



## FCC/ISED TEST REPORT

Report Number : **709502506789-00B** Date of Issue: August 6, 2025

Model : MT01-1345-069005

Product Type : Li-ion FT 15Nm Motor

Applicant : Rollease Acmeda Inc

Address : 7th Floor / 750 East Main Street, Stamford, CT 06902, USA

Manufacturer : Rollease Acmeda Inc

Address : 7th Floor / 750 East Main Street, Stamford, CT 06902, USA

Test Result :  Positive  Negative

Total pages including Appendices : 27



TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

## 1 Table of Contents

|      |                                              |    |
|------|----------------------------------------------|----|
| 1    | Table of Contents.....                       | 2  |
| 2    | Report Modification Record.....              | 3  |
| 3    | Details about the Test Laboratory.....       | 3  |
| 4    | Description of the Equipment Under Test..... | 4  |
| 5    | Summary of Test Standards.....               | 5  |
| 6    | Summary of Test Results .....                | 6  |
| 7    | General Remarks .....                        | 7  |
| 8    | Systems test configuration.....              | 8  |
| 9    | Test Setups .....                            | 9  |
| 10   | Test Methodology.....                        | 11 |
| 10.1 | Conducted Emission .....                     | 11 |
| 10.2 | The Field strength of Emissions .....        | 16 |
| 10.3 | 20dB Bandwidth Measurement .....             | 21 |
| 10.4 | 99% Bandwidth Measurement.....               | 22 |
| 10.5 | Deactivation Time .....                      | 23 |
| 11   | Test Equipment List.....                     | 24 |
| 12   | System Measurement Uncertainty .....         | 25 |
| 13   | Photographs of Test Set-ups.....             | 26 |
| 14   | Photographs of EUT .....                     | 27 |



## 2 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

| Issue            | Description of Change | Date of Issue |
|------------------|-----------------------|---------------|
| 709502506789-00B | First Issue           | 08/06/2025    |

## 3 Details about the Test Laboratory

### Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch  
No.16 Lane, 1951 Du Hui Road,  
Shanghai 201108,  
P.R. China

Telephone: +86 21 6141 0123

Fax: +86 21 6140 8600

FCC Registration No.: 820234

FCC Designation Number: CN1183

ISED CAB identifier CN0101

IC Registration No.: 31668



## 4 Description of the Equipment Under Test

|                            |                                                                                                          |
|----------------------------|----------------------------------------------------------------------------------------------------------|
| Product:                   | Li-ion FT 15Nm Motor                                                                                     |
| Model no./HVIN/PMN:        | MT01-1345-069005                                                                                         |
| FCC ID:                    | 2AGGZ003B9ACA5F                                                                                          |
| IC:                        | 21769-003B9ACA5F                                                                                         |
| Rating:                    | Input 5V DC                                                                                              |
| RF Transmission Frequency: | 433.92MHz                                                                                                |
| Modulation:                | GFSK                                                                                                     |
| Hardware Version           | V1.0                                                                                                     |
| Software Version:          | V1.0                                                                                                     |
| Antenna Type:              | Line antenna                                                                                             |
| Antenna Gain:              | 0.79dBi                                                                                                  |
| Description of the EUT:    | The Equipment Under Test (EUT) was a LI-ION FT 15NM MOTOR which support 433. 92MHz transceiver function. |
| Test sample no.:           | SHA-942281-2                                                                                             |

The sample's mentioned in this report is/are submitted/ supplied/ manufactured by client. The laboratory therefore assumes no responsibility for accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.



## 5 Summary of Test Standards

| <b>Test Standards</b>                           |                                                                        |
|-------------------------------------------------|------------------------------------------------------------------------|
| FCC Part 15 Subpart C                           | PART 15 - RADIO FREQUENCY DEVICES<br>Subpart C - Intentional Radiators |
| RSS-Gen Issue 5<br>Amendment 2<br>February 2021 | General Requirements for Compliance of Radio Apparatus                 |
| RSS-210 Issue 11<br>June 25, 2024               | RSS-210 — License-exempt Radio Apparatus: Category I<br>Equipment      |

All the test methods were according to ANSI C63.10-2013.



## 6 Summary of Test Results

| Technical Requirements                  |                  |                                    |       |             |             |
|-----------------------------------------|------------------|------------------------------------|-------|-------------|-------------|
| FCC Part 15 Subpart C, RSS-210 Issue 11 |                  |                                    |       |             |             |
| Test Condition                          |                  |                                    | Pages | Test Site   | Test Result |
| §15.207                                 | RSS-GEN A8.8     | Conducted emission AC power port   | 11-15 | Shield room | Pass        |
| §15.205, §15.209, 15.35 (c)§15.231(b)   | RSS-210 A.1.3    | Radiated Emission, 30MHz to 4.5GHz | 16-20 | 3m chamber  | Pass        |
| §15.231(c)                              | RSS-210 A.1.4    | Bandwidth Measurement              | 21-22 | Shield room | Pass        |
| §15.231(a)(1)                           | RSS-210 A.1.2(a) | Deactivation Time                  | 23    | Shield room | Pass        |
| §15.203                                 | RSS-Gen 6.8      | Antenna requirement                | --    | See Note 1  | Pass        |

Note 1: The EUT uses a line antenna, which gain is 0.79dBi. In accordance to §15.203 and RSS-Gen 6.8, It is considered sufficiently to comply with the provisions of this section.



## 7 General Remarks

### Remarks

This submittal(s) (test report) is intended for FCC ID: 2AGGZ003B9ACA5F, IC: 21769-003B9ACA5F complies with Section 15.207, 15.205, 15.209, 15.231 of the FCC Part 15, Subpart C Rules. RSS-Gen Issue 5 and RSS-210 issue 11.

### SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed

- Not Performed

The Equipment Under Test

- **Fulfills** the general approval requirements.

- **Does not** fulfill the general approval requirements.

