

Report on the Radio Testing

For

Ocado Innovation Limited

on

Bot Communication Module

Report no. TRA-048486-45-08A

15th September 2021

RF930

Report Number: TRA-048486-45-08A

Issue: A

REPORT ON THE RADIO TESTING OF A
Ocado Innovation Limited
Bot Communication Module
WITH RESPECT TO SPECIFICATION
FCC 47CFR Subpart E

TEST DATE: 2021-06-29 to 2021-07-26

Written by:

Approved by:

A Longley Radio Test Engineer

D Winstanley

Radio Senior Test Engineer

Date: 15th September 2021

1 Revision Record

Issue Number	Issue Date	Revision History
Α	15th September 2021	Original

RF930 Page 3 of 65

2 Summary

TEST REPORT NUMBER: TRA-048486-45-08A WORKS ORDER NUMBER: TRA-048486-02 PURPOSE OF TEST: Testing of radio frequency equipment per the relevant authorization procedure of chapter 47 of CFR (code of federal regulations) Part 2, subpart J. **TEST SPECIFICATION:** 47CFR15 Subpart E **EQUIPMENT UNDER TEST (EUT): Bot Communication Module** FCC IDENTIFIER: 2AGHF-RCOMBCM002 EUT SERIAL NUMBER: P3631-BCM-A3158 Ocado Innovation Limited MANUFACTURER/AGENT: ADDRESS: Trident Place, Hatfield Business Park, Mosquito Way, Hatfield, Hertfordshire, **AL10 9UL United Kingdom CLIENT CONTACT:** Ed Briggs **2** 07557 860903 ORDER NUMBER: IT-200528 TEST DATE: 2021-06-29 to 2021-07-26 TESTED BY: A Longley Element

RF930 Page 4 of 65

2.1 Test Summary

Test Method and D	escription	Requirement Clause 47CFR15	Applicable to this equipment	Result / Note
Radiated spurious emis (restricted bands of ope cabinet radiation)		15.205		PASS
AC power line conducte	ed emissions	15.207		NOTE1
Occupied bandwidth		15.407(a)		PASS
	Conducted		\boxtimes	
Output power	PSD	15.407(a)	\boxtimes	PASS
	RPE			
Conducted / radiated R of-band	F power out-	15.407(b)		PASS
Duty cycle		15.35(c)	\boxtimes	PASS
TPC and DFS		15.407(h)		PASS
U-NII detection	n bandwidth	15.407(h)(2)		NOTE2
CAC		15.407(h)(2)(ii)		NOTE2
In-service monitoring		15.407(h)(2)(iii) & 15.407(h)(2)(iv)		NOTE2
Statistical perf	ormance	-		NOTE2

Notes:

- 1. The EUT was battery powered.
- 2. TPC results are included in this report, DFS results are detailed in Element report number TRA-048486-45-10A.

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set-up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

RF930 Page 5 of 65

3 Contents

1	Revi	ision Record	ర
2	Sum	nmary	. 4
	2.1	Test Summary	. 5
3	Con	tents	
4		duction	
5	Test	Specifications	
	5.1	Normative References	. 8
	5.2	Deviations from Test Standards	
6	-	ssary of Terms	
	Gios	saly of Tellis	. 9
7		ipment Under Test	
	7.1	EUT Identification	10
	7.2	System Equipment	10
	7.3	EUT Mode of Operation	
	-		
	7.3.		
	7.3.2		10
	7.4	EUT Radio Frequency Parameters	10
	7.5	EUT Description	
8		ifications	
9		Test Setup	
	9.1	Block Diagram	12
	9.2	General Set-up Photograph	13
	9.3	Measurement software	
10		eral Technical Parameters	
10			
	10.1	Normal Conditions	
	10.2	Varying Test Conditions	
11	Rad	iated emissions	16
	11.1	Definitions	16
	11.2	Test Parameters	
	11.3	Test Method	
	11.4	Test Equipment	19
	11.5	Test Results	20
12		upied Bandwidth	
	12.1	Definition	
	12.2	Test Parameters	
	12.3	Test Method	31
	12.4	Test Equipment	32
	12.5	Test Results	
40		imum conducted output power	20
13			
	13.1	Definition	
	13.2	Test Parameters	39
	13.3	Test Method	
	13.4	Test Equipment	
	13.5	Test Results	
14			43
	14.1	Definition	43
	14.2	Test Parameters	
	14.3	Test Method.	
	_		
	14.4	Test Equipment	
	14.5	Test Results	
15	Out-	of-band spurious emissions	49
	15.1	Definition	
	15.2	Test Parameters	
	-		
	15.3	Test Method	
	15.4	Test Equipment	50
	15.5	Test Results	51
16		/ Cycle	
	, Duty 16.1	Definition	
			-
	16.2	Test Parameters	
	16.3	Test Method	54
	16.4	Test Equipment	55
	16.5	Test Results.	
47			
		surement Uncertainty	
17	<	-ynosure	65

4 Introduction

This report TRA-048486-45-08A presents the results of the Radio testing on a Ocado Innovation Limited, Bot Communication Module to specification 47CFR15 Radio Frequency Devices.

The testing was carried out for Ocado Innovation Limited by Element, at the address detailed below.

 \boxtimes Element Hull Element Skelmersdale Unit E Unit 1 South Orbital Trading Park Pendle Place Hedon Road Skelmersdale Hull West Lancashire HU9 1NJ WN8 9PN UK UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

FCC Site Listing:

The test laboratory is accredited for the above sites under the US-EU MRA,

Designation number(s):

Element Hull: UK2007 Element Skelmersdale: UK2020

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

RF930 Page 7 of 65

5 Test Specifications

5.1 Normative References

- FCC 47 CFR Ch. I Part 15 Radio Frequency Devices.
- FCC KDB Publication 905462 D02 v01r02 Compliance measurement procedures for unlicensednational information infrastructure devices operating in the 5250-5350 MHz and 5470-5725 MHz bands incorporating dynamic frequency selection.
- ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

5.2 Deviations from Test Standards

There were no deviations from the test standard.

RF930 Page 8 of 65

6 Glossary of Terms

§ denotes a section reference from the standard, not this document

AC Alternating Current

ANSI American National Standards Institute

BW bandwidth C Celsius

CAC Channel Availability Check
CFR Code of Federal Regulations

CW Continuous Wave

dB decibel

dBm dB relative to 1 milliwatt

DC Direct Current

DFS Dynamic Frequency Selection
DSSS Direct Sequence Spread Spectrum
EIRP Equivalent Isotropically Radiated Power

ERP Effective Radiated Power **EUT** Equipment Under Test

FCC Federal Communications Commission FHSS Frequency Hopping Spread Spectrum

Hz hertz

IC Industry Canada (now ISED)

ISED Innovation, Science and Economic Development Canada

ITU International Telecommunication Union

LBT Listen Before Talk

LE-LAN Licence-Exempt Local Area Network

m metre
max maximum

MIMO Multiple Input and Multiple Output

min minimum

MRA Mutual Recognition Agreement

N/A Not Applicable
PCB Printed Circuit Board
PDF Portable Document Format

Pt-mpt Point-to-multipoint Pt-pt Point-to-point

PSD Power Spectral Density
RF Radio Frequency
RH Relative Humidity
RMS Root Mean Square

Rx receiver s second

SVSWR Site Voltage Standing Wave Ratio

TPC Transmitter Power Control

Tx transmitter

UKAS United Kingdom Accreditation Service

U-NII Unlicensed-National Information Infrastructure

 $egin{array}{lll} V & & \text{volt} \\ W & & \text{watt} \\ \Omega & & \text{ohm} \\ \end{array}$

RF930 Page 9 of 65

7 Equipment Under Test

7.1 EUT Identification

Name: Bot Communication ModuleSerial Number: P3631-BCM-A3158

Model Number: BCM

Software Revision: v10.0.73

Build Level / Revision Number: A. 3

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

Lenovo Laptop and Netgear Ethernet Switch

7.3 EUT Mode of Operation

7.3.1 Transmission

The EUT was set to transmit on the required channels.

7.3.2 Reception

The EUT was set to receive mode on the required channels.

7.4 EUT Radio Frequency Parameters

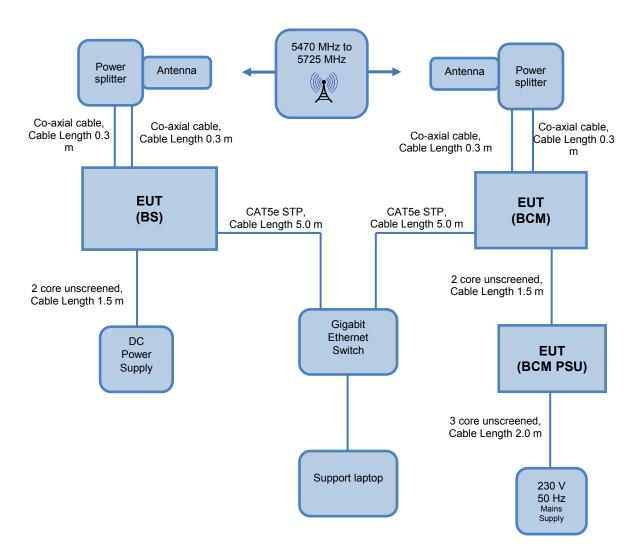
Frequency of operation:	5470 MHz – 5725 MHz
Modulation type:	OFDM
Channel bandwidth:	10 MHz
Channel spacing:	10 MHz
Declared output power:	21 dBm EIRP
Antenna type and gain:	4 dBi gain, nominally Omni
Nominal Supply Voltage:	24 Vdc

7.5 EUT Description

The EUT is part of a point to multipoint short range radio communications system, identified as RCOM, which operates in the frequency band 5470MHz to 5725MHz. The wireless part of this system comprises of two parts, the BS – Base Station (EUT) and the BCM – Bot Control Module. One Base Station can be connected to many BCMs at any one time. The purpose of this radio system is to provide a low data rate, bi-directional, wireless connection to a large number of low speed factory floor machineries which transport goods, in a controlled manner, around the facility. These machineries are unmanned and the purpose of the wireless connection is to issue commands to the machineries and relay status information back, from each of the machineries, to a central point in the factory.

