

No. 1 Workshop, M-10, Middle section, Science & Technology Park,
Nanshan District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053
Fax: +86 (0) 755 2671 0594
Email: ee.shenzhen@sgs.com

Report No.: SZEM150900598005
Rev.01
Page : 1 of 61

FCC SAR TEST REPORT

Application No: SZEM1509005980HR

Applicant: Mirabilis Corporation

Manufacturer: Archos

Factory: Beijing Benywave technology Co., Ltd

Product Name: Mobile Phone

Model No.(EUT): AC50DIS

Trade Mark: GranitePhone

FCC ID: 2AGD3AC50DIS

Standards: FCC 47CFR §2.1093

Date of Receipt: 2015-10-27

Date of Test: 2015-10-29 to 2015-11-06

Date of Issue: 2015-11-06

Test Result : **PASS ***

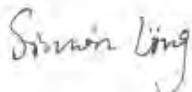
* In the configuration tested, the EUT detailed in this report complied with the standards specified above.

Authorized Signature:

Jack Zhang
EMC Laboratory Manager

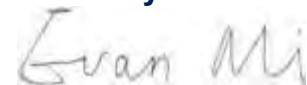
The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.


"This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sgs.com/terms_and_conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

REVISION HISTORY

Revision Record				
Version	Chapter	Date	Modifier	Remark
01		2015-11-06		Original


TEST SUMMARY

Test Summary					
Frequency Band	Test position	Test mode	Max Report SAR1g (W/kg)	SAR limit (W/kg)	Verdict
GSM850	Head	GSM	0.674	1.6	PASS
	Body-worn	GSM	0.598	1.6	PASS
	Hotspot	GPRS 4TS	1.228	1.6	PASS
GSM1900	Head	GSM	0.15	1.6	PASS
	Body-worn	GSM	0.193	1.6	PASS
	Hotspot	GPRS 4TS	0.41	1.6	PASS
WCDMA850	Head	RMC	0.408	1.6	PASS
	Body-worn	RMC	0.584	1.6	PASS
	Hotspot	RMC	0.877	1.6	PASS
LTE Band VII	Head	QPSK	0.183	1.6	PASS
	Body-worn	QPSK	0.435	1.6	PASS
	Hotspot	QPSK	0.774	1.6	PASS
WI-FI (2.4GHz)	Head	802.11b	0.489	1.6	PASS
	Body-worn	802.11b	0.046	1.6	PASS
	Hotspot	802.11b	0.091	1.6	PASS
Maximum Simultaneous SAR for Head			1.040	1.6	PASS
Maximum Simultaneous SAR for Body-worn			0.644	1.6	PASS
Maximum Simultaneous SAR for Hotspot			1.319	1.6	PASS

Approved & Released by

Simon Ling

SAR Manager

Tested by

Evan Mi

SAR Engineer

CONTENTS

1 GENERAL INFORMATION	6
1.1 DETAILS OF CLIENT	6
1.2 TEST LOCATION.....	6
1.3 TEST FACILITY.....	7
1.4 GENERAL DESCRIPTION OF EUT	8
1.5 TEST SPECIFICATION	9
1.6 RF EXPOSURE LIMITS	9
2 SAR MEASUREMENTS SYSTEM CONFIGURATION.....	10
2.1 THE SAR MEASUREMENT SYSTEM.....	10
2.2 ISOTROPIC E-FIELD PROBE EX3DV4.....	11
2.3 DATA ACQUISITION ELECTRONICS (DAE)	12
2.4 SAM TWIN PHANTOM	12
2.5 ELI PHANTOM	13
2.6 DEVICE HOLDER FOR TRANSMITTERS	14
2.7 MEASUREMENT PROCEDURE	15
2.7.1 Scanning procedure	15
2.7.2 Data Storage	17
2.7.3 Data Evaluation by SEMCAD	17
3 DESCRIPTION OF TEST POSITION	19
3.1 THE HEAD TEST POSITION	19
3.1.1 SAM Phantom Shape.....	19
3.1.2 EUT constructions	20
3.1.3 Definition of the “cheek” position.....	20
3.1.4 Definition of the “tilted” position.....	21
3.2 THE BODY TEST POSITION	22
3.2.1 Body-worn accessory exposure conditions.....	22
3.2.2 Extremity exposure conditions	23
3.2.3 Wireless Router exposure conditions.....	23
4 SAR SYSTEM VERIFICATION PROCEDURE	24
4.1 TISSUE SIMULATE LIQUID	24
4.1.1 Recipes for Tissue Simulate Liquid.....	24
4.1.2 Measurement for Tissue Simulate Liquid.....	25
4.2 SAR SYSTEM VALIDATION	26
4.2.1 Justification for Extended SAR Dipole Calibrations	27
4.2.2 Summary System Validation Result(s).....	28
4.2.3 Detailed System Validation Results	28
5 TEST RESULTS AND MEASUREMENT DATA	29
5.1 3G SAR TEST REDUCTION PROCEDURE.....	29
5.2 OPERATION CONFIGURATIONS	29
5.2.1 GSM Test Configuration.....	29
5.2.2 WCDMA Test Configuration.....	30
5.2.3 WiFi Test Configuration.....	36
5.2.4 LTE Test Configuration	39
5.2.5 DUT Antenna Locations	40
5.2.6 EUT side for SAR Testing	40
5.2.7 Stand-alone SAR test evaluation	41
5.3 MEASUREMENT OF RF CONDUCTED POWER.....	42

5.3.1	Conducted Power Of GSM.....	42
5.3.2	Conducted Power Of WCDMA.....	43
5.3.3	Conducted Power Of LTE	44
5.3.4	Conducted Power Of WIFI and BT.....	46
5.4	MEASUREMENT OF SAR DATA	47
5.4.1	SAR Result Of GSM850.....	47
5.4.2	SAR Result Of GSM1900.....	49
5.4.3	SAR Result Of WCDMA850.....	50
5.4.4	SAR Result Of LTE Band VII(20MHz).....	51
5.4.5	SAR Result Of WIFI	53
5.5	MULTIPLE TRANSMITTER EVALUATION	54
5.5.1	Simultaneous SAR SAR test evaluation	54
5.5.2	Estimated SAR	54
6	EQUIPMENT LIST	58
7	MEASUREMENT UNCERTAINTY	59
8	CALIBRATION CERTIFICATE.....	60
9	PHOTOGRAPHS	60
APPENDIX A: DETAILED SYSTEM VALIDATION RESULTS.....		61
APPENDIX B: DETAILED TEST RESULTS.....		61
APPENDIX C: CALIBRATION CERTIFICATE		61
APPENDIX D: PHOTOGRAPHS.....		61

1 General Information

1.1 Details of Client

Applicant:	Mirabilis Corporation
Address:	1221 Brickell Avenue Suite 1410 Miami, Florida 33131
Manufacturer:	Archos
Address:	7A, Building 1, Financial base, Hi-tech Park, Nanshan District, 518057 Shenzhen, CHINA
Factory:	Beijing Benywave technology Co., Ltd
Address:	No.55, Jiachuang 2 Road, Beijing OPTO-Mechatronics industrial Park (OIP), Tongzhou District, Beijing, China 101111

1.2 Test Location

Company:	SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch E&E Lab
Address:	No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China
Post code:	518057
Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
E-mail:	ee.shenzhen@sgs.com

1.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

- **CNAS (No. CNAS L2929)**

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

- **A2LA (Certificate No. 3816.01)**

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

- **VCCI**

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

- **FCC – Registration No.: 556682**

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

- **Industry Canada (IC)**

The 3m Semi-anechoic chambers and the 10m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-2, 4620C-3.

1.4 General Description of EUT

Product Name:	Mobile Phone		
Model No.(EUT):	AC50DIS		
Trade Mark:	GranitePhone		
Product Phase:	production unit		
Device Type :	portable device		
Exposure Category:	uncontrolled environment / general population		
FCC ID	2AGD3AC50DIS		
Hardware Version:	TBW5729_P1_005		
Software Version:	572914_9833_VXXXX		
Antenna Type:	Inner Antenna		
Device Operating Configurations :			
Modulation Mode:	GSM:GMSK, 8PSK WCDMA: QPSK LTE:QPSK,16QAM WIFI:IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(T20 and T40) : OFDM (64QAM, 16QAM, QPSK,BPSK) BT:GFSK, π /4DQPSK,8DPSK		
Device Class:	B		
GPRS Multi-slots Class:	12	EGPRS Multi-slots Class:	12
HSDPA UE Category:	24	HSUPA UE Category	6
Frequency Bands:	Band	Tx (MHz)	Rx (MHz)
	GSM850	824-849	869-894
	GSM1900	1850-1910	1930-1990
	WCDMA850	824-849	869-894
	LTE Band VII	2500-2570	2620-2690
	WIFI	2412-2462	2412-2462
	BT	2402-2480	2402-2480
Battery Information:	Model: TBT5701		
	Normal Voltage :3.8V		
	Rated capacity :2700mAh		
	Battery Type :Rechargeable Li-ion Battery		
Earphone Model:	SF-600KM-70		

1.5 Test Specification

Identity	Document Title
FCC 47CFR §2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices
IEEE Std C95.1 – 1991	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
KDB 941225 D01 v03r01	3G SAR Procedures
KDB 941225 D05 v02r04	SAR for LTE Devices
KDB 248227 D01 v02r02	802.11 Wi-Fi SAR
KDB 941225 D06 v02r01	Hot Spot SAR
KDB 648474 D04 v01r03	Handset SAR
KDB447498 D01 v06	General RF Exposure Guidance
KDB447498 D03 v01	Supplement C Cross-Reference
KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
KDB 865664 D02 v01r02	RF Exposure Reporting

1.6 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Notes:

* The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

** The Spatial Average value of the SAR averaged over the whole body.

*** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

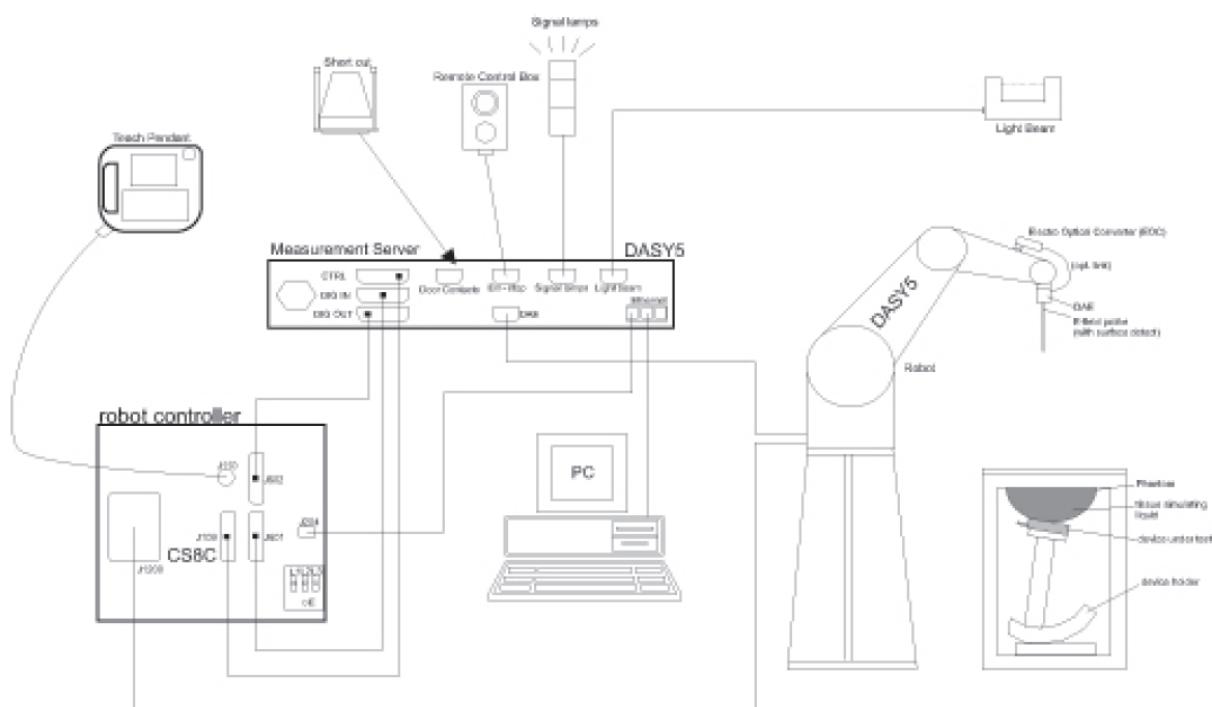
Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.)

2 SAR Measurements System Configuration

2.1 The SAR Measurement System

This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY5 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation $SAR = \sigma (|E_i|^2) / \rho$ where σ and ρ are the conductivity and mass density of the tissue-Simulate.


The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software .An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

F-1. SAR Measurement System Configuration

- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validating the proper functioning of the system.

2.2 Isotropic E-field Probe EX3DV4

	<p>Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)</p>
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 µW/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 µW/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

2.3 Data Acquisition Electronics (DAE)

Model	DAE3, DAE4	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV)	
Input Offset Voltage	< 5µV (with auto zero)	
Input Bias Current	< 50 fA	
Dimensions	60 x 60 x 68 mm	

2.4 SAM Twin Phantom


Material	Vinylester, glass fiber reinforced (VE-GF)	
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions (incl. Wooden Support)	Length: 1000 mm Width: 500 mm Height: adjustable feet	
Filling Volume	approx. 25 liters	
Wooden Support	SPEAG standard phantom table	

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

2.5 ELI Phantom

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2.0 ± 0.2 mm (bottom plate)
Dimensions	Major axis: 600 mm Minor axis: 400 mm
Filling Volume	approx. 30 liters
Wooden Support	SPEAG standard phantom table

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.

2.6 Device Holder for Transmitters

F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.7 Measurement procedure

2.7.1 Scanning procedure

Step 1: Power reference measurement

The “reference” and “drift” measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 12mm*12mm or 10mm*10mm. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of 30mm*30mm*30mm (fine resolution volume scan, zoom scan) was assessed by measuring 5x5x7 points ($\leq 2\text{GHz}$) and 7x7x7 points ($\geq 2\text{GHz}$). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points were interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std. 1528-2003.

		≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5$ mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location		30° ± 1°	20° ± 1°
		≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}		When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm *	3 – 4 GHz: ≤ 5 mm * 4 – 6 GHz: ≤ 4 mm *
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{\text{Zoom}}(n)$		3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
	graded grid	$\Delta z_{\text{Zoom}}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm
		$\Delta z_{\text{Zoom}}(n>1)$: between subsequent points	≤ 1.5 · $\Delta z_{\text{Zoom}}(n-1)$
Minimum zoom scan volume	x, y, z	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.			
* When zoom scan is required and the <i>reported</i> SAR from the <i>area scan based 1-g SAR estimation</i> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.			

Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %

2.7.2 Data Storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [m W/g], [m W/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

2.7.3 Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi	
- Diode compression point	Dcp <i>i</i>	
Device parameters:	- Frequency	f
- Crest factor	cf	
Media parameters:	- Conductivity	ε
- Density	ρ	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With V_i = compensated signal of channel i ($i = x, y, z$)

U_i = input signal of channel i ($i = x, y, z$)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

$$E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$$

H-field probes:

$$H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$$

With V_i = compensated signal of channel i (i = x, y, z)

Normi = sensor sensitivity of channel i (i = x, y, z)

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot \sigma) / (\epsilon \cdot 1000)$$

with SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

σ = conductivity in [mho/m] or [Siemens/m]

ϵ = equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

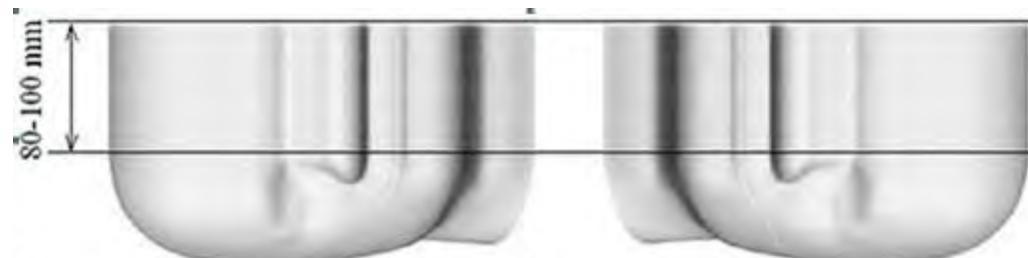
$$P_{pwe} = E_{tot}^2 / 3770 \text{ or } P_{pwe} = H_{tot}^2 \cdot 37.7$$

with Ppwe = equivalent power density of a plane wave in mW/cm2

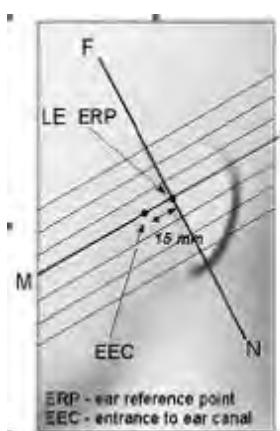
Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

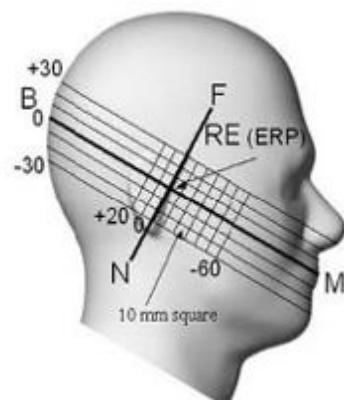
3 Description of Test Position


3.1 The Head Test Position

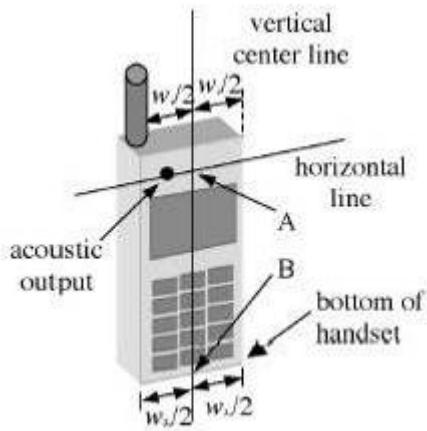
3.1.1 SAM Phantom Shape



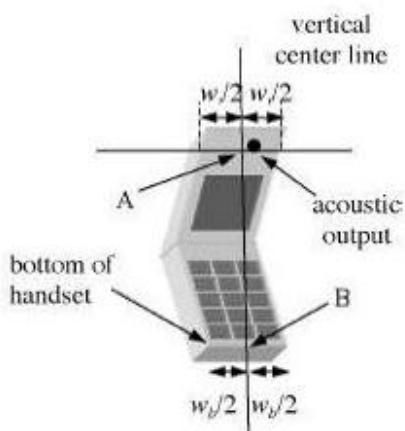
F-3. Front, back, and side views of SAM (model for the phantom shell). Full-head model is for illustration purposes only-procedures in this recommended practice are intended primarily for the phantom setup.