Sample Received Date: August 1,2025

Testing Start Date: August 3,2025

Testing End Date: August 6,2025

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

Reviewed by:



Prepared by:

*Jiaxi Xu*

Tested by:

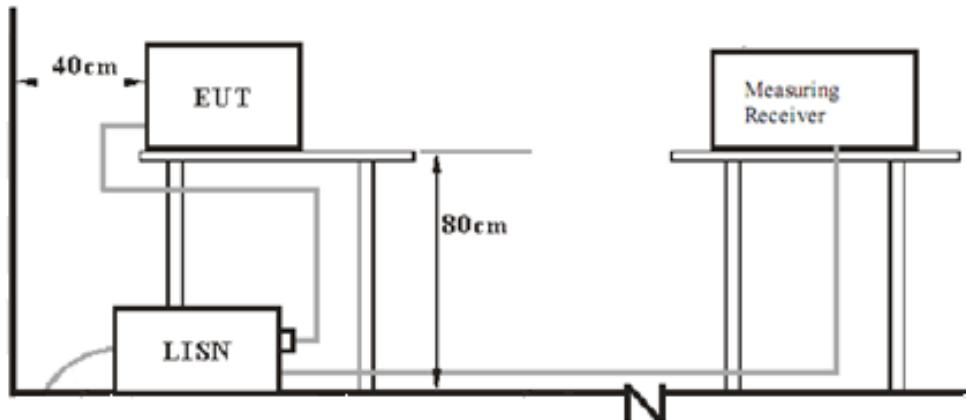
*Doujun Xu*

\_\_\_\_\_  
Hui TONG  
EMC Section Manager

\_\_\_\_\_  
Jiaxi XU  
EMC Project Engineer

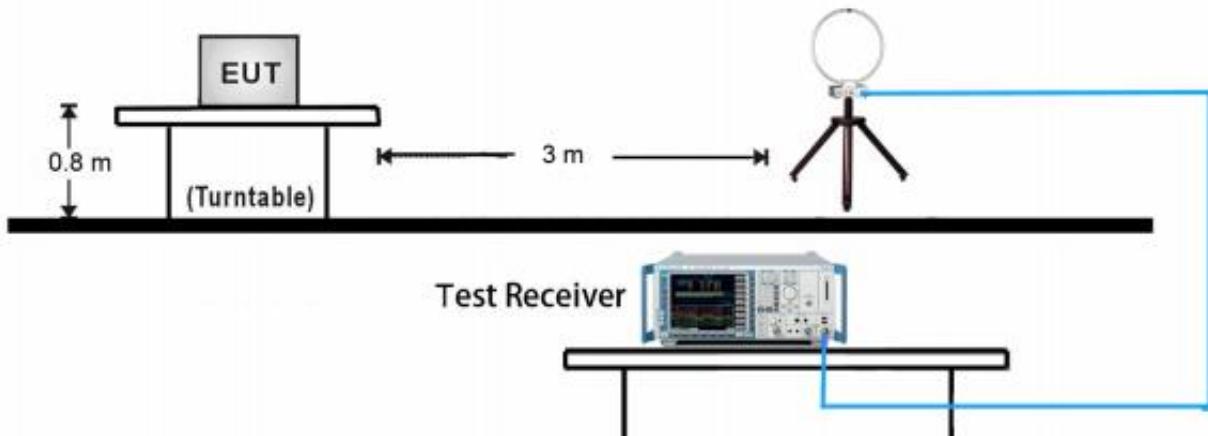
\_\_\_\_\_  
Doujun XU  
EMC Test Engineer



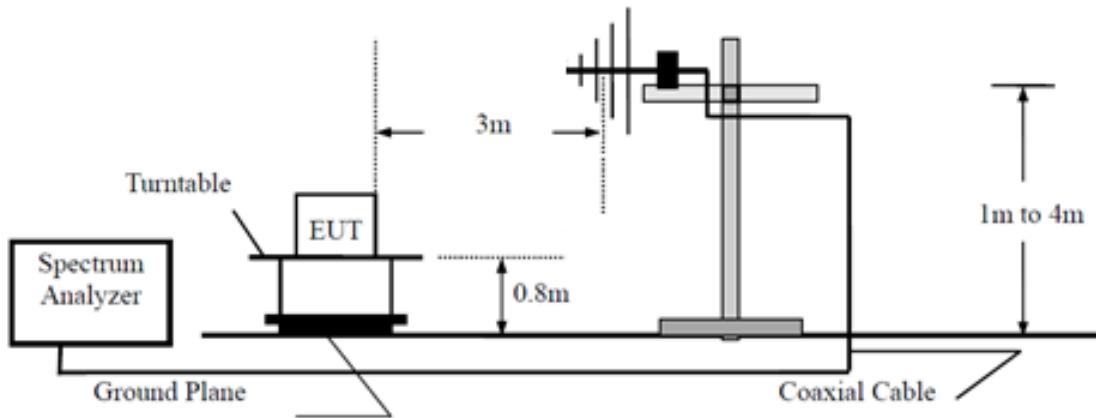

## 8 Systems test configuration

Auxiliary Equipment Used during Test:

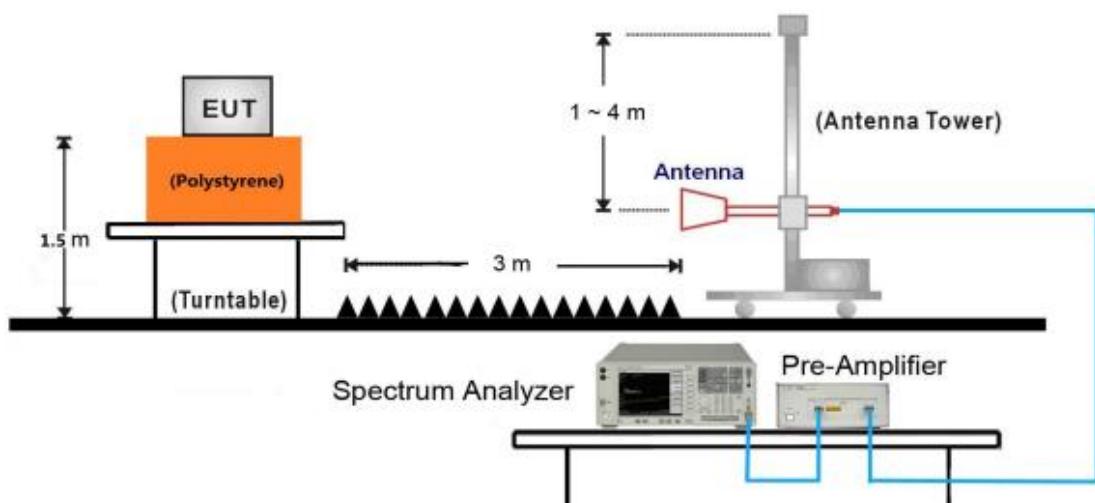
| DESCRIPTION   | MANUFACTURER | MODEL NO.(SHIELD) | REMARK                           |
|---------------|--------------|-------------------|----------------------------------|
| AC/DC Adapter | ---          | JXA-A050200       | Input:AC120-230v<br>Output:5V,2A |


## 9 Test Setups

### 9.1 AC Power Line Conducted Emission test setups




### 9.2 Radiated test setups


9kHz ~ 30MHz Test Setup:



## 30MHz ~ 1GHz Test- Setup



## 1GHz ~ 18GHz Test Setup:





## 10 Test Methodology

### 10.1 Conducted Emission

#### Test Method

1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
3. All the support units are connecting to the other LISN.
4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
5. Both sides of AC line were checked for maximum conducted interference.
6. The frequency range from 150 kHz to 30 MHz was searched.
7. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

#### Limit

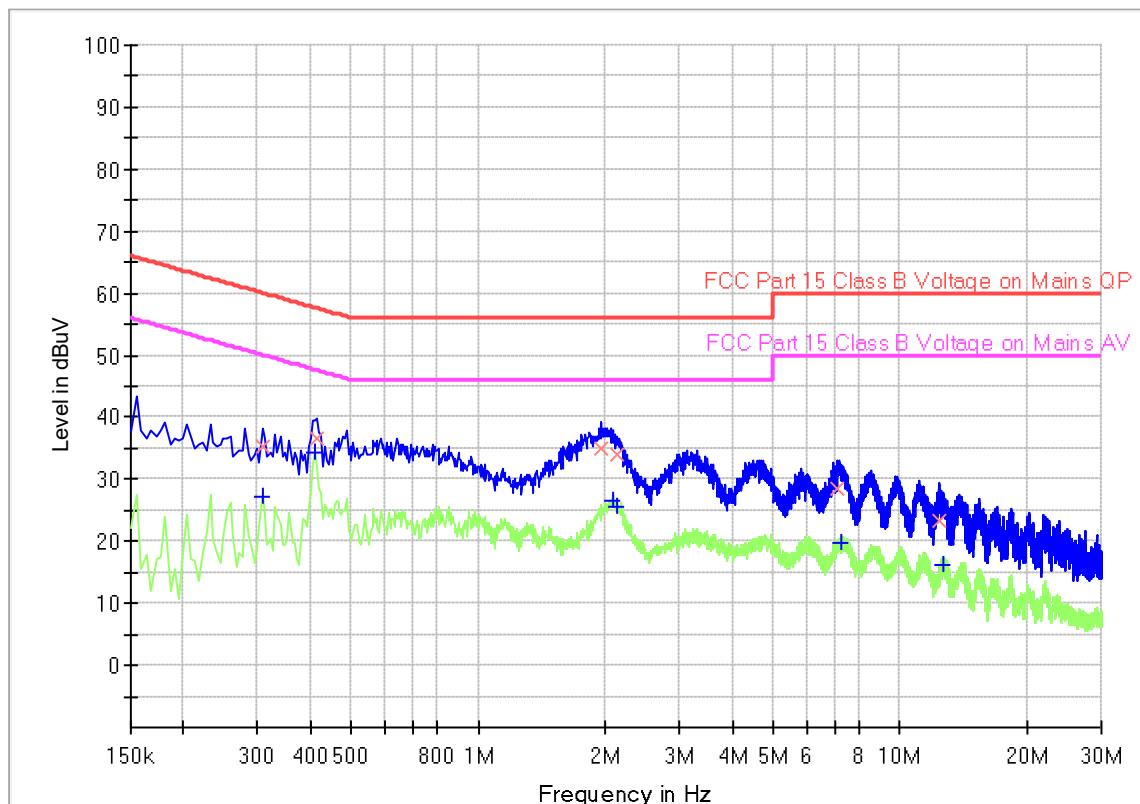
According to §15.207 & RSS-GEN Issue 5 8.8, conducted emissions limit as below:

| Frequency<br>MHz | QP Limit<br>dB $\mu$ V | AV Limit<br>dB $\mu$ V |
|------------------|------------------------|------------------------|
| 0.150-0.500      | 66-56*                 | 56-46*                 |
| 0.500-5          | 56                     | 46                     |
| 5-30             | 60                     | 50                     |

Decreasing linearly with logarithm of the frequency

## Conducted Emission

# 150k-30MHz Conducted Emission Test


## EUT Information

EUT Name: Li-ion FT 15Nm Motor  
 Model: MT01-1345-069005  
 Client: Rollease Acmeda Inc  
 Op Cond: Charging mode and TX at 433.92MHz  
 Operator: Doujun Xu  
 Standard: FCC part 15.207, RSS-GEN 8.8  
 Comment: Phase L  
 Sample No.: SHA-942281-2

## Scan Setup: Voltage with 2-Line-LISN pre [EMI conducted]

Hardware Setup: Voltage with 2-Line-LISN  
 Receiver: [ESR 3]  
 Level Unit: dBuV

| Subrange         | Step Size | Detectors | IF BW  | Meas. Time | Preamp |
|------------------|-----------|-----------|--------|------------|--------|
| 9 kHz - 150 kHz  | 100 Hz    | PK+       | 200 Hz | 0.02 s     | 0 dB   |
| 150 kHz - 30 MHz | 4.5 kHz   | PK+; AVG  | 9 kHz  | 0.01 s     | 0 dB   |