RF930 Page 10 of 65

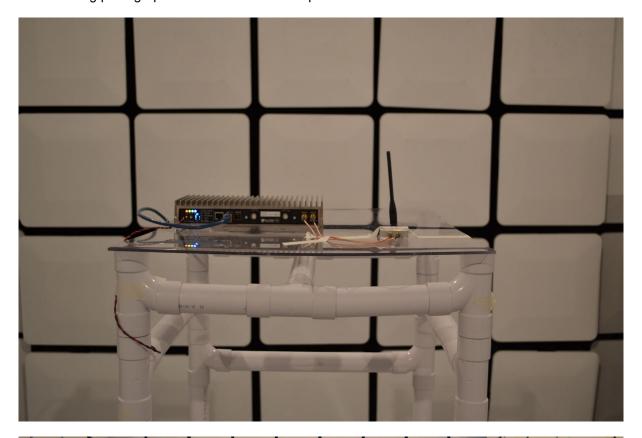
8 Modifications


No modifications were performed during this assessment.

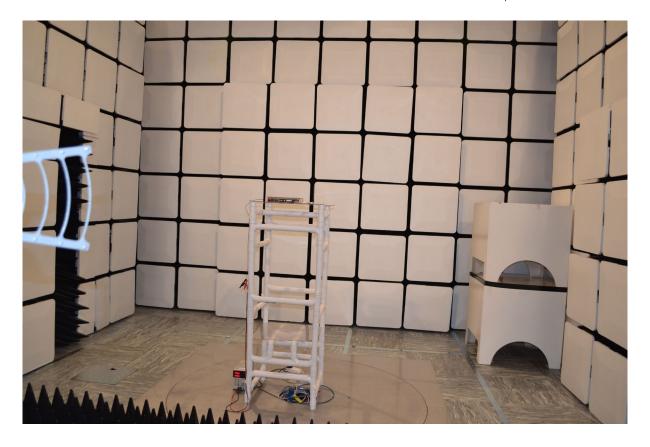
RF930 Page 11 of 65

9 EUT Test Setup

9.1 Block Diagram


The following diagram shows basic EUT interconnections with cable type and cable lengths identified:

RF930 Page 12 of 65


9.2 General Set-up Photograph

The following photograph shows basic EUT set-up:

RF930 Page 13 of 65

9.3 Measurement software

Where applicable, the following software was used to perform measurements contained within this report.

Element Emissions R5 (See Note) Element Transmitter Bench Test (See Note) ETS Lindgren EMPower V1.0.4.2

Note:

The version of the Element software used is recorded in the results sheets contained within this report.

RF930 Page 14 of 65

10 General Technical Parameters

10.1 Normal Conditions

The E U T was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was 24 Vdc powered from a bench top power supply connected to 110 Vac, 60 Hz from the mains.

10.2 Varying Test Conditions

Variation of supply voltage is required to ensure stability of the declared output power and frequency. During carrier power testing the following variations were made:

	Category	Nominal	Variation
	Mains	110V ac +/-2%	85% and 115%
\boxtimes	Battery	New battery	N/A

Full Battery power was simulated using a bench-top DC source.

RF930 Page 15 of 65

11 Radiated emissions

11.1 Definitions

Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

11.2 Test Parameters

Test Location: Element Hull
Test Chamber: Wireless Lab 3

Test Standard and Clause: ANSI C63.10-2013, Clause 6.5 and 6.6

EUT Channels / Frequencies Measured: 0 / 11 / 23 – 5482.5 MHz / 5592.5 MHz / 5712.5 MHz

EUT Channel Bandwidths: 10 MHz
Deviations From Standard: None

Measurement BW: 30 MHz to 1 GHz: 120 kHz
Above 1 GHz: 1 MHz

Measurement Detector: Up to 1 GHz: quasi-peak

Above 1 GHz: RMS average and Peak

Environmental Conditions (Normal Environment)

Temperature: 21 °C +15 °C to +35 °C (as declared)

Humidity: 45 %RH 20%RH to 75%RH (as declared)

Supply: 24 Vdc (as declared)

Test Limits

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

General Field Strength Limits for License-Exempt Transmitters at Frequencies Above 30 MHz

Frequency (MHz)	Field Strength (μV/m at 3m)
30-88	100
88-216	150
216-960	200
Above 960	500

Limits from 15.407:

- (b) Undesirable emission limits. ... the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emission outside of the 5.47-5.725 GHz band shall not exceed and e.i.r.p. of -27 dBm/MHz.

11.3 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where

RF930 Page 16 of 65

applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

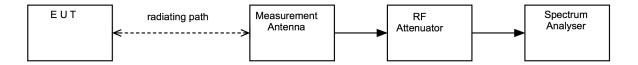
Power values measured on the test receiver / analyzer are converted to field strength, FS, in dBµV/m at the regulatory distance, using:

Where.

PR is the power recorded on the receiver / spectrum analyzer in dBµV;

CL is the cable loss in dB;

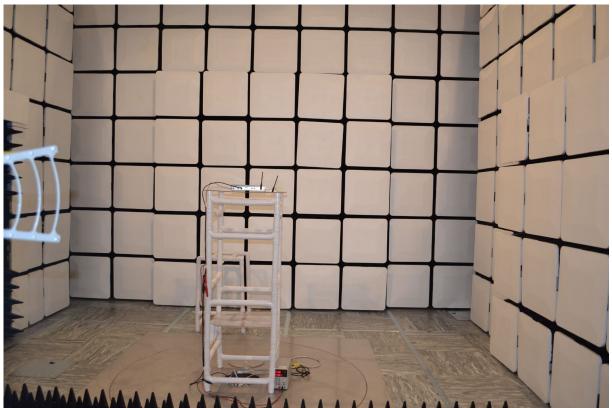
AF is the test antenna factor in dB/m;


PA is the pre-amplifier gain in dB (where used);

DC is the duty correction factor in dB (where used, e.g. where average detector on pulsed harmonic understates the power);

CF is the distance factor in dB (where measurement distance different to limit distance);


This field strength value is then compared with the regulatory limit.

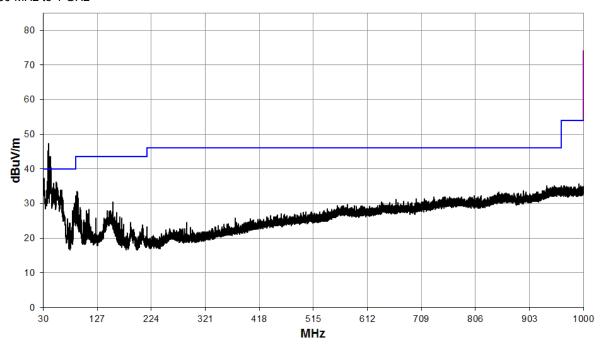

Figure i Test Setup

RF930 Page 17 of 65

Test Setup Photograph(s)

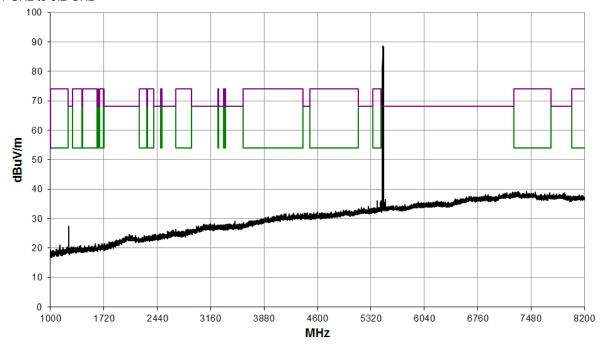
RF930 Page 18 of 65

11.4 Test Equipment

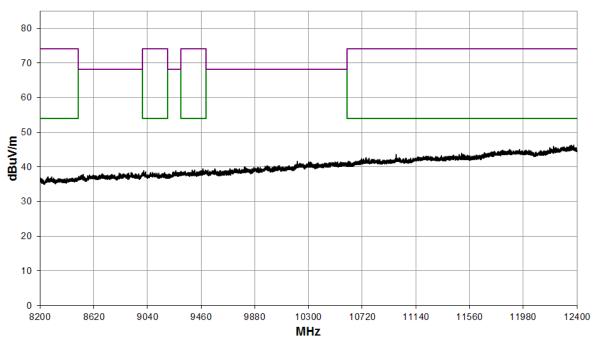

Equipment		Equipment	Element	Due For
Description	Manufacturer	Туре	No	Calibration
Ferrite Lined Chamber	Rainford	Chamber	REF2259	2022-08-03
EMI Test Receiver	R&S	ESW26	REF2235	2021-08-31
ESU40	R&S	Receiver	RFG701	2022-04-26
Bilog Antenna	Chase	CBL6111B	REF2218	2021-10-23
LB-10180-NF	A Info Inc	Horn Antenna	REF2241	2022-07-13
LB-90-25-C2-SF	A Info Inc	Horn Antenna	REF2243	2022-07-17
LB-62-25-C-SF	A Info Inc	Horn Antenna	REF2244	2022-07-17
LB-180400-25-C-KF	A Info Inc	Horn Antenna	REF2246	2022-07-28
Emissions R5	Element	Radiated Test Software	REF9000	Cal not required

RF930 Page 19 of 65

11.5 Test Results

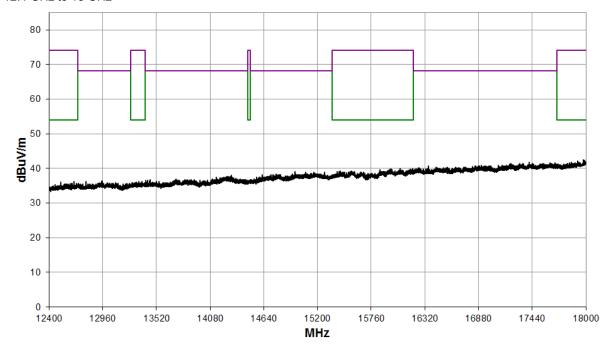

	Channel: 0; Frequency: 5482.5 MHz										
Detector	Freq. (MHz)	Meas'd Emission (dBµV)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Duty Cycle Corr'n (dB)	Field Strength (dBµV/m)	Distance Extrap'n Factor (dB)	Field Strength (µV/m)	Limit (μV/m)	
QP	31.5	7.3	0.7	23.5	0.0	0.0	31.5	0.0	37.6	40.0	
QP	39.2	9.3	0.7	19.8	0.0	0.0	29.8	0.0	30.9	40.0	
QP	92.2	-1.3	1.2	14.7	0.0	0.0	14.6	0.0	5.4	40.0	
QP	113.0	-3.6	1.3	17.1	0.0	0.0	14.8	0.0	5.5	43.5	

