

Global United Technology Services Co., Ltd.

Report No.: GTSL202012000158F01

TEST REPORT

Applicant: Autel Robotics Co., Ltd.

Address of Applicant: 9th Floor, Bldg.B1, Zhiyuan, 1001 Xueyuan Rd. Xili, Nanshan,

Shenzhen, China

Manufacturer/Factory: Autel Robotics Co., Ltd.

Address of 9th Floor, Bldg.B1, Zhiyuan, 1001 Xueyuan Rd. Xili, Nanshan,

Manufacturer/Factory: Shenzhen, China

Equipment Under Test (EUT)

Product Name: EVO II Mobile Station

Model No.: MDCMS-1

Trade Mark: AUTEL

FCC ID: 2AGNTMDCMS2458A

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: Dec. 09, 2020

Date of Test: Dec. 09 – Dec. 15, 2020

Date of report issue: Dec. 15, 2020

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Robinson Luo Laboratory Manager

2 Version

Version No.	Date	Description		
00	Dec. 15, 2020	Original		

Prepared By:	Joseph Cu	Date:	Dec. 15, 2020
	Project Engineer		
Check By:	Lating on Lux	Date:	Dec. 15, 2020
	Reviewer		

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3		NTENTS	
4	TES	ST SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GE	NERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	5
	5.2	TEST MODE	6
	5.3	TEST FACILITY	
	5.4	TEST LOCATION	
	5.5	DESCRIPTION OF SUPPORT UNITS	
	5.6	DEVIATION FROM STANDARDS	_
	5.7	ABNORMALITIES FROM STANDARD CONDITIONS	6
6	TES	ST INSTRUMENTS LIST	7
7	TES	ST RESULTS AND MEASUREMENT DATA	9
	7.1	Antenna requirement:	9
	7.2	CONDUCTED EMISSIONS	
	7.3	EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
	7.4	PEAK TRANSMIT POWER	
	7.5	Power Spectral Density	
	7.6	Band Edge	
	7.7	RADIATED EMISSION	
	7.8	FREQUENCY STABILITY	
8	TES	ST SETUP PHOTO	34
a	FILE	T CONSTRUCTIONAL DETAILS	34

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	PASS
AC Power Line Conducted Emission	15.207	PASS
Peak Transmit Power	15.407(a)(1)	PASS
Power Spectral Density	15.407(a)(1)	PASS
Undesirable Emission	15.407(b)(6), 15.205/15.209	PASS
Radiated Emission	15.205/15.209	PASS
Band Edge	15.407(b)(1)	PASS
Frequency Stability	15.407(g)	PASS

Remark:

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Test Item Frequency Range Measurement Uncertainty		Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)

Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

5 General Information

5.1 General Description of EUT

Dec. I. at No	EVO II Makila Or	- (1		
Product Name:	EVO II Mobile St	EVO II Mobile Station				
Model No.:	MDCMS-1					
Serial No.:	N/A	N/A				
Hardware Version:	V202012					
Software Version:	V202012					
Test sample(s) ID:	GTSL202012000	158-1				
Sample(s) Status:	Engineer sample					
Operation Frequency:	Band	Mode	Frequency Range(MHz)	Number of channels		
	U-NII Band I	IEEE 802.11a	5180-5240	4		
		IEEE 802.11n(HT20)	5180-5240	4		
Modulation technology:	OFDM:802.11a/n	(HT20)				
Antenna Type:	FPC Antenna					
Antenna gain:	4.2dBi					
Power supply:	DC 11.55V, 4950	mAh rechargeable battery				
Adapter Information:	Model:GaN-001					
	Input: AC100-240	V,50/60Hz				
	USB -C1/C2 output: DC 5V, 3A/ DC 9V, 3A/ DC 12V, 3A/ DC 15V, 3A/ DC 20V, 3.25A					
	USB-A output: DO 20V, 3A	C 3.4-5.5V, 5A/ DC 5V, 3A/	DC 9V, 3A/ DC	12V, 3A/ DC		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 5 of 34

Channel list for 802.11a/n/ac(HT20)								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
36	5180MHz	40	5200MHz	44	5220MHz	48	5240MHz	

5.2 Test mode

Tra	ansmitting mode Keep the EUT in transmitting with modulation					
vol	Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.					
	We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:					
	Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.					
	Mo	de	Data rate			
	802.11a/	n(HT20)	6.5/13Mbps			

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, sBaoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

None.

5.6 Deviation from Standards

None.

5.7 Abnormalities from Standard Conditions

None.