Note: The centre strip including the nose region has a different thickness tolerance.

F-4. Sagittally bisected phantom with extended perimeter (shown placed on its side as used for SAR measurements)



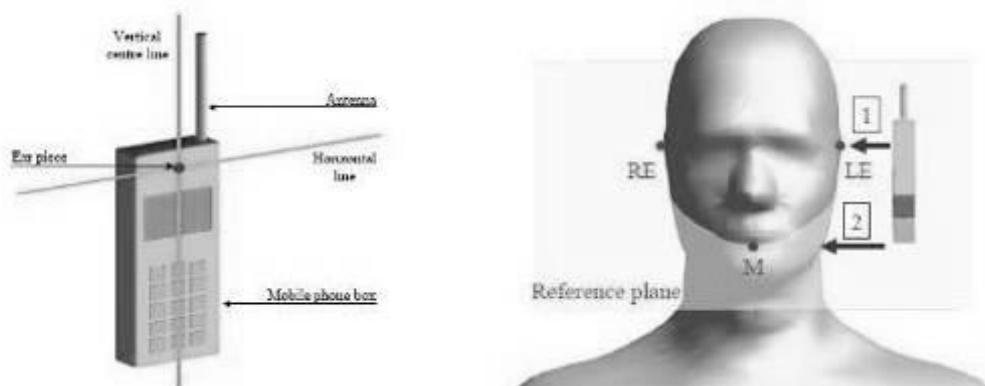
F-5. Close-up side view of phantom, showing the ear region, N-F and B-M lines, and seven cross-sectional plane locations



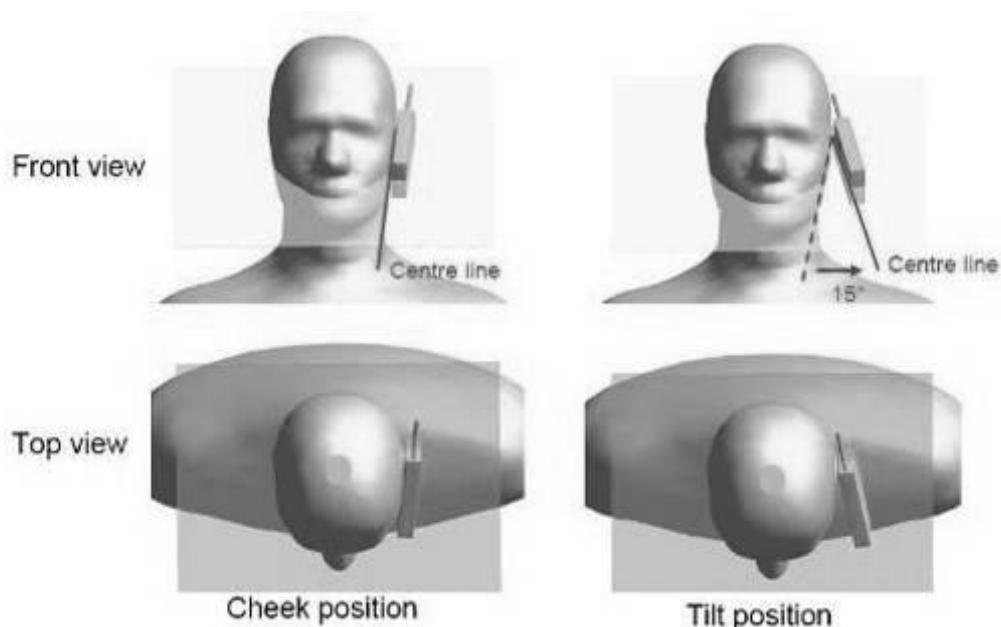
F-6. Side view of the phantom showing relevant markings and seven cross-sectional plane locations

3.1.2 EUT constructions

F-7. Handset vertical and horizontal reference lines - "fixed case"


F-8. Handset vertical and horizontal reference lines - "clam-shell case"

3.1.3 Definition of the "cheek" position


- Position the device with the vertical centre line of the body of the device and the horizontal line crossing the centre of the ear piece in a plane parallel to the sagittal plane of the phantom ("initial position"). While maintaining the device in this plane, align the vertical centre line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the centre of the ear piece with the line RE-LE.
- Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until telephone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

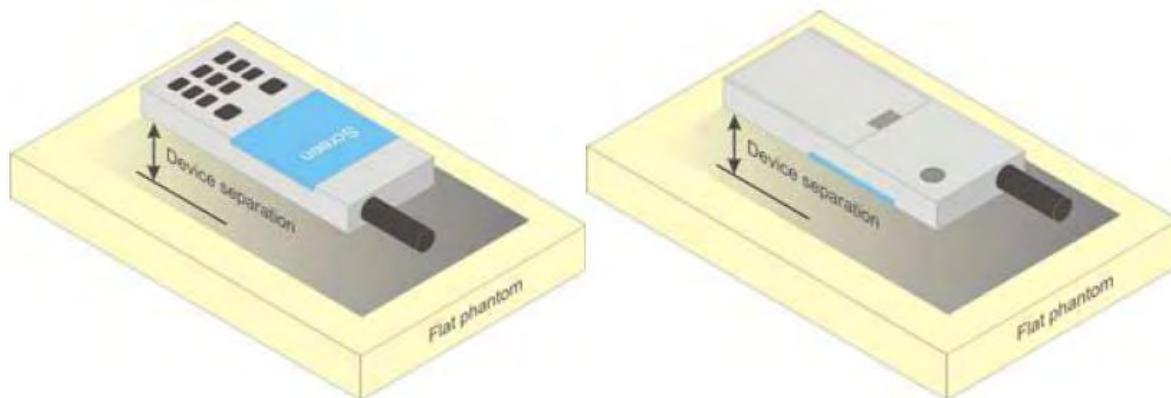
3.1.4 Definition of the “tilted” position

- Position the device in the “cheek” position described above;
- While maintaining the device in the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

F-9. Definition of the reference lines and points, on the phone and on the phantom and initial position

F-10. “Cheek” and “tilt” positions of the mobile phone on the left side

3.2 The Body Test Position


3.2.1 Body-worn accessory exposure conditions

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is $> 1.2 \text{ W/kg}$, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

F-11. Test positions for body-worn devices

3.2.2 Extremity exposure conditions

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required.

When extremity SAR testing is required, a flat phantom must be used if the exposure condition is more conservative than the actual use conditions; otherwise, a KDB inquiry is required to determine the phantom and test requirements.

3.2.3 Wireless Router exposure conditions

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 where SAR test considerations for handsets ($L \times W \geq 9 \text{ cm} \times 5 \text{ cm}$) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. For devices with form factors smaller than 9 cm x 5 cm, a test separation distance of 5 mm is required.

4 SAR System Verification Procedure

4.1 Tissue Simulate Liquid

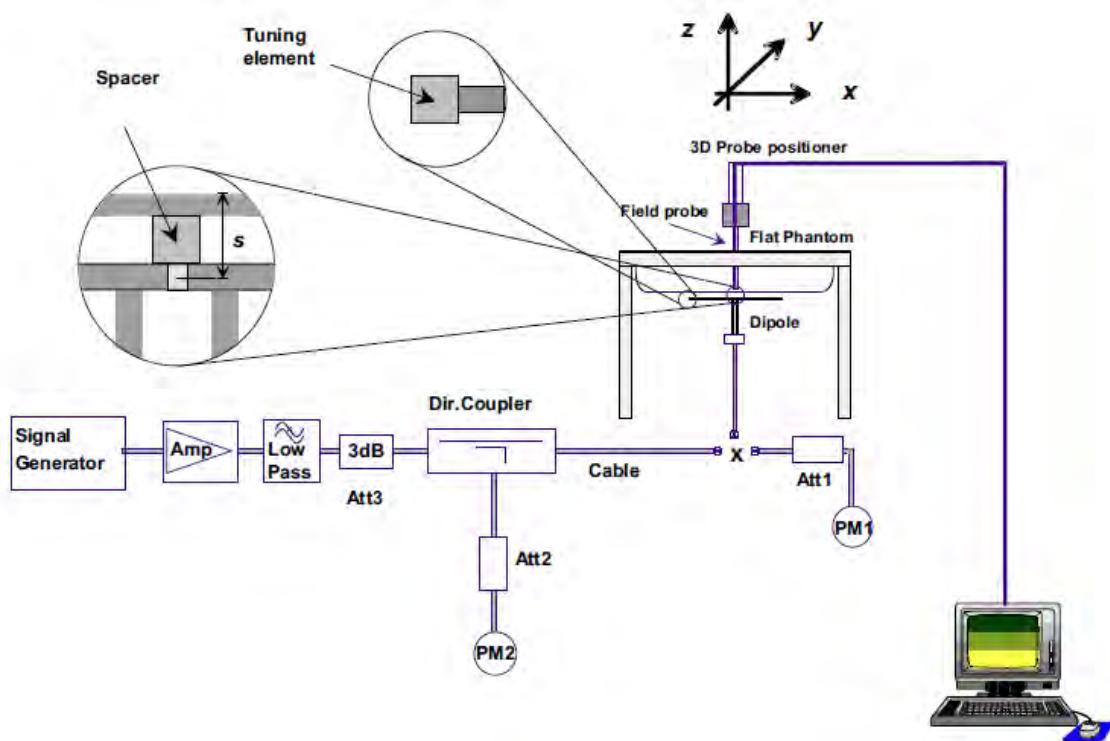
4.1.1 Recipes for Tissue Simulate Liquid

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands:

Ingredients (% by weight)	Frequency (MHz)							
	450		835		1800-2000		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	40.30	50.75	55.24	70.17	55.00	68.53
Salt (NaCl)	3.95	1.49	1.38	0.94	0.31	0.39	0.2	0.1
Sucrose	56.32	46.78	57.90	48.21	0	0	0	0
HEC	0.98	0.52	0.24	0	0	0	0	0
Bactericide	0.19	0.05	0.18	0.10	0	0	0	0
Tween	0	0	0	0	44.45	29.44	44.80	31.37

Table 1 : Recipe of Tissue Simulate Liquid

4.1.2 Measurement for Tissue Simulate Liquid


The dielectric properties for this Tissue Simulate Liquids were measured by using the Agilent Model 85070E Dielectric Probe in conjunction with Agilent E5071C Network Analyzer (300 KHz-8500 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in Table 1. For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was $22 \pm 1^\circ\text{C}$.

Measurement for Tissue Simulate Liquid							
Tissue Type	Measured Frequency (MHz)	Target Tissue ($\pm 5\%$)		Measured Tissue		Liquid Temp. (°C)	Measured Date
		ϵ_r	$\sigma(\text{S/m})$	ϵ_r	$\sigma(\text{S/m})$		
835 Head	835	41.5 (39.43~43.58)	0.9 (0.86~0.95)	42.936	0.905	22.1	2015/11/5
835 Body	835	55.2 (52.44~57.96)	0.97 (0.92~1.02)	55.375	0.98	22.1	2015/11/6
1900 Head	1900	40 (38.00~42.00)	1.4 (1.33~1.47)	40.578	1.437	21.8	2015/10/29
1900 Body	1900	53.3 (50.64~55.97)	1.52 (1.44~1.60)	52.205	1.523	21.8	2015/10/30
2450 Head	2450	39.20 (37.24~41.15)	1.80 (1.71~1.88)	38.561	1.781	21.9	2015/11/2
2450 Body	2450	52.70 (50.07~55.34)	1.95 (1.85~2.05)	51.68	1.951	21.9	2015/11/3
2600 Head	2600	39.0 (35.1~42.9)	1.96 (1.764~2.156)	38.1	1.937	22.1	2015/11/1
2600 Body	2600	52.50 (47.25~57.75)	2.16 (1.944~2.376)	52.866	2.171	22.1	2015/11/4

Table 2 : Measurement result of Tissue electric parameters

4.2 SAR System Validation

The microwave circuit arrangement for system verification is sketched in F-12. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within $\pm 10\%$ from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the table 5 (A power level of 250mw was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range $22 \pm 1^\circ\text{C}$, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

F-12. the microwave circuit arrangement used for SAR system verification

4.2.1 Justification for Extended SAR Dipole Calibrations

1) Referring to KDB865664 D01 requirements for dipole calibration, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.

- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 10% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.

2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

4.2.2 Summary System Validation Result(s)

SAR System Validation Result(s)						
Validation Kit		Measured SAR 250mW	Measured SAR (normalized to 1w)	Target SAR (normalized to 1w) (±10%)	Liquid Temp. (°C)	Measured Date
		1g (W/kg)	1g (W/kg)	1-g(W/kg)		
D835V2	Head	2.32	9.28	9.44 (8.496~10.384)	22.1	2015/11/5
	Body	2.26	9.04	9.64 (8.676~10.604)	22.1	2015/11/6
D1900V2	Head	10.1	40.4	39.3 (35.37~43.23)	21.8	2015/10/29
	Body	10.9	43.6	40.5 (36.45~44.55)	21.8	2015/10/30
D2450V2	Head	13.9	55.6	52.4 (47.16~57.64)	21.9	2015/11/2
	Body	11.8	47.2	51.3 (46.17~56.43)	21.9	2015/11/3
D2600V2	Head	14.4	57.6	56.2 (50.58~61.82)	22.1	2015/11/1
	Body	13.1	52.4	56.7 (51.03~62.37)	22.1	2015/11/4

Table 3 : SAR System Validation Result

4.2.3 Detailed System Validation Results

Please see the Appendix A

5 Test results and Measurement Data

5.1 3G SAR Test Reduction Procedure

According to KDB 941225D01 v03, in the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq 1/4$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode. This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

5.2 Operation Configurations

5.2.1 GSM Test Configuration

SAR tests for GSM 850 and GSM 1900, a communication link is set up with a base station by air link. Using CMU200 the power lever is set to "5" and "0" in SAR of GSM 850 and GSM 1900. The tests in the band of GSM 850 and GSM 1900 are performed in the mode of GPRS/EGPRS function. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. The EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink, and at most 4 timeslots in downlink, the maximum total timeslot is 5.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode

5.2.2 WCDMA Test Configuration

1) . Output Power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all “1’s” for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

2) . Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all “1’s”. The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure

3) . Body SAR

SAR for body configurations is measured using a 12.2 kbps RMC with TPC bits configured to all “1’s”. The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

4) . HSDPA / HSUPA / DC-HSDPA

According to KDB 941225 D01v03, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is $\leq \frac{1}{4}$ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA

a) HSDPA

HSDPA is configured according to the applicable UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms and a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors(β_c , β_d), and HS-DPCCH power offset parameters (ΔACK , $\Delta NACK$, ΔCQI) are set according to values indicated in the following table. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Sub-test	β_c	β_d	$\beta_d(SF)$	β_c/β_d	β_{hs}	CM(dB)	MPR (dB)
1	2/15	15/15	64	2/15	4/15	0.0	0
2	12/15(3)	15/15(3)	64	12/15(3)	24/15	1.0	0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note1: $\Delta ACK, \Delta NACK$ and $\Delta CQI = 8$ Ahs = $\beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_c$

Note2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1.A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, ΔACK and $\Delta NACK = 8$ (Ahs=30/15) with $\beta_{hs} = 30/15 * \beta_c$, and $\Delta CQI = 7$ (Ahs=24/15) with $\beta_{hs} = 24/15 * \beta_c$.

Note3: CM=1 for $\beta_c/\beta_d = 12/15, \beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI's
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

Table 4 : settings of required H-Set 1 QPSK acc. to 3GPP 34.121

HS-DSCH Category	Maximum HS-DSCH Codes Received	Minimum Inter-TTI Interval	Maximum H S-DSCH Transport Block Bits/HS-DSCH TTI	Total Soft Channel Bits
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

Table 5 : HSDPA UE category

b) HSUPA

Due to inner loop power control requirements in HSUPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSUPA should be configured according to the values indicated below as well as other applicable procedures described in the „WCDMA Handset“ and „Release 5 HSUPA Data Device“ sections of 3G device.

Sub-test	β_{c^2}	β_{d^2}	β_d (SF)) ²	β_c/β_{d^2}	$\beta_{hs}^{(1)}$) ²	β_{ec^2}	β_{ed^2}	$\beta_{e_{code}^2}$ (SF)) ²	β_{ed^2} (code)) ²	CM ⁽²⁾ (dB)) ²	MP R ⁽²⁾ (dB) ²	AG ⁽⁴⁾ Inde x ²	E-TFC I ²
1 ²	11/15 ⁽³⁾ ²	15/15 ⁽³⁾ ²	64 ²	11/15 ⁽³⁾ ²	22/15 ²	209/22 5 ²	1039/225 ²	4 ²	1 ²	1.0 ²	0.0 ²	20 ²	75 ²
2 ²	6/15 ²	15/15 ²	64 ²	6/15 ²	12/15 ²	12/15 ²	94/75 ²	4 ²	1 ²	3.0 ²	2.0 ²	12 ²	67 ²
3 ²	15/15 ²	9/15 ²	64 ²	15/9 ²	30/15 ²	30/15 ²	$\beta_{ed1}:47/1$ 5 ² $\beta_{ed2}:47/1$ 5 ²	4 ²	2 ²	2.0 ²	1.0 ²	15 ²	92 ²
4 ²	2/15 ²	15/15 ²	64 ²	2/15 ²	4/15 ²	2/15 ²	56/75 ²	4 ²	1 ²	3.0 ²	2.0 ²	17 ²	71 ²
5 ²	15/15 ⁽⁴⁾ ²	15/15 ⁽⁴⁾ ²	64 ²	15/15 ⁽⁴⁾ ²	30/15 ²	24/15 ²	134/15 ²	4 ²	1 ²	1.0 ²	0.0 ²	21 ²	81 ²
Note 1: Δ ACK, Δ NACK and Δ CQI=8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_{c^2}$													
Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.													
Note 3 : For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$													
Note 4 : For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$													
Note 5 : Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g													
Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.													