30 MHz to 1 GHz

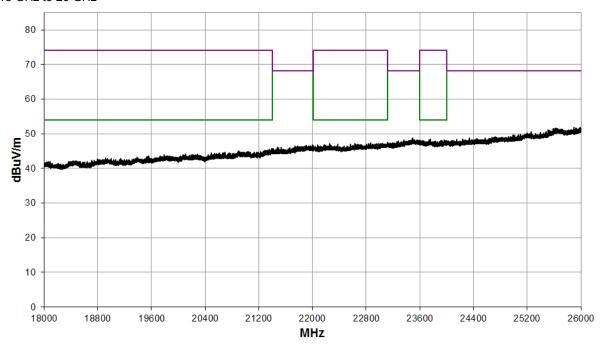


RF930 Page 20 of 65

1 GHz to 8.2 GHz

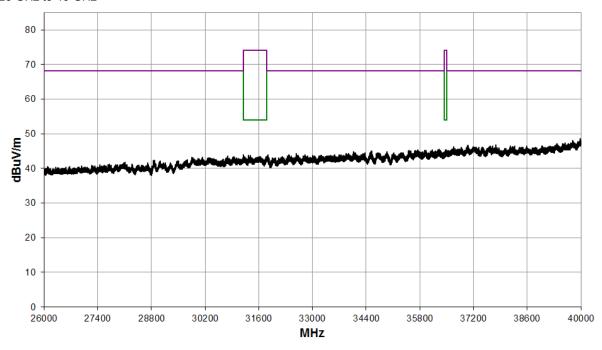


8.2 GHz to 12.4 GHz

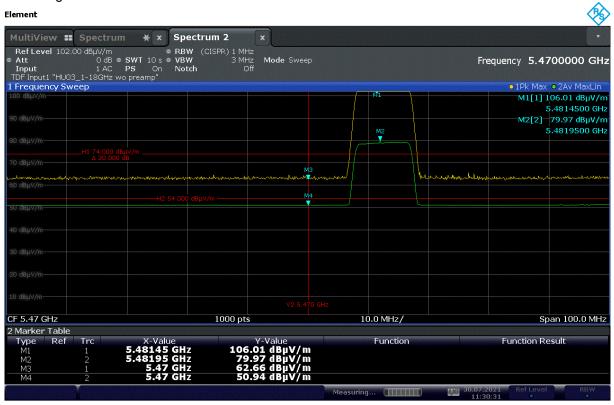


RF930 Page 21 of 65

12.4 GHz to 18 GHz



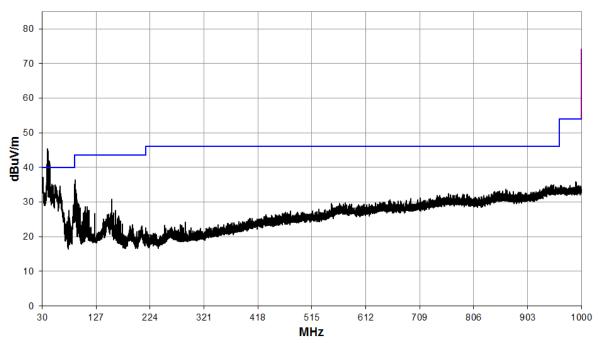
18 GHz to 26 GHz



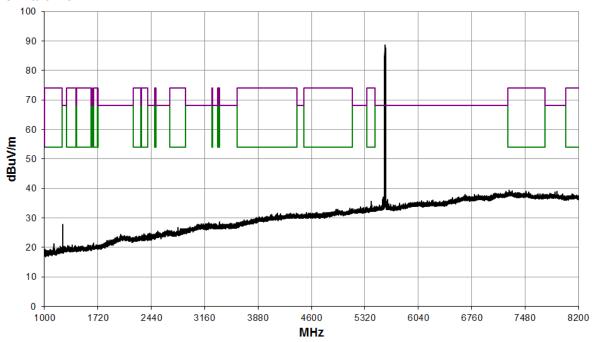
RF930 Page 22 of 65

26 GHz to 40 GHz

Band Edge



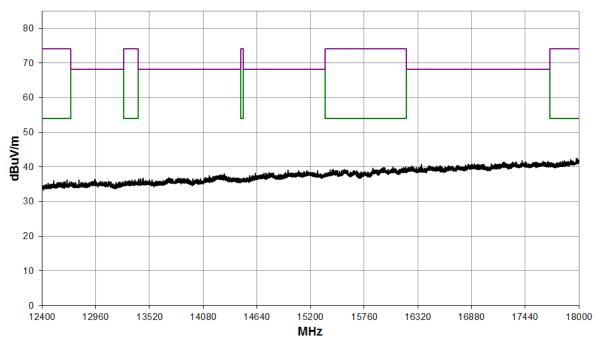
11:30:31 30.07.2021


RF930 Page 23 of 65

	Channel: 11; Frequency: 5592.5 MHz										
Detector	Freq. (MHz)	Meas'd Emission (dBµV)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Duty Cycle Corr'n (dB)	Field Strength (dBµV/m)	Distance Extrap'n Factor (dB)	Field Strength (µV/m)	Limit (μV/m)	
QP	31.5	7.3	0.7	23.5	0.0	0.0	31.5	0.0	37.6	40.0	
QP	39.2	9.3	0.7	19.8	0.0	0.0	29.8	0.0	30.9	40.0	
QP	92.2	-1.3	1.2	14.7	0.0	0.0	14.6	0.0	5.4	40.0	
QP	113.0	-3.6	1.3	17.1	0.0	0.0	14.8	0.0	5.5	43.5	

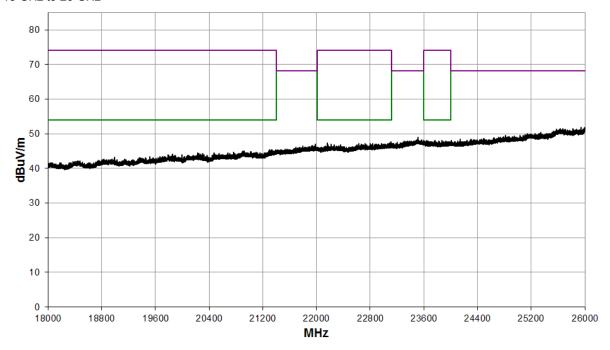
30 MHz to 1 GHz

1 GHz to 8.2 GHz

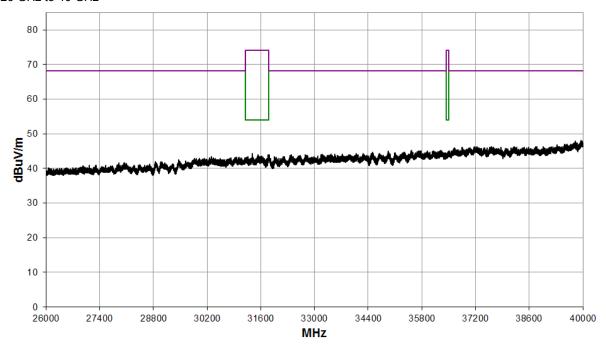


RF930 Page 24 of 65

8.2 GHz to 12.4 GHz

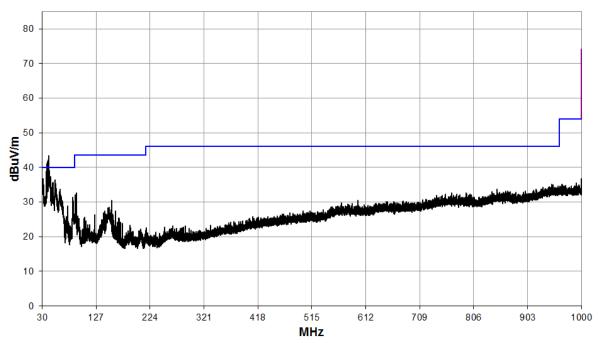


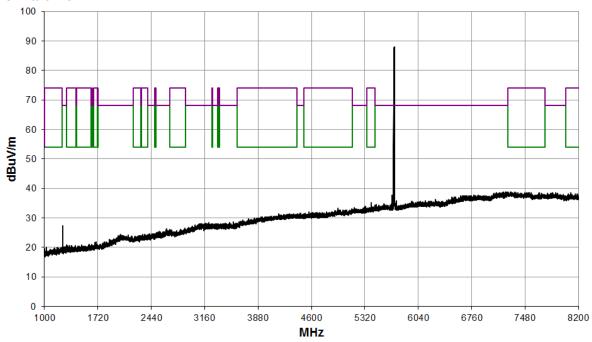
12.4 GHz to 18 GHz



RF930 Page 25 of 65

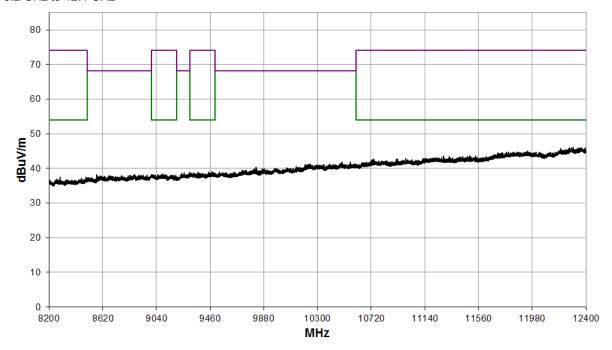
18 GHz to 26 GHz


26 GHz to 40 GHz

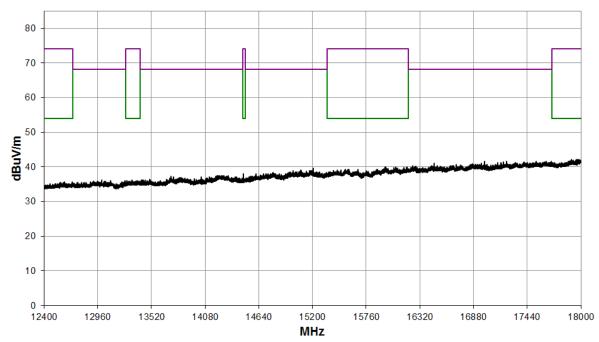

RF930 Page 26 of 65

	Channel: 23; Frequency: 5712.5 MHz										
Detector	Freq. (MHz)	Meas'd Emission (dBµV)	Cable Loss (dB)	Antenna Factor (dB/m)	Pre-amp Gain (dB)	Duty Cycle Corr'n (dB)	Field Strength (dBµV/m)	Distance Extrap'n Factor (dB)	Field Strength (µV/m)	Limit (μV/m)	
QP	31.5	7.3	0.7	23.5	0.0	0.0	31.5	0.0	37.6	40.0	
QP	39.2	9.3	0.7	19.8	0.0	0.0	29.8	0.0	30.9	40.0	
QP	92.2	-1.3	1.2	14.7	0.0	0.0	14.6	0.0	5.4	40.0	
QP	113.0	-3.6	1.3	17.1	0.0	0.0	14.8	0.0	5.5	43.5	