6 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021	
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021	
7	Broadband Horn Antenna	SCHWARZBECK	BBHA9170	GTS579	June. 25 2020	June. 24 2021	
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
9	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021	
10	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021	
11	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021	
12	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021	
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021	
14	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021	
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021	
16	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021	
17	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021	
18	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021	
19	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021	
20	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021	
21	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021	
22	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021	
23	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021	
24	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021	
25	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021	

Cond	Conducted Emission								
Item Test Equipment		Manufacturer	Manufacturer Model No.		Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021			
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 25 2020	June. 24 2021			
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 25 2020	June. 24 2021			
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A			
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
7	Thermo meter	KTJ	TA328	GTS233	June. 25 2020	June. 24 2021			
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 25 2020	June. 24 2021			
9	ISN	SCHWARZBECK	NTFM 8158	GTD565	June. 25 2020	June. 24 2021			

RF C	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021			

Gene	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021			
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021			

Page 8 of 34

7 Test results and Measurement Data

7.1 Antenna requirement:

Standard requirement:	FCC Part15 C Section 15.203

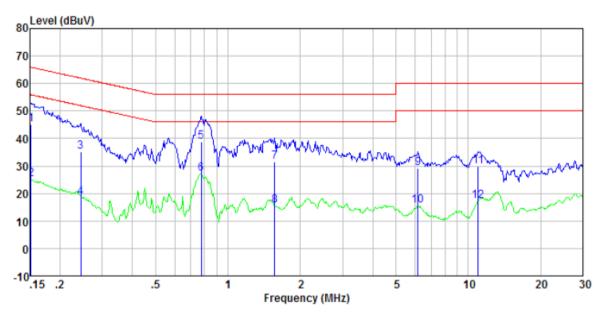
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is FPC antenna, the best case gain is 4.2dBi, reference to the appendix II for details

