

Report on the Radio Testing

For

Ocado Innovation Limited

on

RCOM Bot Communications Module

Report no. TRA-059223-47-04B

20th July 2023

RF930 6.0

Report Number: TRA-059223-47-04B

Issue: E

REPORT ON THE RADIO TESTING OF A Ocado Innovation Limited RCOM Bot Communications Module WITH RESPECT TO SPECIFICATION FCC 47CFR Subpart E

TEST DATE: 3rd - 11th May 2023

Tested by: D Winstanley, S Hodgkinson, S lung Sui

D Winstanley

Written by: Radio Senior Test Engineer

Approved by:

J Charters

Lab Manager

Date: 20th July 2023

Disclaimers

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

1 Revision Record

Issue Number	Issue Date	Revision History
А	28 th June 2023	Original
В	20th July 2023	Typographical Corrections addition of non-occupancy plot

RF930 Page 3 of 65

2 Summary

TEST REPORT NUMBER: TRA-059223-47-04B WORKS ORDER NUMBER: TRA-059223-07 PURPOSE OF TEST: Testing of radio frequency equipment per the relevant authorization procedure of chapter 47 of CFR (code of federal regulations) Part 2, subpart J. **TEST SPECIFICATION:** 47CFR15 Subpart E **EQUIPMENT UNDER TEST (EUT): RCOM Bot Communications Module** FCC IDENTIFIER: 2AGHF-RCOMBCM003 **EUT SERIAL NUMBER:** OCAG00118 MANUFACTURER/AGENT: Ocado Innovation Limited ADDRESS: Trident Place, Hatfield Business Park Mosquito Way, Hatfield Hertfordshire AL10 9UL United Kingdom **CLIENT CONTACT: Ed Briggs 2** 07557 860903 □ Ed.Briggs@Ocado.com TEST DATE: 3rd - 11th May 2023 **TESTED BY:** D Winstanley, S Hodgkinson, S lung Sui Element

RF930 Page 4 of 65

2.1 Test Summary

Test Method and Description		Requirement Clause 47CFR15	Applicable to this equipment	Result / Note	
Radiated spurious emissions (restricted bands of operation and cabinet radiation)		15.205		Pass	
AC power line conduc	eted emissions	15.207	\boxtimes	Pass	
Occupied ban	dwidth	15.407(e)		Pass	
	Conducted				
Output power	PSD	15.407(a)		Pass	
	RPE				
Conducted / radiated R band	F power out-of-	15.407(b)	15.407(b)		
Duty cycle		15.35(c)		Pass	
TPC and DFS		15.407(h)		Pass	
U-NII detection bandwidth		15.407(h)(2)		Note 1	
CAC		15.407(h)(2)(ii)		Note 1	
In-service monitoring		15.407(h)(2)(iii) & 15.407(h)(2)(iv)		Pass	
Statistical pe chec		-		Note 1	

Notes:

1. This test is not applicable to a client device without radar detection.

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set-up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

General notes

The decision rule for compliance is not inherent within this specification and compliance is based on the customer requesting a simple acceptance rule based on understanding and acceptance of Elements Measurement Uncertainty values.

RF930 Page 5 of 65

3 Contents

1	Re	evision Record	3
2		ummary	
	2.1	Test Summary	
3		ontents	
4		troduction	
5	Ιe	est Specifications	
	5.1	Normative References	9
	5.2	Deviations from Test Standards	9
6	GI	ossary of Terms	
7		quipment Under Test	
	7.1	EUT Identification	
	7.2	System Equipment	
	7.3	EUT Mode of Operation	
	7.3	3.1 Transmission	. 11
	7.4	EUT Radio Frequency Parameters	. 11
	7 4	4.1 General	
		4.2 Antennas	
	7.5	EUT Description	
8		odifications	
9	Εl	JT Test Setup	. 14
	9.1	Block Diagram	
	9.2	General Set-up Photograph	
	9.3	Measurement software	
		General Technical Parameters	
10			
	10.1		
	10.2		
11		Radiated emissions	. 20
	11.1	Definitions	
	11.2		
	11.3		
	-		
	11.4		
	11.5		
12	<u> </u>	AC power-line conducted emissions	
	12.1	Definition	. 28
	12.2	Test Parameters	28
	12.3		
	12.4		
	12.5		
13		Occupied Bandwidth	
	13.1		
	13.2	Test Parameters	. 32
	13.3	Test Method	33
	13.4		
		· ·	
	13.5		
14		Maximum conducted output power	
	14.1	Definition	
	14.2	Test Parameters	. 38
	14.3	Test Method	. 40
	14.4	Test Equipment	40
	14.5		
15	-		
10		Power spectral density	
	15.1	Definition	
	15.2		
	15.3	Test Method	. 42
	15.4	Test Equipment	42
	15.5	! I	
16		Out-of-band spurious emissions	
10) 16.1	·	
	-		
	16.2		
	16.3		
	16.4	Test Equipment	. 46
	16.5		
17		Duty Cycle	
.,	17.1	Definition	
	17.1		
	1/3	Test Method.	42

17.4 Test Equipment	49
17.5 Test Results	50
18 Dynamic Frequency Selection (DFS)	53
18.1 General	
18.2 Test Parameters	53
18.3 Test Method	56
18.4 Calibration	57
19 In-Service Monitoring	58
19.1 Definition	
19.1.1 Channel Closing	58
19.1.2 Non-Occupancy Period	58
19.2 Additional Test Parameters	
19.3 Test Method	59
19.4 Test Equipment	59
19.5 Test Results	60
20 Measurement Uncertainty	
21 RF Exposure	

4 Introduction

This report TRA-059223-47-04B presents the results of the Radio testing on a Ocado Innovation Limited, RCOM Bot Communications Module to specification 47CFR15 Radio Frequency Devices.

The testing was carried out for Ocado Innovation Limited by Element, at the address detailed below.

Element Hull \boxtimes Element Skelmersdale **Element Surrey Hills** Unit E Unit 1 Unit 15 B South Orbital Trading Park Pendle Place Henley Business Park Pirbright Road **Hedon Road** Skelmersdale West Lancashire Hull Normandy HU9 1NJ WN8 9PN Guildford UK UK GU3 2DX UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

FCC Site Listing:

The test laboratory is accredited for the above sites under the US-UK MRA,

Designation number(s):

Element Hull UK2007 Element Skelmersdale UK2020

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

RF930 Page 8 of 65

5 Test Specifications

5.1 Normative References

- FCC 47 CFR Ch. I Part 15 Radio Frequency Devices.
- FCC KDB Publication 905462 D02 v01r02 Compliance measurement procedures for unlicensednational information infrastructure devices operating in the 5250-5350 MHz and 5470-5725 MHz bands incorporating dynamic frequency selection.
- ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

5.2 Deviations from Test Standards

There were no deviations from the test standard.

RF930 Page 9 of 65

6 Glossary of Terms

§ denotes a section reference from the standard, not this document

AC Alternating Current

ANSI American National Standards Institute

BW bandwidth C Celsius

CAC Channel Availability Check
CFR Code of Federal Regulations

CW Continuous Wave

dB decibel

dBm dB relative to 1 milliwatt

DC Direct Current

DFS Dynamic Frequency Selection
DSSS Direct Sequence Spread Spectrum
EIRP Equivalent Isotropically Radiated Power

ERP Effective Radiated Power EUT Equipment Under Test

FCC Federal Communications Commission FHSS Frequency Hopping Spread Spectrum

Hz hertz

IC Industry Canada (now ISED)

ISED Innovation, Science and Economic Development Canada

ITU International Telecommunication Union

LBT Listen Before Talk

LE-LAN Licence-Exempt Local Area Network

m metre
max maximum

MIMO Multiple Input and Multiple Output

min minimum

MRA Mutual Recognition Agreement

N/A Not Applicable
PCB Printed Circuit Board
PDF Portable Document Format

Pt-mpt Point-to-multipoint Pt-pt Point-to-point

PSD Power Spectral Density
RF Radio Frequency
RH Relative Humidity
RMS Root Mean Square

Rx receiver s second

SVSWR Site Voltage Standing Wave Ratio

TPC Transmitter Power Control

Tx transmitter

UKAS United Kingdom Accreditation Service

U-NII Unlicensed-National Information Infrastructure

 $\begin{array}{ll} \textbf{V} & \text{volt} \\ \textbf{W} & \text{watt} \\ \textbf{\Omega} & \text{ohm} \end{array}$

RF930 Page 10 of 65

Report Number: TRA-059223-47-04B

7 Equipment Under Test

7.1 EUT Identification

Name: RCOM Bot Communications Module

Serial Number: OCAG00118
Model Number: RCOM BCM
Software Revision: v12.0.18

Build Level / Revision Number: 20058850 Rev 1.00

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

Customer supplied Laptop RCOM Base Station

7.3 EUT Mode of Operation

7.3.1 Transmission

The EUT was set to transmit on the required channel in a communication link with a companion device (Base Station). A Laptop Supplied by the manufacturer containing Engineering Test Interface (ETIF) software, this software is used to select the region the EUT test scenario / operating mode and operating channel

7.4 EUT Radio Frequency Parameters

7.4.1 General

Frequency of operation:	5470 MHz – 5725 MHz
Modulation type(s):	OFDMA
Occupied channel bandwidth(s):	10 MHz
Channel spacing:	10 MHz
Declared output power(s):	21 dBm EIRP
Nominal Supply Voltage:	24 Vdc