Table 6 : Subtests for UMTS Release 6 HSUPA

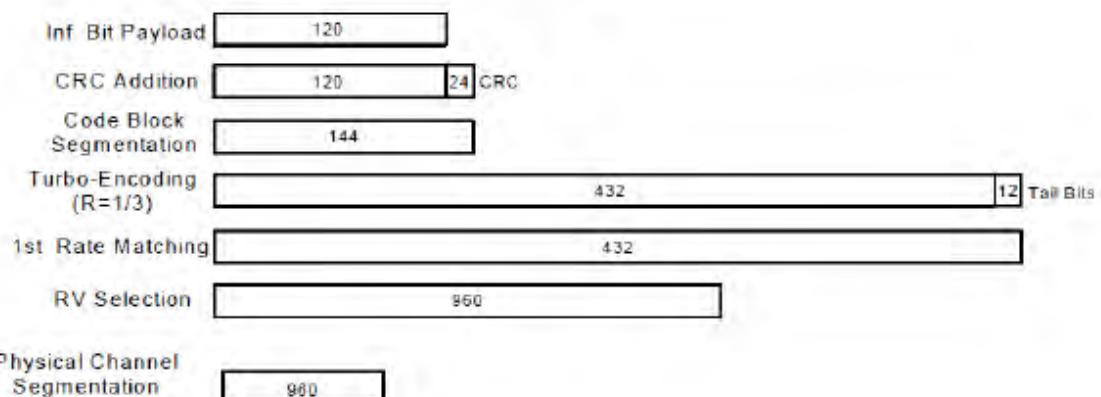
UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E-DCH TTI(ms)	Minimum Spreading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)
1	1	4	10	4	7110	0.7296
2	2	8	2	4	2798	1.4592
	2	4	10	4	14484	
3	2	4	10	4	14484	1.4592
4	2	8	2	2	5772	2.9185
	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00
6 (No DPDCH)	4	8	10	2SF2&2SF 4	11484	5.76
	4	4	2		20000	2.00
7 (No DPDCH)	4	8	2	2SF2&2SF 4	22996	?
	4	4	10		20000	?
NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4. UE categories 1 to 6 support QPSK only. UE category 7 supports QPSK and 16QAM. (TS25.306-7.3.0).						

Table 7 : HSUPA UE category

c) DC-HSDPA

SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable

A call was established between EUT and Base Station with following setting:

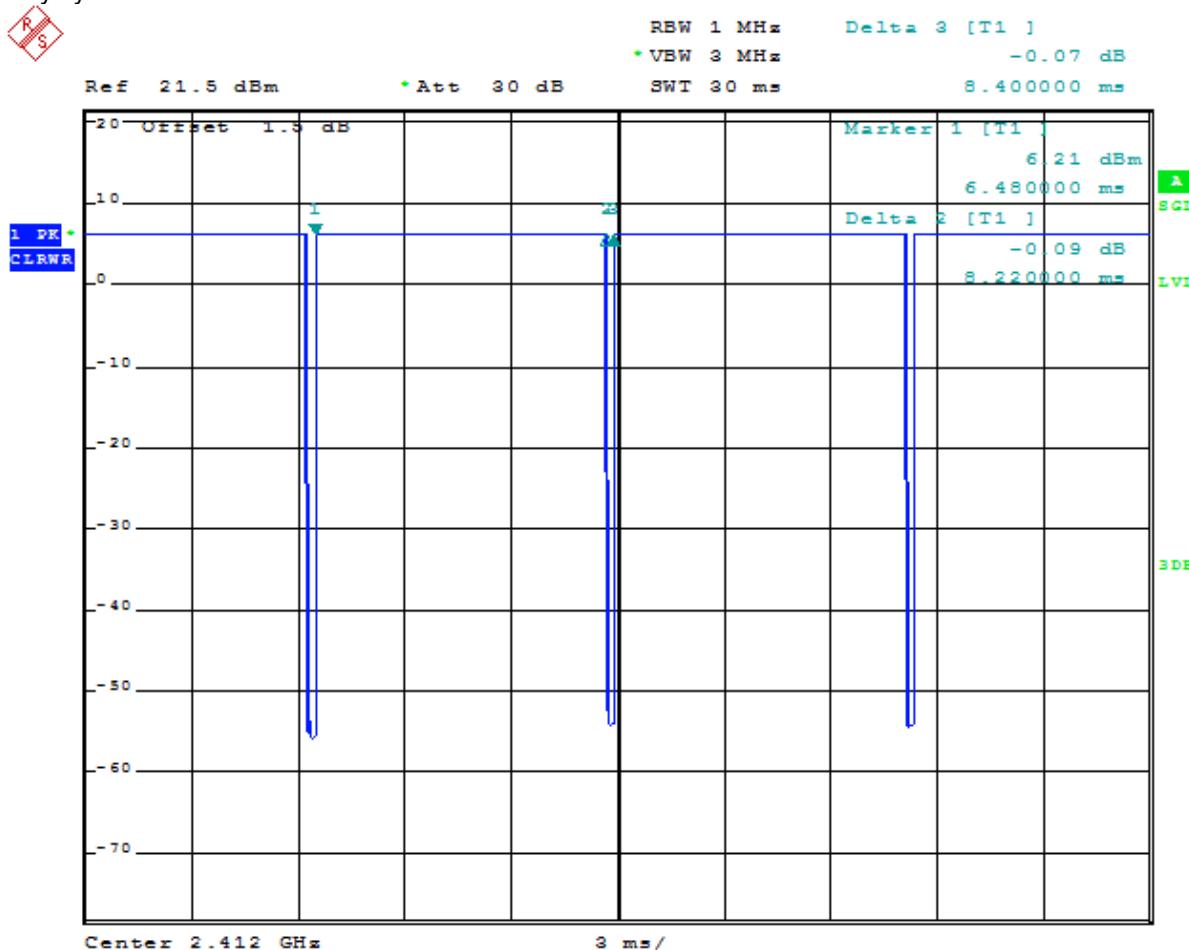

- i. Set RMC 12.2Kbps + HSDPA mode.
- ii. Set Cell Power = -25 dBm
- iii. Set HS-DSCH Configuration Type to FRC (H-set 12, QPSK)
- iv. Select HSDPA Uplink Parameters
- v. Set Gain Factors (β_c and β_d) and parameters were set according to each Specific sub-test in the following tableC10.1.4, quoted from the TS 34.121
 - a). Subtest 1: $\beta_c/\beta_d=2/15$
 - b). Subtest 2: $\beta_c/\beta_d=12/15$
 - c). Subtest 3: $\beta_c/\beta_d=15/8$
 - d). Subtest 4: $\beta_c/\beta_d=15/4$
- vi. Set Delta ACK, Delta NACK and Delta CQI = 8
- vii. Set Ack-Nack Repetition Factor to 3
- viii. Set CQI Feedback Cycle (k) to 4 ms
- ix. Set CQI Repetition Factor to 2
- x. Power Ctrl Mode = All Up bits

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.

A summary of these settings are illustrated below:

Table C.8.1.12: Fixed Reference Channel H-Set 12

Parameter	Unit	Value
Nominal Avg. Inf. Bit Rate	kbps	60
Inter-TTI Distance	TTI's	1
Number of HARQ Processes	Processes	6
Information Bit Payload (N_{IEF})	Bits	120
Number Code Blocks	Blocks	1
Binary Channel Bits Per TTI	Bits	960
Total Available SML's in UE	SML's	19200
Number of SML's per HARQ Proc.	SML's	3200
Coding Rate		0.15
Number of Physical Channel Codes	Codes	1
Modulation		QPSK
Note 1: The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table.		
Note 2: Maximum number of transmission is limited to 1, i.e., retransmission is not allowed. The redundancy and constellation version 0 shall be used.		


5.2.3 WiFi Test Configuration

Wi-Fi transmitters are designed to operate seamlessly across networks where traffic conditions are asynchronous and dynamic. Collision avoidance and retransmission of error packets are part of the network behavior, which can result in substantial variations in transmission patterns.

A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement. The test frequencies established using test mode must correspond to the actual channel frequencies required for operations in the U.S. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. In addition, a periodic transmission duty factor is required for current generation SAR systems to measure SAR correctly. Unless it is permitted by specific KDB procedures or continuous transmission is specifically restricted by the device, the reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. When a device is not capable of sustaining continuous transmission or the output can become nonlinear, and it is limited by hardware design and unable to transmit at higher than 85% duty factor, a periodic duty factor within 15% of the maximum duty factor the device is capable of transmitting should be used. The reported SAR must be scaled to the maximum transmission duty factor to determine compliance. Descriptions of the procedures applied to establish the specific duty factor used for SAR testing are required in SAR reports to support the test results.

5.2.3.1 Duty cycle evaluation

For this device the highest transmission duty factor supported by the test mode tools for SAR measurement and the duty cycle=8.22/8.4=97.86%

5.2.3.2 Initial Test Position SAR Test Reduction Procedure

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures. The initial test position procedure is described in the following:

- 1) . When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- 2) . When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- 3) . For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. a) Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

5.2.3.3 Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required. SAR test reduction for subsequent highest output test channels is determined according to *reported* SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the *reported* SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until *reported* SAR is ≤ 1.2 W/kg or all required channels are tested.

5.2.3.4 Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPCE mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- 1) . When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- 2) . When the highest *reported* SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- 3) . The number of channels in the initial test configuration and subsequent test configuration can be different

due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.

- a) SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.
- b) SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the *reported* SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is $> 1.2 \text{ W/kg}$ or until all required channels are tested. i) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.

4) . SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by recursively applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:

- a) replace “subsequent test configuration” with “next subsequent test configuration” (i.e., subsequent next highest specified maximum output power configuration)
- b) replace “initial test configuration” with “all tested higher output power configurations”

5.2.3.5 2.4 GHz SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in following.

- **802.11b DSSS SAR Test Requirements**

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) . When the reported SAR of the highest measured maximum output power channel for the exposure configuration is $\leq 0.8 \text{ W/kg}$, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) . When the reported SAR is $> 0.8 \text{ W/kg}$, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is $> 1.2 \text{ W/kg}$, SAR is required for the third channel; i.e., all channels require testing.

- **2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements**

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3, including sub-sections). SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) . When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) . When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \text{ W/kg}$.

5.2.4 LTE Test Configuration

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 was used for LTE output power measurements and SAR testing. Max power control was used so the UE transmits with maximum output power during SAR testing. SAR must be measured with the maximum TTI (transmit time interval) supported by the device in each LTE configuration.

A) Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

B) MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

Modulation	Channel bandwidth / Transmission bandwidth (N _{RB})						MPR (dB)
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2

C) A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

D) Largest channel bandwidth standalone SAR test requirements

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

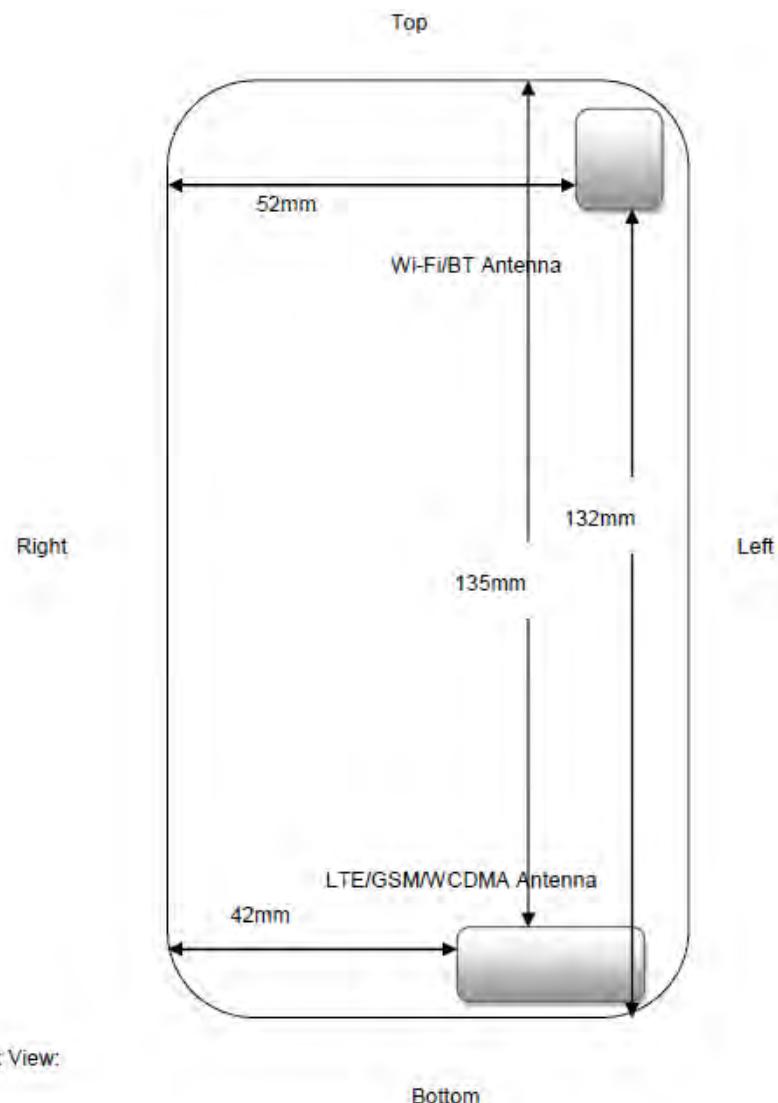
2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

4) Higher order modulations


For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > ½ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

E) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the

largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

5.2.5 DUT Antenna Locations

5.2.6 EUT side for SAR Testing

According to the distance between LTE/WCDAM/GSM&WIFI antennas and the sides of the EUT we can draw the conclusion that:

EUT Sides for SAR Testing						
Mode	Front	Back	Left	Right	Top	Bottom
GSM	Yes	Yes	Yes	No	No	Yes
WCDMA	Yes	Yes	Yes	No	No	Yes
LTE	Yes	Yes	Yes	No	No	Yes
Wi-Fi (2.4GHz)	Yes	Yes	Yes	No	Yes	No

Table 8: EUT Sides for SAR Testing

Note: When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.

5.2.7 Stand-alone SAR test evaluation

Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and 10-g extremity SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

Freq. Band	Frequency (GHz)	Position	Average Power		Test Separation (mm)	Calculate Value	Exclusion Threshold	Exclusion (Y/N)
			dBm	mW				
Wi-Fi	2.45	Head	14	25.12	0	7.9	3.0	N
		Body-worn	14	25.12	15	2.6	3.0	Y
		hotspot	14	25.12	10	3.9	3.0	N
Bluetooth	2.45	Head	-1	0.79	0	0.2	3.0	Y
		Body-worn	-1	0.79	15	0.1	3.0	Y
		hotspot	-1	0.79	10	0.1	3.0	Y

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

5.3 Measurement of RF conducted Power

5.3.1 Conducted Power Of GSM

GSM 850								
Burst Output Power(dBm)					Division Factors	Frame-Average Output Power(dBm)		
Channel		128	190	251		128	190	251
GSM(GMSK)	GSM	34.01	33.89	33.59	-9.19	24.82	24.7	24.4
GPRS/EGPRS (GMSK)	1 TX Slot	33.95	33.84	33.62	-9.19	24.76	24.65	24.43
	2 TX Slots	30.6	30.25	30.41	-6.18	24.42	24.07	24.23
	3 TX Slots	29.47	29.37	29.13	-4.42	25.05	24.95	24.71
	4 TX Slots	28.45	28.21	28.03	-3.17	25.28	25.04	24.86
EGPRS(8PSK)	1 TX Slot	27.1	27	26.9	-9.19	17.91	17.81	17.71
	2 TX Slots	26	25.8	25.9	-6.18	19.82	19.62	19.72
	3 TX Slots	24.9	24.7	24.6	-4.42	20.48	20.28	20.18
	4 TX Slots	23.7	23.6	23.5	-3.17	20.53	20.43	20.33
GSM 1900								
Burst Output Power(dBm)					Division Factors	Frame-Average Output Power(dBm)		
Channel		512	661	810		512	661	810
GSM(GMSK)	GSM	30.42	30.16	30.17	-9.19	21.23	20.97	20.98
GPRS/EGPRS (GMSK)	1 TX Slot	30.02	29.92	29.82	-9.19	20.83	20.73	20.63
	2 TX Slots	27.47	27.39	27.24	-6.18	21.29	21.21	21.06
	3 TX Slots	26.26	25.92	26.03	-4.42	21.84	21.5	21.61
	4 TX Slots	25.03	24.76	24.73	-3.17	21.86	21.59	21.56
EGPRS(8PSK)	1 TX Slot	25.2	25.1	24.9	-9.19	16.01	15.91	15.71
	2 TX Slots	24.7	24.5	24.4	-6.18	18.52	18.32	18.22
	3 TX Slots	23.6	23.4	23.2	-4.42	19.18	18.98	18.78
	4 TX Slots	22.5	22.3	22.1	-3.17	19.33	19.13	18.93

Table 9: Conducted Power Of GSM

Note:

1) . CMU200 measures GSM peak and average output power for active timeslots. For SAR the time based average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

No. of timeslots	1	2	3	4
Duty Cycle	1:8.3	1:4.15	1:2.77	1:2.075
Time based avg. power compared to slotted avg. power	-9.19	-6.18	-4.42	-3.17

2) . The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below:

Frame-averaged power = $10 \times \log (\text{Burst-averaged power mW} \times \text{Slot used} / 8)$

3) . When the maximum output power variation across the required test channels is $> \frac{1}{2}$ dB, instead of the middle channel, the highest output power channel must be used

5.3.2 Conducted Power Of WCDMA

WCDMA850				
Average Conducted Power(dBm)				
Channel		4132	4182	4233
WCDMA	12.2kbps RMC	23.21	23.2	23.38
	64kbps RMC	23.19	23.13	23.36
	144kbps RMC	23.2	23.21	23.31
	384kbps RMC	23.23	23.19	23.36
HSDPA	Subtest 1	22.24	22.25	22.36
	Subtest 2	22.28	22	22.3
	Subtest 3	21.62	21.67	21.79
	Subtest 4	21.68	21.54	21.77
HSUPA	Subtest 1	22.11	22.23	22.16
	Subtest 2	22.11	22.1	22.14
	Subtest 3	21.14	21.43	21.59
	Subtest 4	21.62	21.33	21.68
	Subtest 5	21.23	21.15	21.59

Table 10: Conducted Power Of WCDMA

- 1) when the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.