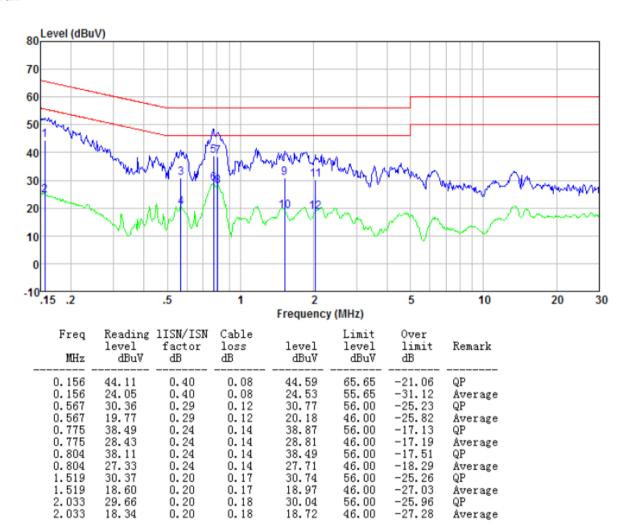
7.2 Conducted Emissions


Test Requirement: Test Method: ANSI C63.10:2013 Test Frequency Range: Class / Severity: Class B Receiver setup: RBW=9KHz, VBW=30KHz Limit: Frequency range (MHz) Quasi-peak Avera 0.15-0.5 66 to 56* 5-30 * Decreases with the logarithm of the frequency. Test procedure Test procedure Test procedure Test procedure The E.U.T and simulators are connected to the main power through a LISN the provides a 500hm/50uH coupling impedance with 500hm termin (Please refers to the block diagram of the test setup and photog Both sides of A.C. line are checked for maximum conducted interpretation of the conducted	o 46* 46 50 rough a line m/50uH eral					
Class B Receiver setup: RBW=9KHz, VBW=30KHz Limit: Frequency range (MHz) Quasi-peak O.15-0.5 66 to 56* 0.5-5 56 46 5-30 * Decreases with the logarithm of the frequency. The E.U.T and simulators are connected to the main power through a LISN the provides a 500hm/south coupling impedance for the measuring equipment. The peripher devices are also connected to the main power through a LISN the provides a 500hm/south coupling impedance with 500hm termin (Please refers to the block diagram of the test setup and photog Both sides of A.C. line are checked for maximum conducted intervals.	o 46* 46 50 rough a line m/50uH eral					
Receiver setup: Comparison	o 46* 46 50 rough a line m/50uH eral					
Limit: Frequency range (MHz)	o 46* 46 50 rough a line m/50uH eral					
Test procedure The E.U.T and simulators are connected to the main power through a become coupling impedance for the measuring equipment. The peripher devices are also connected to the main power through a LISN the provides a 500hm/50uH coupling impedance with 500hm termin (Please refers to the block diagram of the test setup and photog Both sides of A.C. line are checked for maximum conducted into	o 46* 46 50 rough a line m/50uH eral					
Test procedure Test procedure Test procedure The E.U.T and simulators are connected to the main power through a LISN the provides a 500hm/50uH coupling impedance with 500hm termin (Please refers to the block diagram of the test setup and photog Both sides of A.C. line are checked for maximum conducted interpretation of the test setup and photog Both sides of A.C. line are checked for maximum conducted interpretation.	o 46* 46 50 rough a line m/50uH eral					
Test procedure Test procedure The E.U.T and simulators are connected to the main power through impedance stabilization network(L.I.S.N.). The provide a 500hm coupling impedance for the measuring equipment. The peripher devices are also connected to the main power through a LISN the provides a 500hm/50uH coupling impedance with 500hm termin (Please refers to the block diagram of the test setup and photog Both sides of A.C. line are checked for maximum conducted into	rough a line m/50uH eral					
* Decreases with the logarithm of the frequency. Test procedure The E.U.T and simulators are connected to the main power through impedance stabilization network(L.I.S.N.). The provide a 50ohm coupling impedance for the measuring equipment. The peripher devices are also connected to the main power through a LISN the provides a 50ohm/50uH coupling impedance with 50ohm termin (Please refers to the block diagram of the test setup and photog Both sides of A.C. line are checked for maximum conducted into	rough a line m/50uH eral					
* Decreases with the logarithm of the frequency. Test procedure The E.U.T and simulators are connected to the main power through a 500hm coupling impedance for the measuring equipment. The peripher devices are also connected to the main power through a LISN the provides a 500hm/50uH coupling impedance with 500hm terming (Please refers to the block diagram of the test setup and photogon Both sides of A.C. line are checked for maximum conducted into	rough a line m/50uH eral					
Test procedure The E.U.T and simulators are connected to the main power through a 500hm coupling impedance for the measuring equipment. The peripher devices are also connected to the main power through a LISN the provides a 500hm/50uH coupling impedance with 500hm termin (Please refers to the block diagram of the test setup and photog Both sides of A.C. line are checked for maximum conducted into	m/50uH eral					
impedance stabilization network(L.I.S.N.). The provide a 50ohm coupling impedance for the measuring equipment. The peripher devices are also connected to the main power through a LISN the provides a 50ohm/50uH coupling impedance with 50ohm termin (Please refers to the block diagram of the test setup and photogon Both sides of A.C. line are checked for maximum conducted into	m/50uH eral					
In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according ANSI C63.10:2013 on conducted measurement.	ination. ographs). terference. f					
Test setup: Reference Plane	Reference Plane					
AUX Equipment E.U.T Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	power					
Test Instruments: Refer to section 5.10 for details						
Test mode: Refer to section 5.2 for details						
Test environment: Temp.: 25 °C Humid.: 52% Press.: 10	1012mbar					
Test voltage: AC 120V, 60Hz						
,						

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:

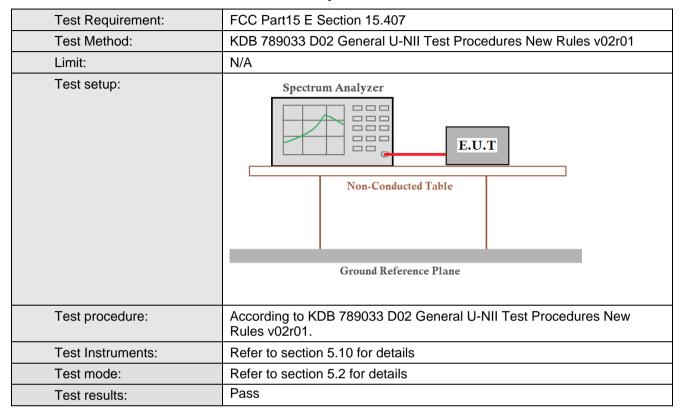
Line:



Freq MHz	Reading level dBuV	1ISN/ISN factor dB	Cable loss dB	level dBuV	Limit level dBuV	Over limit dB	Remark
0.152 0.152 0.244 0.244 0.775 0.775 1.568 1.568 6.186 6.186 11.021	44.73 24.59 34.77 18.15 38.34 26.90 31.23 15.28 28.91 15.25 29.48 16.76	0.40 0.40 0.40 0.40 0.24 0.24 0.20 0.20	0. 07 0. 07 0. 11 0. 11 0. 14 0. 14 0. 17 0. 17 0. 18 0. 18 0. 20 0. 20	45. 20 25. 06 35. 28 18. 66 38. 72 27. 28 31. 60 15. 69 29. 29 15. 63 29. 88 17. 16	65. 91 55. 91 61. 95 51. 95 56. 00 46. 00 56. 00 60. 00 50. 00 50. 00	-20. 71 -30. 85 -26. 67 -33. 29 -17. 28 -18. 72 -24. 40 -30. 35 -30. 71 -34. 37 -30. 12 -32. 84	QP Average

Page 11 of 34

Neutral:



Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. Only show the worst case 802.11a 5180MHz mode on the report.