RF930 Page 11 of 65

7.4.2 Antennas

Frequency range:	5470 MHz – 5725 MHz
Impedance:	50 Ohms
Antenna Assembly Gain:	+5 dBi (with 1 dB cable loss) (Antenna Assembly Gain including cable = 4 dBi)
Polarisation:	Linear
Connector type:	RP-SMA
Environmental limits:	-30 °C to + 45 °C
Mounting:	External

7.4.3 Product specific declarations

Multiple antenna configuration(s), e.g. MIMO:	Single Transmit, Receive Diversity
Fixed pt-pt operations (yes/no):	No

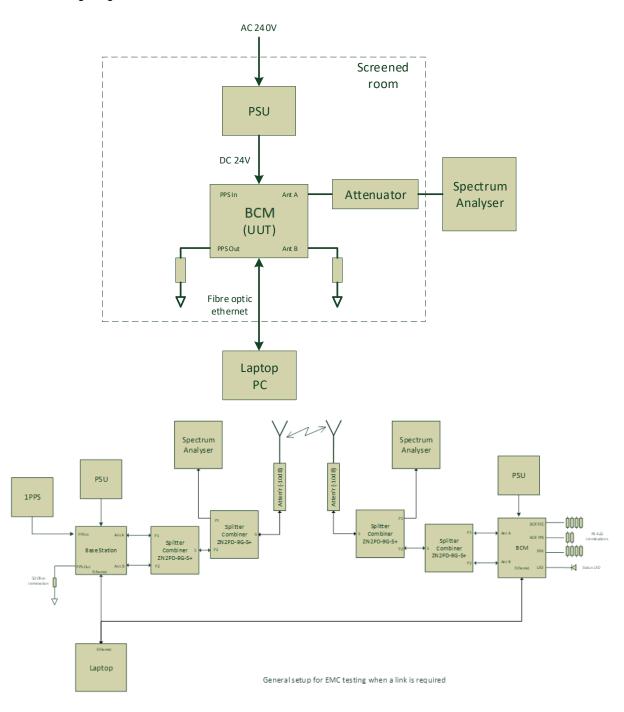
DFS Parameters:					
Highest and lowest EIRP:	21 dBm EIRP				
Antenna used for testing:	None (pulses applied to both antenna A&B Simultaneously)				
Antenna port impedance:	50 ohms				
Channel loading / test file:	Master Device used in test Loaded to 47.5 %				
TPC description:	EUT at Full Power (TPC N/A <500mW)				
Clients: Radar detection Master U-NII Device FCC ID	2AGHF-RCOMBS003				

7.5 EUT Description

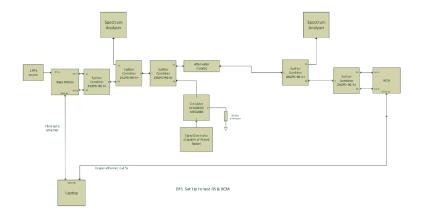
The EUT is part of a point to multipoint short range radio communications system, identified as RCOM, which operates in the frequency band 5470MHz to 5725MHz. The wireless part of this system comprises of two parts, the BS – Base Station (EUT) and the BCM – Bot Communications Module. One Base Station can be connected to many BCMs at any one time. The purpose of this radio system is to provide a low data rate, bi-directional, wireless connection to a large number of low speed factory floor machines which transport goods, in a controlled manner, around the facility. These machines are unmanned and the purpose of the wireless connection is to issue commands to the machines and relay status information back, from each of the machines, to a central point in the factory.

RF930 Page 12 of 65

8 Modifications


No modifications were performed during this assessment.

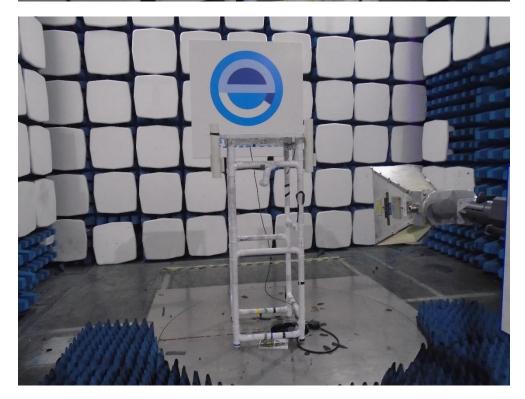
RF930 Page 13 of 65


9 EUT Test Setup

9.1 Block Diagram

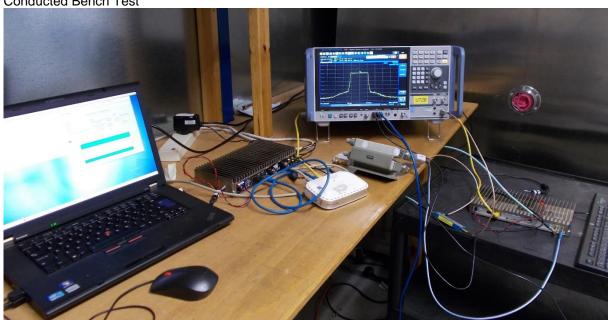
The following diagram shows basic EUT interconnections:

RF930 Page 14 of 65


RF930 Page 15 of 65

9.2 General Set-up Photograph

The following photograph shows basic EUT set-up:


Radiated Emissions:

RF930 Page 16 of 65

Conducted Bench Test

RF930 Page 17 of 65

9.3 Measurement software

Where applicable, the following software was used to perform measurements contained within this report.

Element Emissions R5 (See Note) Element Transmitter Bench Test (See Note) ETS Lindgren EMPower V1.0.4.2

Note:

The version of the Element software used is recorded in the results sheets contained within this report.

RF930 Page 18 of 65

10 General Technical Parameters

10.1 Normal Conditions

The E U T was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was 24 V dc from a mains adaptor.

10.2 Varying Test Conditions

Variation of supply voltage is required to ensure stability of the declared output power and frequency. During carrier power testing the following variations were made:

Category	Nominal	Variation	
Mains	110V ac +/-2%	85% and 115%	
Battery	New battery	N/A	
Other	24 Vdc	N/A	

RF930 Page 19 of 65

11 Radiated emissions

11.1 Definitions

Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

11.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Chamber / EMC chamber 1

Test Standard and Clause: ANSI C63.10-2013, Clause 6.5 and 6.6

EUT Channels / Frequencies Measured: 5482.5MHz & 5712.5MHz

EUT Channel Bandwidths: 10MHz

Deviations From Standard: None

Measurement BW: 30 MHz to 1 GHz: 120 kHz; Above 1 GHz: 1 MHz

Measurement Detector: Up to 1 GHz: quasi-peak

Above 1 GHz: RMS average and Peak

Environmental Conditions (Normal Environment)

Temperature: 21 °C +15 °C to +35 °C (as declared)

Humidity: 45 %RH 20%RH to 75%RH (as declared)

Test Limits

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

General Field Strength Limits for License-Exempt Transmitters at Frequencies Above 30 MHz

Frequency (MHz)	Field Strength (μV/m at 3m)
30-88	100
88-216	150
216-960	200
Above 960	500

RF930 Page 20 of 65

11.3 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in $dB\mu V/m$ at the regulatory distance, using:

$$FS = PR + CL + AF - PA + DC - CF$$

Factor = $CL + AF - PA$

Where.

PR is the power recorded on the receiver / spectrum analyzer in dBµV;

CL is the cable loss in dB:

AF is the test antenna factor in dB/m;

PA is the pre-amplifier gain in dB (where used);

DC is the duty correction factor in dB (where used, e.g. where average detector on pulsed harmonic understates the power):

CF is the distance factor in dB (where measurement distance different to limit distance);

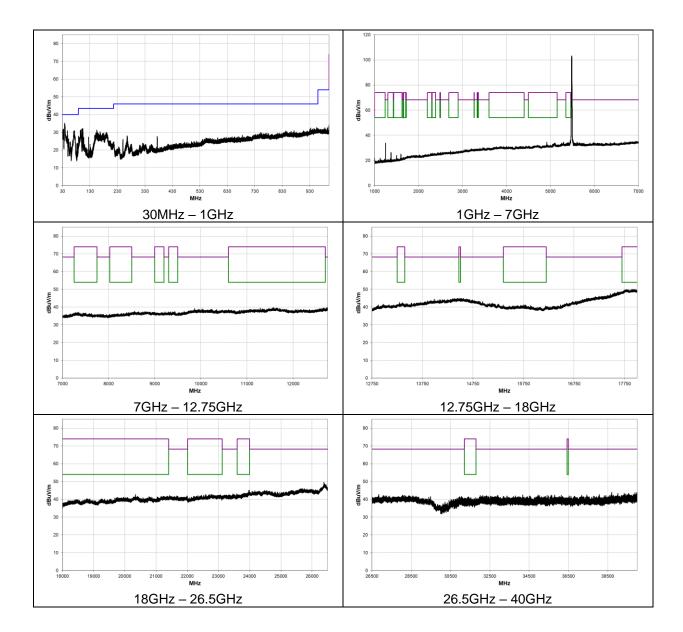
This field strength value is then compared with the regulatory limit.