5.3.3 Conducted Power Of LTE

LTE FDD Band 7				Conducted Power(dBm)		
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel
				20775	21100	21425
5MHz	QPSK	1	0	22.01	22.05	22.1
		1	13	22.12	22.05	22.04
		1	24	22.01	22.02	22.01
		12	0	21.05	21.08	21.01
		12	6	21.26	21.27	21.25
		12	13	21.85	21.23	21.22
		25	0	21.22	21.24	21.21
	16QAM	1	0	21.33	21.47	21.13
		1	13	21.21	21.22	21.12
		1	24	20.13	20.44	20.02
		12	0	20.33	20.02	20.33
		12	6	20.22	20.26	20.21
		12	13	20.25	20.24	20.13
		25	0	20.31	20.46	20.04
10MHz	QPSK	1	0	22.14	22.21	22.13
		1	25	21.95	21.92	21.92
		1	49	22.07	22.03	22.02
		25	0	21.25	21.13	21.33
		25	13	21.47	21.04	21.24
		25	25	21.02	21.33	21.25
		50	0	21.27	21.47	21.47
	16QAM	1	0	21.33	21.25	21.25
		1	25	21.23	21.42	21.33
		1	49	20.14	20.02	20.22
		25	0	20.47	20.04	20.24
		25	13	20.02	20.33	20.25
		25	25	20.33	20.47	20.04
		50	0	20.27	20.25	20.22

Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel
				20025	20175	20325
15MHz	QPSK	1	0	22.11	22.06	22.00
		1	38	22.10	22.07	22.09
		1	74	22.03	22.01	22.02
		36	0	21.07	21.12	21.02
		36	18	21.27	21.27	21.25
		36	39	21.86	21.24	21.24
		75	0	21.27	21.25	21.22
	16QAM	1	0	21.33	21.32	21.13
		1	38	21.22	21.25	21.13
		1	74	20.14	20.47	20.04
		36	0	21.33	21.02	21.33
		36	18	20.22	20.26	20.22
		36	39	20.27	20.25	20.14
		75	0	20.33	20.47	20.04
Bandwidth	Modulation	RB size	RB offset	Channel	Channel	Channel
				20050	29175	20300
20MHz	QPSK	1	0	22.21	22.25	22.19
		1	50	22.15	22.21	22.1
		1	99	22.24	22.06	22.07
		50	0	21.23	21.27	21.26
		50	25	21.28	21.25	21.07
		50	50	21.05	21.07	21.04
		100	0	21.22	21.25	21.02
	16QAM	1	0	21.35	21.89	21.37
		1	50	21.85	21.27	21.25
		1	99	21.86	21.24	21.24
		50	0	21.27	21.25	21.22
		50	25	21.33	20.47	20.13
		50	50	20.22	20.02	20.04
		100	0	20.14	20.26	20.12

Table 11: Conducted Power Of LTE

5.3.4 Conducted Power Of WIFI and BT

Wi-Fi 2450MHz	Average Power (dBm) for Data Rates (Mbps)								
	Channel	1	2	5.5	11	/	/	/	/
802.11b	1	12.84	12.65	12.67	12.77	/	/	/	/
	6	12.95	12.92	12.99	12.98	/	/	/	/
	11	13.08	13.01	13.06	13.02	/	/	/	/
802.11g	Channel	6	9	12	18	24	36	48	54
	1	8.16	8.23	8.19	8.36	8.11	8.15	8.27	8.21
	6	9.93	9.96	9.87	9.83	9.76	9.87	9.92	9.98
	11	11.44	11.43	11.52	11.56	11.57	11.55	11.57	11.59
802.11n HT20	Channel	6.5	13	19.5	26	39	52	58.5	65
	1	8.33	8.31	8.46	8.38	8.36	8.39	8.29	8.28
	6	9.94	9.87	9.67	9.98	9.95	9.91	9.84	9.97
	11	11.12	11.55	11.57	11.56	11.59	11.52	11.44	11.43
802.11n HT40	Channel	13.5	27	40.5	54	81	108	121.5	135
	3	11.13	11.52	11.44	11.56	11.57	11.55	11.57	11.56
	6	12.05	12.25	12.27	12.24	12.25	12.11	12.16	12.19
	9	12.14	12.24	12.25	12.25	12.25	12.27	12.15	12.13

Table 12: Conducted Power Of WIFI

BT		Average Conducted Power(dBm)			
Band	Channel	GFSK	$\pi/4$ DQPSK	8DPSK	
BT	0	-4.47	-4.51	-4.3	
	39	-3.62	-3.75	-3.5	
	78	-1.84	-2.06	-1.79	
BLE	0	-2.16	/	/	
	19	-3.96	/	/	
	39	-5.24	/	/	

Table 13: Conducted Power Of BT

5.4 Measurement of SAR Data

5.4.1 SAR Result Of GSM850

Test position	Test mode	Test Ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp.	SAR limit (W/kg)
Head Test data with SIM1											
Left touch cheek	GSM	190/836.6	1:8.3	0.522	0.18	33.89	35	1.291	0.674	22.1	1.6
Left tilted 15 degree	GSM	190/836.6	1:8.3	0.294	0.17	33.89	35	1.291	0.380	22.1	1.6
Right touch cheek	GSM	190/836.6	1:8.3	0.427	0.14	33.89	35	1.291	0.551	22.1	1.6
Right tilted 15 degree	GSM	190/836.6	1:8.3	0.271	0.211	33.89	35	1.291	0.350	22.1	1.6
Head Test data with SIM2											
Left touch cheek	GSM	190/836.6	1:8.3	0.493	0.374	33.89	35	1.291	0.637	22.1	1.6
Body worn Test data with SIM1(Separate 15mm)											
Front side	GSM	190/836.6	1:8.3	0.447	-0.02	33.89	35	1.291	0.577	22.1	1.6
Back side	GSM	190/836.6	1:8.3	0.416	0.01	33.89	35	1.291	0.537	22.1	1.6
Body worn Test data with SIM2(Separate 15mm)											
Front side	GSM	190/836.6	1:8.3	0.463	-0.04	33.89	35	1.291	0.598	22.1	1.6
Hotspot Test data with SIM1(Separate 10mm)											
Front side	GPRS 4TS	190/836.6	1:2.075	0.707	0.03	28.21	29	1.199	0.848	22.1	1.6
Front side	GPRS 4TS	128/824.2	1:2.075	0.665	0.01	28.45	29	1.135	0.755	22.1	1.6
Front side	GPRS 4TS	251/848.8	1:2.075	0.621	0.03	28.03	29	1.250	0.776	22.1	1.6
Back side	GPRS 4TS	190/836.6	1:2.075	0.648	-0.04	28.21	29	1.199	0.777	22.1	1.6
Left side	GPRS 4TS	190/836.6	1:2.075	0.917	0	28.21	29	1.199	1.100	22.1	1.6
Left side	GPRS 4TS	128/824.2	1:2.075	0.879	0.03	28.45	29	1.135	0.998	22.1	1.6
Left side	GPRS 4TS	251/848.8	1:2.075	0.982	0.03	28.03	29	1.250	1.228	22.1	1.6
Left side-repeat	GPRS 4TS	251/848.8	1:2.075	0.866	0.03	28.03	29	1.250	1.083	22.1	1.6
Bottom side	GPRS 4TS	190/836.6	1:2.075	0.461	0.04	28.21	29	1.199	0.553	22.1	1.6
Hotspot Test data with SIM2 (Separate 10mm)											
Left side	GPRS 4TS	251/848.8	1:2.075	0.898	0.009	28.03	29	1.250	1.123	22.1	1.6

Table 14: SAR of GSM850 for Head and Body.

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B

2) Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

Test Position	Channel/ Frequency (MHz)	Measured SAR (1g)	1 st Repeated SAR (1g)	Ratio	2 nd Repeated SAR (1g)	3 rd Repeated SAR (1g)
Left side	251/848.8	0.982	0.866	1.13	N/A	N/A

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.
2) A second repeated measurement was preformed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .
4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

Table 15: SAR Measurement Variability Results [GSM 850(GSM/GPRS/EGPRS)]

5.4.2 SAR Result Of GSM1900

Test position	Test mode	Test Ch. /Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp.	SAR limit (W/kg)
Head Test data with SIM1											
Left touch cheek	GSM	661/1880	1:8.3	0.116	-0.07	30.16	31	1.213	0.141	21.8	1.6
Left tilted 15 degree	GSM	661/1880	1:8.3	0.0438	-0.19	30.16	31	1.213	0.053	21.8	1.6
Right touch cheek	GSM	661/1880	1:8.3	0.11	0.01	30.16	31	1.213	0.133	21.8	1.6
Right tilted 15 degree	GSM	661/1880	1:8.3	0.0106	0.18	30.16	31	1.213	0.013	21.8	1.6
Head Test data with SIM2											
Left touch cheek	GSM	661/1880	1:8.3	0.124	0.06	30.16	31	1.213	0.150	21.8	1.6
Body worn Test data with SIM1(Separate 15mm)											
Front side	GSM	661/1880	1:8.3	0.137	0.16	30.16	31	1.213	0.166	21.8	1.6
Back side	GSM	661/1880	1:8.3	0.139	0.03	30.16	31	1.213	0.169	21.8	1.6
Body worn Test data with SIM2(Separate 15mm)											
Back side	GSM	661/1880	1:8.3	0.159	0.12	30.16	31	1.213	0.193	21.8	1.6
Hotspot Test data with SIM1(Separate 10mm)											
Front side	GPRS 4TS	661/1880	1:2.075	0.307	0.17	24.76	26	1.330	0.408	21.8	1.6
Back side	GPRS 4TS	661/1880	1:2.075	0.3	0.12	24.76	26	1.330	0.399	21.8	1.6
Left side	GPRS 4TS	661/1880	1:2.075	0.0967	0.19	24.76	26	1.330	0.129	21.8	1.6
Bottom side	GPRS 4TS	661/1880	1:2.075	0.308	0.14	24.76	26	1.330	0.410	21.8	1.6
Hotspot Test data with SIM2 (Separate 10mm)											
Bottom side	GPRS 4TS	661/1880	1:2.075	0.304	0.08	24.76	26	1.330	0.404	21.8	1.6

Table 16: SAR of GSM1900 for Head and Body.

Note:

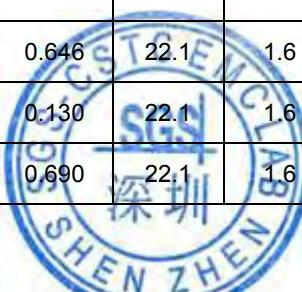
- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 2) Per FCC KDB Publication 447498 D01, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

5.4.3 SAR Result Of WCDMA850

Test position	Test mode	Test Ch./ Freq.	Duty Cycle	SAR (W/kg) 1-g	Power drift (dB)	Conducted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp.	SAR limit (W/kg)
Head Test data with SIM1											
Left touch cheek	RMC	4182/836.6	1:1	0.339	0.02	23.2	24	1.202	0.408	22.1	1.6
Left tilted 15 degree	RMC	4182/836.6	1:1	0.23	0.18	23.2	24	1.202	0.277	22.1	1.6
Right touch cheek	RMC	4182/836.6	1:1	0.297	0.15	23.2	24	1.202	0.357	22.1	1.6
Right tilted 15 degree	RMC	4182/836.6	1:1	0.192	0.15	23.2	24	1.202	0.231	22.1	1.6
Body worn Test data with SIM1(Separate 15mm)											
Front side	RMC	4182/836.6	1:1	0.486	0.02	23.2	24	1.202	0.584	22.1	1.6
Back side	RMC	4182/836.6	1:1	0.454	0.04	23.2	24	1.202	0.546	22.1	1.6
Hotspot Test data with SIM1(Separate 10mm)											
Front side	RMC	4182/836.6	1:1	0.481	0.09	23.2	24	1.202	0.578	22.1	1.6
Back side	RMC	4182/836.6	1:1	0.482	0.05	23.2	24	1.202	0.579	22.1	1.6
Left side	RMC	4182/836.6	1:1	0.695	-0.01	23.2	24	1.202	0.836	22.1	1.6
Left side	RMC	4132/826.4	1:1	0.731	0.02	23.21	24	1.199	0.877	22.1	1.6
Left side	RMC	4233/846.6	1:1	0.703	0.08	23.38	24	1.153	0.811	22.1	1.6
Bottom side	RMC	4182/836.6	1:1	0.305	0.04	23.2	24	1.202	0.367	22.1	1.6

Table 17: SAR of WCDMA850 for Head and Body.

Note:


- 1) The maximum Scaled SAR value is marked in bold. Graph Results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

5.4.4 SAR Result Of LTE Band VII(20MHz)

Test position	Test mode	Test Ch./Fre q.	Duty Cycle	SAR (W/kg)1-g	Power drift(dB)	Conduct ed power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp.	SAR limit (W/kg)
Head Test data with SIM1(1RB)											
Left touch cheek	QPSK	21100/ 2535.5	1:1	0.173	0.05	22.25	22.5	1.059	0.183	22.1	1.6
Left tilted 15 degree	QPSK	21100/ 2535.5	1:1	0.0756	-0.01	22.25	22.5	1.059	0.080	22.1	1.6
Right touch cheek	QPSK	21100/ 2535.5	1:1	0.13	0.06	22.25	22.5	1.059	0.138	22.1	1.6
Right tilted 15 degree	QPSK	21100/ 2535.5	1:1	0.0134	0.11	22.25	22.5	1.059	0.014	22.1	1.6
Head Test data with SIM1(50%RB)											
Left touch cheek	QPSK	21100/ 2535.5	1:1	0.0449	0.02	21.27	22	1.183	0.053	22.1	1.6
Left tilted 15 degree	QPSK	21100/ 2535.5	1:1	0.0449	0.02	21.27	22	1.183	0.053	22.1	1.6
Right touch cheek	QPSK	21100/ 2535.5	1:1	0.115	0.09	21.27	22	1.183	0.136	22.1	1.6
Right tilted 15 degree	QPSK	21100/ 2535.5	1:1	0.0715	0.12	21.27	22	1.183	0.085	22.1	1.6
Body worn Test data with SIM1(Separate 15mm 1RB)											
Front side	QPSK	21100/ 2535.5	1:1	0.299	-0.15	22.25	22.5	1.059	0.317	22.1	1.6
Back side	QPSK	21100/ 2535.5	1:1	0.411	-0.15	22.25	22.5	1.059	0.435	22.1	1.6
Body worn Test data with SIM1(Separate 15mm 50%RB)											
Front side	QPSK	21100/ 2535.5	1:1	0.256	0.17	21.27	22	1.183	0.303	22.1	1.6
Back side	QPSK	21100/ 2535.5	1:1	0.307	0.19	21.27	22	1.183	0.363	22.1	1.6
Hotspot Test data with SIM1(Separate 10mm 1RB)											
Front side	QPSK	21100/ 2535.5	1:1	0.607	0.04	22.25	22.5	1.059	0.643	22.1	1.6
Back side	QPSK	21100/ 2535.5	1:1	0.695	-0.03	22.25	22.5	1.059	0.736	22.1	1.6
Left side	QPSK	21100/ 2535.5	1:1	0.142	0.01	22.25	22.5	1.059	0.150	22.1	1.6
Bottom side	QPSK	21100/ 2535.5	1:1	0.731	0.19	22.25	22.5	1.059	0.774	22.1	1.6
Body Test data (Separate 10mm 50%RB)											
Front side	QPSK	21100/ 2535.5	1:1	0.322	0.09	21.27	22	1.183	0.381	22.1	1.6
Back side	QPSK	21100/ 2535.5	1:1	0.546	-0.13	21.27	22	1.183	0.646	22.1	1.6
Left side	QPSK	21100/ 2535.5	1:1	0.11	0.2	21.27	22	1.183	0.130	22.1	1.6
Bottom side	QPSK	21100/ 2535.5	1:1	0.583	-0.09	21.27	22	1.183	0.690	22.1	1.6

Table 18: SAR of LTE Band VII for Head and Body.

Note:

1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B

**SGS-CSTC Standards Technical Services Co., Ltd.
Shenzhen Branch**

Report No.: SZEM150900598005

Rev.01

Page: 52 of 61

2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).

5.4.5 SAR Result Of WIFI

Test position	Test mode	Test Ch./Freq	Duty Cycle	Duty Cycle Scaled factor	SAR (W/kg) 1-g	Power drift (dB)	Conducted power (dBm)	Tune up Limit (dBm)	Scaled factor	Scaled SAR (W/kg)	Liquid Temp.	SAR limit (W/kg)
Head Test data												
Left touch cheek	802.11b	11/2462	97.86%	1.022	0.204	-0.07	13.08	14	1.236	0.258	21.9	1.6
Left tilted 15 degree	802.11b	11/2462	97.86%	1.022	0.198	-0.11	13.08	14	1.236	0.250	21.9	1.6
Right touch cheek	802.11b	11/2462	97.86%	1.022	0.387	-0.1	13.08	14	1.236	0.489	21.9	1.6
Right tilted 15 degree	802.11b	11/2462	97.86%	1.022	0.373	-0.02	13.08	14	1.236	0.471	21.9	1.6
Body worn Test data(Separate 15mm)												
Front side	802.11b	11/2462	97.86%	1.022	0.0364	0.08	13.08	14	1.236	0.046	21.9	1.6
Back side	802.11b	11/2462	97.86%	1.022	0.0358	0.01	13.08	14	1.236	0.045	21.9	1.6
Hotspot Test data (Separate 10mm)												
Front side	802.11b	11/2462	97.86%	1.022	0.0702	-0.15	13.08	14	1.236	0.089	21.9	1.6
Back side	802.11b	11/2462	97.86%	1.022	0.071	0	13.08	14	1.236	0.090	21.9	1.6
Left side	802.11b	11/2462	97.86%	1.022	0.0724	-0.18	13.08	14	1.236	0.091	21.9	1.6
Top side	802.11b	11/2462	97.86%	1.022	0.0583	-0.01	13.08	14	1.236	0.074	21.9	1.6

Table 19: SAR of WIFI for Head and Body

Note:

- 1) The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B
- 2) If the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg then testing at the other channels is not required for such test configuration(s).
- 3) Each channel was tested at the lowest data rate.
- 4) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, 802.11g/n OFDM SAR Test is not required.