7.3 Emission Bandwidth and 99% Occupied Bandwidth

Measurement Data:

CH. Frequency		99% Occupied B	99% Occupied Bandwidth (MHz)		26dB Occupied Bandwidth (MHz)		
No.	(MHz)	802.11a	802.11n(HT20)	802.11a	802.11n(HT20)		
36	5180	16.872	17.808	20.57	20.88		
40	5200	16.805	17.807	20.13	20.72		
48	5240	16.764	17.786	20.23	20.77		

Test plots as followed:

7.4 Peak Transmit Power

Test Requirement:	FCC Part15 E Section 15.407					
Test Method:	KDB 789033 D02 Ger	neral U-NII Test Procedures New Rules v02r01				
Limit:	Frequency band (MHz)	Limit				
	5150-5250	≤1W(30dBm) for master device and outdoor AP, The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm) ≤250mW(23.98dBm) for client device				
	5250-5350	≤250mW(23.98dBm) for client device or 11dBm+10logB*				
	5470-5725	≤250mW(23.98dBm) for client device or 11dBm+10logB*				
	The maximum condu	s the 26dB emission bandwidth in MHz. ucted output power must be measured over any s transmission using instrumentation calibrated in valent voltage.				
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane					
Test procedure:	Measurement using an RF average power meter					
·	(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied a) The EUT is configured to transmit continuously or to transmit					
		s when the EUT is transmitting, it must be tits maximum power control level.				
		ation period of the power meter exceeds the od of the transmitted signal by at least a factor of				
	 (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section B). (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter. 					
		asurement in dBm by adding 10 log(1/x) where x is (e.g., 10log(1/0.25) if the duty cycle is 25 percent).				
Test Instruments:	Refer to section 5.10 f	or details				
Test mode:	Refer to section 5.2 fo	r details				

Test results:	Pass
---------------	------

Measurement Data

Modulation	Duty cycle	Duty Factor	
802.11a	98.8%	0.05	
802.11n(HT20)	98.8%	0.05	

	802.11a mode						
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result	
36	5180	17.06	0.05	17.11	30.00	Pass	
40	5200	16.95	0.05	17.00	30.00	Pass	
48	5240	17.05	0.05	17.10	30.00	Pass	
			802.11n(HT20) mode			
CH No.	Frequency (MHz)	Measured Power (dBm)	Duty Factor	Output Power (dBm)	Limit (dBm)	Result	
36	5180	16.02	0.05	16.07	30.00	Pass	
40	5200	16.05	0.05	16.10	30.00	Pass	
48	5240	16.24	0.05	16.29	30.00	Pass	

Note: Output Power = Measured Power + Duty Factor

Duty Factor = 10 log (1/Duty Cycle)

The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm)

Note: This test data refers to clause 7.7.

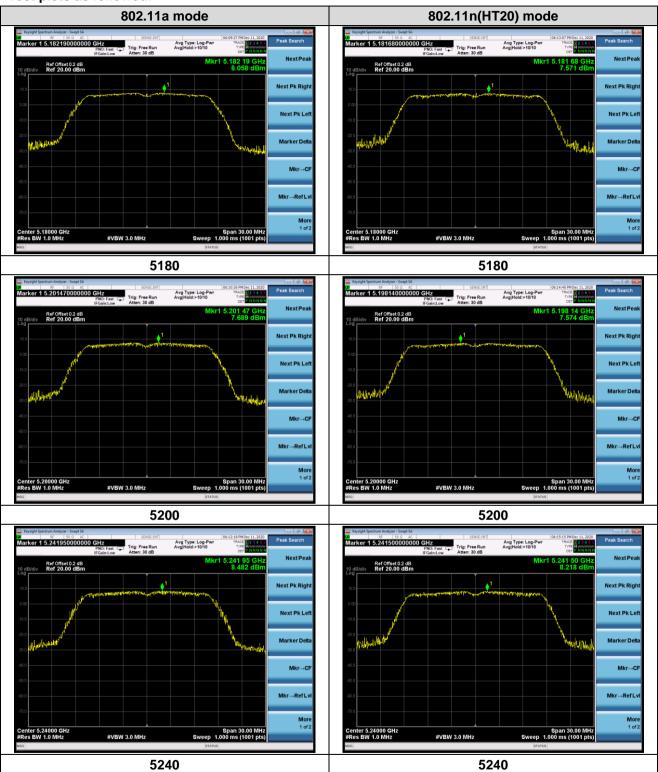
Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 16 of 34