## Final\_Result

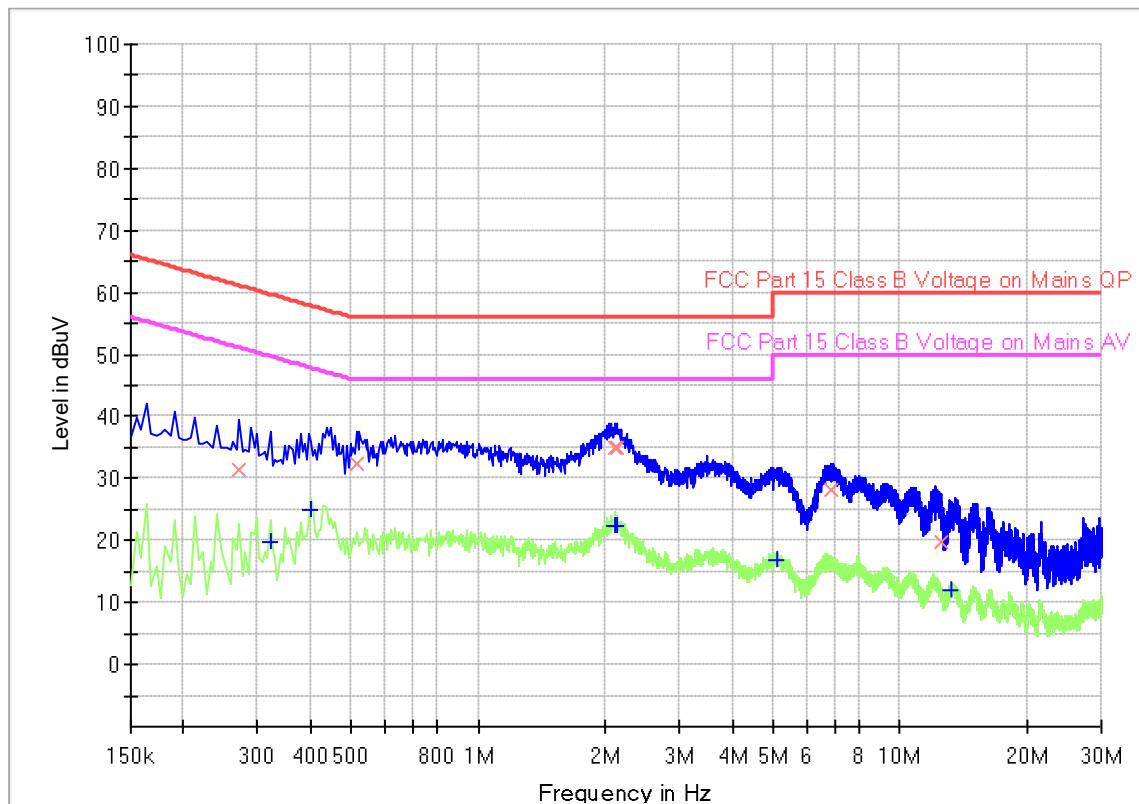
| Frequency (MHz) | QuasiPeak (dBuV) | CAverage (dBuV) | Limit (dBuV) | Margin (dB)  | Meas. Time (ms) | Bandwidth (kHz) | Line      | Corr. (dB)  |
|-----------------|------------------|-----------------|--------------|--------------|-----------------|-----------------|-----------|-------------|
| 0.307500        | ---              | <b>27.36</b>    | <b>50.04</b> | <b>22.68</b> | <b>1000.0</b>   | <b>9.000</b>    | <b>L1</b> | <b>19.4</b> |
| 0.307500        | <b>35.32</b>     | ---             | <b>60.04</b> | <b>24.72</b> | <b>1000.0</b>   | <b>9.000</b>    | <b>L1</b> | <b>19.4</b> |
| 0.411000        | ---              | <b>34.28</b>    | <b>47.63</b> | <b>13.35</b> | <b>1000.0</b>   | <b>9.000</b>    | <b>L1</b> | <b>19.4</b> |
| 0.415500        | <b>36.66</b>     | ---             | <b>57.54</b> | <b>20.88</b> | <b>1000.0</b>   | <b>9.000</b>    | <b>L1</b> | <b>19.4</b> |
| 1.950000        | <b>35.04</b>     | ---             | <b>56.00</b> | <b>20.96</b> | <b>1000.0</b>   | <b>9.000</b>    | <b>L1</b> | <b>19.4</b> |
| 2.076000        | ---              | <b>26.48</b>    | <b>46.00</b> | <b>19.52</b> | <b>1000.0</b>   | <b>9.000</b>    | <b>L1</b> | <b>19.4</b> |
| 2.130000        | <b>34.10</b>     | ---             | <b>56.00</b> | <b>21.90</b> | <b>1000.0</b>   | <b>9.000</b>    | <b>L1</b> | <b>19.4</b> |
| 2.134500        | ---              | <b>25.65</b>    | <b>46.00</b> | <b>20.35</b> | <b>1000.0</b>   | <b>9.000</b>    | <b>L1</b> | <b>19.4</b> |
| 7.111500        | <b>28.48</b>     | ---             | <b>60.00</b> | <b>31.52</b> | <b>1000.0</b>   | <b>9.000</b>    | <b>L1</b> | <b>19.6</b> |
| 7.269000        | ---              | <b>19.87</b>    | <b>50.00</b> | <b>30.13</b> | <b>1000.0</b>   | <b>9.000</b>    | <b>L1</b> | <b>19.6</b> |
| 12.435000       | <b>23.44</b>     | ---             | <b>60.00</b> | <b>36.56</b> | <b>1000.0</b>   | <b>9.000</b>    | <b>L1</b> | <b>19.7</b> |
| 12.642000       | ---              | <b>16.08</b>    | <b>50.00</b> | <b>33.92</b> | <b>1000.0</b>   | <b>9.000</b>    | <b>L1</b> | <b>19.7</b> |

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB) + 10dB Attenuator



# 150k-30MHz Conducted Emission Test


## EUT Information

EUT Name: Li-ion FT 15Nm Motor  
 Model: MT01-1345-069005  
 Client: Rollease Acmeda Inc  
 Op Cond: Charging mode and TX at 433.92MHz  
 Operator: Doujun Xu  
 Standard: FCC part 15.207, RSS-GEN 8.8  
 Comment: Phase L  
 Sample No.: SHA-942281-2

## Scan Setup: Voltage with 2-Line-LISN pre [EMI conducted]

Hardware Setup: Voltage with 2-Line-LISN  
 Receiver: [ESR 3]  
 Level Unit: dBuV

| Subrange         | Step Size | Detectors | IF BW  | Meas. Time | Preamp |
|------------------|-----------|-----------|--------|------------|--------|
| 9 kHz - 150 kHz  | 100 Hz    | PK+       | 200 Hz | 0.02 s     | 0 dB   |
| 150 kHz - 30 MHz | 4.5 kHz   | PK+; AVG  | 9 kHz  | 0.01 s     | 0 dB   |





## Final\_Result

| Frequency (MHz) | QuasiPeak (dBuV) | CAverage (dBuV) | Limit (dBuV) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Line | Corr. (dB) |
|-----------------|------------------|-----------------|--------------|-------------|-----------------|-----------------|------|------------|
| 0.271500        | 31.28            | ---             | 61.07        | 29.79       | 1000.0          | 9.000           | N    | 19.4       |
| 0.321000        | ---              | 19.66           | 49.68        | 30.02       | 1000.0          | 9.000           | N    | 19.4       |
| 0.402000        | ---              | 24.88           | 47.81        | 22.93       | 1000.0          | 9.000           | N    | 19.4       |
| 0.514500        | 32.35            | ---             | 56.00        | 23.65       | 1000.0          | 9.000           | N    | 19.5       |
| 2.107500        | 34.91            | ---             | 56.00        | 21.09       | 1000.0          | 9.000           | N    | 19.4       |
| 2.116500        | ---              | 22.28           | 46.00        | 23.72       | 1000.0          | 9.000           | N    | 19.4       |
| 2.134500        | 34.89            | ---             | 56.00        | 21.11       | 1000.0          | 9.000           | N    | 19.4       |
| 2.134500        | ---              | 22.41           | 46.00        | 23.59       | 1000.0          | 9.000           | N    | 19.4       |
| 5.136000        | ---              | 16.77           | 50.00        | 33.23       | 1000.0          | 9.000           | N    | 19.5       |
| 6.841500        | 28.20            | ---             | 60.00        | 31.80       | 1000.0          | 9.000           | N    | 19.6       |
| 12.471000       | 19.78            | ---             | 60.00        | 40.22       | 1000.0          | 9.000           | N    | 19.7       |
| 13.204500       | ---              | 11.95           | 50.00        | 38.05       | 1000.0          | 9.000           | N    | 19.7       |