5.5 Multiple Transmitter Evaluation

5.5.1 Simultaneous SAR SAR test evaluation

1) Simultaneous Transmission

NO.	Simultaneous Transmission Configuration	Head	Body worn	Hotspot
1	GSM(Voice) + WiFi	Yes	Yes	-
2	GSM(Voice) + BT	Yes	Yes	-
3	WCDMA(Voice) + WiFi	Yes	Yes	-
4	WCDMA(Voice) + BT	Yes	Yes	-
5	GPRS / EDGE(Data) + WiFi	-	-	Yes
6	GPRS / EDGE(Data) + BT	-	-	Yes
7	WCDMA(Data) + WiFi	-	-	Yes
8	WCDMA(Data) + BT	-	-	Yes
9	LTE(Data) + WiFi	Yes	Yes	Yes
10	LTE(Data) + BT	Yes	Yes	Yes
11	BT+WIFI (They share the same antenna and cannot transmit at the same time by design.)	No	No	No

5.5.2 Estimated SAR

When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion:

- (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(\text{GHz})/x}$] W/kg for test separation distances ≤ 50 mm;

Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

- 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Estimated SAR Result

Freq. Band	Frequency (MHz)	Test Position	max. power(dBm)	Test Separation (mm)	Estimated
					1g SAR (W/kg)
Bluetooth	2480	Head	-1	0	0.034
		Body-worn	-1	15	0.011
		hotspot	-1	10	0.017

2) Simultaneous Transmission SAR Summation Scenario for head

WWAN Band	Exposure position	① MAX.WWAN SAR(W/kg)	② MAX.WLAN SAR(W/kg)	③ MAX.BT SAR(W/kg)	Summed SAR①+②	Summed SAR①+③	Case NO.
GSM850	Left Touch	0.674	0.258	0.034	0.932	0.708	
	Left Tilt	0.380	0.25	0.034	0.630	0.414	
	Right Touch	0.551	0.489	0.034	1.040	0.585	
	Right Tilt	0.350	0.471	0.034	0.821	0.384	
GSM1900	Left Touch	0.150	0.258	0.034	0.408	0.184	
	Left Tilt	0.053	0.25	0.034	0.303	0.087	
	Right Touch	0.133	0.489	0.034	0.622	0.167	
	Right Tilt	0.013	0.471	0.034	0.484	0.047	
WCDMA 850	Left Touch	0.408	0.258	0.034	0.666	0.442	
	Left Tilt	0.277	0.25	0.034	0.527	0.311	
	Right Touch	0.357	0.489	0.034	0.846	0.391	
	Right Tilt	0.231	0.471	0.034	0.702	0.265	
LTE Band VII	Left Touch	0.183	0.258	0.034	0.441	0.217	
	Left Tilt	0.080	0.25	0.034	0.330	0.114	
	Right Touch	0.138	0.489	0.034	0.627	0.172	
	Right Tilt	0.014	0.471	0.034	0.485	0.048	

3) Simultaneous Transmission SAR Summation Scenario for body worn

WWAN Band	Exposure position	① MAX.WWAN SAR(W/kg)	② MAX.WLAN SAR(W/kg)	③ MAX.BT SAR(W/kg)	Summed SAR①+②	Summed SAR①+③	Case NO.
GSM850	Front	0.598	0.046	0.011	0.644	0.609	
	Back	0.537	0.045	0.011	0.582	0.548	
GSM1900	Front	0.166	0.046	0.011	0.212	0.177	
	Back	0.193	0.045	0.011	0.238	0.204	
WCDMA 850	Front	0.584	0.046	0.011	0.630	0.595	
	Back	0.546	0.045	0.011	0.591	0.557	
LTE Band VII	Front	0.317	0.046	0.011	0.363	0.328	
	Back	0.435	0.045	0.011	0.480	0.446	

4) Simultaneous Transmission SAR Summation Scenario for hotspot

WWAN Band	Exposure position	① MAX.WWAN SAR(W/kg)	② MAX.WLAN SAR(W/kg)	③ MAX.BT SAR(W/kg)	Summed SAR①+②	Summed SAR①+③	Case NO.
GSM850	Front	0.848	0.089	0.017	0.937	0.865	
	Back	0.777	0.090	0.017	0.867	0.794	
	Left	1.228	0.091	0.017	1.319	1.245	
	Right			0.017	0.000	0.017	
	Top		0.074	0.017	0.074	0.017	
	Bottom	0.553		0.017	0.553	0.570	
GSM1900	Front	0.408	0.089	0.017	0.497	0.425	
	Back	0.399	0.090	0.017	0.489	0.416	
	Left	0.129	0.091	0.017	0.220	0.146	
	Right			0.017	0.000	0.017	
	Top		0.074	0.017	0.074	0.017	
	Bottom	0.410		0.017	0.410	0.427	
WCDMA 850	Front	0.578	0.089	0.017	0.667	0.595	
	Back	0.579	0.090	0.017	0.669	0.596	
	Left	0.877	0.091	0.017	0.968	0.894	
	Right			0.017	0.000	0.017	
	Top		0.074	0.017	0.074	0.017	
	Bottom	0.367		0.017	0.367	0.384	
LTE Band VII	Front	0.643	0.089	0.017	0.732	0.660	
	Back	0.736	0.090	0.017	0.826	0.753	
	Left	0.150	0.091	0.017	0.241	0.167	
	Right			0.017	0.000	0.017	
	Top		0.074	0.017	0.074	0.017	
	Bottom	0.774		0.017	0.774	0.791	

Note:

- 1) Per FCC KDB 447498 D01 v06, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion

6 Equipment list

Test Platform	SPEAG DASY5 Professional			
Location	SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch E&E Lab			
Description	SAR Test System (Frequency range 300MHz-6GHz)			
Software Reference	DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)			
Hardware Reference				
Equipment	Model	Serial Number	Calibration Date	Due date of calibration
<input checked="" type="checkbox"/> Robot	RX90L	F03/5V32A1/A01	NA	NA
<input checked="" type="checkbox"/> Twin Phantom	SAM 1	TP-1283	NA	NA
<input type="checkbox"/> Flat Phantom	ELI 5.0	1128	NA	NA
<input checked="" type="checkbox"/> DAE	DAE4	918	2014-12-29	2015-12-28
<input checked="" type="checkbox"/> E-Field Probe	EX3DV4	3962	2014-11-24	2015-11-23
<input checked="" type="checkbox"/> E-Field Probe	EX3DV4	3962	2015-03-31	2016-03-30
<input checked="" type="checkbox"/> Validation Kits	D835V2	4d015	2013-11-25	2016-11-24
<input checked="" type="checkbox"/> Validation Kits	D1900V2	5d028	2013-11-27	2016-11-26
<input checked="" type="checkbox"/> Validation Kits	D2450V2	733	2013-11-26	2016-11-25
<input checked="" type="checkbox"/> Validation Kits	D2600V2	1093	2014-09-23	2017-09-22
<input checked="" type="checkbox"/> Agilent Network Analyzer	E5071C	MY46523590	2015-03-02	2016-03-01
<input checked="" type="checkbox"/> Dielectric Probe Kit	85070E	US01440210	NA	NA
<input checked="" type="checkbox"/> R&S Universal Radio Communication Tester	CMU200	103633	2015-04-25	2016-04-25
<input checked="" type="checkbox"/> RF Bi-Directional Coupler	ZABDC20-252H-N+	N989900825	2015-04-25	2016-04-25
<input checked="" type="checkbox"/> Agilent Signal Generator	E4438C	MY42082326	2015-04-25	2016-04-25
<input checked="" type="checkbox"/> Mini-Circuits Preamplifier	ZHL-42	QA0827002	2015-04-25	2016-04-25
<input checked="" type="checkbox"/> Agilent Power Meter	E4416A	GB41292095	2015-04-25	2016-04-25
<input checked="" type="checkbox"/> Agilent Power Sensor	8481H	MY41091234	2015-04-25	2016-04-25
<input checked="" type="checkbox"/> R&S Power Sensor	NRP-Z92	100025	2015-04-25	2016-04-25
<input checked="" type="checkbox"/> Attenuator	TS2-3dB	30704	2015-04-25	2016-04-25
<input checked="" type="checkbox"/> Coaxial low pass filter	VLF-2500(+)	NA	2015-04-25	2016-04-25
<input checked="" type="checkbox"/> 50 Ω coaxial load	KARN-50+	00850	2015-04-25	2016-04-25
<input checked="" type="checkbox"/> DC POWER SUPPLY	SK1730SL5A	NA	2015-04-25	2016-04-25

7 Measurement Uncertainty

Measurements and results are all in compliance with the standards listed in section 12 of this report. All measurements and results are recorded and maintained at the laboratory performing the tests and measurement uncertainties are taken into account when comparing measurements to pass/ fail criteria. The Expanded uncertainty (95% CONFIDENCE INTERVAL) is **21.36%**.

A	b1	c	d	e = f(d,k)	g	i = C*g/ e	K
Uncertainty Component	Section in P1528	Tol (%)	Prob . Dist.	Div.	Ci (1g)	$1g_{ui}$ (%)	Vi (Veff)
Probe calibration	E.2.1	6.3	N	1	1	6.30	∞
Axial isotropy	E.2.2	0.5	R	$\sqrt{3}$	$(1 - Cp)^{1/2}$	0.20	∞
hemispherical isotropy	E.2.2	2.6	R	$\sqrt{3}$	\sqrt{Cp}	1.06	∞
Boundary effect	E.2.3	1.0	R	$\sqrt{3}$	1	0.58	∞
Linearity	E.2.4	0.6	R	$\sqrt{3}$	1	0.35	∞
System detection limit	E.2.5	0.25	R	$\sqrt{3}$	1	0.14	∞
Readout electronics	E.2.6	0.3	N	1	1	0.30	∞
Response time	E.2.7	0	R	$\sqrt{3}$	1	0.00	∞
Integration time	E.2.8	2.6	R	$\sqrt{3}$	1	1.50	∞
RF ambient Condition –Noise	E.6.1	3	R	$\sqrt{3}$	1	1.73	∞
RF ambient Condition - reflections	E.6.1	3	R	$\sqrt{3}$	1	1.73	∞
Probe positioning- mechanical tolerance	E.6.2	1.5	R	$\sqrt{3}$	1	0.87	∞
Probe positioning- with respect to phantom	E.6.3	2.9	R	$\sqrt{3}$	1	1.67	∞
Max. SAR evaluation	E.5.2	1	R	$\sqrt{3}$	1	0.58	∞
Test sample positioning	E.4.2	3.7	N	1	1	3.70	9
Device holder uncertainty	E.4.1	3.6	N	1	1	3.60	∞
Output power variation –SAR drift measurement	6.6.2	5	R	$\sqrt{3}$	1	2.89	∞
Phantom uncertainty (shape and thickness tolerances)	E.3.1	4	R	$\sqrt{3}$	1	2.31	∞
Liquid conductivity - deviation from target values	E.3.2	5	R	$\sqrt{3}$	0.64	1.85	∞
Liquid conductivity - measurement uncertainty	E.3.2	5.78	N	1	0.64	3.68	5

Liquid permittivity - deviation from target values	E.3.3	5	R	$\sqrt{3}$	0.6	1.73	∞
Liquid permittivity - measurement uncertainty	E.3.3	0.62	N	1	0.6	0.37 2	5
Combined standard uncertainty				RSS		10.6 8	430
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		21.3 6	

Table 20 : Measurement Uncertainty

8 Calibration certificate

Please see the Appendix C

9 Photographs

Please see the Appendix D

Appendix A: Detailed System Validation Results

Appendix B: Detailed Test Results

Appendix C: Calibration certificate

Appendix D: Photographs

---END---

Appendix A

Detailed System Validation Results

1. System Performance Check for Head
System Performance Check 835 MHz Head
System Performance Check 1900 MHz Head
System Performance Check 2450 MHz Head
System Performance Check 2600 MHz Head
2. System Performance Check for Body
System Performance Check 835 MHz Body
System Performance Check 1900 MHz Body
System Performance Check 2450 MHz Body
System Performance Check 2600 MHz Body

Test Laboratory: SGS-SAR Lab

System Performance Check 835 MHz Head

DUT: D835V2; Type: D835V2; Serial: 4d105

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL835; Medium parameters used: $f = 835$ MHz; $\sigma = 0.905$ S/m; $\epsilon_r = 42.936$; $\rho = 1000$ kg/m³

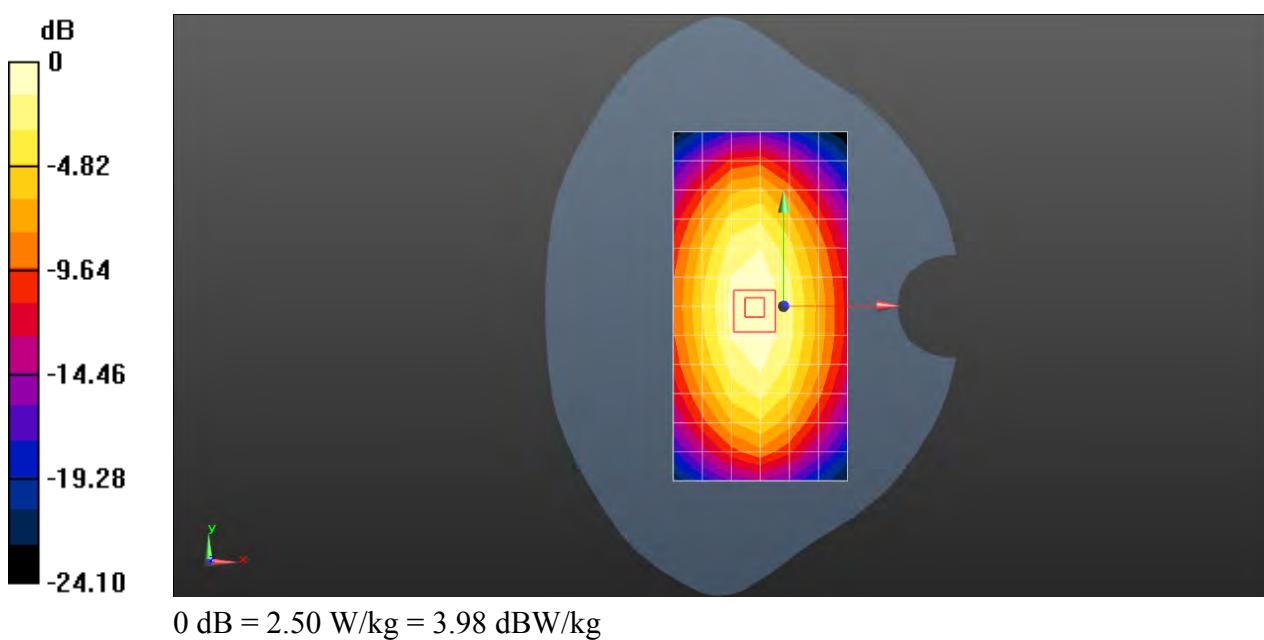
Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(9.89, 9.89, 9.89); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=15mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm

Maximum value of SAR (measured) = 2.50 W/kg


Body/d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 54.17 V/m; Power Drift = -0.32 dB

Peak SAR (extrapolated) = 3.44 W/kg

SAR(1 g) = 2.32 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 2.51 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 835 MHz Body

DUT: D835V2; Type: D835V2; Serial: 4d105

Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used: $f = 835$ MHz; $\sigma = 0.98$ S/m; $\epsilon_r = 55.375$; $\rho = 1000$ kg/m³

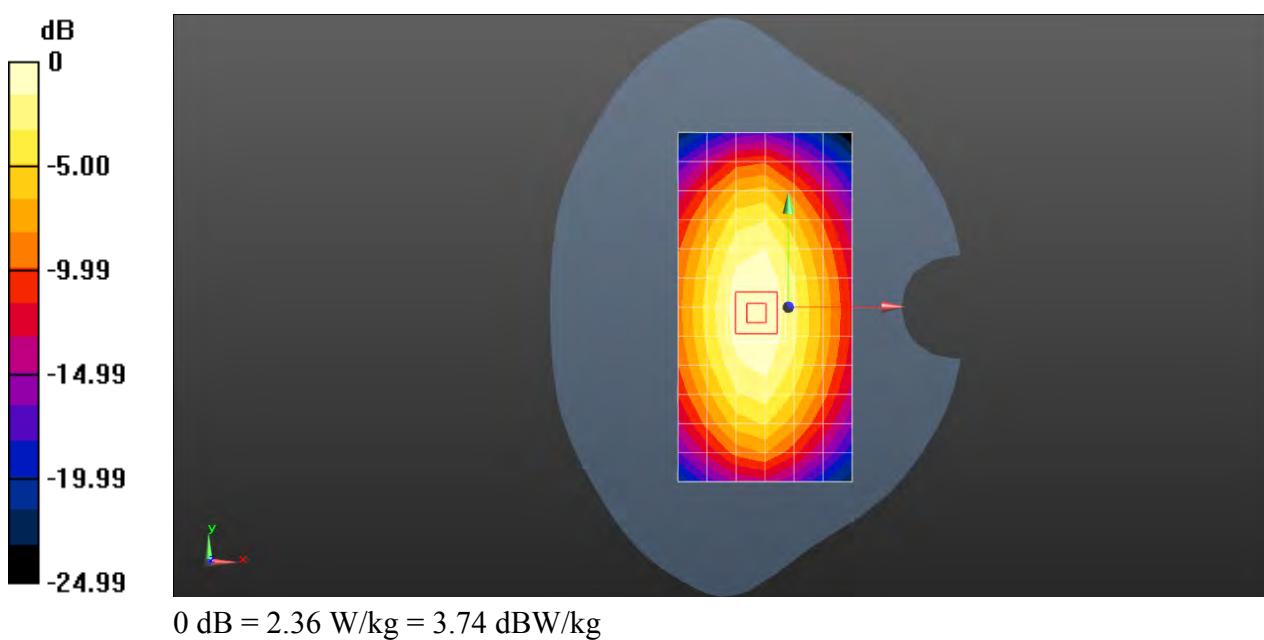
Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(10.07, 10.07, 10.07); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=15mm, Pin=250mW/Area Scan (7x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm

Maximum value of SAR (measured) = 2.36 W/kg


Body/d=15mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 50.13 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 3.33 W/kg

SAR(1 g) = 2.26 W/kg; SAR(10 g) = 1.52 W/kg

Maximum value of SAR (measured) = 2.43 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1900 MHz Head

DUT: D1900V2; Type: D1900V2; Serial: 5d028

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL1900; Medium parameters used: $f = 1900$ MHz; $\sigma = 1.437$ S/m; $\epsilon_r = 40.578$; $\rho = 1000$ kg/m³