30 MHz to 1 GHz

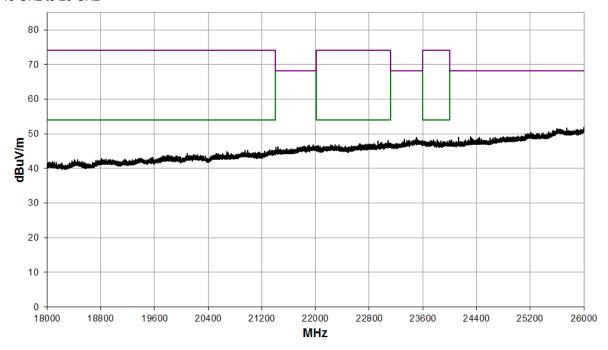


1 GHz to 8.2 GHz

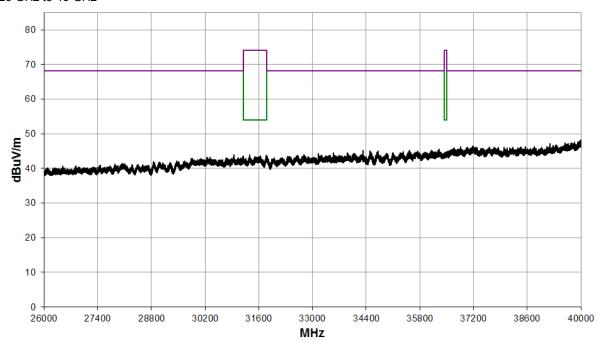


RF930 Page 27 of 65

8.2 GHz to 12.4 GHz

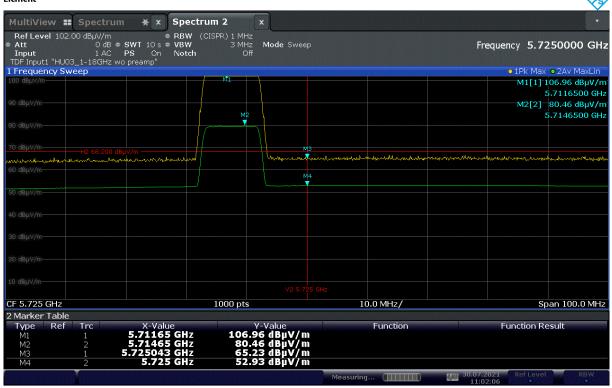


12.4 GHz to 18 GHz



RF930 Page 28 of 65

18 GHz to 26 GHz


26 GHz to 40 GHz

RF930 Page 29 of 65

Band Edge

11:02:06 30.07.2021

RF930 Page 30 of 65

12 Occupied Bandwidth

12.1 Definition

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

12.2 Test Parameters

Test Location: Element Hull

Test Chamber: Wireless Laboratory 1

Test Standard and Clause: ANSI C63.10-2013, Clause 6.9

EUT Frequencies Measured: 5482.5 MHz, 5592.5 MHz & 5712.5 MHz

EUT Channel Bandwidths: 10 MHz **EUT Test Modulations: OFDMA Deviations From Standard:** None Measurement BW: 100 kHz (FCC requirement: 100 kHz) Spectrum Analyzer Video BW: 300 kHz (requirement at least 3x RBW) Measurement Span: 20 MHz (requirement 2 to 5 times OBW) Measurement Detector: Peak

Measurement Detector.

Environmental Conditions (Normal Environment)

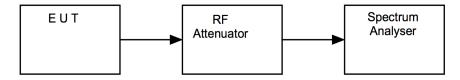
Temperature: 22 °C +15 °C to +35 °C (as declared)

Humidity: 52 %RH 20%RH to 75%RH (as declared)

Supply: 24 Vdc (as declared)

Test Limits

Within the 5.725–5.85 GHz band, the minimum 6 dB bandwidth of U–NII devices shall be at least 500 kHz


There are no requirements outside of this band, the results were taken for the calculation of the power limits.

12.3 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure iii, the bandwidth of the EUT was measured on a spectrum analyser.

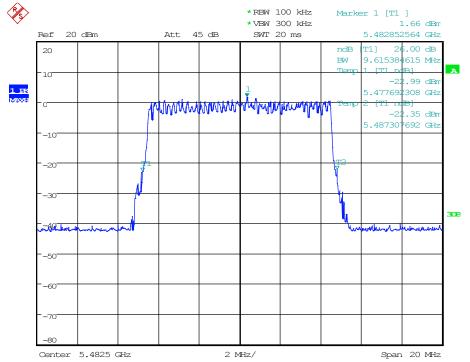
The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst-case configuration in each bandwidth.

Figure iii Test Setup

RF930 Page 31 of 65

12.4 Test Equipment

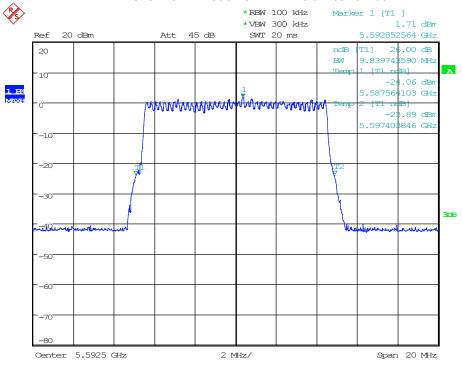
Equipment		Equipment	Element	Last Cal	Calibration	Due For
Description	Manufacturer	Туре	No	Calibration	Period	Calibration
Spectrum Analyser	R&S	FSU50	U544	2021-06-22	12	2022-06-22
Spectrum Analyser	Agilent	N9030A	REF2167	2020-08-19	12	2021-08-19


RF930 Page 32 of 65

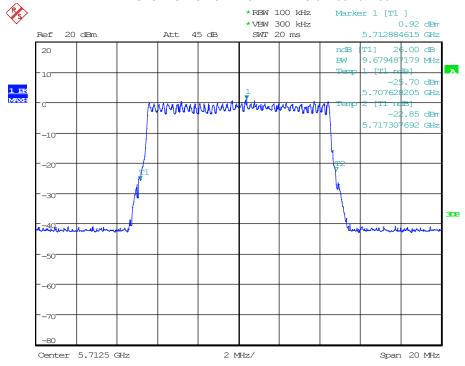
12.5 Test Results

Modulation: Narrowband								
Channel Frequency (MHz)	F _L (MHz)	F _H (MHz)	26dB Bandwidth (MHz)	Result				
5482.5	5477.69231	5487.30769	9.615384	PASS				
5592.5	5587.56410	5597.40385	9.839743	PASS				
5712.5	5707.62821	5717.30769	9.679487	PASS				

Modulation: Narrowband			
Channel Frequency (MHz)	26dB bandwidth (MHz)	99% bandwidth (MHz)	Result
5482.5	9.615384	8.974358974	N/A
5592.5	9.839743	8.974358974	N/A
5712.5	9.679487	8.974358974	N/A