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.40	07		
Test Method:	KDB 789033 D02 General U	J-NII Test Procedures New Rules v02r01		
Limit:	Frequency band (MHz)	Limit		
	5150-5250	≤17dBm in 1MHz for master device and outdoor AP		
		≤11dBm in 1MHz for client device		
	5250-5350	≤11dBm in 1MHz for client device		
	5470-5725	≤11dBm in 1MHz for client device		
		ower spectral density is measured as a ect connection of a calibrated test instrument st.		
Test setup:		E.U.T ducted Table ference Plane		
Test procedure:	being tested by following measuring maximum co analyzer or EMI receive SA-2, SA-3, or alternativincluding, the step label. 2) Use the peak search fur the spectrum. 3) Make the following adjust applicable: a) If Method SA-2 or SA where x is the duty cycle b) If Method SA-3 Alterrused in step E)2)g)(viii),	er spectrum for the EUT operating mode g the instructions in section E)2) for onducted output power using a spectrum er: select the appropriate test method (SA-1, wes to each) and apply it up to, but not ed, "Compute power". Inction on the instrument to find the peak of estimants to the peak value of the spectrum, if etc. Alternative was used, add 10 log(1/x), e, to the peak of the spectrum. Inative was used and the linear mode was add 1 dB to the final result to compensate the linear averaging and power averaging.		
Test Instruments:	Refer to section 5.10 for det	tails		
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

Measurement Data

Modulation	Duty cycle	Duty Factor	
802.11a	98.8%	0.05	
802.11n(HT20)	98.8%	0.05	


	802.11a mode						
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result	
36	5180	8.058	0.05	8.108	17	Pass	
40	5200	7.689	0.05	7.739	17	Pass	
48	5240	8.482	0.05	8.532	17	Pass	
			802.11n(HT	20) mode			
CH No.	Frequency (MHz)	Measured PSD (dBm/MHz)	Duty Factor	Total PSD Power(dBm/MHz)	Limit (dBm/MHz)	Result	
36	5180	7.571	0.05	7.621	17	Pass	
40	5200	7.574	0.05	7.624	17	Pass	
48	5240	8.218	0.05	8.268	17	Pass	

Note: Output Power = Measured Power + Duty Factor

Duty Factor = 10 log (1/Duty Cycle)

Test plots as followed:

7.6 Band Edge

Test Requirement:	FCC Part15 E Section 15.407 and 5.205						
Test Method:	ANSI C63.10:2013						
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)						
Receiver setup:	Frequency 30MHz-1GHz Above 1GHz	Detector Quasi-peak Peak AV	RBW 100KHz 1MHz 1MHz	VBW 300KHz 3MHz 3MHz	Remark Quasi-peak Value Peak Value Average Value		
Limit:	Frequency Limit (dBuV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value Above 1GHz 54.0 Average Value 68.2 Peak Value Undesirable emission limits: (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band: all emissions						
Test Procedure:	outside of the 5.47-5.725 GHz band shall not exceed an EIRP of −27 dBm/MHz. a. The EUT was placed on the top of a rotating table 1.5 m above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not						

2779 8960 Page 20 of 34

Page 21 of 34

	have 10dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data sheet.
Test setup:	For radiated emissions above 1GHz Comparison of the content of
Test Instruments:	Refer to section 5.10 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.
- 5. According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2; For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data:

Lowest Channel:

802.11a				PK				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	47.28	32.07	8.99	37.49	50.85	68.20	-17.35	Horizontal
5350.00	36.45	31.75	9.29	37.20	40.29	68.20	-27.91	Horizontal
5150.00	44.73	32.07	8.99	37.49	48.30	68.20	-19.90	Vertical
5350.00	36.61	31.75	9.29	37.20	40.45	68.20	-27.75	Vertical

802.11a				AV				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	39.64	32.07	8.99	37.49	43.21	54.00	-10.79	Horizontal
5350.00	31.86	31.75	9.29	37.20	35.70	54.00	-18.30	Horizontal
5150.00	38.59	32.07	8.99	37.49	42.16	54.00	-11.84	Vertical
5350.00	31.23	31.75	9.29	37.20	35.07	54.00	-18.93	Vertical

Highest Channel:

802.11a				PK				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	36.94	32.07	8.99	37.49	40.51	68.20	-27.69	Horizontal
5350.00	37.10	31.75	9.29	37.20	40.94	68.20	-27.26	Horizontal
5150.00	35.86	32.07	8.99	37.49	39.43	68.20	-28.77	Vertical
5350.00	36.81	31.75	9.29	37.20	40.65	68.20	-27.55	Vertical

