



## FCC RADIO TEST REPORT

|                        |                                                        |
|------------------------|--------------------------------------------------------|
| Applicant's company    | IWC Schaffhausen, Branch of Richemont International SA |
| Applicant Address      | Baumgartenstrasse 15 , 8201 Schaffhausen, Switzerland  |
| FCC ID                 | 2AGDR-IWCC1                                            |
| Manufacturer's company | IWC Schaffhausen, Branch of Richemont International SA |
| Manufacturer Address   | Baumgartenstrasse 15 , 8201 Schaffhausen, Switzerland  |

|                   |                                       |
|-------------------|---------------------------------------|
| Product Name      | IWC Connect                           |
| Brand Name        | IWC Schaffhausen                      |
| Model Name        | IWC-C1                                |
| Test Rule Part(s) | 47 CFR FCC Part 15 Subpart C § 15.249 |
| Test Freq. Range  | 2402 ~ 2480MHz                        |
| Received Date     | Nov. 16, 2015                         |
| Final Test Date   | Nov. 21, 2015                         |
| Submission Type   | Original Equipment                    |

### Statement

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in **ANSI C63.10-2013** and **47 CFR FCC Part 15 Subpart C**.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.



## Table of Contents

|                                                               |                |
|---------------------------------------------------------------|----------------|
| <b>1. VERIFICATION OF COMPLIANCE .....</b>                    | <b>1</b>       |
| <b>2. SUMMARY OF THE TEST RESULT .....</b>                    | <b>2</b>       |
| <b>3. GENERAL INFORMATION .....</b>                           | <b>3</b>       |
| 3.1. Product Details.....                                     | 3              |
| 3.2. Accessories.....                                         | 3              |
| 3.3. Table for Filed Antenna.....                             | 3              |
| 3.4. Table for Carrier Frequencies .....                      | 3              |
| 3.5. Table for Test Modes.....                                | 4              |
| 3.6. Table for Testing Locations.....                         | 4              |
| 3.7. Table for Supporting Units .....                         | 4              |
| 3.8. Duty Cycle.....                                          | 5              |
| 3.9. Test Configurations .....                                | 6              |
| <b>4. TEST RESULT .....</b>                                   | <b>8</b>       |
| 4.1. Field Strength of Fundamental Emissions Measurement..... | 8              |
| 4.2. 20dB Spectrum Bandwidth Measurement .....                | 11             |
| 4.3. Radiated Emissions Measurement.....                      | 14             |
| 4.4. Band Edge Emissions Measurement.....                     | 23             |
| 4.5. Antenna Requirements .....                               | 25             |
| <b>5. LIST OF MEASURING EQUIPMENTS .....</b>                  | <b>26</b>      |
| <b>6. MEASUREMENT UNCERTAINTY.....</b>                        | <b>27</b>      |
| <b>APPENDIX A. TEST PHOTOS .....</b>                          | <b>A1 ~ A6</b> |



## History of This Test Report



## 1. VERIFICATION OF COMPLIANCE

Product Name : IWC Connect  
Brand Name : IWC Schaffhausen  
Model Name : IWC-C1  
Applicant : IWC Schaffhausen, Branch of Richemont International SA  
Test Rule Part(s) : 47 CFR FCC Part 15 Subpart C § 15.249

Sportun International as requested by the applicant to evaluate the EMC performance of the product sample received on Nov. 16, 2015 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

A handwritten signature in blue ink, appearing to read "Sam Chen".

Reviewed By:

Sam Chen

SPORTON INTERNATIONAL INC.

## 2. SUMMARY OF THE TEST RESULT

| Applied Standard: 47 CFR FCC Part 15 Subpart C |               |                                         |          |             |
|------------------------------------------------|---------------|-----------------------------------------|----------|-------------|
| Part                                           | Rule Section  | Description of Test                     | Result   | Under Limit |
| -                                              | 15.207        | AC Power Line Conducted Emissions       | -        | Note        |
| 4.1                                            | 15.249(a)     | Field Strength of Fundamental Emissions | Complies | 2.51 dB     |
| 4.2                                            | 15.215(c)     | 20dB Spectrum Bandwidth                 | Complies | -           |
| 4.3                                            | 15.249(a)/(d) | Radiated Emissions                      | Complies | 5.08 dB     |
| 4.4                                            | 15.249(d)     | Band Edge Emissions                     | Complies | 8.24 dB     |
| 4.5                                            | 15.203        | Antenna Requirements                    | Complies | -           |

Note: It was supplied power by battery for EUT, It's not necessary to apply to AC Power Port Conducted emission test.

### 3. GENERAL INFORMATION

#### 3.1. Product Details

| Items                    | Description                             |
|--------------------------|-----------------------------------------|
| Power Type               | From battery (3Vdc)                     |
| Modulation               | DSSS                                    |
| Data Rate (Mbps)         | GFSK: 1                                 |
| Frequency Range          | 2402 ~ 2480MHz                          |
| Channel Number           | 40 (37 hopping + 3 advertising channel) |
| Channel Space            | 2 MHz Bandwidth                         |
| Channel Band Width (99%) | 1.15 MHz                                |
| Max. Field Strength      | 91.49 dBuV/m at 3m (Average)            |
| Carrier Frequencies      | Please refer to section 3.4             |
| Antenna                  | Please refer to section 3.3             |

#### 3.2. Accessories

N/A

#### 3.3. Table for Filed Antenna

| Ant. | Brand | Model No. | Antenna Type | Connector | Gain (dBi) |
|------|-------|-----------|--------------|-----------|------------|
| 1    | -     | -         | Loop Antenna | N/A       | -3.09      |

#### 3.4. Table for Carrier Frequencies

| Frequency Band | Channel No. | Frequency | Channel No. | Frequency |
|----------------|-------------|-----------|-------------|-----------|
| 2402 ~ 2480MHz | 0           | 2402 MHz  | 20          | 2442 MHz  |
|                | 1           | 2404 MHz  | :           | :         |
|                | 2           | 2406 MHz  | 37          | 2476 MHz  |
|                | :           | :         | 38          | 2478 MHz  |
|                | 18          | 2438 MHz  | 39          | 2480 MHz  |
|                | 19          | 2440 MHz  | -           | -         |

### 3.5. Table for Test Modes

Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

| Test Items                                                         | Mode        | Channel | Antenna |
|--------------------------------------------------------------------|-------------|---------|---------|
| Field Strength of Fundamental Emissions<br>20dB Spectrum Bandwidth | CTX         | 0/20/39 | 1       |
| Radiated Emissions 30MHz ~ 1GHz                                    | Normal Link | -       | -       |
| Radiated Emissions 1GHz~10 <sup>th</sup> Harmonic                  | CTX         | 0/20/39 | 1       |
| Band Edge Emissions                                                | CTX         | 0/20/39 | 1       |

Note: CTX=continuously transmitting

The following test modes were performed for all tests:

**For Radiated emission below 1GHz test:**

Mode 1. Place EUT in Y axis

Mode 2. Place EUT in Z axis

Mode 2 is the worst case, so it was selected to record in this test report

**For Radiated emission above 1GHz test:**

The EUT was performed at Y axis and Z axis position for Radiated emission above 1GHz test, and the worst case was found at Y axis. So the measurement will follow this same test configuration.