Figure i Test Setup

RF930 Page 21 of 65

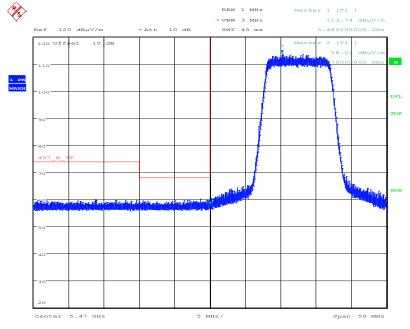
11.4 Test Equipment

Equipment		Equipment	Element	Last Cal	Calibration	Due For
Description	Manufacturer	Туре	No	Calibration	Period	Calibration
PreAmp	Watkins Johnson	6201-69	U372	2023-03-01	1 Year	2024-03-07
2.4G Band Stop Filter	BSC	SN 4478	U543	2023-02-03	1 Year	2024-02-08
Bilog	Chase	CBL611/A	U191	2020-11-10	2 Year	2025-02-23
Horn Antenna	EMCO	3115	L138	2022-05-23	1 Year	2024-05-23
Spectrum Analyser	R&S	FSU46	REF910	2022-12-22	1 Year	2024-01-10
Pre Amp	Agilent	8449B	L572	2022-10-24	1 Year	2023-10-24
EMI Receiver	R&S	ESR26	U489	2021-03-04	1 Year	2023-09-30
PreAmp	Com-power	PAM-840A	REF239 0	2021-09-02	1 Year	2023-09-02
PreAmp	Watkins Johnson	6201-69	U372	2023-03-01	1 Year	2024-03-07

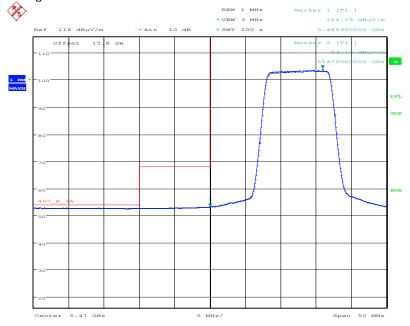

RF930 Page 22 of 65

11.5 Test Results

	Common Emissions								
Detector	Freq. (MHz)	Meas'd Emission (dΒμV)	Factor	Duty Cycle Corr'n (dB)	Field Strength (dBµV/m)	Distance Extrap'n Factor (dB)	Limit (dBuV/m)	Margin (μV/m)	
QP	38.106	39.1	-8.0	0	31.1	0	40.0	-8.9	
QP	71.375	42.2	-15.7	0	26.5	0	40.0	-13.5	
QP	33.620	31.6	-5.6	0	26.0	0	40.0	-14.0	
QP	48.551	39.8	-13.8	0	26.0	0	40.0	-14.0	
QP	31.703	30.1	-4.6	0	25.5	0	40.0	-14.5	

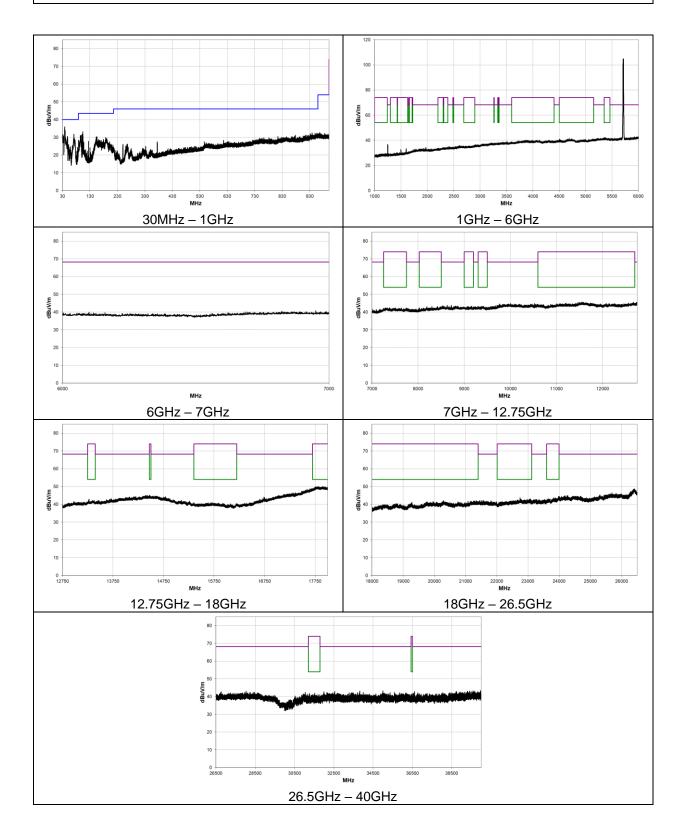

RF930 Page 23 of 65

Channel: 5482.5 MHz, Wideband Mode							
Detector (MHz) $(MH$							
No Emission within 20dB of the limits							

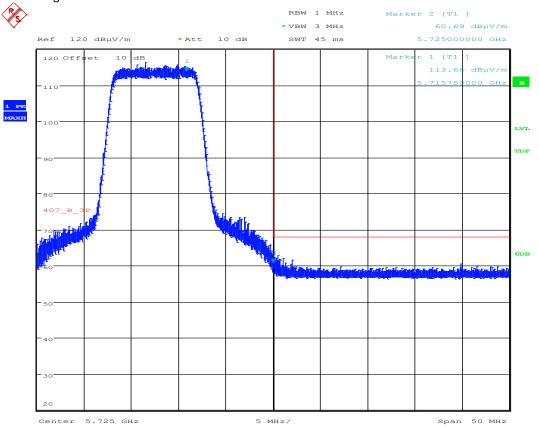

RF930 Page 24 of 65

Band Edge Peak Limit:

Date: 3.MAY.2023 10:30:37


Band Edge Average Limit:

Date: 3.MAY.2023 11:55:12


RF930 Page 25 of 65

	Channel: 5712.5 MHz, Wideband Mode							
Detector	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
No Emission within 20dB of the limits								

RF930 Page 26 of 65

Band Edge Peak Limit:

Date: 3.MAY.2023 10:07:12

RF930 Page 27 of 65

12 AC power-line conducted emissions

12.1 Definition

Line-to-ground radio-noise voltage that is conducted from all of the EUT current-carrying power input terminals that are directly (or indirectly via separate transformers or power supplies) connected to a public power network.

12.2 Test Parameters

Test Location: Element Skelmersdale
Test Chamber: Transient Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 6.2

EUT Channels / Frequencies Measured: Mid

EUT Channel Bandwidths: 10 MHz

EUT Modulation: OFDM

Deviations From Standard: None

Measurement BW: 10 kHz

Measurement Detectors: Quasi-Peak and Average, RMS

Environmental Conditions (Normal Environment)

Temperature: 18 °C +15 °C to +35 °C (as declared)

Humidity: 42 %RH 20%RH to 75%RH (as declared)

Test Limits

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz-30 MHz, shall not exceed the limits in Table 3.

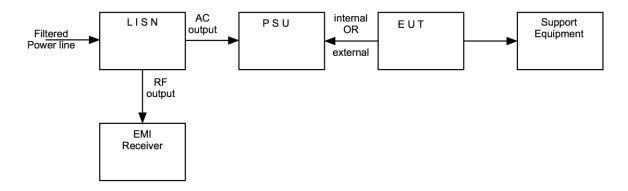
Table 3 – AC Power Line Conducted Emission Limits

Frequency	Conducted limit (dΒμV)				
(MHz)	Quasi-Peak	Average**			
0.15 – 0.5	66 to 56*	56 to 46 [*]			
0.5 - 5.0	56	46			
5.0 – 30.0	60	50			

^{*} The level decreases linearly with the logarithm of the frequency.

12.3 Test Method

With the EUT setup in a screened room, as per section 9 of this report and connected as per Figure ii, the power line emissions were measured on a spectrum analyzer / EMI receiver.


AC power line conducted emissions from the EUT are checked first by preview scans with peak and average detectors covering both live and neutral lines. A spectrum analyzer is used to determine if any periodic emissions are present.

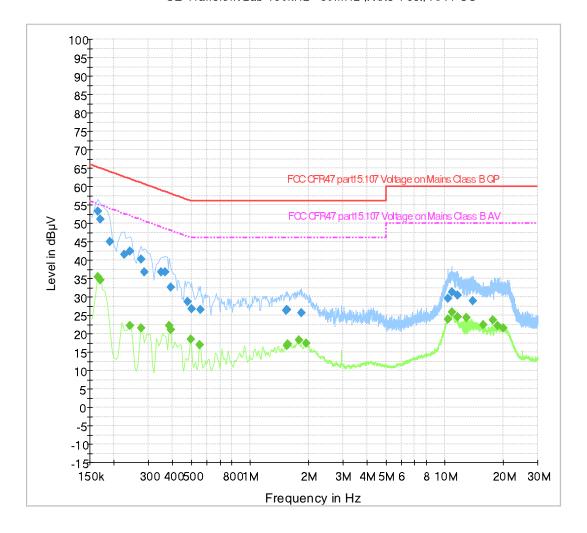
Formal measurements using the correct detector(s) and bandwidth are made on frequencies identified from the preview scans. Final measurements were performed with EUT set at its maximum duty in transmit and receive modes.

RF930 Page 28 of 65

^{**} A linear average detector is required.