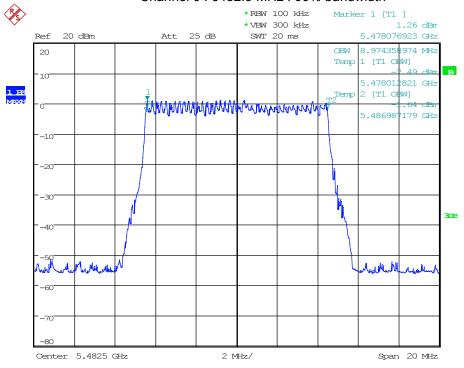

Channel 0: 5482.5 MHz: 26 dB bandwidth

Date: 29.JUN.2021 16:43:07


RF930 Page 33 of 65

Channel 11: 5592.5 MHz: 26 dB bandwidth

Date: 29.JUN.2021 18:00:56

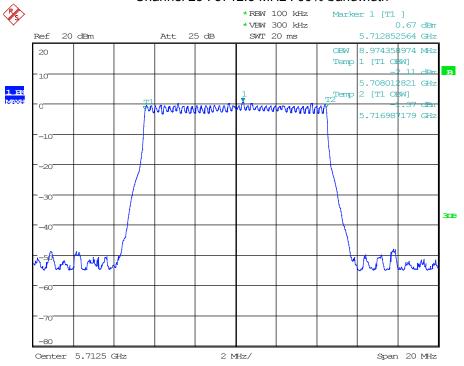

Channel 23: 5712.5 MHz: 26 dB bandwidth

Date: 29.JUN.2021 18:54:24

RF930 Page 34 of 65

Channel 0: 5482.5 MHz: 99% bandwidth

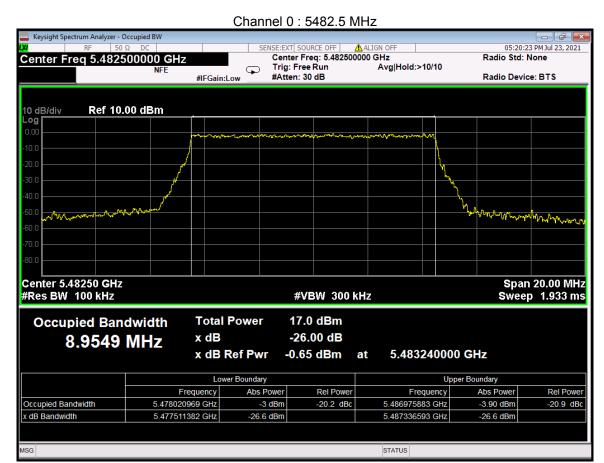
Date: 30.JUN.2021 11:29:50


Channel 11: 5592.5 MHz: 99% bandwidth

Date: 30.JUN.2021 10:36:24

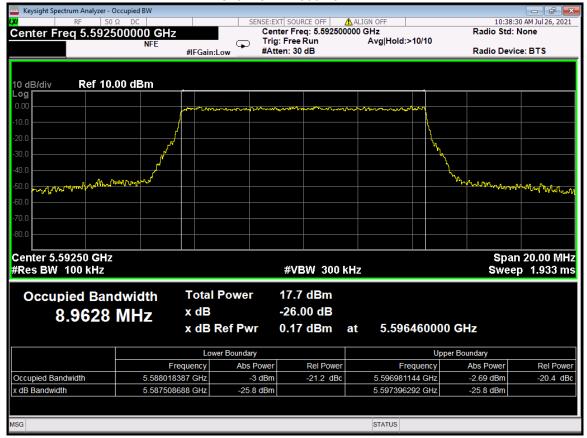
RF930 Page 35 of 65

Channel 23: 5712.5 MHz: 99% bandwidth

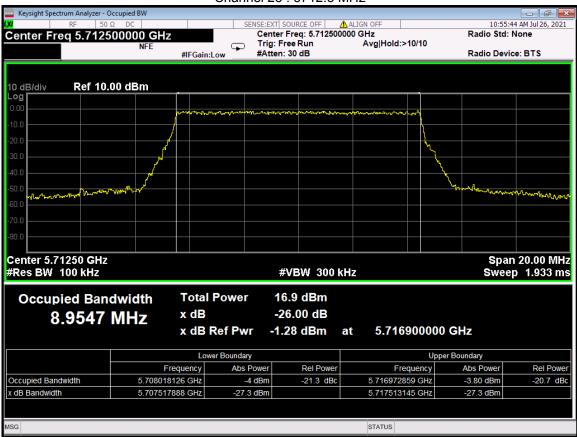


Date: 30.JUN.2021 09:40:14

RF930 Page 36 of 65


	Modulation: Wideband					
$ \begin{array}{c ccccc} Channel & & & & & & & & & \\ Frequency & & & & & & & & \\ Frequency & & & & & & & \\ & (MHz) & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $						
5482.5	5477.51138	5487.33659	9.825211	PASS		
5592.5	5587.50869	5597.39629	9.887604	PASS		
5712.5	5707.51789	5717.51315	9.995257	PASS		

	Modulation: Wideband					
Channel Frequency (MHz)	26dB bandwidth (MHz)	99% bandwidth (MHz)	Result			
5482.5	9.825211	8.9549	N/A			
5592.5	9.887604	8.9628	N/A			
5712.5	9.995257	8.9547	N/A			



RF930 Page 37 of 65

Channel 11: 5592.5 MHz

Channel 23: 5712.5 MHz

RF930 Page 38 of 65

13 Maximum conducted output power

13.1 Definition

The maximum conducted output power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level.

13.2 Test Parameters

Test Location: Element Hull

Test Chamber: Wireless Laboratory 1

Test Standard and Clause: ANSI C63.10-2013, Clause 12.3

EUT Frequencies Measured: 5482.5 MHz / 5592.5 MHz / 5712.5 MHz

EUT Occupied Bandwidths: 9.615384 MHz

EUT Duty Cycle: 0.5 % for Narrowband mode / 10.5% for Wideband mode

Deviations From Standard: None

Measurement BW: Wideband Power Meter used
Measurement Span: Wideband Power Meter used
Measurement Points: Wideband Power Meter used

Measurement Detector: RMS

Voltage Extreme Environment Test Range: Mains Power = 85% and 115% of Nominal (FCC only

requirement);

Battery Power = new battery.

Environmental Conditions (Normal Environment)

Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 45 %RH 20%RH to 75%RH (as declared)

Test Limits

For an access point operating in the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW.

For the 5.25–5.35 GHz and 5.47–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

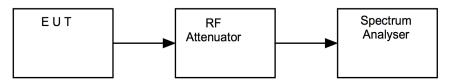
If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Fixed point-to-point U–NII devices operating in the band 5.725-5.85 GHz may employ antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.

Fixed point-to-point U-NII devices operating in other bands may employ antennas with directional gain up to 23dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.

RF930 Page 39 of 65

The EUT had a 26 dB emission bandwidth of 9.615384 MHz giving a calculated limit of 11 + 10 log 9.615384 dBm = 20.83 dBm (or 121.1 mW).


The antenna gain for the EUT was 4 dBi which is below 6 dBi, therefore no reduction of the limit is required.

13.3 Test Method

The EUT was setup as per section 9 of this report and, as per Figure iv, the analyser was used to measure each antenna output in turn, having taken account of all path losses. The resolution bandwidth of the spectrum analyser was set between 1 and 5 % of the EUT occupied bandwidth and the analyser band power function used to calculate the average power. The results were summed as in the tables below.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

Figure iv Test Setup

13.4 Test Equipment

Equipment		Equipment	Element	Last Cal	Calibration	Due For
Description	Manufacturer	Туре	No	Calibration	Period	Calibration
Power Meter	ETS Lindgren	7002-006	REF2324	2021-01-29	12	2022-01-29

RF930 Page 40 of 65

13.5 Test Results

Channel: 54	Channel: 5482.5 MHz; Narrowband mode; Power setting: Full				
Antenna Chain Measured Level Cable loss Power (dBm) (dB) (mW)					
А	0.5	1	1.41		
	PASS				

Channel: 5592.5 MHz; Narrowband mode; Power setting: Full				
Antenna Chain Measured Level Cable loss Power (dBm) (dB) (mW)				
А	1.1	1	1.62	
	PASS			

Channel: 5712.5 MHz; Narrowband mode; Power setting: Full				
Antenna Chain Measured Level Cable loss Power (dBm) (dB) (mW)				
А	0	1	1.26	
	PASS			

Channel: 5482.5 MHz; Narrowband mode; Power setting: TPC					
Antenna Chain	ntenna Chain Measured Level Cable loss Power (dBm) (dB) (mW)				
Α	-23.4	1	0.006		
Result: PASS					

Channel: 55	Channel: 5592.5 MHz; Narrowband mode; Power setting: TPC					
Antenna Chain Measured Level Cable loss Power (dBm) (dB) (mW)						
А	-22.6	1	0.007			
Result: PASS						

Channel: 57	Channel: 5712.5 MHz; Narrowband mode; Power setting: TPC					
Antenna Chain Measured Level Cable loss Power (dBm) (dB) (mW)						
А	-25.3	1	0.004			
	PASS					

RF930 Page 41 of 65

Channel: 5	Channel: 5482.5 MHz; Wideband mode; Power setting: Full				
Antenna Chain Measured Level Cable loss Power (dBm) (dB) (mW)					
Α	14.1	1	32.4		
Result: PAS					

Channel: 5592.5 MHz; Wideband mode; Power setting: Full				
Antenna Chain Measured Level Cable loss Power (dBm) (dB) (mW)				
Α	14.9	1	38.9	
	PASS			

Channel: 5712.5 MHz; Wideband mode; Power setting: Full					
Antenna Chain	Chain Measured Level Cable loss Power (dBm) (dB) (mW)				
Α	13.9	1	30.9		
	PASS				

Channel: 5482.5 MHz; Wideband mode; Power setting: TPC						
Antenna Chain	Cable loss (dB)	Power (mW)				
А	-22.5	5	0.018			
	Result:		PASS			

Channel: 5592.5 MHz; Wideband mode; Power setting: TPC							
Antenna Chain	Antenna Chain Measured Level Cable loss (dBm) (dB)						
А	-21.6	5	0.022				
	Result:						

Channel: 5712.5 MHz; Wideband mode; Power setting: TPC						
Antenna Chain	Power (mW)					
Α	-22.3	5	Power			
	PASS					

RF930 Page 42 of 65

14 Power spectral density

14.1 Definition

The power spectral density is the total energy output per unit bandwidth from a pulse or sequence of pulses for which the transmit power is at its maximum level, divided by the total duration of the pulses.

14.2 Test Parameters

Test Location: Element Hull

Test Chamber: Wireless Laboratory 1

Test Standard and Clause: ANSI C63.10-2013, Clause 12.5

EUT Channels / Frequencies Measured: 5482.5 MHz / 5592.5 MHz / 5712.5 MHz

EUT Channel Bandwidths:

Deviations From Standard:

Measurement BW:

Spectrum Analyzer Video BW:
(requirement at least 3x RBW)

Measurement Span: 15 MHz

(requirement 1.5 times Channel BW)

Measurement Detector: RMS

Environmental Conditions (Normal Environment)

Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 45 %RH 20%RH to 75%RH (as declared)

Supply: 24 Vdc (as declared)

Test Limits

For an access point operating in the band 5.15–5.25 GHz the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

For the band 5.725–5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Fixed point- to-point U–NII devices may employ antennas with directional gain up to 23dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.

14.3 Test Method


With the EUT setup as per section 9 of this report and connected as per Figure v, the peak emission of the EUT was measured on a spectrum analyser, with path losses taken into account.

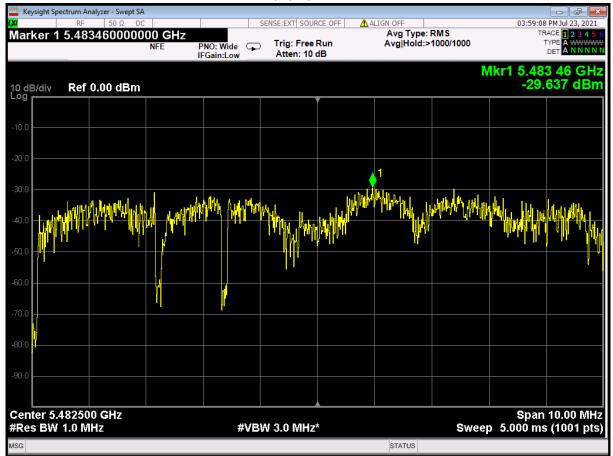
The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

