

FCCID: 2AGF2X-037

RF Exposure evaluation

According to 447498 D01 General RF Exposure Guidance v06

4.3. General SAR test exclusion guidance

4.3.1. Standalone SAR test exclusion considerations

a) For 100 MHz to 6 GHz and test separation distances \leq 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following: $[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR,³⁰ where

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation³¹
- The result is rounded to one decimal place for comparison
- The values 3.0 and 7.5 are referred to as numeric thresholds in step b) below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm, and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is $<$ 5 mm, a distance of 5 mm according to 4.1 f) is applied to determine SAR test exclusion.

³⁰ This is equivalent to the formula written as: $[(\text{max. power of channel, including tune-up tolerance, mW}) / (60/\sqrt{f(\text{GHz})} \text{ mW})] \cdot [20 \text{ mm} / (\text{min. test separation distance, mm})] \leq 1.0$ for 1-g SAR; also see Appendix A for approximate exclusion threshold numerical values at selected frequencies and distances.

$$\text{eirp} = \text{pt} \times \text{gt} = (\text{Exd})^2/30$$

where:

pt = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unitless),

E = electric field strength in V/m, --- $10^{[(\text{dBuV/m})/20]/10^6}$

d = measurement distance in meters (m)---3m

So $\text{pt} = (\text{Exd})^2/30 \times \text{gt}$

RF Exposure evaluation

Copied from the FCC test report:

Radiated spurious emissions:

470.200 MHz, Horizontal							
Spurious Emission Frequency (MHz)	Read value (dBm)	Cable Loss (dB)	Antenna Factor (dB)	1-18GHz Pre-amplifier (dB)	True value (dBm)	Limit/ dBm	Margin(dB)
Fundamental: 470.2	-18.5	1.7	16.0	0	-0.8	24	-24.8

470.200 MHz, Vertical							
Fundamental: 470.2	-6.7	1.7	16.0	0	11.0	24	-13.0
486.980, Horizontal							
Fundamental: 487.0	-18.5	1.8	16.1	0	-0.6	24	-24.6
486.980, Vertical							
Fundamental: 487.0	-6.0	1.8	16.1	0	11.9	24	-12.1
607.800 MHz, Horizontal							
Fundamental: 607.8	-22.2	1.9	19.3	0	-1.0	24	-25.0
607.800 MHz, Vertical							
Fundamental: 607.8	-10.3	1.9	19.3	0	10.9	24	-13.1

tune-up tolerance= ± 1 dB,

min. test separation distance = 5 mm, since the min distance from the antenna (within the input phone) to the outer = 1.0 mm

Field strength = 11.0 dBm in 470.200MHz

Field strength = 11.9 dBm in 486.980MHz

Field strength = 10.9 dBm in 607.800MHz

Max. power of channel after included tune-up tolerance

Field strength = 12.0 dBm=15.85 mW in 470.200MHz

Field strength = 12.9 dBm=19.50 mW in 486.980MHz

Field strength = 11.9 dBm=15.49 mW in 607.800MHz

$$\text{So } (15.85 \text{ mW})/5.0\text{mm}) \times \sqrt{0.470200 \text{ GHz}} = 2.174 < 3$$

$$\text{So } (19.50 \text{ mW})/5.0\text{mm}) \times \sqrt{0.486980 \text{ GHz}} = 2.721 < 3$$

$$\text{So } (15.59 \text{ mW})/5.0\text{mm}) \times \sqrt{0.607800 \text{ GHz}} = 2.415 < 3$$

Then SAR evaluation is not required