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + LISN Factor (dB) + 10dB Attenuator

## 10.2 The Field strength of Emissions

### Test Method

1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
2. The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.
3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
5. Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious  
 RBW = 1MHz, VBW $\geq$ 3RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious  
 RBW = 100 KHz, VBW $\geq$ 3RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

### Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (duty cycle  $\geq$ 98%) for peak detection at frequency above 1GHz
4. If the emission is pulsed (duty cycle <98%), modify the unit for continuous operation: use the settings shown above, then correct the reading by subcontracting the peak to average duty cycle correction factor  $20\log$  (duty cycle),, derived from the appropriate duty cycle calculation.



## Limit

1. FCC Limit: In addition to the provisions of § 15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

| Fundamental frequency (MHz) | Field Strength of Fundamental (Microvolts /meter) | Field Strength of spurious emissions ((Microvolts /meter) |
|-----------------------------|---------------------------------------------------|-----------------------------------------------------------|
| 40.66-40.70                 | 2,250                                             | 225                                                       |
| 70-130                      | 1,250                                             | 125                                                       |
| 130-174                     | 1,250 to 3,750 *                                  | 125 to 375 *                                              |
| 174-260                     | 3,750                                             | 375                                                       |
| 260-470                     | 3,750 to 12, 500*                                 | 375 to 1,250*                                             |
| Above 470                   | 12,500                                            | 1,250                                                     |

\*Linear interpolation with frequency

(a) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

(b) Intentional radiators operating under the provisions of this section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in § 15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of § 15.205 shall be demonstrated using the measurement instrumentation specified in that section.

(c) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in § 15.209, whichever limit permits a higher field strength.

## Limits for 15.209 Radiated emission limits

| Frequency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) |
|-----------------|-----------------------------------|-------------------------------|
| 0.009-0.490     | 2400/F(kHz)                       | 300                           |
| 0.490-1.705     | 24000/F(kHz)                      | 30                            |
| 1.705-30.0      | 30                                | 30                            |
| 30-88           | 100                               | 3                             |
| 88-216          | 150                               | 3                             |
| 216-960         | 200                               | 3                             |
| Above 960       | 500                               | 3                             |



## 2. ISED Limit:

(a) The field strength of emissions from momentarily operated intentional radiators shall not exceed the limits in table A1, based on the average value of the measured emissions. The requirements of the “Pulsed Operation” section of RSS-Gen apply for averaging pulsed emissions and limiting peak emissions. Alternatively, compliance with the limits in table A1 may be based on the use of a CISPR quasi-peak detector.

(b) Unwanted emissions shall be 10 times below the fundamental emissions field strength limits in table A1 or comply with the limits specified in RSS-Gen, whichever is less stringent.

Table A1: Permissible field strength limits for momentarily operated devices

| Fundamental frequency (MHz) | Field Strength of Fundamental (Microvolts /meter @ 3m) | Field Strength of spurious emissions ((Microvolts /meter @ 3m) |
|-----------------------------|--------------------------------------------------------|----------------------------------------------------------------|
| 70-130                      | 1,250                                                  | 125                                                            |
| 130-174                     | 1,250 to 3,750 *                                       | 125 to 375 *                                                   |
| 174-260                     | 3,750                                                  | 375                                                            |
| 260-470                     | 3,750 to 12, 500*                                      | 375 to 1,250*                                                  |
| Above 470                   | 12,500                                                 | 1,250                                                          |

\*Linear interpolation with frequency

### General field strength limits at frequencies below 30 MHz

| Frequency      | Magnetic field strength (H-Field) ( $\mu$ A/m) | Measurement distance (meters) |
|----------------|------------------------------------------------|-------------------------------|
| 9 – 490 kHz*   | 6.37/F (F in kHz)                              | 300                           |
| 490 – 1705 kHz | 63.7/F (F in kHz)                              | 30                            |
| 1.705-30.0 MHz | 0.08                                           | 30                            |

\*The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

Note 1: Limit  $3m(dB\mu V/m) = Limit\ 300m(dB\mu V/m) + 40\log(300m/3m)$  (Below 30MHz)

Note 2: Limit  $3m(dB\mu V/m) = Limit\ 30m(dB\mu V/m) + 40\log(30m/3m)$  (Below 30MHz)

Note 3:  $dB\mu V/m = 20\log(\mu V/m)$ ,  $dB\mu A/m = 20\log(\mu A/m)$



## Field strength of Emissions

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

| Radiated Emission |           |          |              |        |         |              |              |        |                  |
|-------------------|-----------|----------|--------------|--------|---------|--------------|--------------|--------|------------------|
| Value             | Emissions | E-Field  | PK           | Corr.  | Average | AV           | Limit        |        | Emission Type    |
|                   | Frequency | Polarity | Emission     | Factor | Factor  | Emission     | dB $\mu$ V/m | Margin |                  |
|                   | MHz       |          | dB $\mu$ V/m | dB     | dB      | dB $\mu$ V/m |              | dB     |                  |
| Below 1GHz        |           |          |              |        |         |              |              |        |                  |
| PK                | 433.92    | H        | 90.60        | 25.70  | 0.00    | /            | 100.80       | 10.20  | Fundamental      |
| AV                | 433.92    | H        | 90.60        | /      | -25.00  | 65.60        | 80.80        | 15.20  | Fundamental      |
| PK                | 433.92    | V        | 79.40        | 25.70  | 0.00    | /            | 100.80       | 21.40  | Fundamental      |
| AV                | 433.92    | V        | 79.40        | /      | -25.00  | 54.40        | 80.80        | 26.40  | Fundamental      |
| PK                | 867.44    | H        | 38.11        | 31.40  | 0.00    | /            | 80.80        | 42.69  | Spurious         |
| AV                | 867.44    | H        | 38.11        | /      | -25.00  | 13.11        | 60.80        | 47.69  | Spurious         |
| PK                | 867.84    | V        | 38.42        | 31.40  | 0.00    | /            | 80.80        | 42.38  | Spurious         |
| AV                | 867.93    | V        | 38.42        | /      | -25.00  | 13.42        | 60.80        | 47.38  | Spurious         |
| Above 1GHz        |           |          |              |        |         |              |              |        |                  |
| PK                | 1303.82   | H        | 32.60        | -16.30 | 0.00    | /            | 74.00        | 41.40  | Restricted band* |
| AV                | 1303.82   | H        | 32.60        | /      | -25.00  | 7.60         | 54.00        | 46.40  | Restricted band* |
| PK                | 1738.52   | H        | 46.20        | -14.70 | 0.00    | /            | 80.80        | 34.60  | Spurious         |
| AV                | 1738.52   | H        | 46.20        | /      | -25.00  | 21.20        | 60.80        | 39.60  | Spurious         |
| PK                | 1303.82   | V        | 32.05        | -16.30 | 0.00    | /            | 74.00        | 41.95  | Restricted band* |
| AV                | 1303.82   | V        | 32.05        | /      | -25.00  | 7.05         | 54.00        | 46.95  | Restricted band* |
| PK                | 1737.10   | V        | 43.40        | -14.70 | 0.00    | /            | 80.80        | 37.40  | Spurious         |
| AV                | 1737.10   | V        | 36.22        | /      | -25.00  | 11.22        | 60.80        | 49.58  | Spurious         |