Figure ii Test Setup

Test Setup Photograph(s)


12.4 Test Equipment

Equipment		Equipment	Element	Last Cal	Calibration	Due For
Description	Manufacturer	Туре	No	Calibration	Period	Calibration
Receiver	R&S	ESHS10	U003	2023-02-14	12	2024-02-14
Lisn	R&S	ENV216	U396	2022-05-23	12	2023-05-23

RF930 Page 29 of 65

12.5 Test Results

CE Transient Lab 150kHz - 30MHz (Auto Test) RX FCC

RF930 Page 30 of 65

	F	esults meas	sured using the	quasi-pea	ak detect	or		
Frequency (MHz)	QuasiPeak (dBμV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.165000	53.3	2000.0	10.000	Off	L1	19.5	11.9	65.2
0.170000	51.0	2000.0	10.000	Off	N	19.5	13.9	65.0
0.190000	44.9	2000.0	10.000	Off	N	19.5	19.1	64.0
0.225000	41.5	2000.0	10.000	Off	N	19.5	21.1	62.6
0.240000	42.4	2000.0	10.000	Off	L1	19.5	19.7	62.1
0.275000	40.2	2000.0	10.000	Off	N	19.6	20.8	61.0
0.285000	36.8	2000.0	10.000	Off	L1	19.6	23.8	60.7
0.350000	36.7	2000.0	10.000	Off	L1	19.6	22.3	59.0
0.365000	36.7	2000.0	10.000	Off	L1	19.6	21.9	58.6
0.390000	32.5	2000.0	10.000	Off	L1	19.6	25.5	58.1
0.475000	28.6	2000.0	10.000	Off	L1	19.6	27.8	56.4
0.500000	26.7	2000.0	10.000	Off	L1	19.6	29.4	56.0
0.555000	26.5	2000.0	10.000	Off	L1	19.6	29.5	56.0
1.525000	26.2	2000.0	10.000	Off	N	19.6	29.8	56.0
1.550000	26.5	2000.0	10.000	Off	L1	19.6	29.5	56.0
1.830000	25.7	2000.0	10.000	Off	N	19.6	30.3	56.0
10.375000	29.5	2000.0	10.000	Off	N	19.9	30.5	60.0
10.910000	31.3	2000.0	10.000	Off	N	19.9	28.7	60.0
11.585000	30.4	2000.0	10.000	Off	L1	19.9	29.6	60.0
13.925000	29.0	2000.0	10.000	Off	L1	19.9	31.0	60.0

		Results m	easured using	the averag	e detecto	or		
Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.165000	35.4	2000.0	10.000	Off	L1	19.5	19.8	55.2
0.170000	34.5	2000.0	10.000	Off	N	19.5	20.4	55.0
0.240000	22.2	2000.0	10.000	Off	N	19.5	29.9	52.1
0.275000	21.4	2000.0	10.000	Off	L1	19.6	29.5	51.0
0.385000	22.2	2000.0	10.000	Off	N	19.6	26.0	48.2
0.390000	21.0	2000.0	10.000	Off	N	19.6	27.1	48.1
0.495000	18.5	2000.0	10.000	Off	N	19.6	27.6	46.1
0.550000	17.1	2000.0	10.000	Off	L1	19.6	28.9	46.0
1.540000	16.8	2000.0	10.000	Off	N	19.6	29.2	46.0
1.555000	17.1	2000.0	10.000	Off	N	19.6	28.9	46.0
1.780000	18.2	2000.0	10.000	Off	L1	19.6	27.8	46.0
1.945000	17.4	2000.0	10.000	Off	L1	19.6	28.6	46.0
10.370000	23.9	2000.0	10.000	Off	L1	19.9	26.1	50.0
10.890000	25.9	2000.0	10.000	Off	N	19.9	24.1	50.0
11.585000	24.6	2000.0	10.000	Off	L1	19.9	25.4	50.0
12.920000	24.3	2000.0	10.000	Off	L1	19.9	25.7	50.0
15.690000	22.5	2000.0	10.000	Off	N	19.9	27.5	50.0
17.575000	23.8	2000.0	10.000	Off	N	19.9	26.2	50.0
18.635000	22.1	2000.0	10.000	Off	N	19.9	27.9	50.0
19.915000	21.5	2000.0	10.000	Off	N	19.9	28.5	50.0

RF930 Page 31 of 65

13 Occupied Bandwidth

13.1 Definition

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

13.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 6.9

Frequencies Measured: 5482.5 MHz, 5592.5 MHz, 5712.5 MHz

EUT Channel Bandwidths: 10 MHz
EUT Test Modulations: OFDM
Deviations from Standard: None
Measurement BW: 100 kHz

(FCC requirement: 100 kHz)

Spectrum Analyzer Video BW: 300 kHz

(requirement at least 3x RBW)

Measurement Span: 20 MHz

(requirement 2 to 5 times OBW)

Measurement Detector: Peak

Environmental Conditions (Normal Environment)

Temperature: 21 °C +15 °C to +35 °C (as declared)

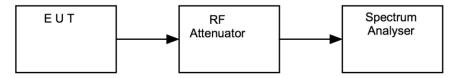
Humidity: 33 %RH 20%RH to 75%RH (as declared)

Supply: 24 Vdc (as declared)

Test Limits

Within the 5.725–5.85 GHz band, the minimum 6 dB bandwidth of U–NII devices shall be at least 500 kHz.

There are no requirements outside of this band, the results were taken for the calculation of the power limits.

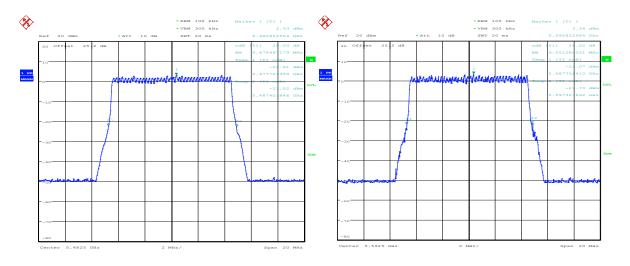

RF930 Page 32 of 65

13.3 Test Method

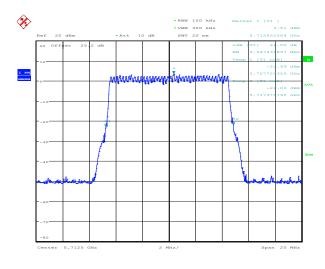
With the EUT setup as per section 9 of this report and connected as per Figure iii, the bandwidth of the EUT was measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure iii Test Setup

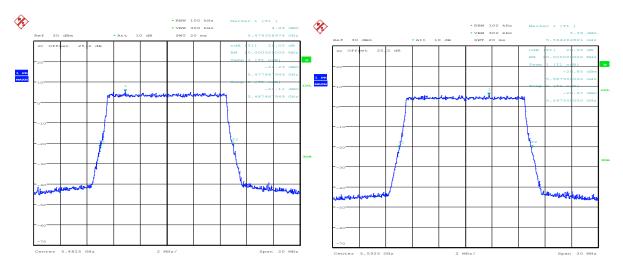

13.4 Test Equipment

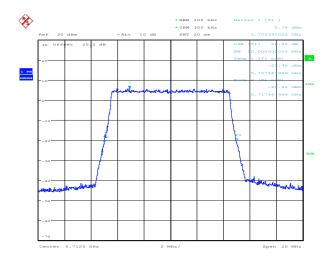
Equipment		Equipment	Element	Last Cal	Calibration	Due For
Description	Manufacturer	Туре	No	Calibration	Period	Calibration
Spectrum Analyser	R&S	FSU50	U544	2022-11-18	12	2023-11-18
20dB SMA attenuator	Atlantec	AA18-20H	U631		Calibrate in use	,


RF930 Page 33 of 65

13.5 Test Results

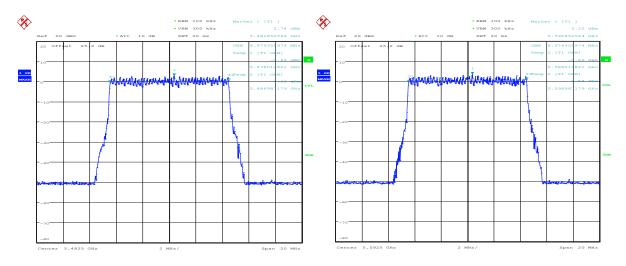
Mode Of Operation; Narrowband: Modulation: OFDM								
Channel Frequency (MHz)	F _L (MHz)	F _H (MHz)	26dB Bandwidth (kHz)	Result				
5482.5	5477.724359	5487.403846	9679.487	PASS				
5592.5	5587.756410	5597.307692	9551.282	PASS				
5712.5	5707.724359	5717.371795	9647.436	PASS				

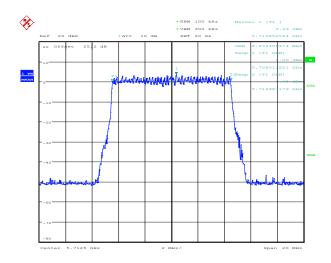

5482.5 MHz 5592.5 MHz


5712.5 MHz

RF930 Page 34 of 65

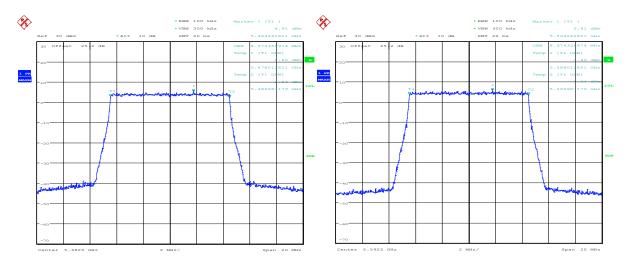
Mode Of Operation; Wideband: Modulation: OFDM								
Channel Frequency (MHz)	F _L (MHz)	F _H (MHz)	26dB Bandwidth (kHz)	Result				
5482.5	5477.467949	5487.467949	10000.0	PASS				
5592.5	5587.500000	5597.500000	10000.0	PASS				
5712.5	5707.467949	5717.467949	10000.0	PASS				

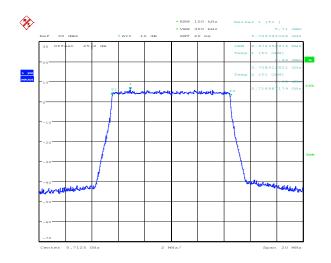

5482.5 MHz 5592.5 MHz


5712.5 MHz

RF930 Page 35 of 65

Mode Of Operation; Narrowband: Modulation: OFDM								
Channel Frequency (MHz)	F _L (MHz)	F _H (MHz)	99% Bandwidth (kHz)	Result				
5482.5	5478.012821	5486.987179	8974.358	N/A				
5592.5	5588.012821	5596.987179	8974.358	N/A				
5712.5	5708.012821	5716.987179	8974.358	N/A				


5482.5 MHz 5592.5 MHz


5712.5 MHz

RF930 Page 36 of 65

Mode Of Operation; Wideband: Modulation: OFDM									
Channel Frequency (MHz)	F _L (MHz)	F _H (MHz)	99% Bandwidth (kHz)	Result					
5482.5	5478.012821	5486.987179	8974.358	N/A					
5592.5	5588.012821	5596.987179	8974.358	N/A					
5712.5	5708.012821	5716.987179	8974.358	N/A					

5482.5 MHz 5592.5 MHz

5712.5 MHz

RF930 Page 37 of 65

14 Maximum conducted output power

14.1 Definition

The maximum conducted output power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level.