Mode 1. Place EUT in Y axis

### 3.6. Table for Testing Locations

| Test Site Location |                                                                            |          |              |             |              |
|--------------------|----------------------------------------------------------------------------|----------|--------------|-------------|--------------|
| Address:           | No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C. |          |              |             |              |
| TEL:               | 886-3-656-9065                                                             |          |              |             |              |
| FAX:               | 886-3-656-9085                                                             |          |              |             |              |
| Test Site No.      | Site Category                                                              | Location | FCC Reg. No. | IC File No. | VCCI Reg. No |
| 03CH01-CB          | SAC                                                                        | Hsin Chu | 262045       | IC 4086D    | -            |
| TH01-CB            | OVEN Room                                                                  | Hsin Chu | -            | -           | -            |

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC).

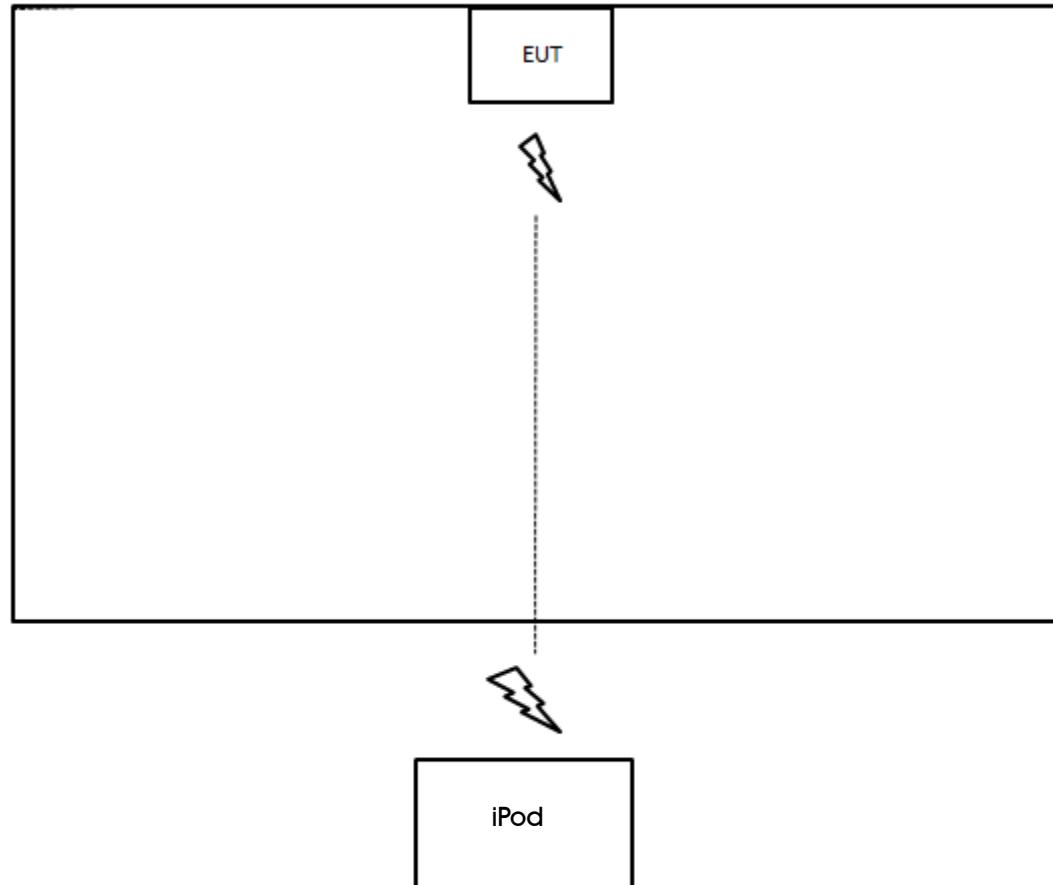
### 3.7. Table for Supporting Units

**For Test Site No: 03CH01-CB (Below 1GHz)**

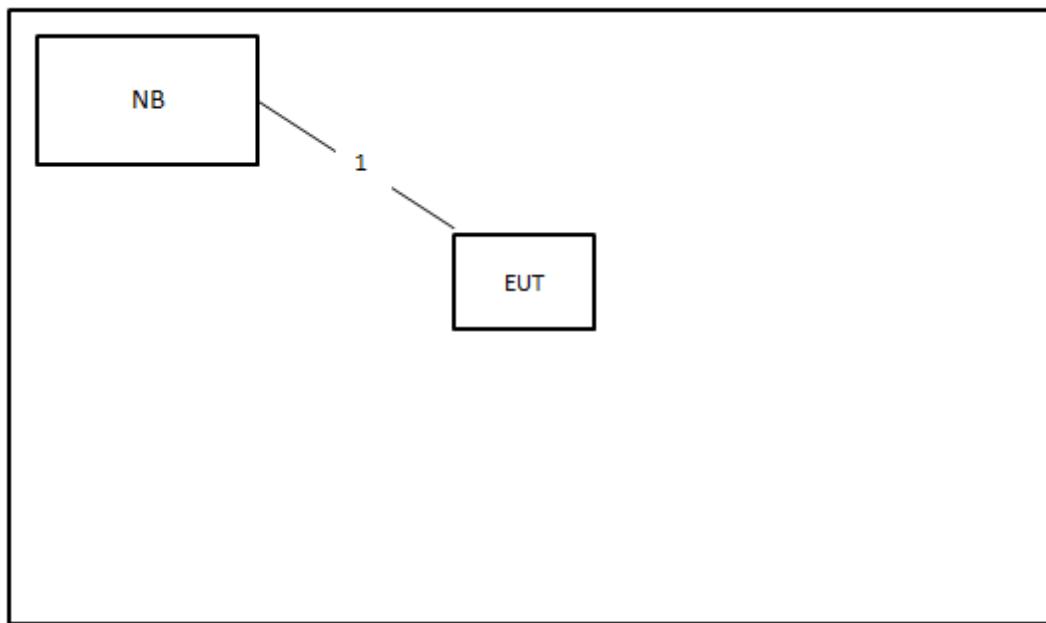
| Support Unit | Brand | Model   | FCC ID |
|--------------|-------|---------|--------|
| iPod         | Apple | Shuffle | DoC    |

**For Test Site No.: TH01-CB and 03CH01-CB (above 1GHz)**

| Support Unit | Brand | Model | FCC ID |
|--------------|-------|-------|--------|
| Notebook     | DELL  | E4300 | DoC    |


### 3.8. Duty Cycle

| On Time<br>(ms) | On+Off Time<br>(ms) | Duty Cycle<br>(%) | Duty Factor<br>(dB) | 1/T Minimum VBW<br>(kHz) |
|-----------------|---------------------|-------------------|---------------------|--------------------------|
| 0.392           | 0.628               | 62.42             | 1.60                | 2.55                     |


### 3.9. Test Configurations

#### 3.9.1. Radiation Emissions Test Configuration

Test Configuration: 30MHz~1GHz



Test Configuration: Above 1GHz



| Item | Connection                | Shielded | Length |
|------|---------------------------|----------|--------|
| 1    | RS-232 cable to USB cable | Yes      | 2m     |