Remark:

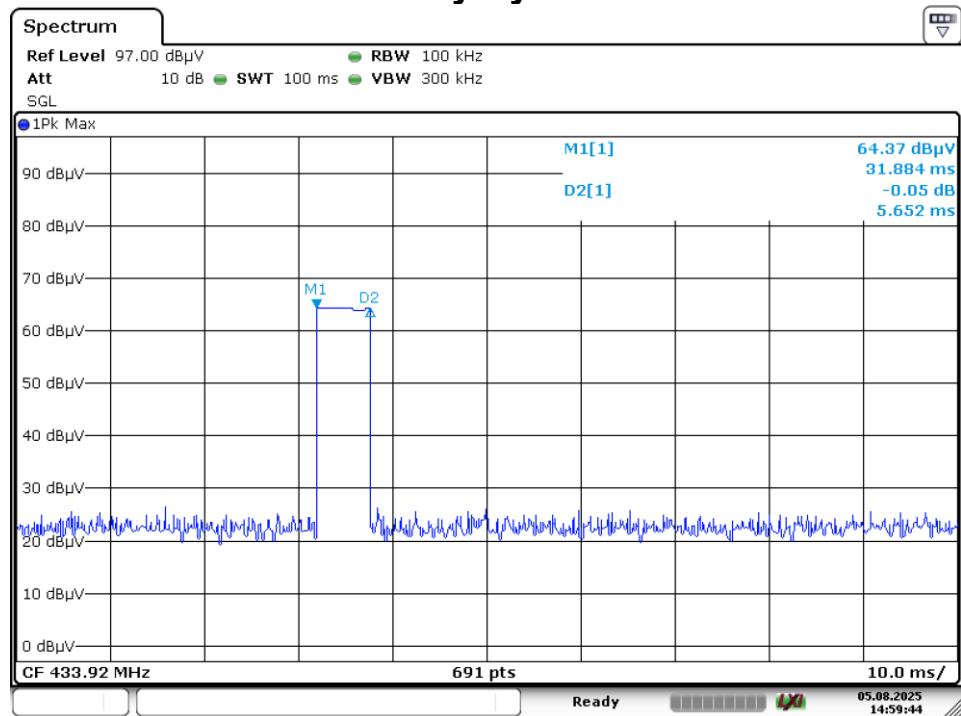
1: AV Emission Level= PK Emission Level+20log(dutycycle)

2: Data of measurement within this frequency range shown "/" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.

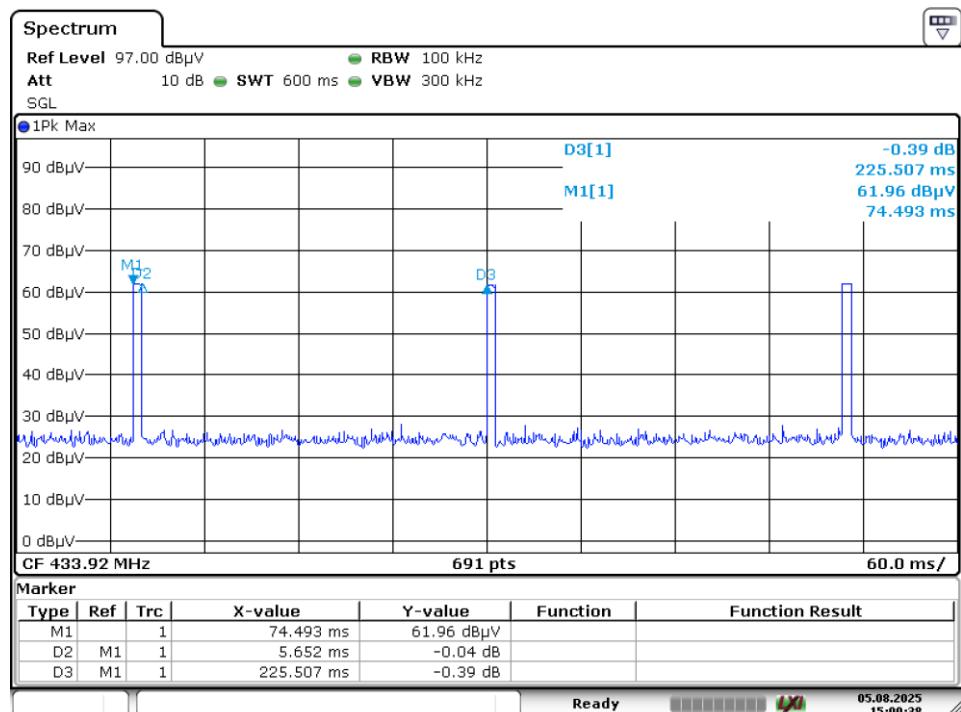
3: "\*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.