802.11a				AV				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	31.02	32.07	8.99	37.49	34.59	54.00	-19.41	Horizontal
5350.00	31.34	31.75	9.29	37.20	35.18	54.00	-18.82	Horizontal
5150.00	30.58	32.07	8.99	37.49	34.15	54.00	-19.85	Vertical
5350.00	30.37	31.75	9.29	37.20	34.21	54.00	-19.79	Vertical

Lowest Channel:

802.11n(HT2	20)			PK				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	45.48	32.07	8.99	37.49	49.05	68.20	-19.15	Horizontal
5350.00	37.49	31.75	9.29	37.20	41.33	68.20	-26.87	Horizontal
5150.00	45.20	32.07	8.99	37.49	48.77	68.20	-19.43	Vertical
5350.00	37.14	31.75	9.29	37.20	40.98	68.20	-27.22	Vertical

802.11n(HT2	20)			AV				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	39.46	32.07	8.99	37.49	43.03	54.00	-10.97	Horizontal
5350.00	37.13	31.75	9.29	37.20	40.97	54.00	-13.03	Horizontal
5150.00	38.38	32.07	8.99	37.49	41.95	54.00	-12.05	Vertical
5350.00	37.15	31.75	9.29	37.20	40.99	54.00	-13.01	Vertical

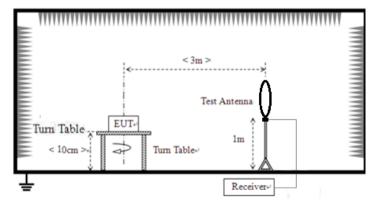
Highest Channel:

3								
802.11n(HT2	20)			PK				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	37.09	32.07	8.99	37.49	40.66	68.20	-27.54	Horizontal
5350.00	37.82	31.75	9.29	37.20	41.66	68.20	-26.54	Horizontal
5150.00	36.70	32.07	8.99	37.49	40.27	68.20	-27.93	Vertical
5350.00	37.03	31.75	9.29	37.20	40.87	68.20	-27.33	Vertical

802.11n(HT2	20)			AV				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
5150.00	31.45	32.07	8.99	37.49	35.02	54.00	-18.98	Horizontal
5350.00	31.43	31.75	9.29	37.20	35.27	54.00	-18.73	Horizontal
5150.00	31.11	32.07	8.99	37.49	34.68	54.00	-19.32	Vertical
5350.00	30.86	31.75	9.29	37.20	34.70	54.00	-19.30	Vertical