## 4. TEST RESULT

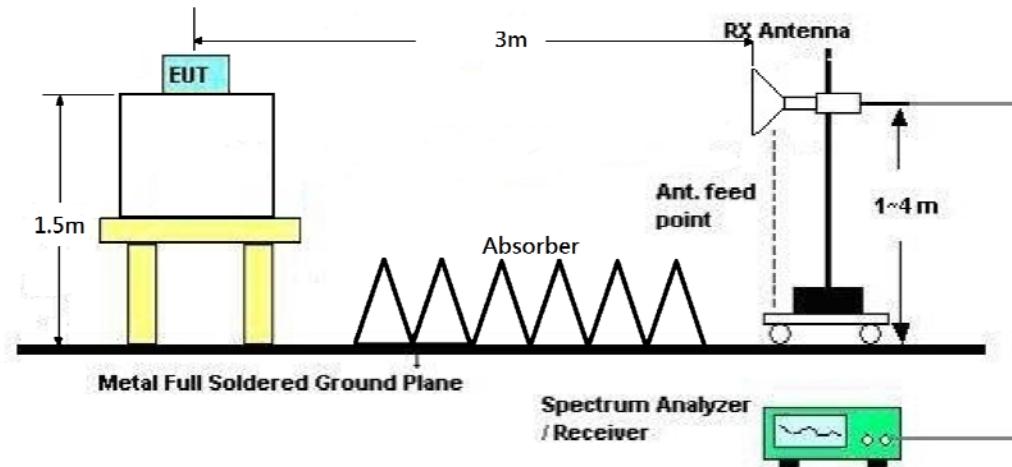
### 4.1. Field Strength of Fundamental Emissions Measurement

#### 4.1.1. Limit

The field strength of fundamental emissions within these bands specified at a distance of 3 meters (measurement instrumentation employing an average detector) shall comply with the following table.

| Frequency Band (MHz) | Fundamental Emissions Limit (dBuV/m) at 3m |
|----------------------|--------------------------------------------|
| 2400-2483.5          | 94 (Average)                               |
|                      | 114 (Peak)                                 |

#### 4.1.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

| Power Meter Parameter | Setting                  |
|-----------------------|--------------------------|
| RBW                   | 1 MHz Peak / 3MHz Peak   |
| VBW                   | 1 MHz Peak / 1/T Average |
| Detector              | Peak                     |
| Trace                 | Max Hold                 |
| Sweep Time            | Auto                     |

#### 4.1.3. Test Procedures

1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. For Fundamental emissions, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.

#### 4.1.4. Test Setup Layout



#### 4.1.5. Test Deviation

There is no deviation with the original standard.

#### 4.1.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

## 4.1.7. Test Result of Field Strength of Fundamental Emissions

|               |               |                |                   |
|---------------|---------------|----------------|-------------------|
| Temperature   | 25°C          | Humidity       | 61%               |
| Test Engineer | Steven Liang  | Configurations | Channel 0, 20, 39 |
| Test Date     | Nov. 19, 2015 |                |                   |

## Channel 0

| Freq | Level   | Limit |        | Over Limit | Read Level | Cable |       | Antenna Factor | Preamp Factor | T/Pos | A/Pos   | Remark     | Pol/Phase |
|------|---------|-------|--------|------------|------------|-------|-------|----------------|---------------|-------|---------|------------|-----------|
|      |         | Line  | dBuV/m |            |            | dB    | dBuV  |                |               | deg   | cm      |            |           |
| 1    | 2402.00 | 87.74 | 94.00  | -6.26      | 55.99      | 3.74  | 28.01 | 0.00           | 212           | 144   | Average | HORIZONTAL |           |
| 2    | 2402.40 | 89.22 | 114.00 | -24.78     | 57.47      | 3.74  | 28.01 | 0.00           | 212           | 144   | Peak    | HORIZONTAL |           |

## Channel 20

| Freq | Level   | Limit |        | Over Limit | Read Level | Cable |       | Antenna Factor | Preamp Factor | T/Pos | A/Pos   | Remark     | Pol/Phase |
|------|---------|-------|--------|------------|------------|-------|-------|----------------|---------------|-------|---------|------------|-----------|
|      |         | Line  | dBuV/m |            |            | dB    | dBuV  |                |               | deg   | cm      |            |           |
| 1    | 2441.60 | 88.45 | 114.00 | -25.55     | 56.71      | 3.78  | 27.96 | 0.00           | 302           | 140   | Peak    | HORIZONTAL |           |
| 2    | 2442.00 | 87.02 | 94.00  | -6.98      | 55.28      | 3.78  | 27.96 | 0.00           | 302           | 140   | Average | HORIZONTAL |           |

## Channel 39

| Freq | Level   | Limit |        | Over Limit | Read Level | Cable |       | Antenna Factor | Preamp Factor | T/Pos | A/Pos   | Remark     | Pol/Phase |
|------|---------|-------|--------|------------|------------|-------|-------|----------------|---------------|-------|---------|------------|-----------|
|      |         | Line  | dBuV/m |            |            | dB    | dBuV  |                |               | deg   | cm      |            |           |
| 1    | 2480.00 | 92.88 | 114.00 | -21.12     | 61.15      | 3.81  | 27.92 | 0.00           | 335           | 100   | Peak    | HORIZONTAL |           |
| 2    | 2480.00 | 91.49 | 94.00  | -2.51      | 59.76      | 3.81  | 27.92 | 0.00           | 335           | 100   | Average | HORIZONTAL |           |

## Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

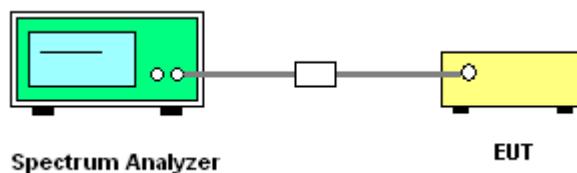
Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

## 4.2. 20dB Spectrum Bandwidth Measurement

### 4.2.1. Limit

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band (2402 ~ 2480MHz).

### 4.2.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

| Spectrum Parameters | Setting          |
|---------------------|------------------|
| Attenuation         | Auto             |
| Span Frequency      | > 20dB Bandwidth |
| RBW                 | 100 kHz          |
| VBW                 | 100 kHz          |
| Detector            | Peak             |
| Trace               | Max Hold         |
| Sweep Time          | Auto             |

### 4.2.3. Test Procedures

1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
2. The resolution bandwidth of 100 kHz and the video bandwidth of 100 kHz were used.
3. Measured the spectrum width with power higher than 6dB below carrier.