RF930 Page 43 of 65

Report Number: TRA-048486-45-08A

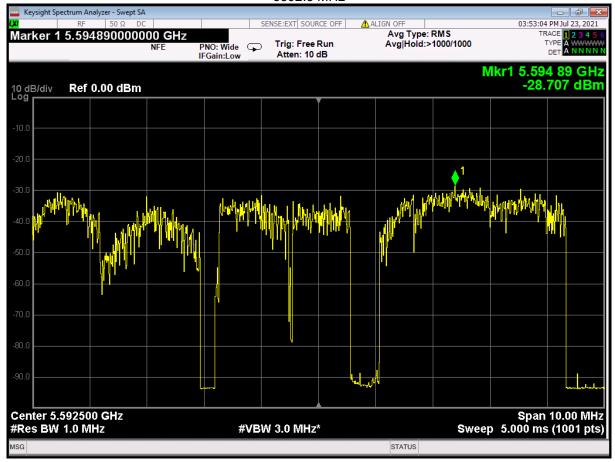
Figure v Test Setup

14.4 Test Equipment

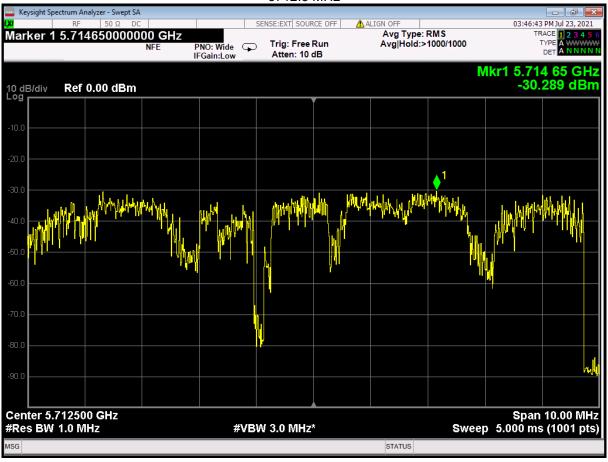

Equipment		Equipment	Element	Last Cal	Calibration	Due For
Description	Manufacturer	Туре	No	Calibration	Period	Calibration
Spectrum Analyser	Agilent	N9030A	REF2167	2020-08-19	12	2021-08-19

RF930 Page 44 of 65

14.5 Test Results

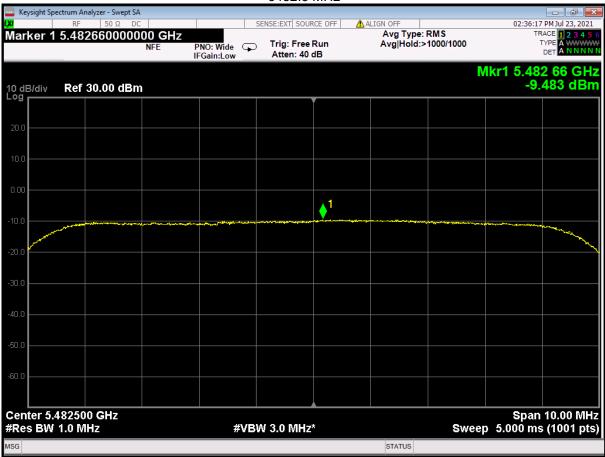

Modulation: Narrowband						
Measurement Bandwidth (MHz)	Channel Frequency (MHz)	Analyzer Level (dBm)	Duty Cycle Correction (dB)	Power (dBm)	Result	
1.0	5482.5	-29.6	5	23.0	-1.6	PASS
1.0	5592.5	-28.7	5	23.0	-0.7	PASS
1.0	5712.5	-30.3	5	23.0	-2.3	PASS

5482.5 MHz

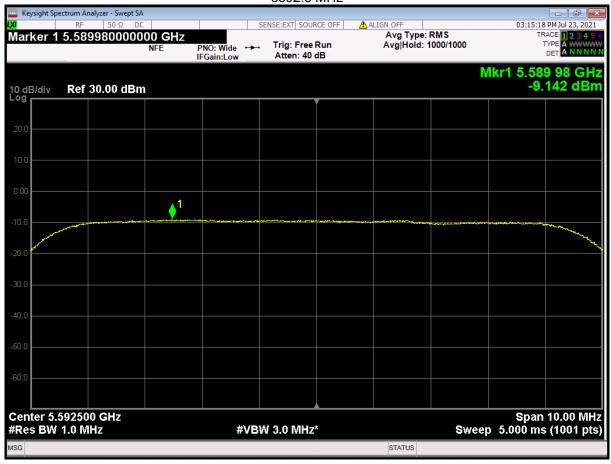


RF930 Page 45 of 65

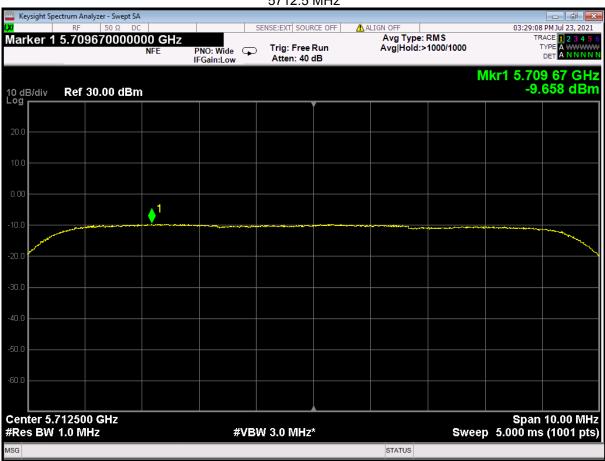
5592.5 MHz


5712.5 MHz

RF930 Page 46 of 65


	Modulation: Wideband						
Measurement Bandwidth (MHz)	Channel Frequency (MHz)	Analyzer Level (dBm)	Cable loss (dB)	Duty Cycle Correction (dB)	Power (dBm)	Result	
1.0	5482.5	-9.5	5	9.8	5.3	PASS	
1.0	5592.5	-9.1	5	9.8	5.7	PASS	
1.0	5712.5	-9.7	5	9.8	5.1	PASS	

5482.5 MHz



RF930 Page 47 of 65

5592.5 MHz

5712.5 MHz

RF930 Page 48 of 65

15 Out-of-band spurious emissions

15.1 Definition

Out-of-band emission.

Emission on a frequency or frequencies immediately outside the necessary bandwidth that results from the modulation process but excluding spurious emissions.

Spurious emission.

Emission on a frequency or frequencies that are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products, and frequency conversion products, but exclude out-of-band emissions.

15.2 Test Parameters

Test Location: Element Hull

Test Chamber: Wireless Laboratory 1

Test Standard and Clause: ANSI C63.10-2013, Clause 12.7.3

EUT Frequencies Measured: 5482.5 MHz / 5592.5 MHz / 5712.5 MHz

(requirement as close to upper and lower frequency band edges as the design of the

equipment permits).

EUT Channel Bandwidths: 10 MHz
Deviations From Standard: None
Measurement BW: 1 MHz
Spectrum Analyzer Video BW: 3 MHz
(requirement at least 3x RBW)

Measurement Detector: Peak

Measurement Range: 1 GHz to 40 GHz

Antenna Gain: 4 dBi

(required if conducted measurement made)

Environmental Conditions (Normal Environment)

Temperature: 23 °C +15 °C to +35 °C (as declared)

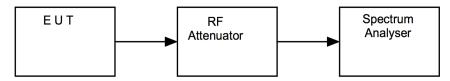
Humidity: 50 %RH 20%RH to 75%RH (as declared)

Supply: 24 Vdc (as declared)

Test Limits

15.407(b):

- (1) For transmitters operating in the 5.15–5.25 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25–5.35 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47–5.725 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725–5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

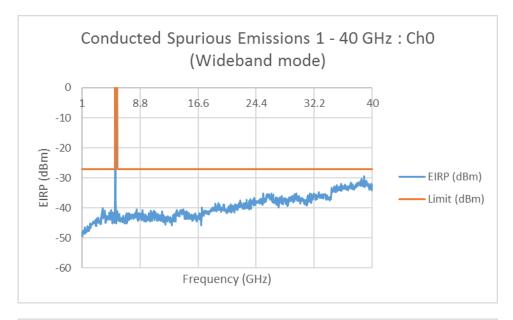

RF930 Page 49 of 65

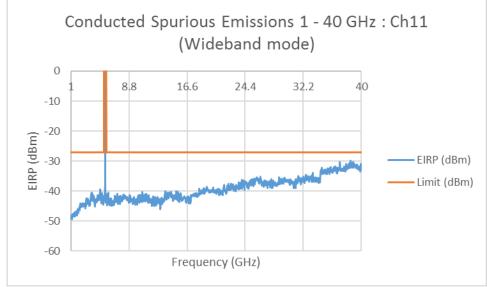
15.3 Test Method

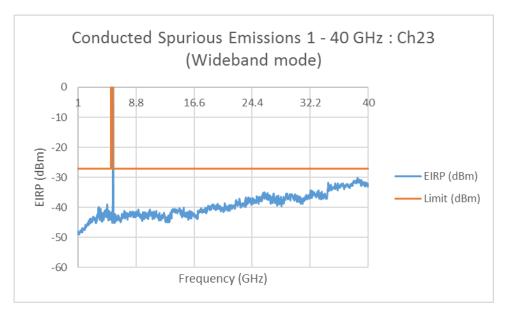
With the EUT setup as per section 9 of this report and connected as per Figure vii, the emissions from the EUT were measured on a spectrum analyser.

The measurements were performed with EUT set at its maximum duty. All modulation schemes, data rates and power settings were used to observe the worst case configuration in each bandwidth.