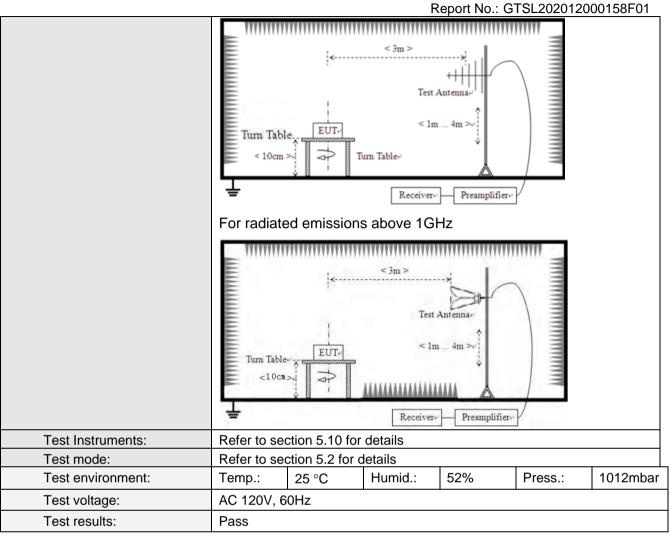
7.7 Radiated Emission

Test Requirement:	FCC Part15 C Sec	rtion 15	: 209 an	nd 15 205						
Test Method:	ANSI C63.10:2013		7.200 di	10.200						
Test Frequency Range:	9kHz to 40GHz	,								
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
	Frequency		ector	RBW	VBW	Value				
Receiver setup:	9kHz-150KHz		i-peak	200Hz	1kHz	Quasi-peak Value				
	150kHz-30MHz		i-peak	9kHz	30kHz	Quasi-peak Value				
	30MHz-1GHz		i-peak	100KHz	300KHz	Quasi-peak Value				
	Above 1GHz		eak	1MHz	3MHz	Peak Value				
	Above 10112	Α	V	1MHz	3MHz	Average Value				
Limit:		Т								
	Frequency		Limit	(uV/m)	Value	Measurement Distance				
	0.009MHz-0.490	MHz	2400/	/F(KHz)	QP	300m				
	0.490MHz-1.705	MHz	24000)/F(KHz)	QP	300m				
	1.705MHz-30M	1Hz	;	30	QP	30m				
	30MHz-88MH	lz	1	00	QP					
	88MHz-216M	Hz	1	50	QP					
	216MHz-960M	lHz	2	200	QP					
	960MHz-1GH	lz	5	500	QP	3m				
	Al 4011		5	500	Average					
	Above 1GHz	<u>z</u>	5	000	Peak					
Test Procedure:	1GHz and 1.5 meter camber position of the 2. The EUT was antenna, which antenna towe 3. The antenna the ground to Both horizon make the me 4. For each sus case and the meters and the degrees to fir 5. The test-rece Specified Bar 6. If the emission the limit spect values of the did not have	the EU proced st proce placed placed meters The ta highes s set 3 ch was er, height detern tal and asurem pected n the an erotal nd the r piver syn height for level iffied, th EUT w 10dB m peak or	T. ure as the edure: l on the est for able was tradiated and the edure: is varied in the edure the education	top of a rot ove 1GHz) s rotated 3 ion. away from ed on the to d from one maximum polarizatio on, the EUT was turned was turned was turned e was turned aximum Ho EUT in peal ing could be reported. (tating table above the conditions of the and to heights find from 0 decay and find find find find find find find fi	(0.8m for below ground at a 3 to determine the ence-receiving ble-height ur meters above e field strength. Intenna are set to ged to its worst from 1 meter to 4 egrees to 360 Function and a 10dB lower than and the peak the emissions that				



- 1. On the test site as test setup graph above, the EUT shall be placed at the 0.8m support on the turntable and in the position closest to normal use as declared by the provider.
- The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
- 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
- 6. Remove the transmitter and replace it with a substitution antenna
- 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- 8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
- 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: EIRP(dBm) = Pg(dBm) cable loss (dB) + antenna gain (dBi) where:

Pg is the generator output power into the substitution antenna.


Test setup:

For radiated emissions from 9kHz to 30MHz

For radiated emissions from 30MHz to1GHz

Remarks:

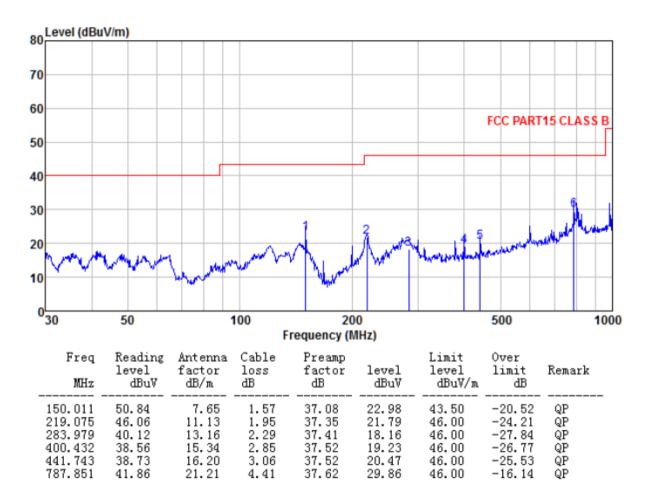
- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data:

The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm). The test result shows bellow.

Test Mode	CH No.	Frequenc y (MHz)	Reading Level (dBm)	Factor (dB)	Maximum EIRP (dBm)	Limit (dBm)	Result	Angle(°
	36	5180	0.57	18.74	19.31	21.00	Pass	30
802.11a	40	5200	0.43	18.87	19.30	21.00	Pass	30
	48	5240	-0.14	19.46	19.32	21.00	Pass	30
222 44 (1)	36	5180	0.44	18.74	19.18	21.00	Pass	30
802.11n(HT20	40	5200	0.37	18.87	19.24	21.00	Pass	30
,	48	5240	-0.52	19.46	18.94	21.00	Pass	30

Note: Maximum EIRP (dBm)= Reading Level(dBm)+ Factor(dB)

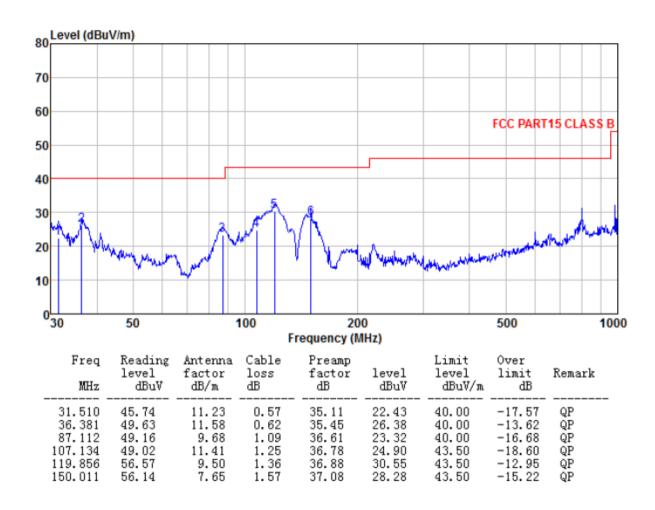

9kHz ~ 30 MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

30MHz~1GHz

Pre-scan all test modes, found worst case at 5180MHz of 802.11a mode, and so only show the test result at 5180MHz of 802.11a.