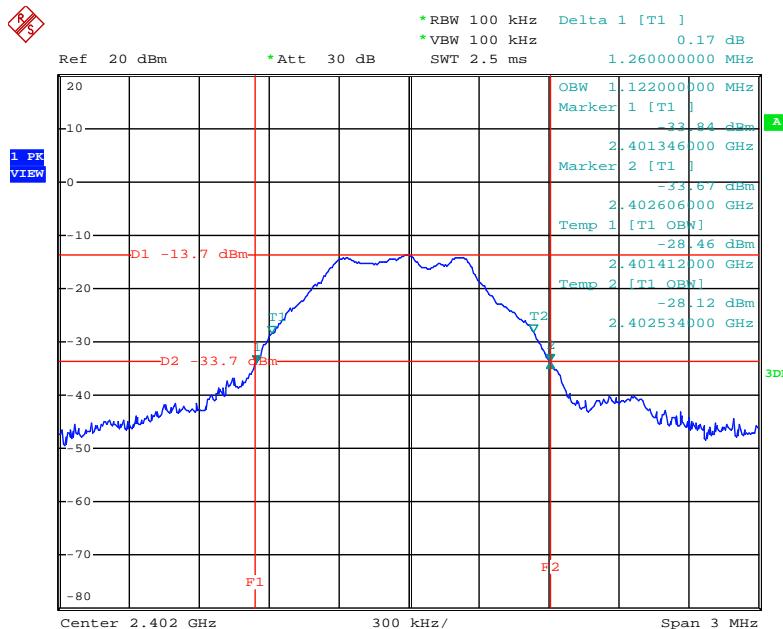
### 4.2.4. Test Setup Layout



#### 4.2.5. Test Deviation

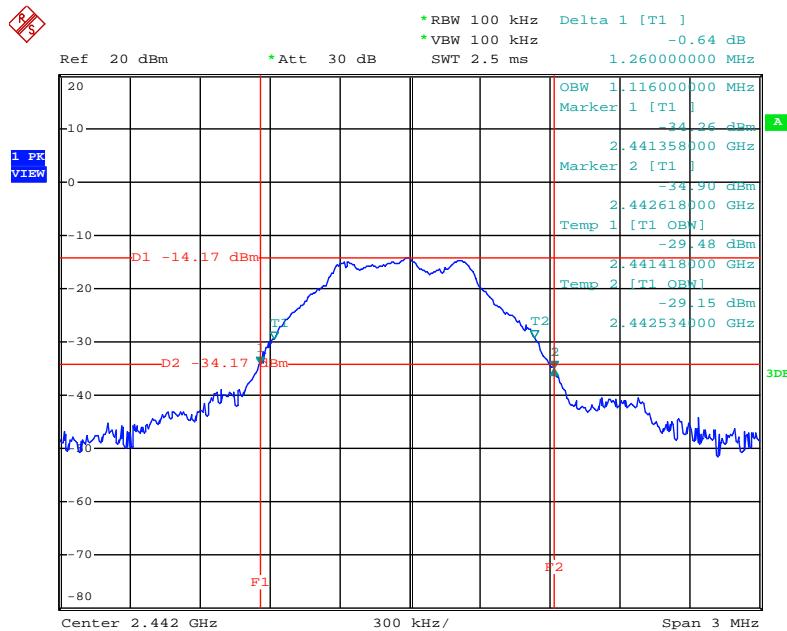
There is no deviation with the original standard.

#### 4.2.6. EUT Operation during Test


The EUT was programmed to be in continuously transmitting mode.

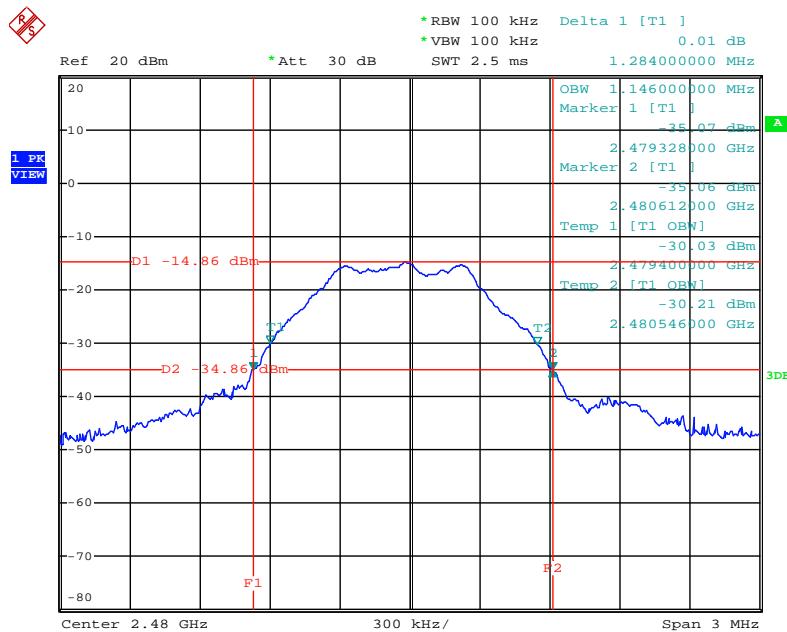
#### 4.2.7. Test Result of 20dB Spectrum Bandwidth

|               |           |                |                 |
|---------------|-----------|----------------|-----------------|
| Temperature   | 25°C      | Humidity       | 53%             |
| Test Engineer | Nick Peng | Configurations | Channel 0/20/39 |


| Frequency | 20dB BW (MHz) | 99% OBW (MHz) | Frequency range (MHz)<br>$f_L > 2400\text{MHz}$ | Frequency range (MHz)<br>$f_H < 2483.5\text{MHz}$ | Test Result |
|-----------|---------------|---------------|-------------------------------------------------|---------------------------------------------------|-------------|
| 2402 MHz  | 1.26          | 1.12          | 2401.3460                                       | -                                                 | Complies    |
| 2442 MHz  | 1.26          | 1.12          | -                                               | -                                                 | Complies    |
| 2480 MHz  | 1.28          | 1.15          | -                                               | 2480.6120                                         | Complies    |

#### 20 dB/99% Bandwidth Plot on 2402 MHz




Date: 18.NOV.2015 16:07:33

### 20 dB/99% Bandwidth Plot on 2442 MHz



Date: 18.NOV.2015 16:21:57

### 20 dB/99% Bandwidth Plot on 2480 MHz



Date: 18.NOV.2015 16:26:36

### 4.3. Radiated Emissions Measurement

#### 4.3.1. Limit

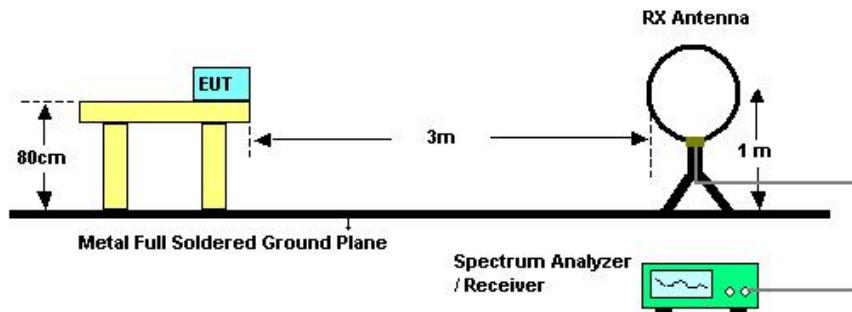
Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

| Frequencies<br>(MHz) | Field Strength<br>(micorvolts/meter) | Measurement Distance<br>(meters) |
|----------------------|--------------------------------------|----------------------------------|
| 0.009~0.490          | 2400/F(kHz)                          | 300                              |
| 0.490~1.705          | 24000/F(kHz)                         | 30                               |
| 1.705~30.0           | 30                                   | 30                               |
| 30~88                | 100                                  | 3                                |
| 88~216               | 150                                  | 3                                |
| 216~960              | 200                                  | 3                                |
| Above 960            | 500                                  | 3                                |