14.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 12.3

Frequencies Measured: 5482.5 MHz, 5592.5 MHz, 5712.5 MHz

EUT Occupied Bandwidths: 9.63 MHz

EUT Duty Cycle: 0.5 % for Narrowband & 10.5% for Wideband

Deviations From Standard: None

Measurement BW: Wideband power meter
Measurement Span: Wideband power meter
Measurement Points: Wideband power meter

Measurement Detector: RMS

Voltage Extreme Environment Test Range: Mains Power = 85% and 115% of Nominal (FCC only

requirement);

Battery Power = new battery.

Environmental Conditions (Normal Environment)

Temperature: 21 °C +15 °C to +35 °C (as declared)

Humidity: 33 %RH 20%RH to 75%RH (as declared)

RF930 Page 38 of 65

Test Limits

For an access point operating in the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW.

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

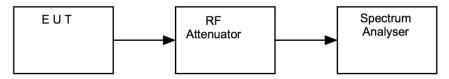
For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Fixed point-to-point U–NII devices operating in the band 5.725-5.85 GHz may employ antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.

Fixed point-to-point U-NII devices operating in other bands may employ antennas with directional gain up to 23dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.

Maximum Conducted Output Power Limit									
Mode of Operation	Band Of Operation (GHz)	Minimum 26 dB BW (MHz)	11 dBm + 10 log B (mW)	Fixed Limit (mW)	*Applicable Limit	Antenna Assembly Gain (dBi)	Maximum Conducted Output Power Limit (mW)		
Narrowband	5.47– 5.725	9.5	120.2	250	120.2	4	120.2		
Wideband	5.47– 5.725	10.0	125.9	250	125.9	4	125.9		


^{*}the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz

RF930 Page 39 of 65

14.3 Test Method

The EUT was setup as per section 9 of this report and, as per Figure iv, the wideband power meter was used to measure at the antenna output port, having taken account of all path losses. The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure iv Test Setup

14.4 Test Equipment

Equipment		Equipment	Element	Last Cal	Calibration	Due For
Description	Manufacturer	Туре	No	Calibration	Period	Calibration
Power Meter	Dare	RPR3006W	REF2223	2023-03-03	12	2024-03-03
20dB SMA attenuator	Atlantec	AA18-20H	U631	(Calibrate In Use)

14.5 Test Results

	Mode Of Operation; Narrowband: Modulation: OFDM										
Channel Frequency (MHz)	Meter Conducted FIRP										
5482.5	-23.30	25.20	1.55	4	3.89	PASS					
5592.5	-23.10	25.20	1.62	4	4.07	PASS					
5712.5	-23.10	25.15	1.60	4	4.03	PASS					

	Mode Of Operation; Wideband: Modulation: OFDM									
Channel Frequency (MHz)	Power Meter Level (dBm)	Meter loss conducted gain (mW) Level (dB) conducted (dBi) E.I.R.P. Results								
5482.5	-9.80	25.20	34.67	4	87.10	PASS				
5592.5	-9.40	25.20	38.02	4	95.50	PASS				
5712.5	-9.40	25.15	37.58	4	94.41	PASS				

As can be seen from the output powers results above, the output power levels fall below that required for the use of TPC.

TPC is not required < 500 mW (27 dBm).

RF930 Page 40 of 65

15 Power spectral density

15.1 Definition

The power spectral density is the total energy output per unit bandwidth from a pulse or sequence of pulses for which the transmit power is at its maximum level, divided by the total duration of the pulses.

15.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 12.5

Frequencies Measured: 5482.5 MHz, 5592.5 MHz, and 5712.5 MHz

EUT Channel Bandwidths:

Deviations From Standard:

None

Measurement BW:

Spectrum Analyzer Video BW:
(requirement at least 3x RBW)
Measurement Span:

10 MHz

Measurement Detector: RMS

Environmental Conditions (Normal Environment)

Temperature: 21 °C +15 °C to +35 °C (as declared)

Humidity: 31 %RH 20%RH to 75%RH (as declared)

Supply: 24 Vdc (as declared)

Test Limits

For an access point operating in the band 5.15–5.25 GHz the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

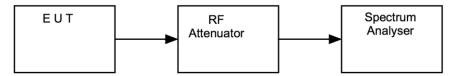
For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

For the band 5.725–5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Fixed point- to-point U–NII devices may employ antennas with directional gain up to 23dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.

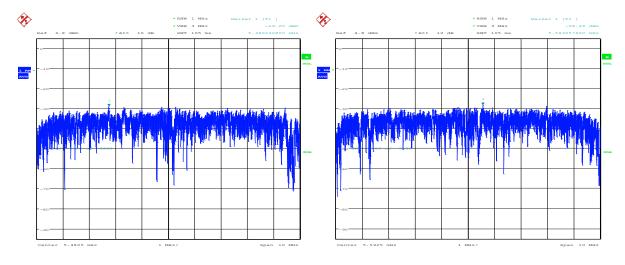

RF930 Page 41 of 65

15.3 Test Method

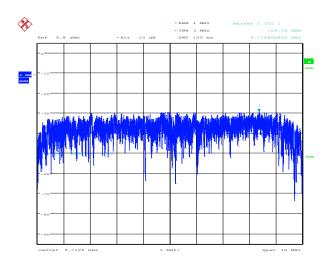
With the EUT setup as per section 9 of this report and connected as per Figure v, the peak emission of the EUT was measured on a spectrum analyser, with path losses taken into account.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure v Test Setup

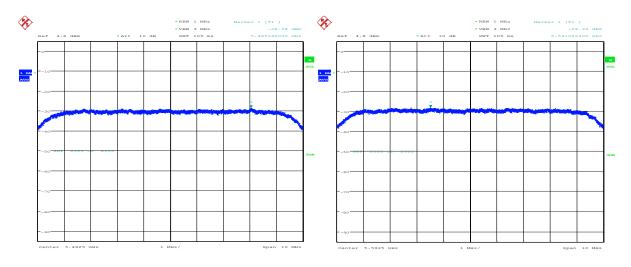

15.4 Test Equipment

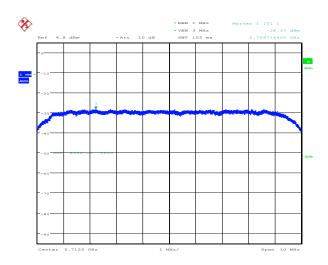
Equipment		Equipment	Element	Last Cal	Calibration	Due For
Description	Manufacturer	Туре	No	Calibration	Period	Calibration
Spectrum Analyser	R&S	FSU50	U544	2022-11-18	12	2023-11-18
20dB SMA attenuator	Atlantec	AA18-20H	U631	Calibrate in use		


RF930 Page 42 of 65

15.5 Test Results

	Operating Mode: Narrowband; Modulation: OFDM; Power setting: Maximum									
Measurement Bandwidth (MHz)	Channel Frequency (MHz)	Analyzer Level (dBm)	Cable loss (dB)	Duty Cycle (dB)	PSD (dBm/MHz)	Result				
1.0	5482.5	-29.2	5.2	23.0	-1.0	PASS				
1.0	5592.5	-28.5	5.2	23.0	-0.3	PASS				
1.0	5712.5	-29.4	5.2	23.0	-1.2	PASS				


5482.5 MHz 5592.5 MHz


5712.5 MHz

RF930 Page 43 of 65

	Operating Mode: Wideband; Modulation: OFDM; Power setting: Maximum									
Measurement Bandwidth (MHz)	Channel Frequency (MHz)	Analyzer Level (dBm)	Cable loss (dB)	Duty Cycle (dB)	PSD (dBm/MHz)	Result				
1.0	5482.5	-28.6	25.2	9.8	6.4	PASS				
1.0	5592.5	-28.3	25.2	9.8	6.6	PASS				
1.0	5712.5	-28.4	25.2	9.8	6.6	PASS				

5482.5 MHz 5592.5 MHz

5712.5 MHz

RF930 Page 44 of 65

16 Out-of-band spurious emissions

16.1 Definition

Out-of-band emission.

Emission on a frequency or frequencies immediately outside the necessary bandwidth that results from the modulation process but excluding spurious emissions.

Spurious emission.

Emission on a frequency or frequencies that are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products, and frequency conversion products, but exclude out-of-band emissions.

16.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Chamber / EMC chamber 1
Test Standard and Clause: ANSI C63.10-2013, Clause 12.7.3

EUT Channels / Frequencies Measured: 5482.5MHz & 5712.5MHz

(requirement as close to upper and lower frequency band edges as the design of the

equipment permits).