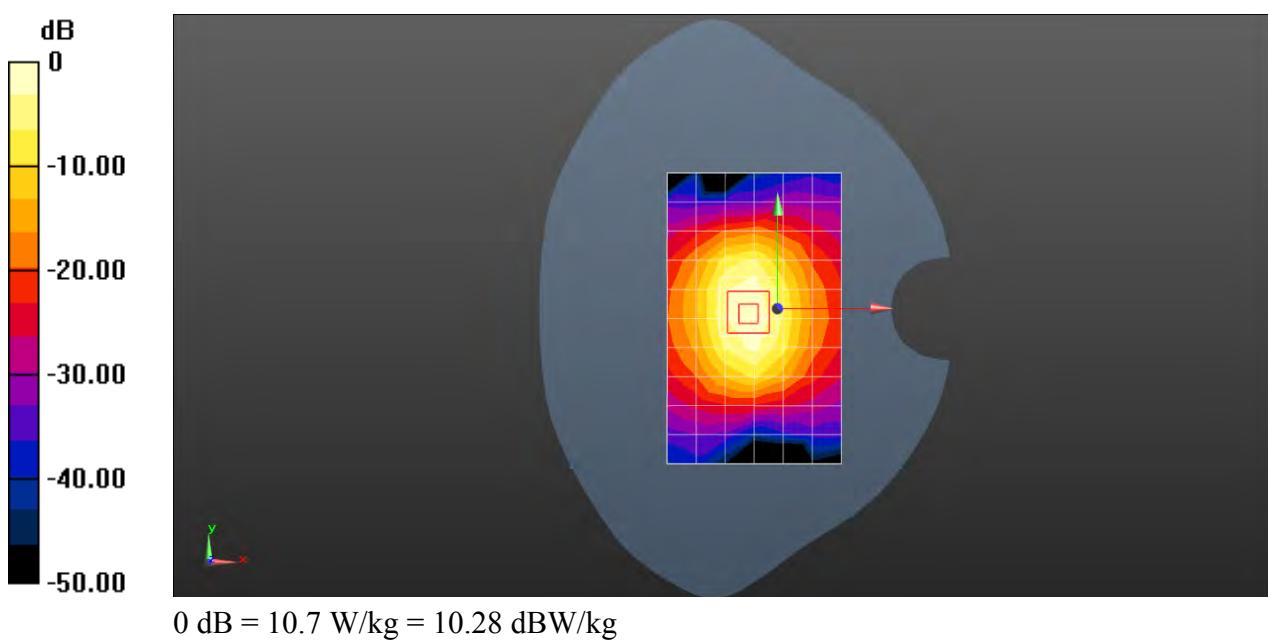
Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(8.14, 8.14, 8.14); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x11x1): Measurement grid: $dx=15$ mm, $dy=15$ mm

Maximum value of SAR (measured) = 10.7 W/kg


Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 89.57 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.25 W/kg

Maximum value of SAR (measured) = 11.4 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 1900 MHz Body

DUT: D1900V2; Type: D1900V2; Serial: 5d028

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL1900; Medium parameters used: $f = 1900$ MHz; $\sigma = 1.523$ S/m; $\epsilon_r = 52.205$; $\rho = 1000$ kg/m³

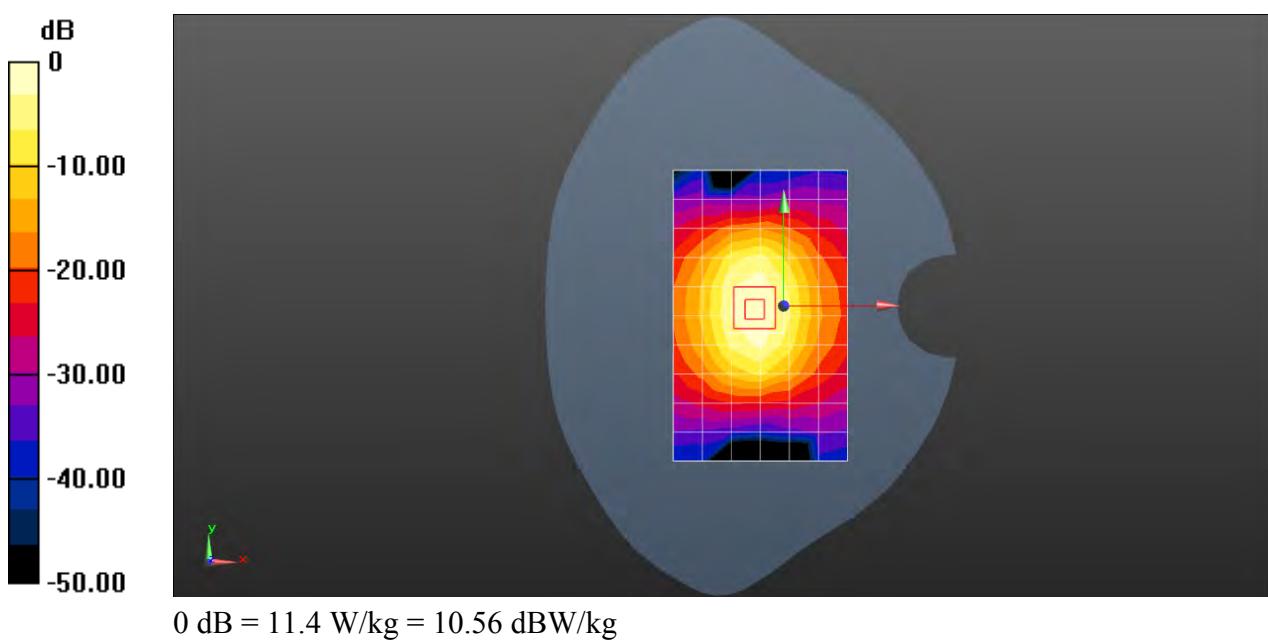
Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(8.07, 8.07, 8.07); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x11x1): Measurement grid: $dx=15$ mm, $dy=15$ mm

Maximum value of SAR (measured) = 11.4 W/kg


Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 88.43 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 21.5 W/kg

SAR(1 g) = 10.9 W/kg; SAR(10 g) = 5.47 W/kg

Maximum value of SAR (measured) = 12.1 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2450MHz Head

DUT: D2450V2; Type: D2450V2; Serial: 733

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL2450; Medium parameters used: $f = 2450$ MHz; $\sigma = 1.781$ S/m; $\epsilon_r = 38.561$; $\rho = 1000$ kg/m³

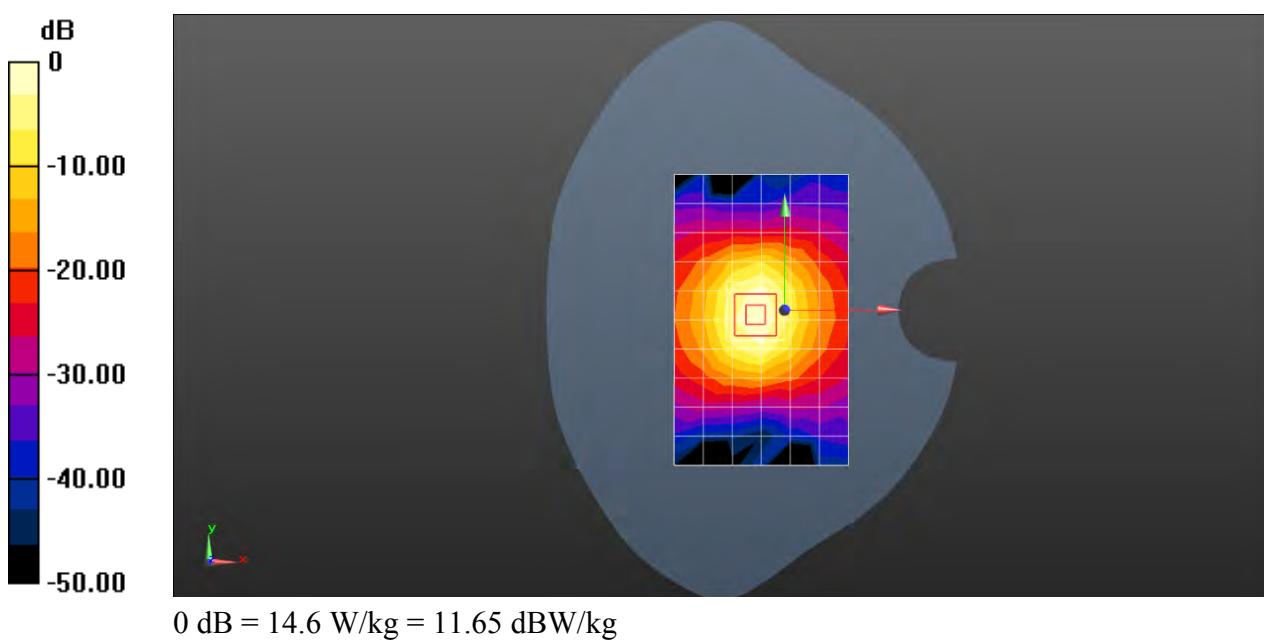
Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(7.32, 7.32, 7.32); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x11x1): Measurement grid: $dx=15$ mm, $dy=15$ mm

Maximum value of SAR (measured) = 14.6 W/kg


Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 92.42 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 31.8 W/kg

SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.24 W/kg

Maximum value of SAR (measured) = 15.6 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2450MHz Body

DUT: D2450V2; Type: D2450V2; Serial: 733

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL2450; Medium parameters used: $f = 2450$ MHz; $\sigma = 1.951$ S/m; $\epsilon_r = 51.68$; $\rho = 1000$ kg/m³

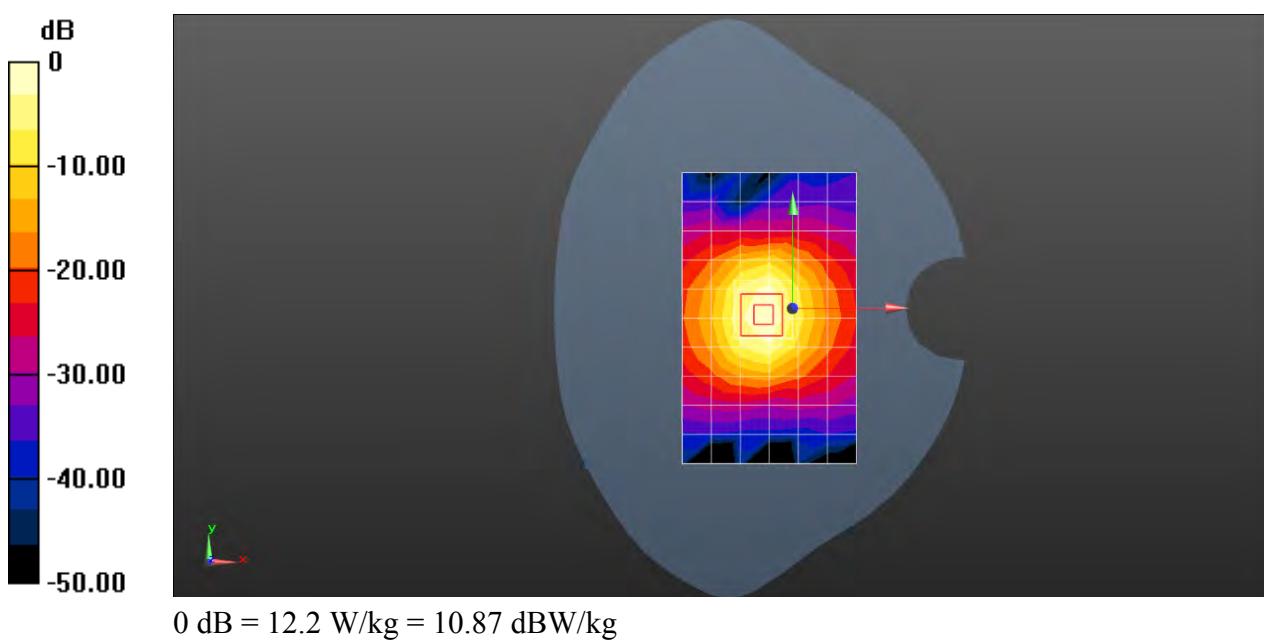
Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(7.47, 7.47, 7.47); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x11x1): Measurement grid: $dx=15$ mm, $dy=15$ mm

Maximum value of SAR (measured) = 12.2 W/kg


Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 81.33 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 26.3 W/kg

SAR(1 g) = 11.8 W/kg; SAR(10 g) = 5.32 W/kg

Maximum value of SAR (measured) = 13.3 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2600MHz Head

DUT: D2600V2; Type: D2600V2; Serial: 1093

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: HSL2600; Medium parameters used: $f = 2600$ MHz; $\sigma = 1.937$ S/m; $\epsilon_r = 38.1$; $\rho = 1000$ kg/m³

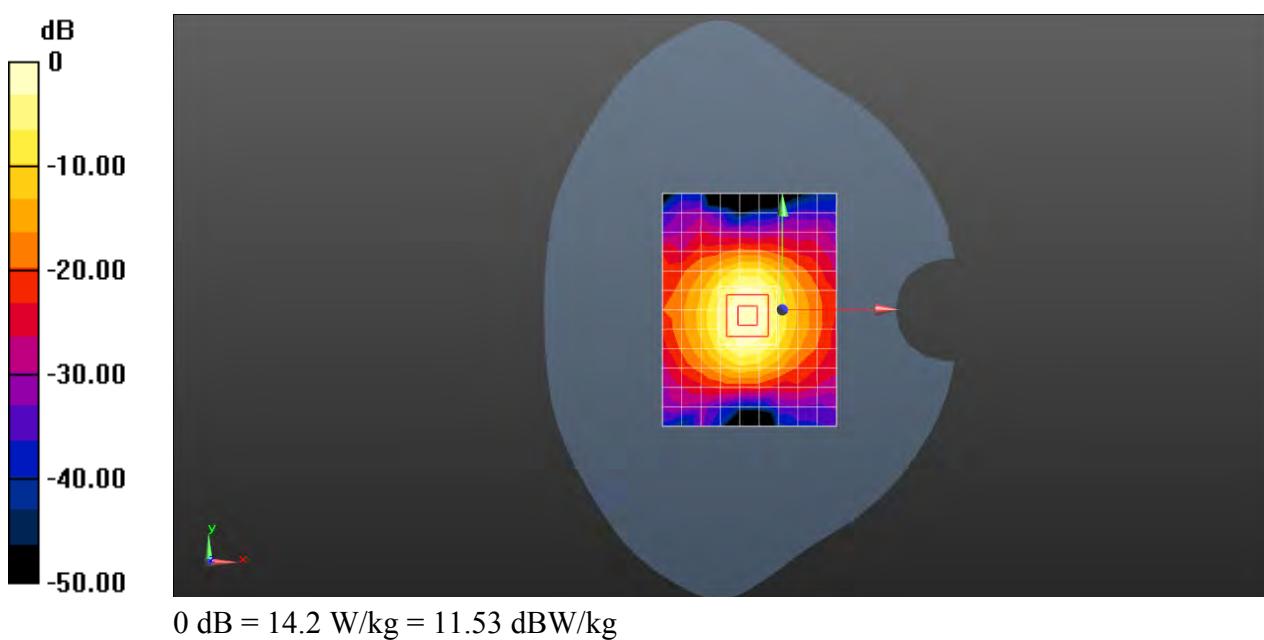
Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(7.26, 7.26, 7.26); Calibrated: 2015-03-31;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (10x13x1): Measurement grid: $dx=10$ mm, $dy=10$ mm

Maximum value of SAR (measured) = 14.2 W/kg


Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 89.47 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 33.5 W/kg

SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.33 W/kg

Maximum value of SAR (measured) = 16.5 W/kg

Test Laboratory: SGS-SAR Lab

System Performance Check 2600MHz Body

DUT: D2600V2; Type: D2600V2; Serial: 1093

Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: MSL2600; Medium parameters used: $f = 2600$ MHz; $\sigma = 2.171$ S/m; $\epsilon_r = 52.866$; $\rho = 1000$ kg/m³

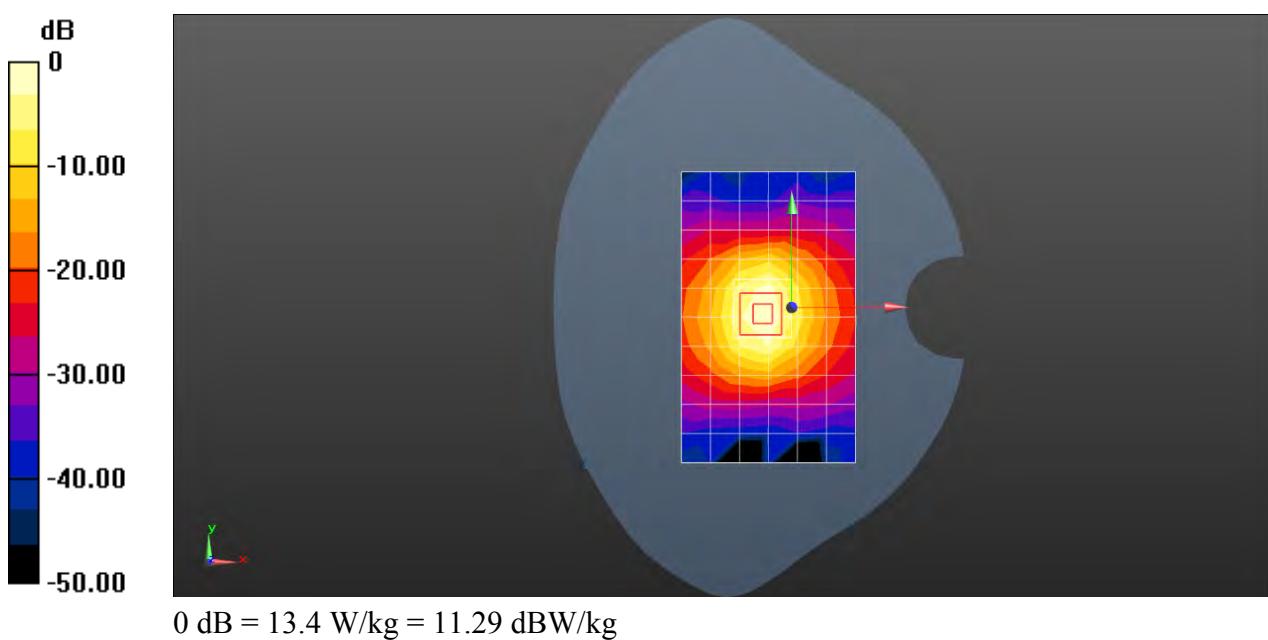
Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(7.4, 7.4, 7.4); Calibrated: 2015-03-31;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Body/d=10mm, Pin=250mW/Area Scan (7x11x1): Measurement grid: $dx=15$ mm, $dy=15$ mm