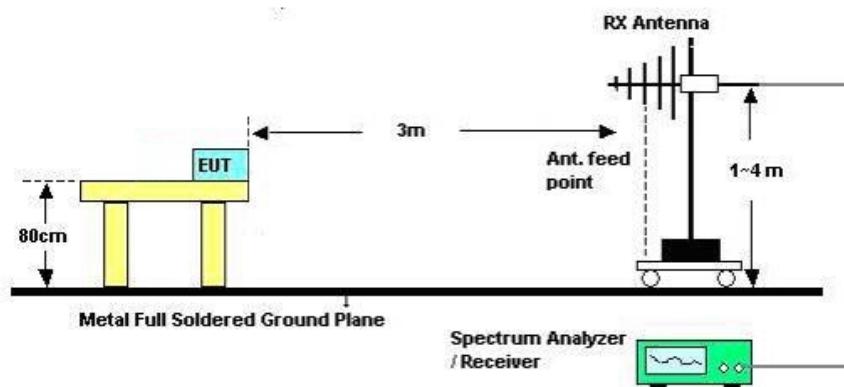
#### 4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer and receiver.

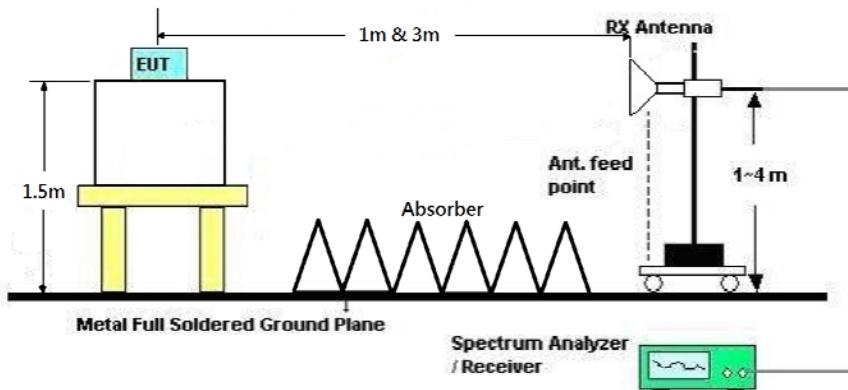
| Spectrum Parameter                          | Setting                                       |
|---------------------------------------------|-----------------------------------------------|
| Attenuation                                 | Auto                                          |
| Start Frequency                             | 1000 MHz                                      |
| Stop Frequency                              | 10th carrier harmonic                         |
| RBW / VBW (Emission in restricted band)     | 1MHz / 3MHz for Peak, 1 MHz / 1/T for Average |
| RBW / VBW (Emission in non-restricted band) | 100kHz/300kHz for Peak                        |


| Receiver Parameter     | Setting                           |
|------------------------|-----------------------------------|
| Attenuation            | Auto                              |
| Start ~ Stop Frequency | 9kHz~150kHz / RBW 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RBW 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RBW 120kHz for QP |

#### 4.3.3. Test Procedures


1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High – Low scan is not required in this case.

#### 4.3.4. Test Setup Layout


For Radiated Emissions: 9kHz ~30MHz



For Radiated Emissions: 30MHz~1GHz



For Radiated Emissions: Above 1GHz



#### 4.3.5. Test Deviation

There is no deviation with the original standard.

#### 4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

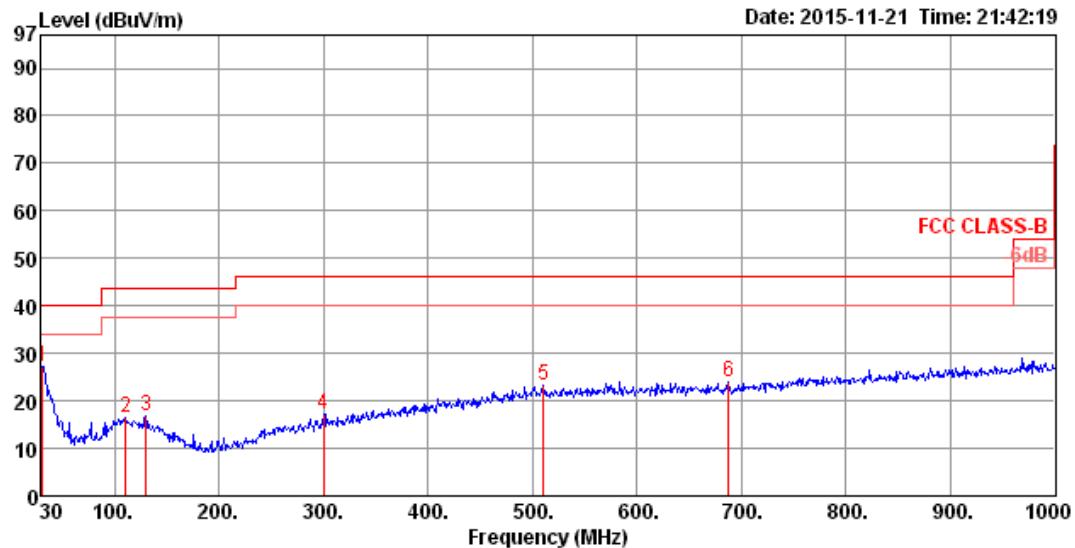
#### 4.3.7. Results of Radiated Emissions (9kHz~30MHz)

|                      |               |                       |             |
|----------------------|---------------|-----------------------|-------------|
| <b>Temperature</b>   | 25°C          | <b>Humidity</b>       | 61%         |
| <b>Test Engineer</b> | Seven Liang   | <b>Configurations</b> | Normal Link |
| <b>Test Date</b>     | Nov. 21, 2015 | <b>Test Mode</b>      | Mode 2      |