EUT Channel Bandwidths:

Deviations From Standard:

None

Measurement BW:

Spectrum Analyzer Video BW:
(requirement at least 3x RBW)
Measurement Detector:

Peak

Measurement Range: 1 GHz to 40 GHz

Antenna Gain: N/A Radiated Measurements

(required if conducted measurement made)

Environmental Conditions (Normal Environment)

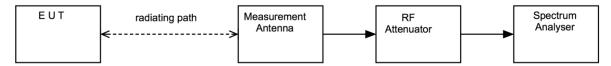
Temperature: 21 °C +15 °C to +35 °C (as declared)

Humidity: 50 %RH 20%RH to 75%RH (as declared)

Test Limits

15.407(b):

- (1) For transmitters operating in the 5.15–5.25 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25–5.35 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47–5.725 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725–5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.


RF930 Page 45 of 65

16.3 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure vii, the emissions from the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure vii Test Setup

16.4 Test Equipment

Equipment		Equipment	Element	Last Cal	Calibration	Due For
Description	Manufacturer	Туре	No	Calibration	Period	Calibration
PreAmp	Watkins Johnson	6201-69	U372	2023-03-01	1 Year	2024-03-07
2.4G Band Stop Filter	BSC	SN 4478	U543	2023-02-03	1 Year	2024-02-08
Bilog	Chase	CBL611/A	U191	2020-11-10	2 Year	2025-02-23
Horn Antenna	EMCO	3115	L138	2022-05-23	1 Year	2024-05-23
Spectrum Analyser	R&S	FSU46	REF910	2022-12-22	1 Year	2024-01-10
Pre Amp	Agilent	8449B	L572	2022-10-24	1 Year	2023-10-24
EMI Receiver	R&S	ESR26	U489	2021-03-04	1 Year	2023-09-30
PreAmp	Com-power	PAM-840A	REF239 0	2021-09-02	1 Year	2023-09-02

RF930 Page 46 of 65

16.5 Test Results

	Channel: 5482.5 MHz; Modulation: OFDM Wideband Mode								
Emission Frequency (MHz)	Peak Field Strength (dBµV/m)	Distance (m)	Power (dBm)	Limit (dBm)	Margin (dB)	Result			
	No Significant Emissions Within 20 dB of Limit PASS								

	Channel: 5712.5 MHz; Modulation: OFDM Wideband Mode							
Emission Frequency (MHz)	Frequency Strength (m) eirp (dBm) (dB) Result							
	No Significant Emissions Within 20 dB of Limit PASS							

See Section 11 for out of band emissions plots.

Conversion from field strength to eirp is as follows:

EIRP = E + 20log(d) - 104.77, where

EIRP is the equivalent isotropically radiated power in dBm;

E is field strength in $dB\mu V/m$;

d is the measurement distance in meters.

RF930 Page 47 of 65

17 Duty Cycle

17.1 Definition

Duty cycle (x), as used in this clause, refers to the fraction of time over which the transmitter is on and is transmitting at its maximum power control level.

17.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: ANSI C63.10-2013, Clause 12.2

Frequencies Measured: 5482.5 MHz, 5592.5 MHz, and 5712.5 MHz

EUT modulation: OFDM

Deviations From Standard: None

Temperature Extreme Environment Test Range: N/A

Voltage Extreme Environment Test Range: N/A

Environmental Conditions (Normal Environment)

Temperature: 22 °C +15 °C to +35 °C (as declared)

Humidity: 33 %RH 20%RH to 75%RH (as declared)

Supply: 24.0 Vdc (as declared)

Test Limits

N/A.

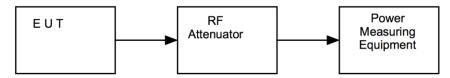
17.3 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure viii, the duty of the EUT was calculated from the sum of total on and off times over the observation period. The measurements were performed with EUT set at its maximum duty. All modulation schemes, bandwidths, data rates and power settings were used to completely characterise the system.

[1] Single antenna output devices

Duty was measured at the antenna port / at a distance of 3m.

[2] Multiple antenna output devices

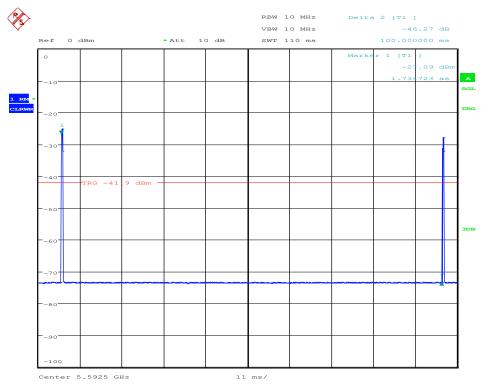

Duty was measured as the combination of all ports simultaneously / at a distance of 3m.

The duty cycle correction factor, DC, shall be added to the measurement results prior to comparing with the emission limit to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as:

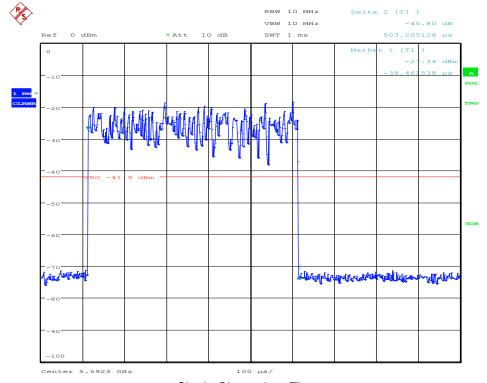
- 1) If power averaging (rms) mode was used in step f), then the applicable correction factor is $[10 \log (1 / D)]$, where D is the duty cycle.
- 2) If linear voltage averaging mode was used in step f), then the applicable correction factor is [20 log (1 / D)], where D is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous ($D \ge 98\%$) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

RF930 Page 48 of 65

Figure viii Test Setup


17.4 Test Equipment

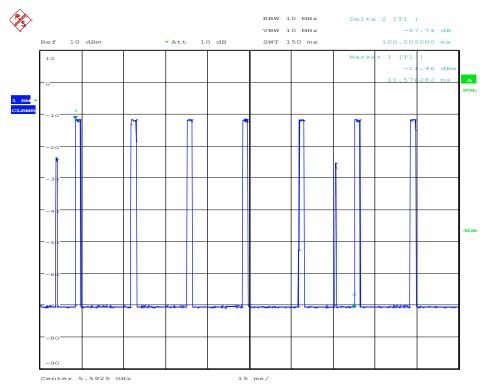
Equipment		Equipment	Element	Last Cal	Calibration	Due For
Description	Manufacturer	Туре	No	Calibration	Period	Calibration
Spectrum Analyser	R&S	FSU50	U544	2022-11-18	12	2023-11-18
20dB SMA attenuator	Atlantec	AA18-20H	U631		Calibrate in use	,


RF930 Page 49 of 65

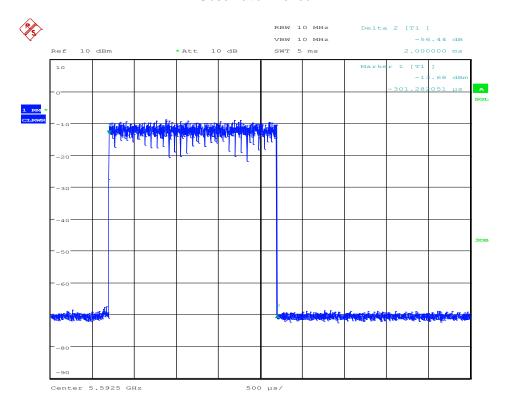
17.5 Test Results

Mode Of Operation; Narrowband; Frequency: 5482.5 MHz; Modulation: OFDM						
Single Channel	Total TxOn time	Observation	Duty	Calculated Factor (dB)		
TxOn time (ms)	(ms)	period (ms)	(%)	RMS Detector	Average Detector	
0.5	0.5	100	0.50	23.0	46.0	

Observation Period

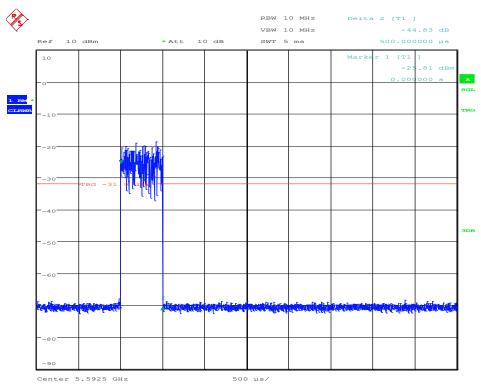


Single Channel on Time


RF930 Page 50 of 65

Mode Of Operation; Wideband; Frequency: 5482.5 MHz; Modulation: OFDM							
TxOn time (ms)		Total TxOn	Observation	Duty	Calculated Factor (dB)		
Ton 1	Ton 2*	time (ms)	period (ms)	(%)	RMS Detector	Average Detector	
0.5	2.0	10.5	100	10.50	9.8	19.6	

^{*} Five Occurrences in observation period



Observation Period

Ton 1 on Time (One Occurrence in Observation Period)

RF930 Page 51 of 65

Ton 2 on Time (Five Occurrence in Observation Period)

RF930 Page 52 of 65

18 Dynamic Frequency Selection (DFS)

18.1 General

An U-NII network will employ a Dynamic Frequency Selection (DFS) function to detect interference from radar systems (radar detection) and to avoid co-channel operation with these systems. Within the context of the operation of the DFS function, a U-NII device will operate in either *Master Mode* or *Client Mode*. U-NII devices operating in *Client Mode* can only operate in a network controlled by a U-NII device operating in *Master Mode*.