4: Level= Reading Level + Correction Factor

Correction Factor = Antenna Factor + Cable Loss- Amplifier Gain


(The Reading Level is recorded by software which is not shown in the sheet)

Duty Cycle =5.625(ms)/100(ms) =5.625%


Duty Cycle Factor =20log (Duty Cycle) =-25



## Duty Cycle



Date: 5.AUG.2025 14:59:45



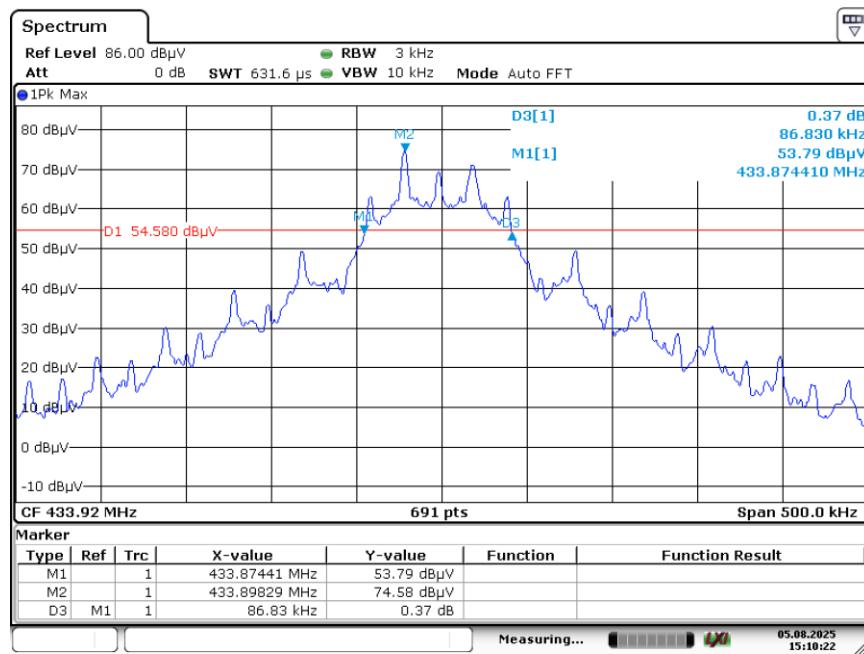
Date: 5.AUG.2025 15:00:38



## 10.3 20dB Bandwidth Measurement

### Test Method

1. Set to the maximum power setting and enable the EUT transmit continuously.
2. Use the following test receiver settings:  
Span = approximately 5 times the 20dB bandwidth, centered on a hopping channel  
RBW = 1% to 5% of the 20dB bandwidth of the emission being measured,  $VBW \geq RBW$ ,  
Sweep = auto, Detector function = peak, Trace = max hold
3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth. Record the results.
4. Repeat above procedures until all frequencies measured were complete.


### Limit

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz. For devices operating above 900MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20dB down from the modulated carrier.

The limit for the EUT =  $0.25\% * 433.92 \text{ MHz} = 1084 \text{ kHz}$

### Test Result

| Channel   | 20dB Bandwidth (KHz) | Limit (KHz) |
|-----------|----------------------|-------------|
| 433.92MHz | 86.83                | 1084        |

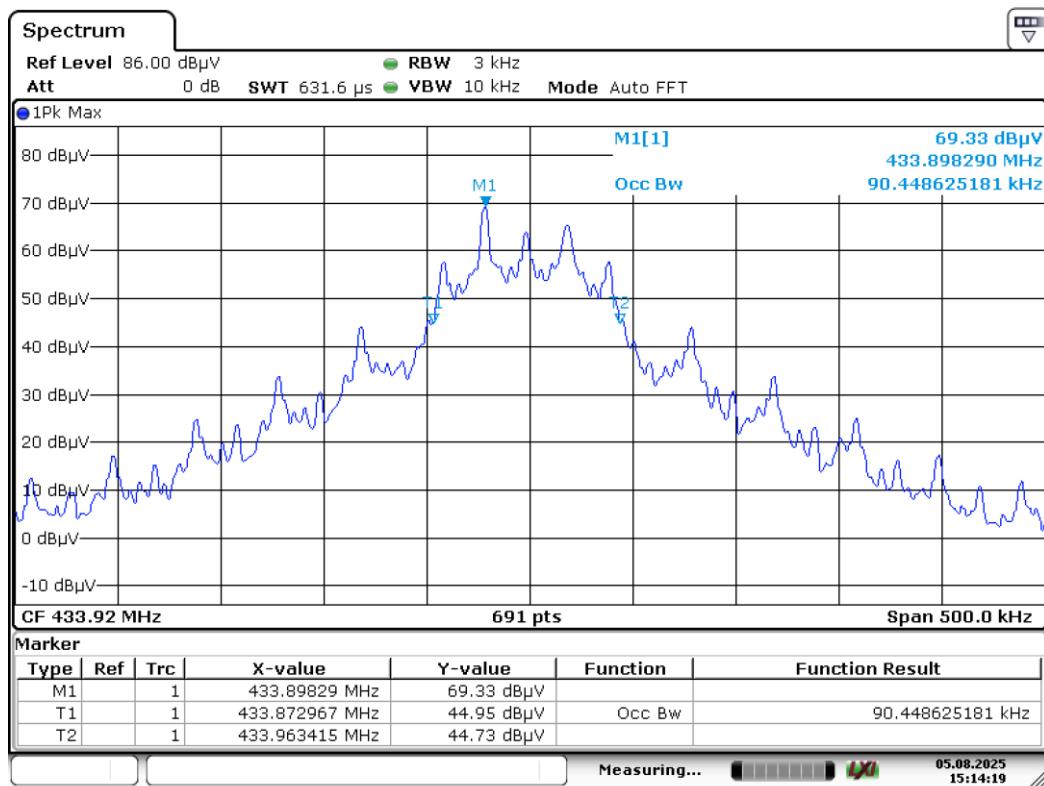


Date: 5.AUG.2025 15:10:23

## 10.499% Bandwidth Measurement

### Test Method

1. The EUT was placed on 0.8m height table, the RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously.  
Use the following test receiver settings:  
RBW = 1% to 5% of the OBW, VBW $\geq$ 3RBW, Sweep = auto, Detector function = peak, Trace = max hold
3. Allow the trace to stabilize. Use the 99 % power bandwidth function of the instrument. Record the results.


### Limit

The occupied bandwidth of momentarily operated devices shall be less than or equal to 0.25% of the centre frequency for devices operating between 70 MHz and 900 MHz. For devices operating above 900 MHz, the occupied bandwidth shall be less than or equal to 0.5% of the centre frequency.