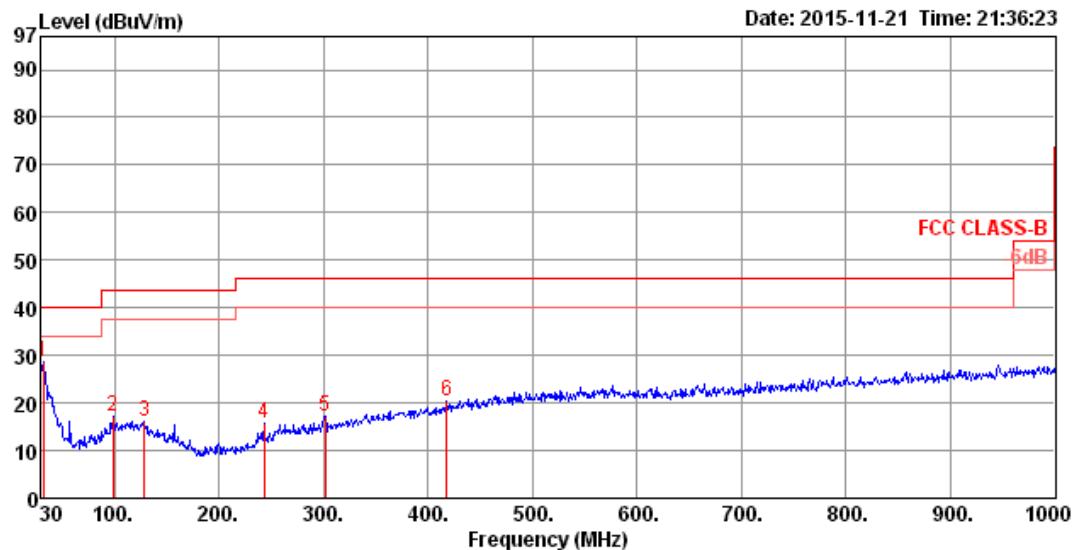
| <b>Freq.<br/>(MHz)</b> | <b>Level<br/>(dBuV)</b> | <b>Over Limit<br/>(dB)</b> | <b>Limit Line<br/>(dBuV)</b> | <b>Remark</b> |
|------------------------|-------------------------|----------------------------|------------------------------|---------------|
| -                      | -                       | -                          | -                            | See Note      |

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor =  $40 \log (\text{specific distance} / \text{test distance})$  (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.


#### 4.3.8. Results of Radiated Emissions (30MHz~1GHz)

|               |             |                |             |
|---------------|-------------|----------------|-------------|
| Temperature   | 25°C        | Humidity       | 61%         |
| Test Engineer | Seven Liang | Configurations | Normal Link |
| Test Mode     | Mode 2      |                |             |

*Horizontal*



| Freq | Level  | Limit |        | Over Limit | Read Level | Cable Loss | Antenna Factor | Preamp Factor | A/Pos | T/Pos | Pol/Phase  | Remark |
|------|--------|-------|--------|------------|------------|------------|----------------|---------------|-------|-------|------------|--------|
|      |        | MHz   | dBuV/m | Line       | dB         | dBuV       | dB             | dB/m          | dB    | cm    | deg        |        |
| 1    | 30.97  | 27.18 | 40.00  | -12.82     | 32.20      | 0.53       | 19.29          | 24.84         | 100   | 86    | HORIZONTAL | Peak   |
| 2    | 110.51 | 16.59 | 43.50  | -26.91     | 30.00      | 0.87       | 12.41          | 26.69         | 100   | 86    | HORIZONTAL | Peak   |
| 3    | 129.91 | 16.75 | 43.50  | -26.75     | 30.99      | 0.90       | 12.60          | 27.74         | 100   | 86    | HORIZONTAL | Peak   |
| 4    | 299.66 | 17.27 | 46.00  | -28.73     | 31.68      | 1.37       | 13.78          | 29.56         | 100   | 86    | HORIZONTAL | Peak   |
| 5    | 510.15 | 23.10 | 46.00  | -22.90     | 30.33      | 1.78       | 18.07          | 27.08         | 100   | 86    | HORIZONTAL | Peak   |
| 6    | 687.66 | 23.93 | 46.00  | -22.07     | 30.20      | 2.07       | 19.58          | 27.92         | 100   | 86    | HORIZONTAL | Peak   |

**Vertical**


| Freq | Level  | Limit  | Over  | Read   | Cable | Antenna | Preamp | A/Pos | T/Pos | Pol/Phase | Remark        |
|------|--------|--------|-------|--------|-------|---------|--------|-------|-------|-----------|---------------|
|      |        | Line   | Limit | Level  | Loss  | Factor  | Factor | cm    | deg   |           |               |
| MHz  | dBuV/m | dBuV/m | dB    | dBuV   | dB    | dB/m    | dB     | cm    | deg   |           |               |
| 1    | 31.94  | 28.46  | 40.00 | -11.54 | 34.08 | 0.53    | 18.67  | 24.82 | 100   | 178       | VERTICAL Peak |
| 2    | 98.87  | 17.26  | 43.50 | -26.24 | 31.43 | 0.87    | 11.00  | 26.04 | 100   | 178       | VERTICAL Peak |
| 3    | 128.94 | 16.18  | 43.50 | -27.32 | 30.35 | 0.90    | 12.61  | 27.68 | 100   | 178       | VERTICAL Peak |
| 4    | 243.40 | 15.68  | 46.00 | -30.32 | 32.11 | 1.24    | 12.37  | 30.04 | 100   | 178       | VERTICAL Peak |
| 5    | 301.60 | 17.19  | 46.00 | -28.81 | 31.53 | 1.37    | 13.83  | 29.54 | 100   | 178       | VERTICAL Peak |
| 6    | 418.00 | 20.51  | 46.00 | -25.49 | 30.28 | 1.58    | 16.72  | 28.07 | 100   | 178       | VERTICAL Peak |

**Note:**

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.3.9. Results for Radiated Emissions (1GHz~10<sup>th</sup> Harmonic)

|               |               |                |           |
|---------------|---------------|----------------|-----------|
| Temperature   | 25°C          | Humidity       | 61%       |
| Test Engineer | Steven Liang  | Configurations | Channel 0 |
| Test Date     | Nov. 19, 2015 |                |           |

## Horizontal

| Freq | Level   | Limit |        | Over Limit | Read Level | CableAntenna Preamp |        |        | T/Pos | A/Pos | Remark  | Pol/Phase  |
|------|---------|-------|--------|------------|------------|---------------------|--------|--------|-------|-------|---------|------------|
|      |         | Line  | dBuV/m |            |            | Loss                | Factor | Factor |       |       |         |            |
| 1    | 4803.94 | 46.34 | 54.00  | -7.66      | 41.86      | 6.21                | 32.80  | 34.53  | 340   | 124   | Average | HORIZONTAL |
| 2    | 4804.52 | 54.49 | 74.00  | -19.51     | 50.01      | 6.21                | 32.80  | 34.53  | 340   | 124   | Peak    | HORIZONTAL |

## Vertical

| Freq | Level   | Limit |        | Over Limit | Read Level | CableAntenna Preamp |        |        | T/Pos | A/Pos | Remark  | Pol/Phase |
|------|---------|-------|--------|------------|------------|---------------------|--------|--------|-------|-------|---------|-----------|
|      |         | Line  | dBuV/m |            |            | Loss                | Factor | Factor |       |       |         |           |
| 1    | 4803.42 | 55.17 | 74.00  | -18.83     | 50.69      | 6.21                | 32.80  | 34.53  | 42    | 114   | Peak    | VERTICAL  |
| 2    | 4803.92 | 47.91 | 54.00  | -6.09      | 43.43      | 6.21                | 32.80  | 34.53  | 42    | 114   | Average | VERTICAL  |



|               |               |                |            |
|---------------|---------------|----------------|------------|
| Temperature   | 25°C          | Humidity       | 61%        |
| Test Engineer | Steven Liang  | Configurations | Channel 20 |
| Test Date     | Nov. 19, 2015 |                |            |

