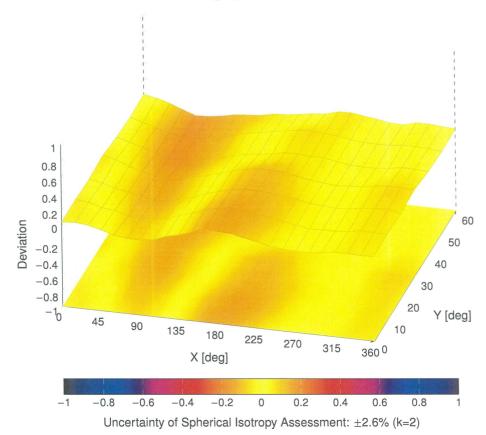
Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

$\textbf{Dynamic Range } \textbf{f}(\textbf{SAR}_{\textbf{head}})$

(TEM cell, $f_{eval} = 1900\,\text{MHz})$




Uncertainty of Linearity Assessment: ±0.6% (k=2)


July 03, 2024

Conversion Factor Assessment

Deviation from Isotropy in Liquid

