

EXHIBIT C – RF EXPOSURE EVALUATION

Applicable Standard

According to subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure				
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (minutes)
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30
30–300	27.5	0.073	0.2	30
300–1500	/	/	f/1500	30
1500–100,000	/	/	1.0	30

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculation formula

Prediction of power density at the distance of the applicable MPE limit

$S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_i \frac{S_i}{S_{Limit,i}} \leq 1$$

Calculated Data:

Operation Modes	Frequency (MHz)	Antenna Gain		Conducted output power including Tune-up Tolerance		Evaluation Distance (cm)	Power Density (mW/cm ²)	MPE Limit (mW/cm ²)
		(dBi)	(numeric)	(dBm)	(mW)			
SRD 900MHz	904-926	2.38	1.73	28	630.96	20.00	0.2172	0.6
SRD 2.4G	2403.5-2475.5	4.01	2.52	29	794.33	20.00	0.3981	1.0
SRD 5.2G	5154-5246	3.31	2.14	18	63.10	20.00	0.0269	1.0
SRD 5.8G	5728-5847	3.35	2.16	29	794.33	20.00	0.3419	1.0
Radar 60G	60000-64000	10	10.00	10	10.00	20.00	0.0199	1.0

For Simultaneous transmission:

SRD and 6 Radars can transmit simultaneously:

$$\sum_i \frac{S_i}{S_{Limit,i}} \leq 1$$

$$= S_{SRD} / S_{limit-SRD} + S_{Radar\ 60G} / S_{limit-Radar\ 60G} * 6$$

$$= 0.3981 / 1.0 + 0.0199 / 1 * 6$$

$$= 0.52$$

Result: Compliant. The device compliant Simultaneous transmission at 20cm distances.

***** END OF REPORT *****