**Horizontal**

| Freq | Level   | Limit |        | Over Limit | Read Level | Cable |       | Antenna Factor | Preamp Factor | T/Pos | A/Pos   | Remark     | Pol/Phase |
|------|---------|-------|--------|------------|------------|-------|-------|----------------|---------------|-------|---------|------------|-----------|
|      |         | Line  | dBuV/m |            |            | dB    | dBuV  | dB             | dB/m          | dB    | deg     | cm         |           |
| 1    | 4883.37 | 55.22 | 74.00  | -18.78     | 51.20      | 5.59  | 32.93 | 34.50          | 312           | 119   | Peak    | HORIZONTAL |           |
| 2    | 4883.98 | 48.92 | 54.00  | -5.08      | 44.90      | 5.59  | 32.93 | 34.50          | 312           | 119   | Average | HORIZONTAL |           |

**Vertical**

| Freq | Level   | Limit |        | Over Limit | Read Level | Cable |       | Antenna Factor | Preamp Factor | T/Pos | A/Pos   | Remark   | Pol/Phase |
|------|---------|-------|--------|------------|------------|-------|-------|----------------|---------------|-------|---------|----------|-----------|
|      |         | Line  | dBuV/m |            |            | dB    | dBuV  | dB             | dB/m          | dB    | deg     | cm       |           |
| 1    | 4883.52 | 53.27 | 74.00  | -20.73     | 49.25      | 5.59  | 32.93 | 34.50          | 30            | 110   | Peak    | VERTICAL |           |
| 2    | 4883.96 | 46.91 | 54.00  | -7.09      | 42.89      | 5.59  | 32.93 | 34.50          | 30            | 110   | Average | VERTICAL |           |

|               |               |                |            |
|---------------|---------------|----------------|------------|
| Temperature   | 25°C          | Humidity       | 61%        |
| Test Engineer | Steven Liang  | Configurations | Channel 39 |
| Test Date     | Nov. 19, 2015 |                |            |

**Horizontal**

| Freq | Level   | Limit  | Over  | Read   | Cable | Antenna | Preamp | T/Pos | A/Pos | Remark      | Pol/Phase  |
|------|---------|--------|-------|--------|-------|---------|--------|-------|-------|-------------|------------|
|      |         | Line   | Limit | Level  | Loss  | Factor  | Factor | deg   | cm    |             |            |
| MHz  | dBuV/m  | dBuV/m | dB    | dBuV   | dB    | dB/m    | dB     | deg   | cm    |             |            |
| 1    | 4959.34 | 55.05  | 74.00 | -18.95 | 50.92 | 5.57    | 33.04  | 34.48 | 312   | 100 Peak    | HORIZONTAL |
| 2    | 4959.96 | 48.59  | 54.00 | -5.41  | 44.46 | 5.57    | 33.04  | 34.48 | 312   | 100 Average | HORIZONTAL |

**Vertical**

| Freq | Level   | Limit  | Over  | Read   | Cable | Antenna | Preamp | T/Pos | A/Pos | Remark      | Pol/Phase |
|------|---------|--------|-------|--------|-------|---------|--------|-------|-------|-------------|-----------|
|      |         | Line   | Limit | Level  | Loss  | Factor  | Factor | deg   | cm    |             |           |
| MHz  | dBuV/m  | dBuV/m | dB    | dBuV   | dB    | dB/m    | dB     | deg   | cm    |             |           |
| 1    | 4959.92 | 47.25  | 54.00 | -6.75  | 43.12 | 5.57    | 33.04  | 34.48 | 314   | 100 Average | VERTICAL  |
| 2    | 4960.43 | 54.96  | 74.00 | -19.04 | 50.83 | 5.57    | 33.04  | 34.48 | 314   | 100 Peak    | VERTICAL  |

**Note:**

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

## 4.4. Band Edge Emissions Measurement

### 4.4.1. Limit

Band edge emissions radiated outside of the specified frequency bands shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

| Frequencies<br>(MHz) | Field Strength<br>(micorvolts/meter) | Measurement Distance<br>(meters) |
|----------------------|--------------------------------------|----------------------------------|
| 0.009~0.490          | 2400/F(kHz)                          | 300                              |
| 0.490~1.705          | 24000/F(kHz)                         | 30                               |
| 1.705~30.0           | 30                                   | 30                               |
| 30~88                | 100                                  | 3                                |
| 88~216               | 150                                  | 3                                |
| 216~960              | 200                                  | 3                                |
| Above 960            | 500                                  | 3                                |

### 4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

| Spectrum Parameter                          | Setting                                       |
|---------------------------------------------|-----------------------------------------------|
| Attenuation                                 | Auto                                          |
| Span Frequency                              | 100 MHz                                       |
| RBW / VBW (Emission in restricted band)     | 1MHz / 3MHz for Peak, 1 MHz / 1/T for Average |
| RBW / VBW (Emission in non-restricted band) | 100kHz/300kHz for Peak                        |

### 4.4.3. Test Procedures

The test procedure is the same as section 4.3.3.

### 4.4.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.3.4.

### 4.4.5. Test Deviation

There is no deviation with the original standard.

### 4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

#### 4.4.7. Test Result of Band Edge and Fundamental Emissions

|               |               |                |                   |
|---------------|---------------|----------------|-------------------|
| Temperature   | 25°C          | Humidity       | 61%               |
| Test Engineer | Steven Liang  | Configurations | Channel 0, 20, 39 |
| Test Date     | Nov. 19, 2015 |                |                   |

##### Channel 0

| Freq | Level   | Limit  |       | Over Limit | Read Level | CableAntenna Preamp |                |               | T/Pos | A/Pos | Remark  | Pol/Phase  |
|------|---------|--------|-------|------------|------------|---------------------|----------------|---------------|-------|-------|---------|------------|
|      |         | Line   | dB    |            |            | Cable Loss          | Antenna Factor | Preamp Factor |       |       |         |            |
| MHz  | dBuV/m  | dBuV/m |       |            |            | dB                  | dB/m           | dB            | deg   | cm    |         |            |
| 1    | 2387.60 | 55.37  | 74.00 | -18.63     | 23.62      | 3.73                | 28.02          | 0.00          | 212   | 144   | Peak    | HORIZONTAL |
| 2    | 2389.20 | 44.99  | 54.00 | -9.01      | 13.24      | 3.73                | 28.02          | 0.00          | 212   | 144   | Average | HORIZONTAL |
| 3    | 2402.00 | 87.74  |       |            | 55.99      | 3.74                | 28.01          | 0.00          | 212   | 144   | Average | HORIZONTAL |
| 4    | 2402.40 | 89.22  |       |            | 57.47      | 3.74                | 28.01          | 0.00          | 212   | 144   | Peak    | HORIZONTAL |

Item 3, 4 are the fundamental frequency at 2402 MHz.