18.2 Test Parameters

Test Location: Element Skelmersdale

Test Chamber: Radio Laboratory

Test Standard and Clause: KDB 905462 D02, Clause 7.8

EUT Tested Channel Bandwidths: 10 MHz

EUT Test Channel Loading: Internal data pattern repeated every 20ms, 10.5% duty.

EUT Output Power Setting: Max.

EUT Tested Modes: Slave without Radar Detection

Deviations From Standard:

Temperature Extreme Environment Test Range:

Voltage Extreme Environment Test Range:

N/A

Environmental Conditions (Normal Environment)

Temperature: 22 °C Usually: +15 °C to +35 °C

Humidity: 38 %RH Usually: 20%RH to 75%RH

RF930 Page 53 of 65

Test Limits

Refer to individual tests for applicable tables, as defined below.

Table 3: Interference threshold values

Má	aximum Transmit Power	Value
		(see notes 1, 2 and 3)
	EIRP ≥ 200 mW	-64 dBm
EIRP < 2	00 mW and PSD < 10 dBm/MHz	-62 dBm
EIRP < 20	00 mW that do not meet the PSD	-64 dBm
	requirement	
NOTE 1:	This is the level at the input of the	e receiver assuming a 0 dBi receive antenna.
NOTE 2:		s an additional 1 dB has been added to the amplitude
		ns to account for variations in measurement equipment.
	This will ensure that the test sign	al is at or above the detection threshold level to trigger
	a DFS response.	
NOTE 2:	EIRP is based on the highest ant	enna gain. For MIMO devices refer to KDB Publication
	662911 D01.	

Table 4: DFS requirement values

	Parameter	Value	
N	Non-Occupancy Period	Min. 30 minutes	
Chan	nel Availability Check Time	60 s	
	Channel Move Time	10 s (see note 1).	
Channe	el Closing Transmission Time	200 ms + an aggregate of 60 ms over remaining 10 s period (see notes 1 & 2).	
U-	NII Detection Bandwidth	Min. 100 % of the U-NII 99% transmission power	
		bandwidth (see note 3).	
Maxim	num Off-Channel CAC Time	4 hours (see note 2)	
NOTE 1:		nnel Closing Transmission Time should be performed ment timing begins at the end of the Radar Type 0	
NOTE 2:	beginning of the <i>Channel Move Time</i> plus any additional intermittent control signals required to facilitate a channel move (an aggregate of 60 ms) during the remainder of the 10 s period. The aggregate duration of control signals will not count quiet periods in between transmissions.		
NOTE 3: During the <i>U-NII Detection Bandwidth</i> detection test, radar type 0 should be used each frequency step the minimum percentage of detection is 90 %. Measurement performed with no data traffic.			

Table 5: Short pulse radar test signals

Table 3. Short pulse radar test signals							
Radar type	Pulse width (μs)	PRI (μs)	Number of pulses	Min. % of successful detection	Min. number of trials		
0	1	1428	18	See Note 1	See Note 1		
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µs, with a minimum increment of 1 µs, excluding PRI values selected in Test A	Roundup: 1/360 x 19.10 ⁶ /PRI	60%	30		
2	1-5	150-230	23-29	60%	30		
3	6-10	200-500	16-18	60%	30		
4	11-20	200-500	12-16	60%	30		
Aggregate (Rad	80%	120					
NOTE 1:							

Table 5a: Pulse repetition intervals for test A

RF930 Page 54 of 65

Pulse repetition frequency number	Pulse repetition frequency (pulses / s)	Pulse repetition interval (μs)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698
11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Table 6: Long pulse radar test signal

Radar type	Pulse width (µs)	Chirp width (MHz)	PRI (µs)	Number of pulses per burst	Number of bursts	Min. % of successful detection	Min. number of trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

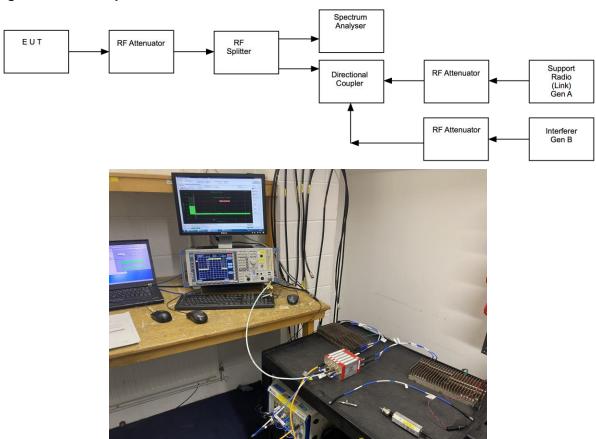
Table 7: Frequency hopping radar test signal

Radar type	Pulse width (µs)	PRI (µs)	Pulses per hop	Hopping rate (kHz)	Hopping sequence length (ms)	Min. % of successful detection	Min. number of trials
6	1	333	9	0.333	300	70%	30

RF930 Page 55 of 65

18.3 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure ix, the wanted signal (Gen A) was set to establish a reliable link (approx. 10 dB above receiver threshold). The interfering signal (Gen B) was then introduced at the specified Radar Detection Threshold level, plus 1dB.


[1] Conducted method

Received power was measured at the antenna port. For multiple port devices, equal splitting was employed to ensure the same level was received at each antenna port.

[2] Radiated method

Received power was measured at the centre of the EUT.

Figure ix Test Setup

RF930 Page 56 of 65

18.4 Calibration

Antenna Gain

Declared antenna gain = 14.0 dBi (including loss of antenna assembly cable) Based on signals applied to the master device (BS).

DFS Radar Waveforms

The RF attenuator nearest the EUT was set to provide sufficient attenuation not to overload the analyser whilst the EUT was at maximum power. The RF attenuator nearest the support radio was then set by increasing to the point where the EUT could no longer receive the signal (receiver threshold), then backing off 10dB. The RF attenuator nearest the signal generator was then set to provide sufficient isolation between the generator and the support radio.

The interferer (Gen B) was set to the centre of the test channel, Chr, in CW mode. The EUT was replaced with the spectrum analyser, whilst the analyser was replaced with a 50 ohm load. The level of the generator was adjusted to find the appropriate DFS threshold +1dB, adjusted for min. antenna gain 14.0dB, measured on the spectrum analyser. The analyser and EUT were then returned to position and an offset added to the analyser to read the same level as measured at the EUT.

Each radar signal required was then observed on the spectrum analyser in a 3MHz RBW with peak detector.

RF930 Page 57 of 65

19 In-Service Monitoring

19.1 Definition

19.1.1 Channel Closing

The *Channel Closing* is defined as the process initiated by the U-NII device on an *Operating Channel* after a radar signal has been detected during the *In-Service Monitoring* on that channel.

The master device shall instruct all associated slave devices to stop transmitting on this channel, which they shall do within the *Channel Move Time*.

Slave devices with a Radar Interference Detection function, shall stop their own transmissions on an *Operating Channel* within the *Channel Move Time* upon detecting a radar signal within this channel.

The aggregate duration of all transmissions of the U-NII device on this channel during the *Channel Move Time* shall be limited to the *Channel Closing Transmission Time*. The aggregate duration of all transmissions shall not include quiet periods in-between transmissions.

For equipment having simultaneous transmissions on multiple (adjacent or non-adjacent) operating channels, only the channel(s) containing the frequency on which radar was detected is subject to the *Channel Closing* requirement. The equipment is allowed to continue transmissions on other *Operating Channels*.

19.1.2 Non-Occupancy Period

The *Non-Occupancy Period* is defined as the time during which the U-NII device shall not make any transmissions on a channel after a radar signal was detected on that channel.

For equipment having simultaneous transmissions on multiple (adjacent or non-adjacent) operating channels, only the channel(s) containing the frequency on which radar was detected is subject to the *Non-Occupancy Period* requirement. The equipment is allowed to continue transmissions on other *Operating Channels*.

After the *Non-Occupancy Period*, the channel needs to be identified again as an *Available Channel* before the U-NII device may start transmitting again on this channel.

19.2 Additional Test Parameters

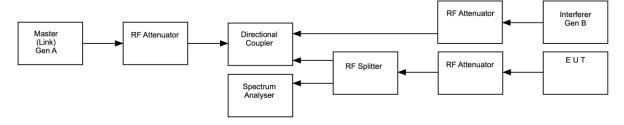
EUT Test Channels, Chr. 5482.5 MHz
EUT Operating Channels / Bandwidths: 10 MHz
Master Uniform Spreading: Disabled

Test Limits

The Channel Move Time shall not exceed the limit defined in table 4.

The Channel Closing Transmission Time shall not exceed the limit defined in table 4.

The Non-Occupancy Period shall not be less than the value defined in table 4.