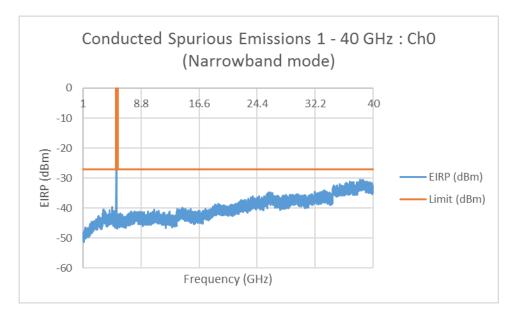
Figure vii Test Setup

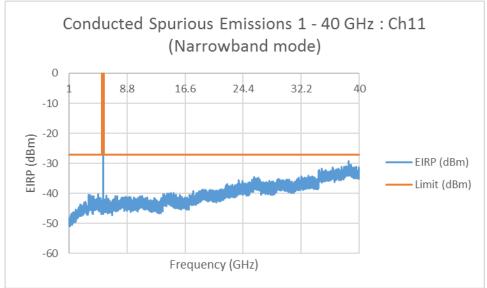


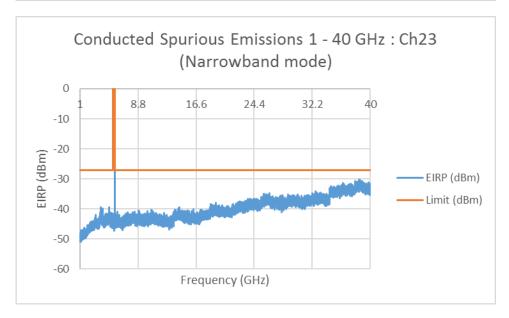

15.4 Test Equipment

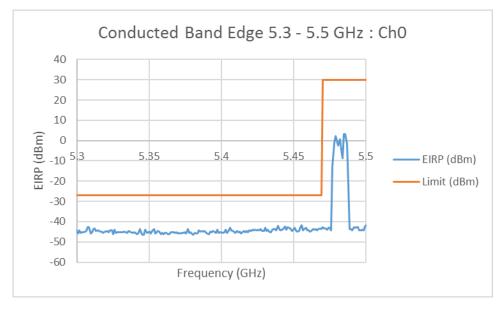

Equipment		Equipment	Element	Last Cal	Calibration	Due For
Description	Manufacturer	Туре	No	Calibration	Period	Calibration
Spectrum Analyser	Agilent	N9030A	REF2167	2020-08-19	12	2021-08-19

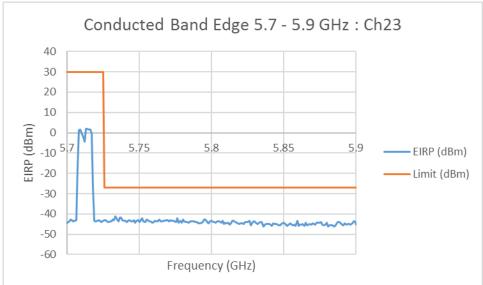
RF930 Page 50 of 65


15.5 Test Results






RF930 Page 51 of 65



RF930 Page 52 of 65

As the limit is stated as an eirp, the maximum antenna gain of 4 dBi is added to the conducted power results for out-of-band emissions. This gain adjustment is factored into the levels shown in the above plots.

RF930 Page 53 of 65

16 Duty Cycle

16.1 Definition

Duty cycle (x), as used in this clause, refers to the fraction of time over which the transmitter is on and is transmitting at its maximum power control level.

16.2 Test Parameters

Test Location: Element Hull

Test Chamber: Wireless Laboratory 1

Test Standard and Clause: ANSI C63.10-2013, Clause 12.2

EUT Frequencies Measured: 5482.5 MHz / 5592.5 MHz / 5712.5 MHz

EUT modulation:

Deviations From Standard:

None

Temperature Extreme Environment Test Range:

N/A

Voltage Extreme Environment Test Range:

N/A

Environmental Conditions (Normal Environment)

Temperature: 23 °C +15 °C to +35 °C (as declared)

Humidity: 45 %RH 20%RH to 75%RH (as declared)

Supply: 24 Vdc (as declared)

Test Limits

N/A.

16.3 Test Method

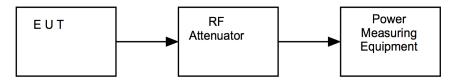
With the EUT setup as per section 9 of this report and connected as per Figure viii, the duty of the EUT was calculated from the sum of total on and off times over the observation period. The measurements were performed with EUT set at its maximum duty. All modulation schemes, bandwidths, data rates and power settings were used to completely characterise the system.

[1] Single antenna output devices

Duty was measured at the antenna port / at a distance of 3m.

[2] Multiple antenna output devices

Duty was measured as the combination of all ports simultaneously / at a distance of 3m.


The duty cycle correction factor, DC, is used to adjust emissions measured with an average detector to give an equivalent value as would be measured during the on time only:

DC = 10 log (duty ratio)

Where, duty ratio is total on-time divided by total off-time.

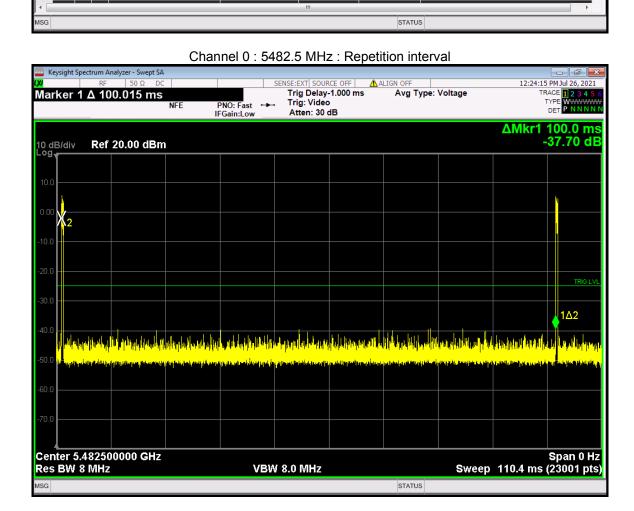
RF930 Page 54 of 65

Figure viii Test Setup

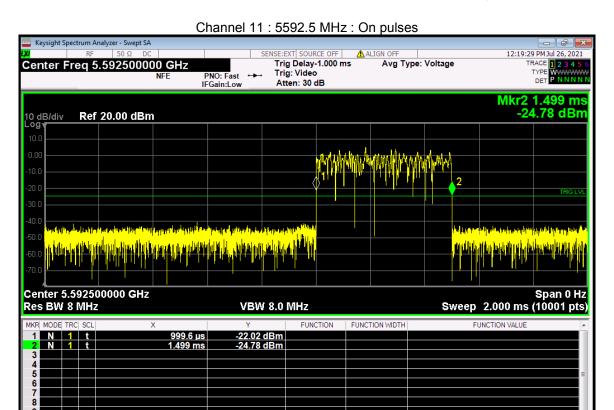
16.4 Test Equipment

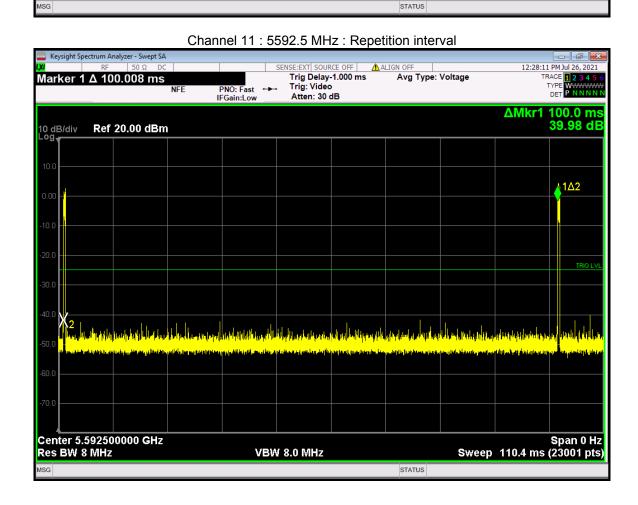
Equipment		Equipment	Element	Last Cal	Calibration	Due For
Description	Manufacturer	Туре	No	Calibration	Period	Calibration
Spectrum Analyser	Agilent	N9030A	REF2167	2020-08-19	12	2021-08-19

16.5 Test Results

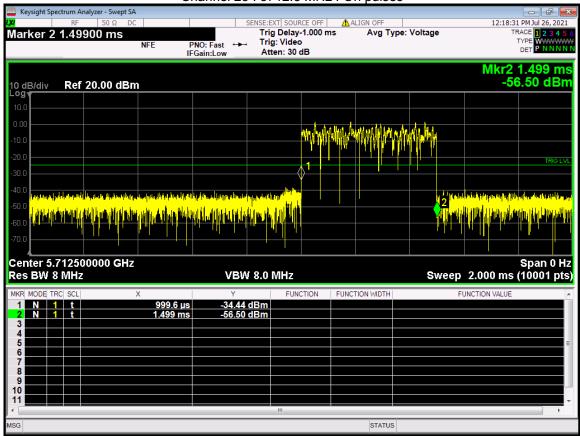

Frequency: 5482.5 MHz; Modulation: Narrowband							
	Test Env	ironment	Single Channel TxOn time (ms)	Total TxOn time (ms)	Observation period (ms)	Duty (%)	Calculated Factor
Ī	V _{nominal} T _{nominal}		0.4994	0.4994	100	0.4994	23.0

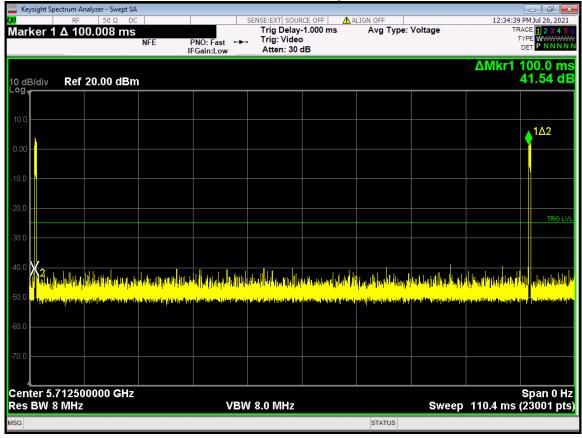
Frequency: 5592.5 MHz; Modulation: Narrowband						wband	
	Test Env	ironment	Single Channel TxOn time (ms)	Total TxOn time (ms)	Observation period (ms)	Duty (%)	Calculated Factor
	V _{nominal}	T _{nominal}	0.4994	0.4994	100	0.4994	23.0


	Frequency: 5712.5 MHz; Modulation: Narrowband						
Test Env	ironment	Single Channel TxOn time (ms)	Total TxOn time (ms)	Observation period (ms)	Duty (%)	Calculated Factor	
V _{nominal}	T _{nominal}	0.4994	0.4994	100	0.4994	23.0	


RF930 Page 55 of 65

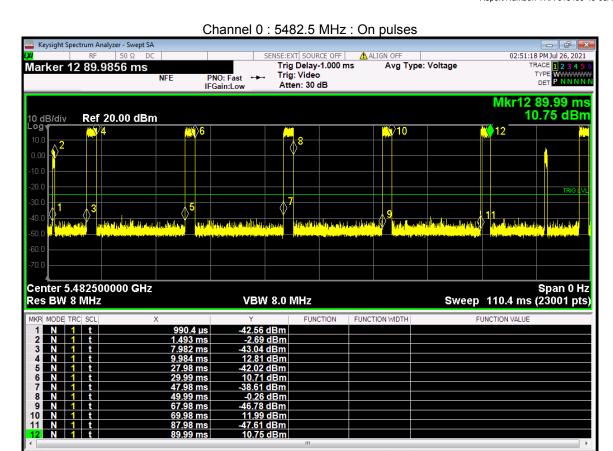
Channel 0: 5482.5 MHz: On pulses Keysight Spectrum Analyzer - Swept SA SENSE:EXT SOURCE OFF ALIGN OFF
Trig Delay-1.000 ms Avg
Trig: Video
Atten: 30 dB 12:20:08 PM Jul 26, 2021 Center Freq 5.482500000 GHz Avg Type: Voltage PNO: Fast • IFGain:Low Mkr2 1.499 ms -18.83 dBm Ref 20.00 dBm Center 5.482500000 GHz Span 0 Hz Sweep 2.000 ms (10001 pts) Res BW 8 MHz VBW 8.0 MHz FUNCTION | FUNCTION WIDTH -28.46 dBm -18.83 dBm 999.6 µs 1.499 ms