##### Channel 20

| Freq | Level   | Limit  |       | Over Limit | Read Level | CableAntenna Preamp |                |               | T/Pos | A/Pos | Remark  | Pol/Phase  |
|------|---------|--------|-------|------------|------------|---------------------|----------------|---------------|-------|-------|---------|------------|
|      |         | Line   | dB    |            |            | Cable Loss          | Antenna Factor | Preamp Factor |       |       |         |            |
| MHz  | dBuV/m  | dBuV/m |       |            |            | dB                  | dB/m           | dB            | deg   | cm    |         |            |
| 1    | 2386.40 | 55.42  | 74.00 | -18.58     | 23.67      | 3.73                | 28.02          | 0.00          | 302   | 140   | Peak    | HORIZONTAL |
| 2    | 2390.00 | 44.77  | 54.00 | -9.23      | 13.02      | 3.73                | 28.02          | 0.00          | 302   | 140   | Average | HORIZONTAL |
| 3    | 2441.60 | 88.45  |       |            | 56.71      | 3.78                | 27.96          | 0.00          | 302   | 140   | Peak    | HORIZONTAL |
| 4    | 2442.00 | 87.02  |       |            | 55.28      | 3.78                | 27.96          | 0.00          | 302   | 140   | Average | HORIZONTAL |
| 5    | 2483.50 | 44.92  | 54.00 | -9.08      | 13.19      | 3.81                | 27.92          | 0.00          | 302   | 140   | Average | HORIZONTAL |
| 6    | 2484.70 | 54.74  | 74.00 | -19.26     | 23.01      | 3.81                | 27.92          | 0.00          | 302   | 140   | Peak    | HORIZONTAL |

Item 3, 4 are the fundamental frequency at 2442 MHz.

##### Channel 39

| Freq | Level   | Limit  |       | Over Limit | Read Level | CableAntenna Preamp |                |               | T/Pos | A/Pos | Remark  | Pol/Phase  |
|------|---------|--------|-------|------------|------------|---------------------|----------------|---------------|-------|-------|---------|------------|
|      |         | Line   | dB    |            |            | Cable Loss          | Antenna Factor | Preamp Factor |       |       |         |            |
| MHz  | dBuV/m  | dBuV/m |       |            |            | dB                  | dB/m           | dB            | deg   | cm    |         |            |
| 1    | 2480.00 | 92.88  |       |            | 61.15      | 3.81                | 27.92          | 0.00          | 335   | 100   | Peak    | HORIZONTAL |
| 2    | 2480.00 | 91.49  |       |            | 59.76      | 3.81                | 27.92          | 0.00          | 335   | 100   | Average | HORIZONTAL |
| 3    | 2483.50 | 65.54  | 74.00 | -8.46      | 33.81      | 3.81                | 27.92          | 0.00          | 335   | 100   | Peak    | HORIZONTAL |
| 4    | 2483.50 | 45.76  | 54.00 | -8.24      | 14.03      | 3.81                | 27.92          | 0.00          | 335   | 100   | Average | HORIZONTAL |

Item 1, 2 are the fundamental frequency at 2480 MHz.

##### Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

## 4.5. Antenna Requirements

### 4.5.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

### 4.5.2. Antenna Connector Construction

Please refer to section 3.1 in this test report, antenna connector complied with the requirements.

## 5. LIST OF MEASURING EQUIPMENTS

| Instrument        | Manufacturer | Model No.        | Serial No.    | Characteristics  | Calibration Date | Remark                |
|-------------------|--------------|------------------|---------------|------------------|------------------|-----------------------|
| BILOG ANTENNA     | Schaffner    | CBL6112D         | 37880         | 20MHz ~ 2GHz     | Sep 03, 2015     | Radiation (03CH01-CB) |
| Loop Antenna      | Teseq        | HLA 6120         | 24155         | 9kHz - 30 MHz    | Mar. 12, 2015*   | Radiation (03CH01-CB) |
| Horn Antenna      | EMCO         | 3115             | 00075790      | 750MHz ~ 18GHz   | Oct. 22, 2015    | Radiation (03CH01-CB) |
| Horn Antenna      | Schwarzbeck  | BBHA 9170        | BBHA9170252   | 15GHz ~ 40GHz    | Jul. 21, 2015    | Radiation (03CH01-CB) |
| Pre-Amplifier     | Agilent      | 8447D            | 2944A10991    | 0.1MHz ~ 1.3GHz  | Feb. 24, 2015    | Radiation (03CH01-CB) |
| Pre-Amplifier     | Agilent      | 8449B            | 3008A02310    | 1GHz ~ 26.5GHz   | Jan. 12, 2015    | Radiation (03CH01-CB) |
| Pre-Amplifier     | WM           | TF-130N-R1       | 923365        | 26GHz ~ 40GHz    | Feb.10, 2015     | Radiation (03CH01-CB) |
| Spectrum Analyzer | R&S          | FSP40            | 100056        | 9kHz ~ 40GHz     | Oct. 27, 2015    | Radiation (03CH01-CB) |
| RF Cable-low      | Woken        | Low Cable-1      | N/A           | 30 MHz ~ 1 GHz   | Nov. 02, 2015    | Radiation (03CH01-CB) |
| RF Cable-high     | Woken        | High Cable-40G-1 | N/A           | 18GHz ~ 40 GHz   | Nov. 02, 2015    | Radiation (03CH01-CB) |
| RF Cable-high     | Woken        | High Cable-40G-2 | N/A           | 18GHz ~ 40 GHz   | Nov. 02, 2015    | Radiation (03CH01-CB) |
| Spectrum analyzer | R&S          | FSP40            | 100080        | 9kHz~40GHz       | Sep. 21, 2015    | Conducted (TH01-CB)   |
| RF Cable-high     | Woken        | RG402            | High Cable-7  | 1 GHz – 26.5 GHz | Nov. 02, 2015    | Conducted (TH01-CB)   |
| RF Cable-high     | Woken        | RG402            | High Cable-8  | 1 GHz – 26.5 GHz | Nov. 02, 2015    | Conducted (TH01-CB)   |
| RF Cable-high     | Woken        | RG402            | High Cable-9  | 1 GHz – 26.5 GHz | Nov. 02, 2015    | Conducted (TH01-CB)   |
| RF Cable-high     | Woken        | RG402            | High Cable-10 | 1 GHz – 26.5 GHz | Nov. 02, 2015    | Conducted (TH01-CB)   |
| RF Cable-high     | Woken        | RG402            | High Cable-6  | 1 GHz – 26.5 GHz | Nov. 02, 2015    | Conducted (TH01-CB)   |
| Power Sensor      | Agilent      | U2021XA          | MY53410001    | 50MHz~18GHz      | Nov. 02, 2015    | Conducted (TH01-CB)   |

Note: Calibration Interval of instruments listed above is one year.

“\*” Calibration Interval of instruments listed above is two years.

## 6. MEASUREMENT UNCERTAINTY

| Test Items                           | Uncertainty | Remark                   |
|--------------------------------------|-------------|--------------------------|
| Radiated Emission (30MHz ~ 1,000MHz) | 3.6 dB      | Confidence levels of 95% |
| Radiated Emission (1GHz ~ 18GHz)     | 3.7 dB      | Confidence levels of 95% |
| Radiated Emission (18GHz ~ 40GHz)    | 3.5 dB      | Confidence levels of 95% |
| Conducted Emission                   | 1.7 dB      | Confidence levels of 95% |