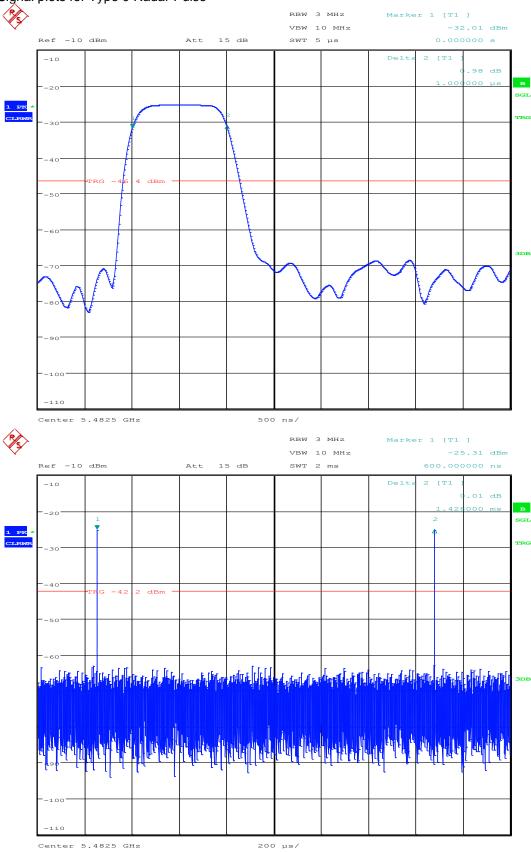

RF930 Page 58 of 65

19.3 Test Method

The EUT channel for both data and control signals, Ch_r , was selected, then transmissions to the paired device commenced. The interferer (Gen B) was set to the same frequency, Ch_r , and a radar test signal of table 5 (to appear at the Master at the threshold level + 1dB) then muted. The spectrum analyser was set to time domain (zero span) with sufficient bandwidth to capture all intentional emissions from the EUT. The analyser was then synchronised to the switching of the interferer – the interferer (Gen B) level was unmuted for a single burst. Transmissions from the EUT continued to be observed for a further 30 min.

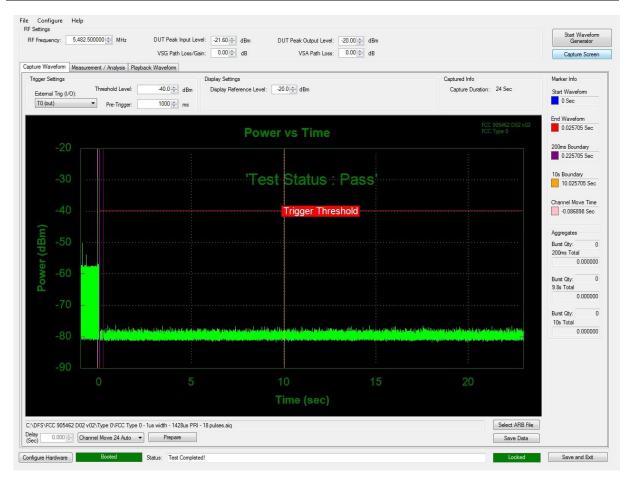
Note, the set-up of figure x was required to test slave mode, where the master is not the EUT.

Figure x Test Setup

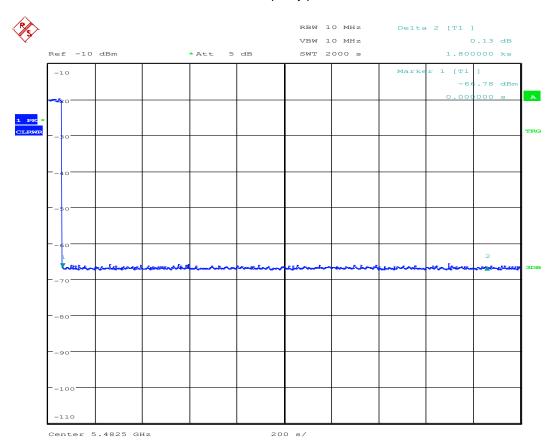

19.4 Test Equipment

Equipment		Equipment	Element	Last Cal	Calibration	Due For
Description	Manufacturer	Туре	No	Calibration	Period	Calibration
DFS Test System	Aeroflex	PXI-1042	REF2152	Calibrate in Use		
Spectrum Analyser	R&S	FSU26	U405	2022-04-21	12	2023-04-21

RF930 Page 59 of 65


19.5 Test Results

Test Signal plots for Type 0 Radar Pulse


RF930 Page 60 of 65

Bandwidth: 10 MHz							
Channel (MHz)	Interference level (dBm)	Channel move time (s)	Channel Closing Transmission Time (ms)	Transmissions during non- occupancy period	Result		
5482.5	-48.5	-0.086898	0.0	None	PASS		

RF930 Page 61 of 65

Non-occupancy period

RF930 Page 62 of 65

20 Measurement Uncertainty

Radio Testing - General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence where no required test level exists.

Test/Measurement	Budget Number	MU
Conducted RF Power, Power Spectral Density, Adjacent Channel Power and		
Spurious emissions		
Absolute RF power (via antenna connecter) Dare RPR3006W Power Head	MU4001	0.9 dB
Carrier Power and PSD - Spectrum Analysers	MU4004	0.9 dB
Adjacent Channel Power	MU4002	1.9 dB
Transmitter conducted spurious emissions	MU4041	0.9 dB
Conducted power and spurious emissions 40 GHz to 50 GHz	MU4042	2.4 dB
Conducted power and spurious emissions 50 GHz to 75 GHz	MU4043	2.5 dB
Conducted power and spurious emissions 75 GHz to 110 GHz	MU4044	2.4 dB
Radiated RF Power and Spurious emissions ERP and EIRP	1.01.4000	
Effective Radiated Power Reverb Chamber	MU4020	3.7 dB
Effective Radiated Power	MU4021	4.7 dB
TRP Emissions 30 MHz to 1 GHz using CBL6111 or CBL6112 Bilog Antenna	MU4046	5.3 dB
TRP Emissions 1 GHz to 18 GHz using HL050 Log Periodic Antenna	MU4047	5.1 dB
TRP Emissions 18 GHz to 26.5 GHz using Standard Gain Horn	MU4048	2.7 dB
TRP Emissions 26.5 GHz to 40 GHz using Standard Gain Horn	MU4049	2.7 dB
Spurious Emissions Electric and Magnetic Field		
Radiated Spurious Emissions 30 MHz to 1 GHz	MU4037	4.7 dB
Radiated Spurious Emissions 30 Minz to 1 GHz	MU4032	4.5 dB
E Field Emissions 18GHz to 26 GHz	MU4024	3.2 dB
E Field Emissions 26GHz to 40 GHz	MU4025	3.3 dB
E Field Emissions 40GHz to 50 GHz	MU4026	3.5 dB
E Field Emissions 50GHz to 75 GHz	MU4027	3.6 dB
E Field Emissions 75GHz to 110 GHz	MU4028	3.6 dB
Radiated Magnetic Field Emissions	MU4031	2.3 dB
Frequency Measurements		
Frequency Deviation	MU4022	0.316 kHz
Frequency error using CMTA test set	MU4023	113.441 Hz
Frequency error using GPS locked frequency source	MU4045	0.0413 ppm
Dandwidth/Chastral Mask Massurements		
Bandwidth/Spectral Mask Measurements Channel Bandwidth	MU4005	3.87 %
Transmitter Mask Amplitude	MU4005 MU4039	1.3 dB
	MU4039 MU4040	2.59 %
Transmitter Mask Frequency	10104040	2.39 70
Time Domain Measurements		
Transmission Time	MU4038	4.40 %
Dynamic Frequency Selection (DFS) Parameters)		
DFS Analyser - Measurement Time	MU4006	679 µs
DFS Analyser - Measurement Time DFS Generator - Frequency Error	MU4006 MU4007	92 Hz
	MU4007 MU4008	1.3 dB
DFS Threshold Conducted		
DFS Threshold Radiated	MU4009	3.2 dB

RF930 Page 63 of 65

Test/Measurement	Budget Number	MU
Receiver Parameters		
EN300328 Receiver Blocking	MU4010	1.1 dB
EN301893 Receiver Blocking	MU4011	1.1 dB
EN303340 Adjacent Channel Selectivity	MU4012	1.1 dB
EN303340 Overloading	MU4013	1.1 dB
EN303340 Receiver Blocking	MU4014	1.1 dB
EN303340 Receiver Sensitivity	MU4015	0.9 dB
EN303372-1 Image Rejection	MU4016	1.4 dB
EN303372-1 Receiver Blocking	MU4017	1.1 dB
EN303372-2 Adjacent Channel Selectivity	MU4018	1.1 dB
EN303372-2 Dynamic Range	MU4019	0.9 dB
Receiver Blocking Talk Mode Conducted	MU4033	1.2 dB
Receiver Blocking Talk Mode- radiated	MU4034	3.4 dB
Rx Blocking, listen mode, blocking level	MU4035	3.2 dB
Rx Blocking, listen mode, radiated Threshold Measurement	MU4036	3.4 dB
Adjacent Sub Band Selectivity	MU4003	4.2 dB

RF930 Page 64 of 65

21 RF Exposure

U-NII devices are subject to the radio frequency radiation exposure requirements specified in §1.1307(b), §2.1091 and §2.1093 of chapter 47 of the CFR, as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request.

Prediction of MPE limit at a given distance

For purposes of these requirements mobile devices are defined by the FCC as transmitters designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between radiating structures and the body of the user or nearby persons. These devices are normally evaluated for exposure potential with relation to the MPE limits. As the 20 cm separation specified under FCC rules may not be achievable under normal operation of the EUT, an RF exposure calculation is needed to show the minimum distance required to be less than the power density limit, as required under FCC rules.

Equation from IEEE C95.1

$$S = \frac{EIRP}{4\pi R^2}$$
 re-arranged $R = \sqrt{\frac{EIRP}{S4\pi}}$

Where:

S = power density

R = distance to the centre of radiation of the antenna

EIRP = EUT Maximum power

Result

Operating Band	EIRP	Power density limit (S)	Distance (R) cm required to be less than the power density limit
(MHz)	(mW)	(mW/cm²)	
5470 - 5725	95.5	1.0	2.8

RF930 Page 65 of 65