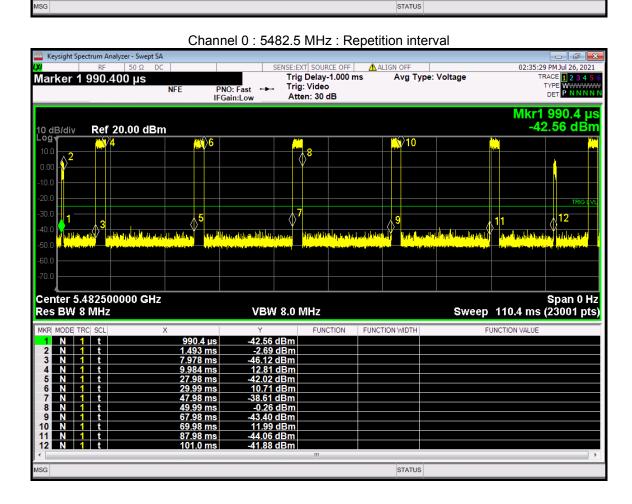

RF930 Page 56 of 65



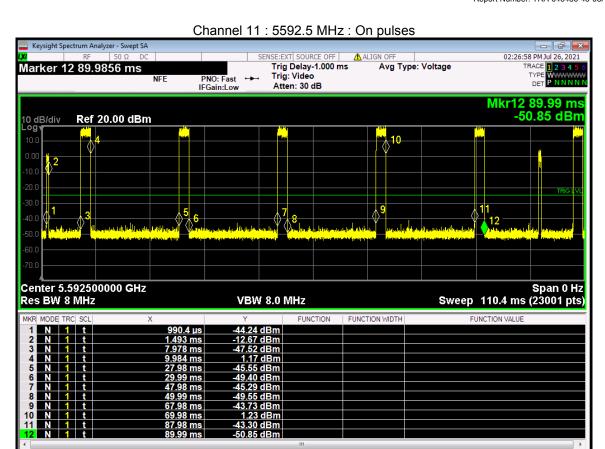
RF930 Page 57 of 65

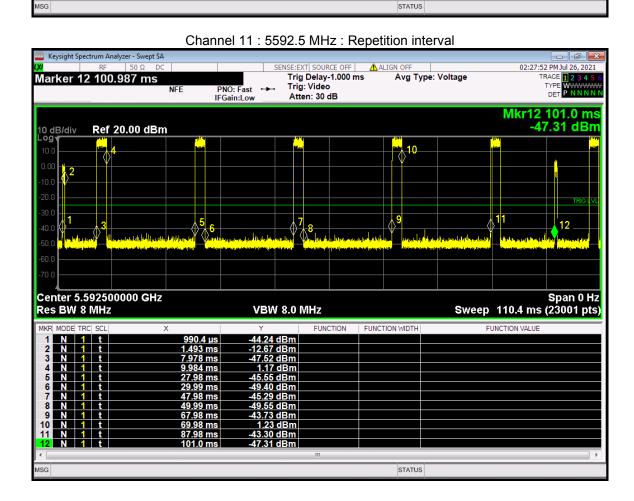
Channel 23: 5712.5 MHz: On pulses

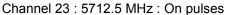

RF930 Page 58 of 65

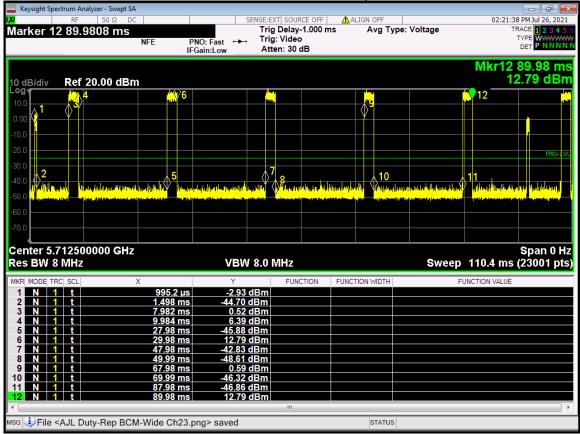

Frequency: 5482.5 MHz; Modulation: Wideband						eband	
	Test Env	ironment	Single Channel TxOn time (ms)	Total TxOn time (ms)	Observation period (ms)	Duty (%)	Calculated Factor
	V _{nominal}	T _{nominal}	10.5346	10.5346	100.0096	10.5	9.8

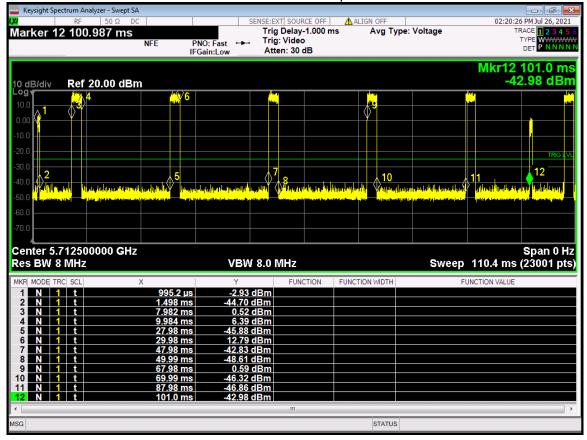
Frequency: 5592.5 MHz; Modulation: Wideband						
Test Env	ironment	Single Channel TxOn time (ms)	Total TxOn time (ms)	Observation period (ms)	Duty (%)	Calculated Factor
$V_{nominal}$	T _{nominal}	10.5386	10.5386	100.0096	10.5	9.8


Frequency: 5712.5 MHz; Modulation: Wideband						
Test Env	ironment	Single Channel TxOn time (ms)	Total TxOn time (ms)	Observation period (ms)	Duty (%)	Calculated Factor
V _{nominal}	T _{nominal}	10.5248	10.5248	100.0048	10.5	9.8


RF930 Page 59 of 65




RF930 Page 60 of 65



RF930 Page 61 of 65

Channel 23: 5712.5 MHz: Repetition interval

RF930 Page 62 of 65

17 Measurement Uncertainty

Radio Testing – General Uncertainty Schedule

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence where no required test level exists.

Reference No.	Parameter	Description	Value	Unit
1	Adjacent Channel Power	Uncertainty in test result	1.86	dB
2	Carrier Power	Uncertainty in test result (Power Meter) Uncertainty in test result (Spectrum Analyser)	0.070 3.11	dB
3	Effective Radiated Power	Uncertainty in test result	4.71	dB
4	Radiated Spurious Emissions	Uncertainty in test result 30 MHz to 1 GHz	4.75	dB
		1 GHz to 18 GHz	4.46	
5	Maximum Frequency Error	Uncertainty in test result (CMTA)	113.441	Hz
	Radiated Emissions, Field Strength OATS 9 kHz – 110 GHz Electric Field	Uncertainty in test result (9 kHz – 30 MHz)	2.3	
		Uncertainty in test result (30 MHz – 1 GHz)	4.75	
		Uncertainty in test result (1 GHz – 18 GHz)	4.46	
6		Uncertainty in test result (18 GHz – 26 GHz)	3.2	dB
O O		Uncertainty in test result (26 GHz – 40 GHz)	3.3	uБ
		Uncertainty in test result (40 GHz – 50 GHz)	3.5	
		Uncertainty in test result (50 GHz – 75 GHz)	3.6	
		Uncertainty in test result (75 GHz – 110 GHz)	3.6	
7	Frequency Deviation	Uncertainty in test result	3.7	%
8	Magnetic Field Emissions	Uncertainty in test result	2.3	dB
9	Conducted Spurious	Uncertainty in test result Up to 26 GHz	0.921	dB
10	Channel Bandwidth	Uncertainty in test result	15.71	%

RF930 Page 63 of 65

Reference No.	Parameter	Description	Value	Unit
11	Spectrum Mask	Uncertainty in test result (frequency)	2.59	%
11	Measurements	Uncertainty in test result (amplitude)	1.32	dB
12	Adjacent Sub Band Selectivity	Uncertainty in test result	1.24	dB
13	Receiver Blocking – Listen Mode, Radiated	Uncertainty in test result	3.23	dB
14	Receiver Blocking – Talk Mode, Radiated	Uncertainty in test result	3.36	dB
15	Receiver Blocking – Talk Mode, Conducted	Uncertainty in test result	1.24	dB
16	Receiver Threshold	Uncertainty in test result	3.42	dB
17	Transmission Time Measurement	Uncertainty in test result	4.40	%

RF930 Page 64 of 65

18 RF Exposure

U-NII devices are subject to the radio frequency radiation exposure requirements specified in §1.1307(b), §2.1091 and §2.1093 of chapter 47 of the CFR, as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request.

MPE Calculation

Prediction of MPE limit at a given distance

For purposes of these requirements mobile devices are defined by the FCC as transmitters designed to be used in other than fixed locations and to generally be used in such a way that a separation distance of at least 20 centimeters is normally maintained between radiating structures and the body of the user or nearby persons. These devices are normally evaluated for exposure potential with relation to the MPE limits. As the 20 cm separation specified under FCC rules may not be achievable under normal operation of the EUT, an RF exposure calculation is needed to show the minimum distance required to be less than the power density limit, as required under FCC rules.

Equation from IEEE C95.1

$$S = \frac{EIRP}{4\pi R^2}$$
 re-arranged $R = \sqrt{\frac{EIRP}{S4\pi}}$

Where:

S = power density

R = distance to the centre of radiation of the antenna

EIRP = EUT Maximum power

Result

Channel Frequency (MHz)	EIRP (mW)	Power density limit (S) (mW/cm²)	Distance (R) cm required to be less than the power density limit	
5592.5	97.7	1.0	2.8	

RF930 Page 65 of 65