Horizontal:



Page 28 of 34

Vertical:

Report No.: GTSL202012000158F01

Above 1GHz:

802.11a 5180MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360	30.24	39.67	14.62	32.65	51.88	68.20	-16.32	Vertical
15540	31.58	38.60	17.66	34.46	53.38	68.20	-14.82	Vertical
10360	29.96	39.67	14.62	32.65	51.60	68.20	-16.60	Horizontal
15540	32.13	38.60	17.66	34.46	53.93	68.20	-14.27	Horizontal

802.11a 5200MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400	30.49	39.75	14.63	32.71	52.16	68.20	-16.04	Vertical
15600	31.28	38.33	17.67	34.17	53.11	68.20	-15.09	Vertical
10400	29.17	39.75	14.63	32.71	50.84	68.20	-17.36	Horizontal
15600	31.59	38.33	17.67	34.17	53.42	68.20	-14.78	Horizontal

802.11a 5240MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480	28.90	39.82	14.68	32.86	50.54	68.20	-17.66	Vertical
15720	31.01	38.09	17.73	33.66	53.17	68.20	-15.03	Vertical
10480	29.38	39.82	14.68	32.86	51.02	68.20	-17.18	Horizontal
15720	30.79	38.09	17.73	33.66	52.95	68.20	-15.25	Horizontal

802.11n(HT20) 5180MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10360	30.02	39.67	14.62	32.65	51.66	68.20	-16.54	Vertical
15540	31.40	38.60	17.66	34.46	53.20	68.20	-15.00	Vertical
10360	29.70	39.67	14.62	32.65	51.34	68.20	-16.86	Horizontal
15540	31.90	38.60	17.66	34.46	53.70	68.20	-14.50	Horizontal

802.11n(HT20) 5200MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400	30.27	39.75	14.63	32.71	51.94	68.20	-16.26	Vertical
15600	31.10	38.33	17.67	34.17	52.93	68.20	-15.27	Vertical
10400	28.91	39.75	14.63	32.71	50.58	68.20	-17.62	Horizontal
15600	31.36	38.33	17.67	34.17	53.19	68.20	-15.01	Horizontal

802.11n(HT20) 5240MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10480	28.68	39.82	14.68	32.86	50.32	68.20	-17.88	Vertical
15720	30.83	38.09	17.73	33.66	52.99	68.20	-15.21	Vertical
10480	29.12	39.82	14.68	32.86	50.76	68.20	-17.44	Horizontal
15720	30.56	38.09	17.73	33.66	52.72	68.20	-15.48	Horizontal

Notes:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.
- 3. If the test result on peak is lower than average limit, then averagse measurement needn't be performed.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 31 of 34

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)					
Test Method:	ANSI C63.10:2013, FCC Part 2.1055					
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified					
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.					
Test setup:	Spectrum analyzer Att. Note: Measurement setup for testing on A	Temperature Chamber EUT Variable Power Supply Antenna connector				
Test Instruments:	Refer to section 5.10 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

Remark: Set the EUT transmits at un-modulation mode to test frequency stability.

Measurement data:

Voltage VS Frequency stability

Band: I			Test Frequency: 5180.00MHz			
Temperature (°C)	Voltage (V)	Frequency Deviation (Hz)	Frequency Deviation (ppm)	Result		
25	DC 11.55	-3000.00	-0.57915	PASS		
25	DC 10.40	-2000.00	-0.38610	PASS		
25	DC 12.71	-2000.00	-0.38610	PASS		

Temperature VS Frequency stability

Band: I			Test Frequency: 5180.00MHz	
Voltage (V)	Temperature (°C)	Frequency Deviation (Hz)	Frequency Deviation (ppm)	Result
DC 11.55	-20	-3000.00	-0.57915	PASS
DC 11.55	-10	-3000.00	-0.57915	PASS
DC 11.55	0	-2000.00	-0.38610	PASS
DC 11.55	10	-2000.00	-0.38610	PASS
DC 11.55	20	-2000.00	-0.38610	PASS
DC 11.55	30	-2000.00	-0.38610	PASS
DC 11.55	40	-3000.00	-0.57915	PASS
DC 11.55	50	-3000.00	-0.57915	PASS

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

---END---