The limit for the EUT = 0.25% \* 433.92 MHz = 1084.8 kHz

### Test Result

| Channel | 99% bandwidth (kHz) | Limit (kHz)   | Result |
|---------|---------------------|---------------|--------|
| 1       | 90.4486             | $\leq$ 1084.8 | Pass   |

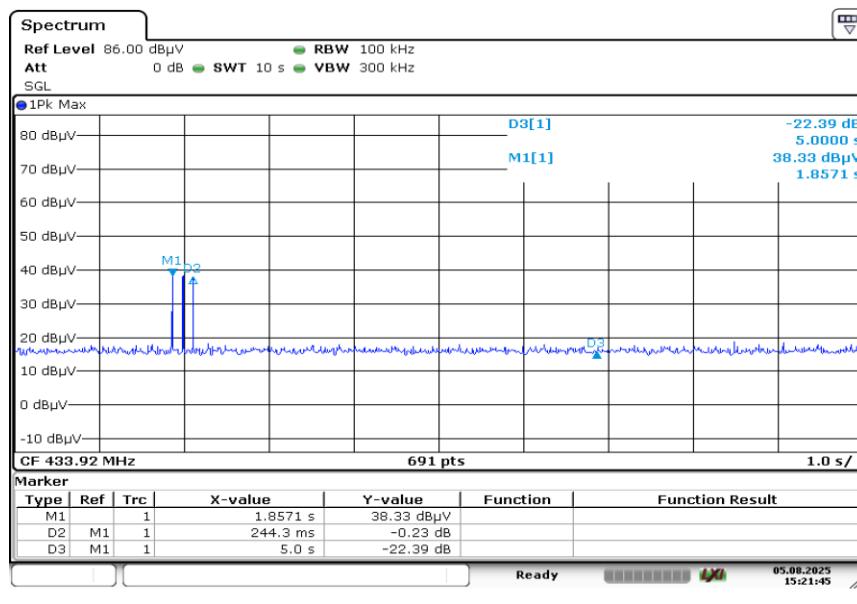


Date: 5.AUG.2025 15:14:19

## 10.5 Deactivation Time

### Test Method

1. The EUT was placed on 0.8m height table, the RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT in transmitting mode.
3. Set center frequency of spectrum analyzer=operating frequency.
4. Set the spectrum analyzer as  $RBW \geq OBW$ ,  $VBW \geq RBW$ , Span=0Hz, detector=peak.
5. Repeat above procedures until all frequency measured was complete.


### Limit

According to FCC Part 15.231 (a) and RSS-210 A.1.2(a), the transmitter shall be complied the following requirements:

- (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
- (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.
- (3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions, including data, to determine system integrity of transmitters used in security or safety applications are allowed if the total duration of transmissions does not exceed more than two seconds per hour for each transmitter. There is no limit on the number of individual transmissions, provided the total transmission time does not exceed two seconds per hour.

### Test Result

| Channel | Frequency | Deactivation Time | Limit | Result |
|---------|-----------|-------------------|-------|--------|
| 1       | 433.92MHz | 244.3ms           | ≤5s   | Pass   |





## 11 Test Equipment List

### RF Conductive Test

| Description                  | Manufacturer | Model no. | Serial no.      | Calibration Date | Calibration Due |
|------------------------------|--------------|-----------|-----------------|------------------|-----------------|
| Signal and spectrum analyzer | R&S          | FSV40     | S1503003-YQ-EMC | 2025-8-1         | 2026-7-31       |

### Conducted Emission

| Description                  | Model no. | Manufacturer     | Equipment ID.   | Calibration Date | Calibration Due |
|------------------------------|-----------|------------------|-----------------|------------------|-----------------|
| EMI test receiver            | ESR3      | R&S              | S1503001-YQ-EMC | 2025-8-1         | 2026-7-31       |
| 2-Line V-network             | ENV216    | R & S            | S1503103-YQ-EMC | 2025-8-1         | 2026-7-31       |
| CE_Cable_01<br>Coaxial Cable | RG400     | HUBER+SUH<br>NER | 1002115055      | 2025-8-1         | 2026-7-31       |

### Radiated Emission Test

| USED                                | Equipment Name                       | Model       | Manufacturer     | Equipment ID.   | Calibration Date | Calibration Due |
|-------------------------------------|--------------------------------------|-------------|------------------|-----------------|------------------|-----------------|
| <input checked="" type="checkbox"/> | EMI test receiver                    | ESR3        | R&S              | S1503109-YQ-EMC | 2025-8-1         | 2026-7-31       |
| <input checked="" type="checkbox"/> | Trilog super broadband test antenna  | SCHWARZBECK | VULB9168         | S1808296-YQ-EMC | 2024-8-30        | 2025-8-29       |
| <input checked="" type="checkbox"/> | Double-ridged waveguide horn antenna | HF907       | R&S              | S1503009-YQ-EMC | 2025-4-14        | 2026-4-13       |
| <input checked="" type="checkbox"/> | Pre-amplifier                        | HPA-081843  | Shenzhen HzEMC   | S2403437-YQ-EMC | 2025-4-14        | 2026-4-13       |
| <input checked="" type="checkbox"/> | Signal and spectrum analyzer         | FSV40       | R&S              | S1503003-YQ-EMC | 2025-8-1         | 2026-7-31       |
| <input checked="" type="checkbox"/> | Loop antenna                         | HFH2-Z2     | R&S              | S1503013-YQ-EMC | 2025-7-4         | 2026-7-3        |
| <input checked="" type="checkbox"/> | RE_Cable_01<br>Coaxial Cable         | MWX221      | JUNFLON          | 1906S057        | 2025-8-1         | 2026-7-31       |
| <input checked="" type="checkbox"/> | RE_Cable_02<br>Coaxial Cable         | RG214       | HUBER+SUH<br>NER | 1358176         | 2025-8-1         | 2026-7-31       |
| <input checked="" type="checkbox"/> | RE_Cable_03<br>Coaxial Cable         | MWX221      | JUNFLON          | J12J102482      | 2025-8-1         | 2026-7-31       |

### Measurement Software Information

| Test Item | Software | Manufacturer    | Version   |
|-----------|----------|-----------------|-----------|
| RE        | EMC 32   | Rohde & Schwarz | V10.50.40 |
| CE        | EMC 32   | Rohde & Schwarz | V9.15.03  |

## 12 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

| Items                 | Extended Uncertainty                                                                                                                |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Conducted Disturbance | 9kHz to 30MHz, 3.16dB (AMN)                                                                                                         |
| Radiated Disturbance  | 9kHz to 30MHz, 3.52dB<br>30MHz to 1GHz, 5.03dB (Horizontal)<br>5.12dB (Vertical)<br>1GHz to 18GHz, 5.49dB<br>18GHz to 40GHz, 5.63dB |

Measurement Uncertainty Decision Rule:

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2023, clause 4.3.3



## 13 Photographs of Test Set-ups

Refer to the < Test Setup photos >.



## 14 Photographs of EUT

Refer to the < External Photos > & < Internal Photos >.

-----End of Test Report-----