Maximum value of SAR (measured) = 13.4 W/kg


Body/d=10mm, Pin=250mW/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 81.78 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 28.7 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 5.91 W/kg

Maximum value of SAR (measured) = 14.6 W/kg

Appendix B

Detailed Test Results

1. GSM
GSM850 for Head &Body
GSM1900 for Head &Body
2. WCDMA
WCDMA850 for Head &Body
3. LTE
LTE Band VII for Head &Body
4. WIFI
WIFI for Head &Body

Test Laboratory: SGS-SAR Lab

AC50DIS GSM850 190CH Left touch cheek

DUT: AC50DIS; Type: Mobile Phone ; Serial: NA

Communication System: UID 0, GSM Only Communication System (0); Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

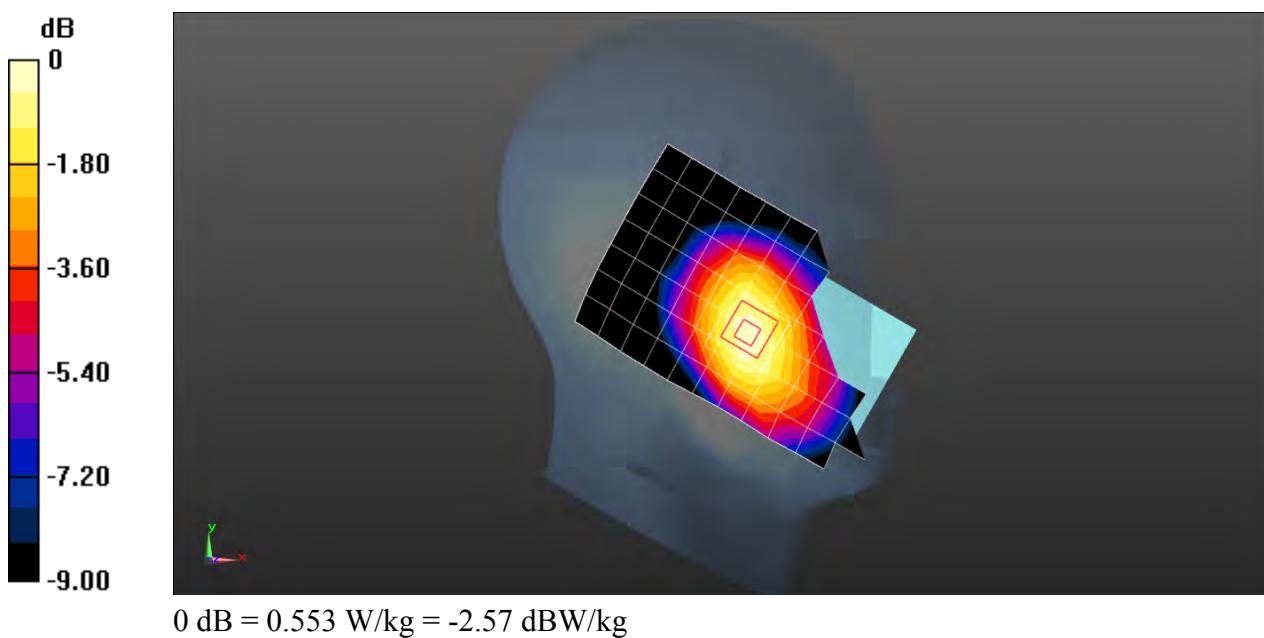
Medium: HSL835; Medium parameters used: $f = 837$ MHz; $\sigma = 0.907$ S/m; $\epsilon_r = 42.907$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(9.89, 9.89, 9.89); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (8x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.529 W/kg


Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 7.408 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.665 W/kg

SAR(1 g) = 0.522 W/kg; SAR(10 g) = 0.393 W/kg

Maximum value of SAR (measured) = 0.553 W/kg

Test Laboratory: SGS-SAR Lab

AC50DIS GSM850 190CH Front side 15mm with SIM2

DUT: AC50DIS; Type: Mobile Phone ; Serial: NA

Communication System: UID 0, GSM Only Communication System (0); Frequency: 836.6 MHz; Duty Cycle: 1:8.30042

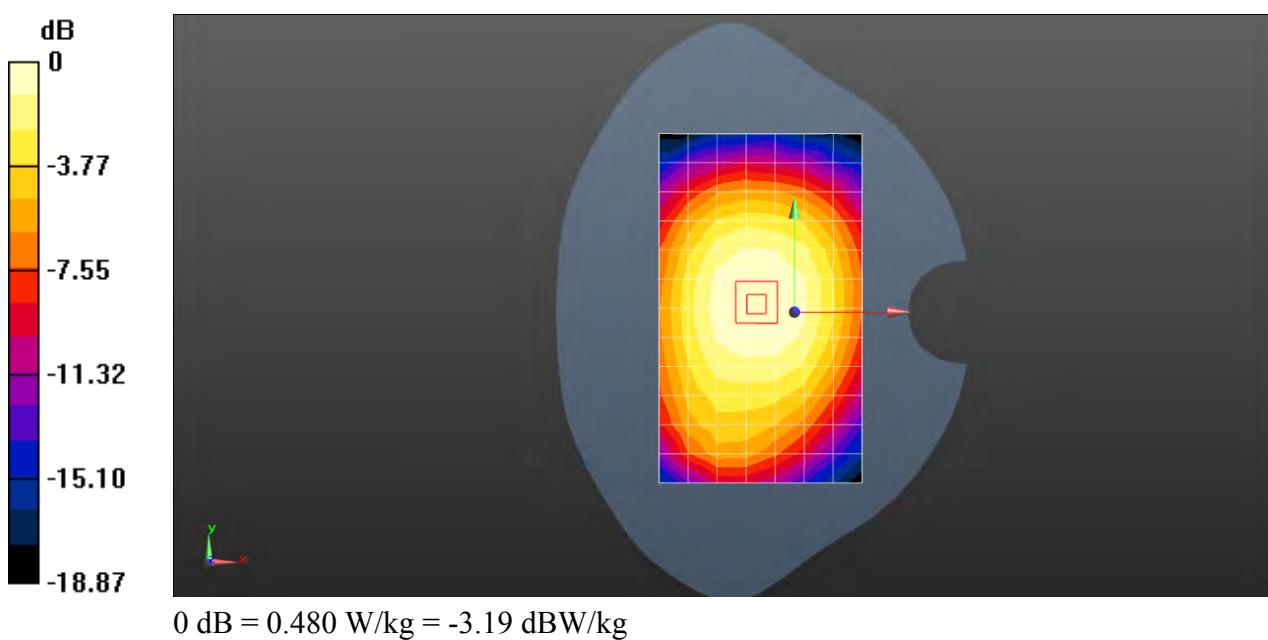
Medium: MSL835; Medium parameters used: $f = 837$ MHz; $\sigma = 0.984$ S/m; $\epsilon_r = 55.281$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(10.07, 10.07, 10.07); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.480 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 22.00 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.581 W/kg

SAR(1 g) = 0.463 W/kg; SAR(10 g) = 0.357 W/kg

Maximum value of SAR (measured) = 0.483 W/kg

Test Laboratory: SGS-SAR Lab

AC50DIS GSM850 GPRS 4TS 251CH Left side 10mm

DUT: AC50DIS; Type: Mobile Phone ; Serial: NA

Communication System: UID 0, GPRS/EGPRS Mode(4up) Communication System (0); Frequency: 848.6 MHz; Duty Cycle: 1:2.0797

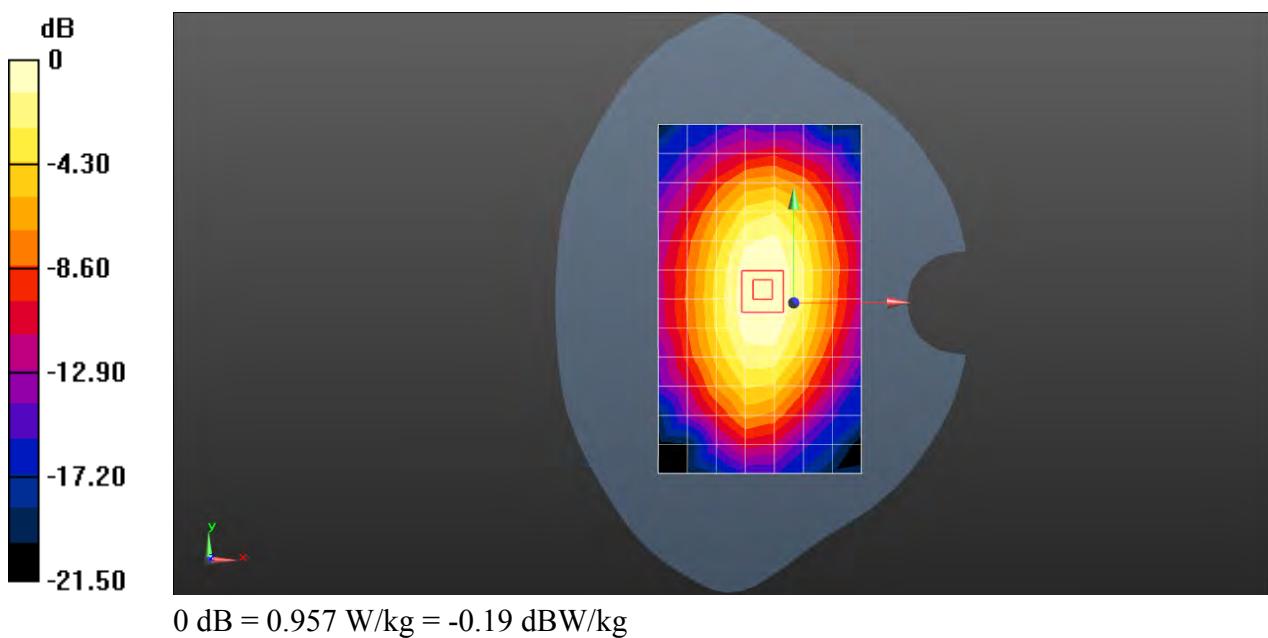
Medium: MSL835; Medium parameters used: $f = 849$ MHz; $\sigma = 1.005$ S/m; $\epsilon_r = 55.167$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(10.07, 10.07, 10.07); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.957 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 32.05 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 0.982 W/kg; SAR(10 g) = 0.678 W/kg

Maximum value of SAR (measured) = 1.05 W/kg

Test Laboratory: SGS-SAR Lab

AC50DIS GSM1900 661CH Left touch cheek with SIM2

DUT: AC50DIS; Type: Mobile Phone ; Serial: NA

Communication System: UID 0, GSM Only Communication System (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042

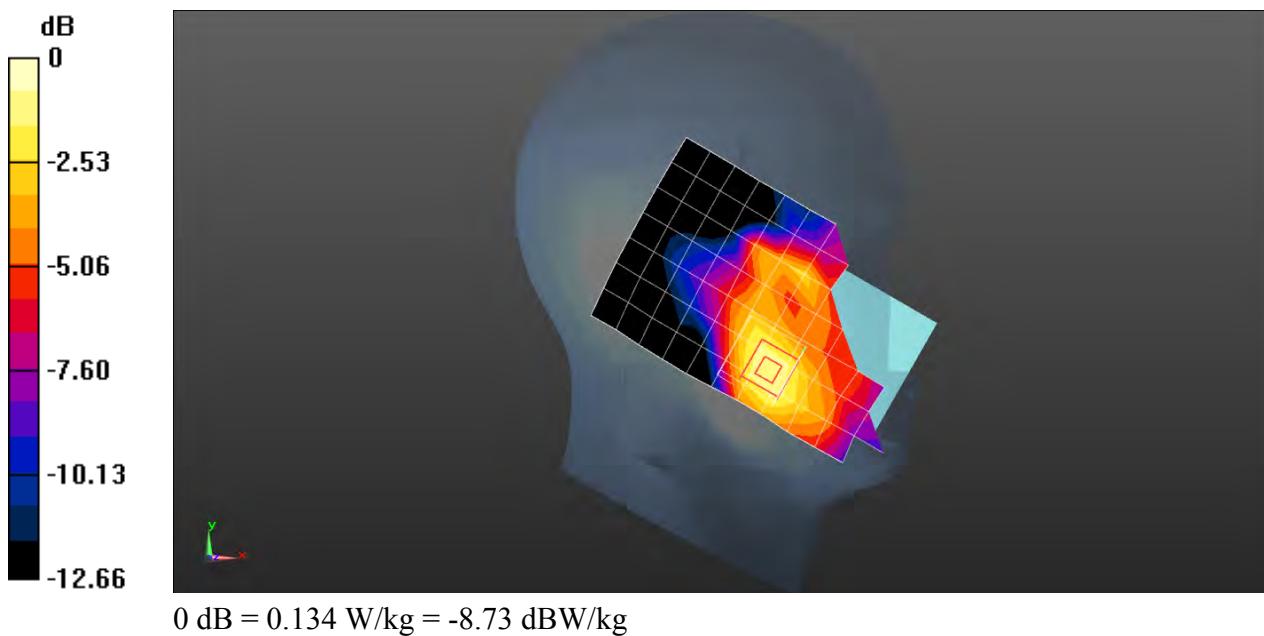
Medium: HSL1900; Medium parameters used: $f = 1880$ MHz; $\sigma = 1.419$ S/m; $\epsilon_r = 40.582$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(8.14, 8.14, 8.14); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (8x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.110 W/kg


Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 2.812 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.176 W/kg

SAR(1 g) = 0.124 W/kg; SAR(10 g) = 0.080 W/kg

Maximum value of SAR (measured) = 0.134 W/kg

Test Laboratory: SGS-SAR Lab

AC50DIS GSM1900 661CH Back side 15mm with SIM2

DUT: AC50DIS; Type: Mobile Phone ; Serial: NA

Communication System: UID 0, GSM Only Communication System (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30042

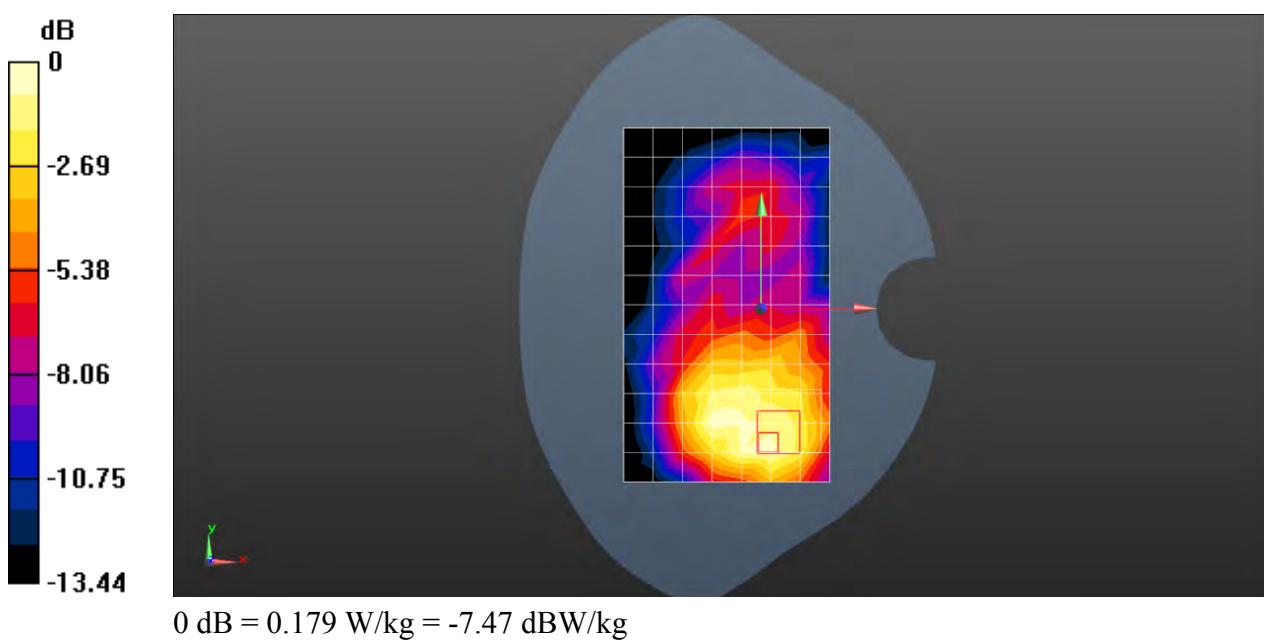
Medium: MSL1900; Medium parameters used: $f = 1880$ MHz; $\sigma = 1.493$ S/m; $\epsilon_r = 52.273$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(8.07, 8.07, 8.07); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.160 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 4.939 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.252 W/kg

SAR(1 g) = 0.159 W/kg; SAR(10 g) = 0.096 W/kg

Maximum value of SAR (measured) = 0.179 W/kg

Test Laboratory: SGS-SAR Lab

AC50DIS GSM1900 GPRS 4TS 661CH Bottom side 10mm

DUT: AC50DIS; Type: Mobile Phone ; Serial: NA

Communication System: UID 0, GPRS/EGPRS Mode(4up) Communication System (0); Frequency: 1880 MHz; Duty Cycle: 1:2.0797

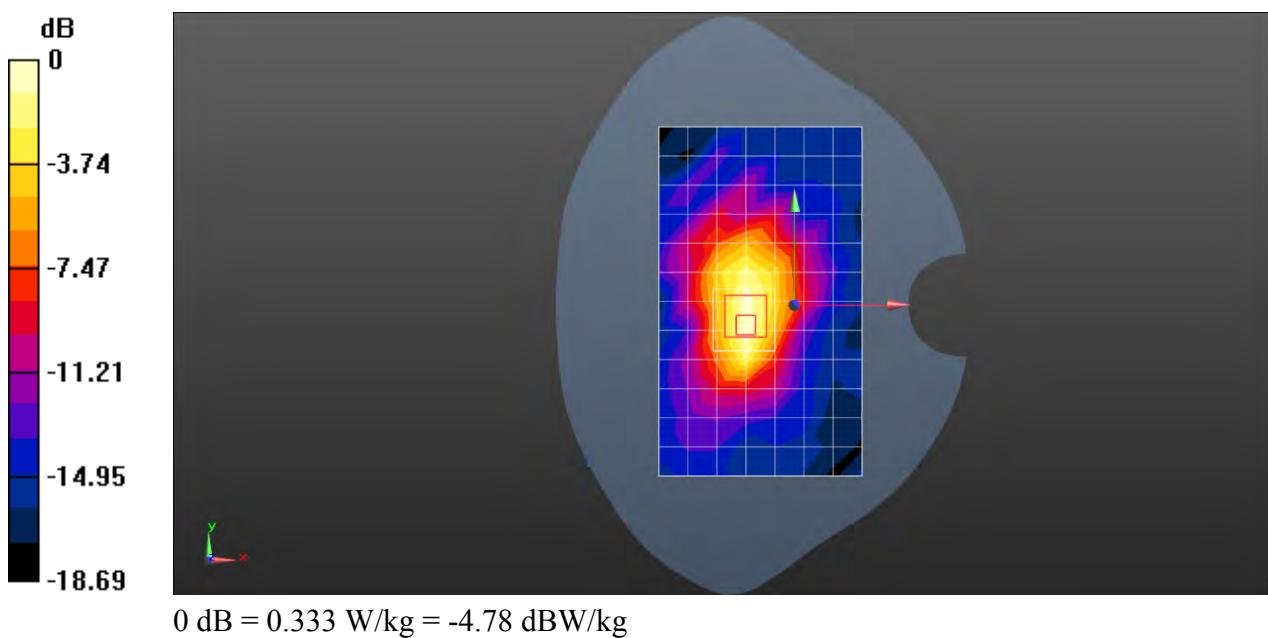
Medium: MSL1900; Medium parameters used: $f = 1880$ MHz; $\sigma = 1.493$ S/m; $\epsilon_r = 52.273$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(8.07, 8.07, 8.07); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm
Maximum value of SAR (measured) = 0.333 W/kg


Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 12.96 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.522 W/kg

SAR(1 g) = 0.308 W/kg; SAR(10 g) = 0.176 W/kg

Maximum value of SAR (measured) = 0.336 W/kg

Test Laboratory: SGS-SAR Lab

AC50DIS WCDMA850 4182CH Left touch cheek

DUT: AC50DIS; Type: Mobile Phone ; Serial: NA

Communication System: UID 0, WCDMA (0); Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: HSL835; Medium parameters used (interpolated): $f = 836.4$ MHz; $\sigma = 0.906$ S/m; $\epsilon_r = 42.92$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY 5 Configuration:

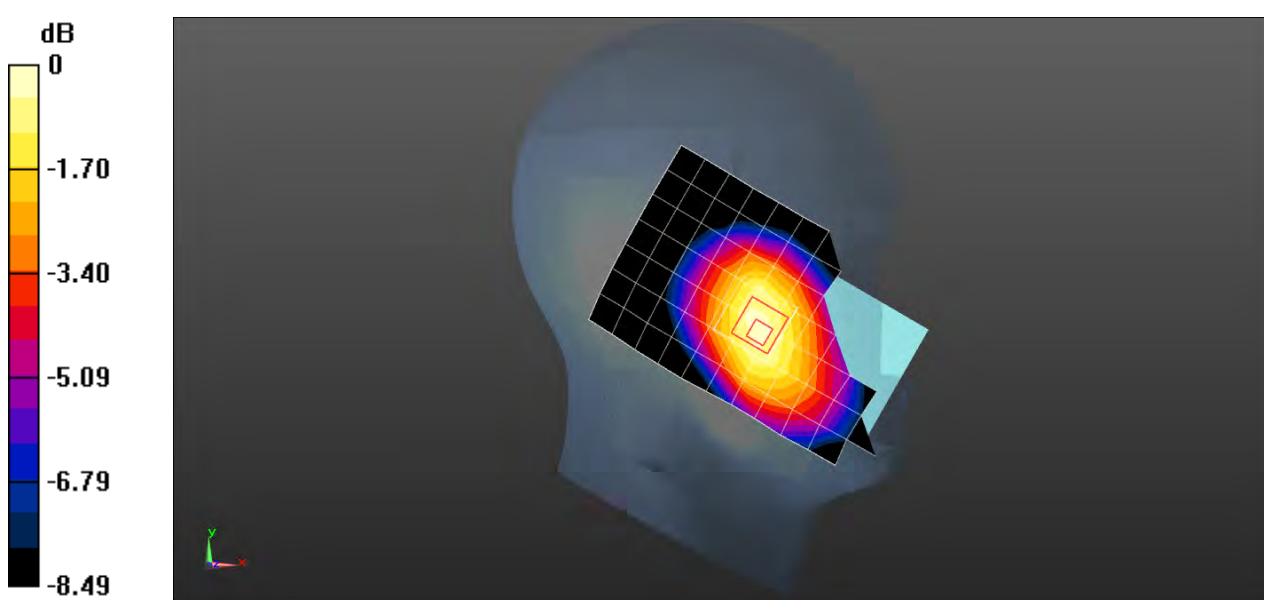
- Probe: EX3DV4 - SN3962; ConvF(9.89, 9.89, 9.89); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (8x13x1): Measurement grid: $dx=15$ mm, $dy=15$ mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.322 W/kg

Configuration/Head/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm


Reference Value = 7.136 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.425 W/kg

SAR(1 g) = 0.339 W/kg; SAR(10 g) = 0.257 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.357 W/kg

Test Laboratory: SGS-SAR Lab

AC50DIS WCDMA850 4182CH Front side 15mm

DUT: AC50DIS; Type: Mobile Phone ; Serial: NA

Communication System: UID 0, WCDMA (0); Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used (interpolated): $f = 836.4$ MHz; $\sigma = 0.984$ S/m; $\epsilon_r = 55.294$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

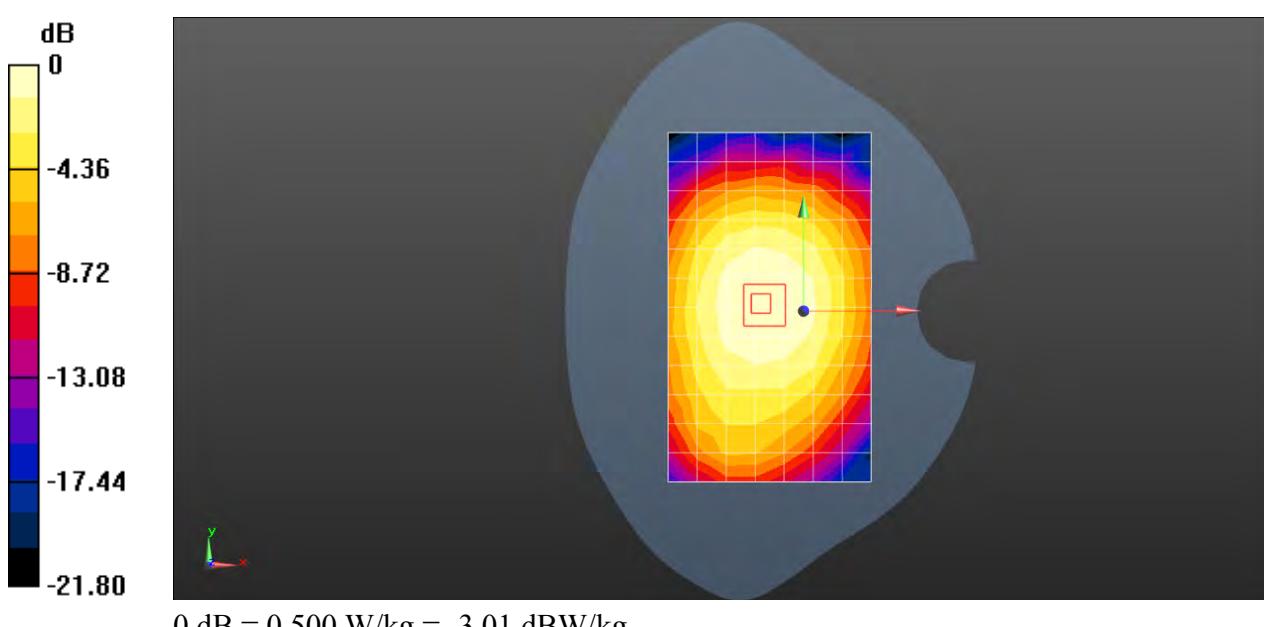
- Probe: EX3DV4 - SN3962; ConvF(10.07, 10.07, 10.07); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.500 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 22.37 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.604 W/kg

SAR(1 g) = 0.486 W/kg; SAR(10 g) = 0.374 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.510 W/kg

Test Laboratory: SGS-SAR Lab

AC50DIS WCDMA850 4132CH Left side 10mm

DUT: AC50DIS; Type: Mobile Phone ; Serial: NA

Communication System: UID 0, WCDMA (0); Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: MSL835; Medium parameters used (interpolated): $f = 826.4$ MHz; $\sigma = 0.976$ S/m; $\epsilon_r = 55.377$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

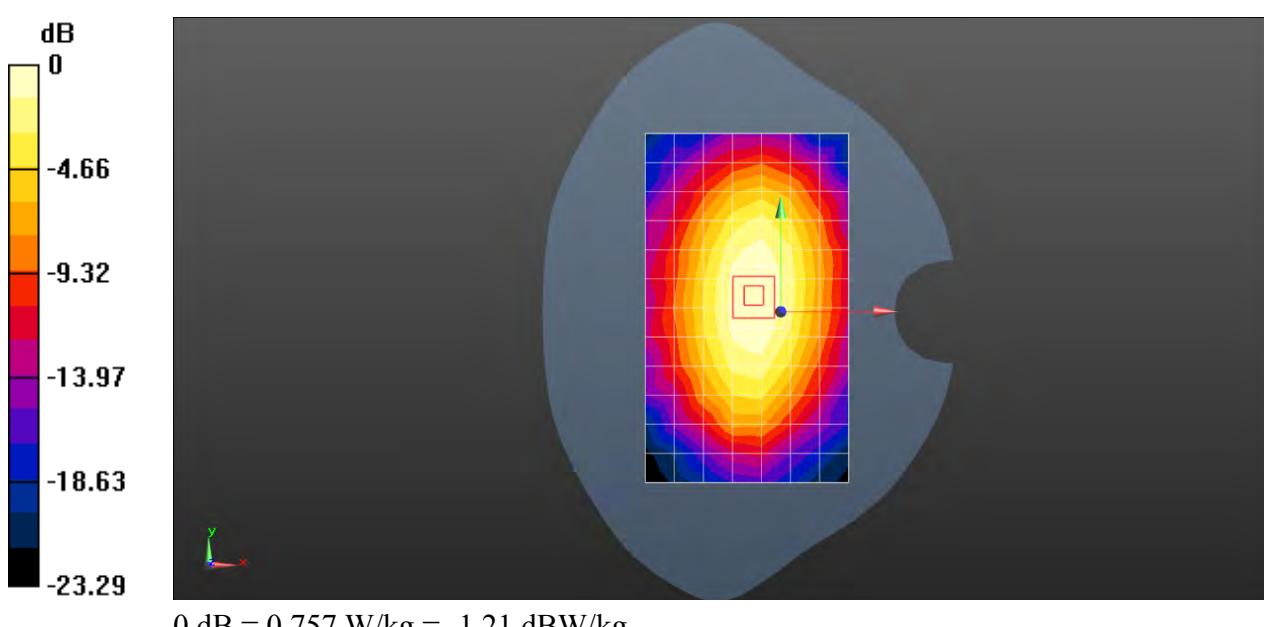
- Probe: EX3DV4 - SN3962; ConvF(10.07, 10.07, 10.07); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.757 W/kg

Configuration/Body/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 27.27 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.731 W/kg; SAR(10 g) = 0.514 W/kg

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.779 W/kg

Test Laboratory: SGS-SAR Lab

AC50DIS LTE Band VII Bandwidth 20MHz QPSK 1RB 0Offset 21100CH Left touch cheek

DUT: AC50DIS; Type: Mobile Phone ; Serial: NA

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 2535 MHz; Duty Cycle: 1:1

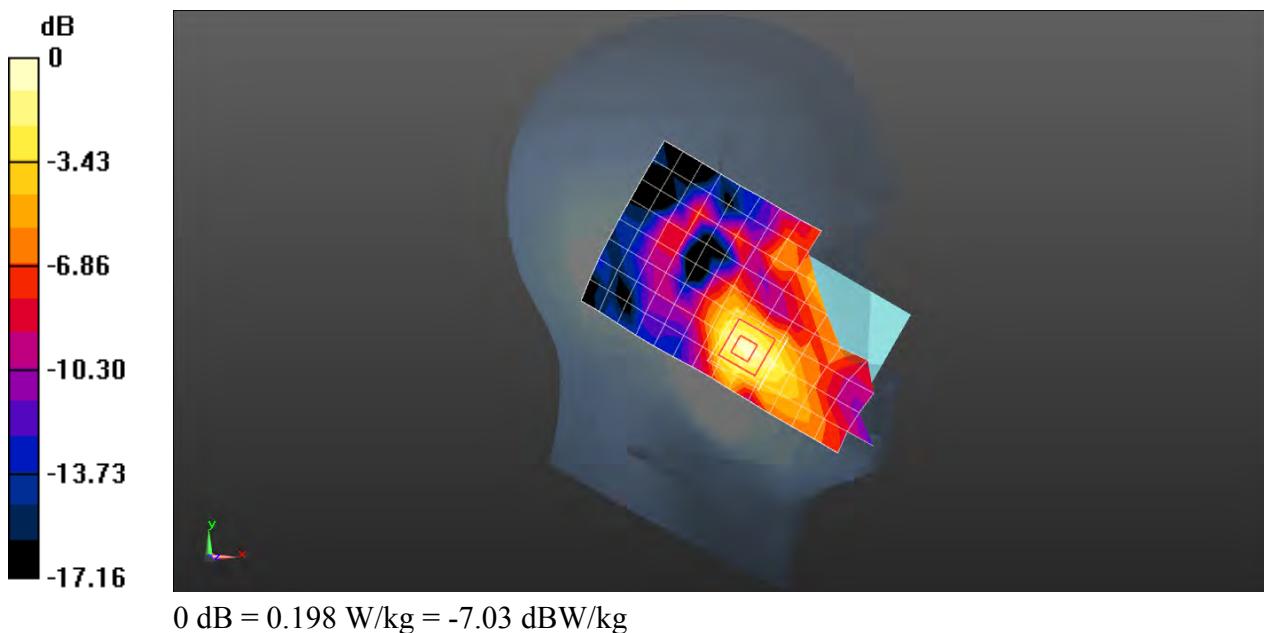
Medium: HSL2600; Medium parameters used: $f = 2535$ MHz; $\sigma = 1.861$ S/m; $\epsilon_r = 38.267$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(7.26, 7.26, 7.26); Calibrated: 2015-03-31;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (9x16x1): Measurement grid: $dx=12$ mm, $dy=12$ mm
Maximum value of SAR (measured) = 0.186 W/kg


Configuration/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 3.575 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.315 W/kg

SAR(1 g) = 0.173 W/kg; SAR(10 g) = 0.093 W/kg

Maximum value of SAR (measured) = 0.198 W/kg

Test Laboratory: SGS-SAR Lab

AC50DIS LTE Band VII Bandwidth 20MHz QPSK 1RB 0Offset 21100CH Back side 15mm

DUT: AC50DIS; Type: Mobile Phone ; Serial: NA

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 2535 MHz; Duty Cycle: 1:1

Medium: MSL2600; Medium parameters used: $f = 2535$ MHz; $\sigma = 2.085$ S/m; $\epsilon_r = 53.223$; $\rho = 1000$ kg/m³

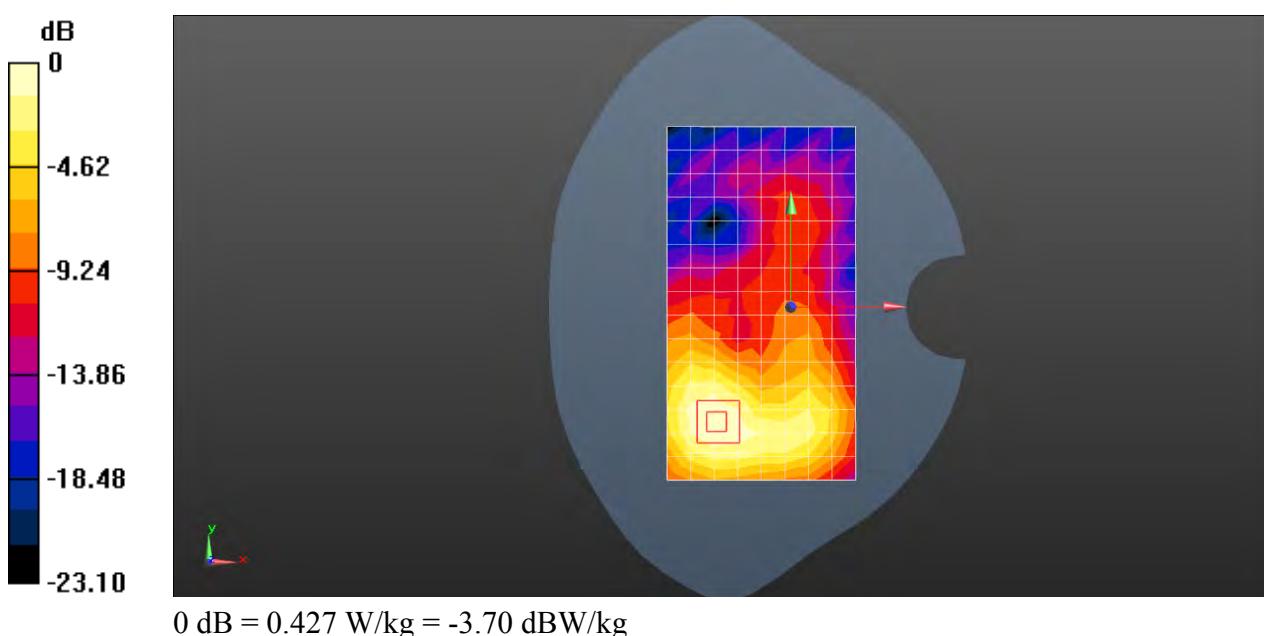
Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(7.4, 7.4, 7.4); Calibrated: 2015-03-31;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (9x16x1): Measurement grid: $dx=12$ mm, $dy=12$ mm

Maximum value of SAR (measured) = 0.427 W/kg


Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 4.377 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.759 W/kg

SAR(1 g) = 0.411 W/kg; SAR(10 g) = 0.222 W/kg

Maximum value of SAR (measured) = 0.447 W/kg

Test Laboratory: SGS-SAR Lab

**AC50DIS LTE Band VII Bandwidth 20MHz QPSK 1RB 0Offset 21100CH
Bottom side 10mm**

DUT: AC50DIS; Type: Mobile Phone ; Serial: NA

Communication System: UID 0, LTE-FDD BW 20MHz (0); Frequency: 2535 MHz; Duty Cycle: 1:1

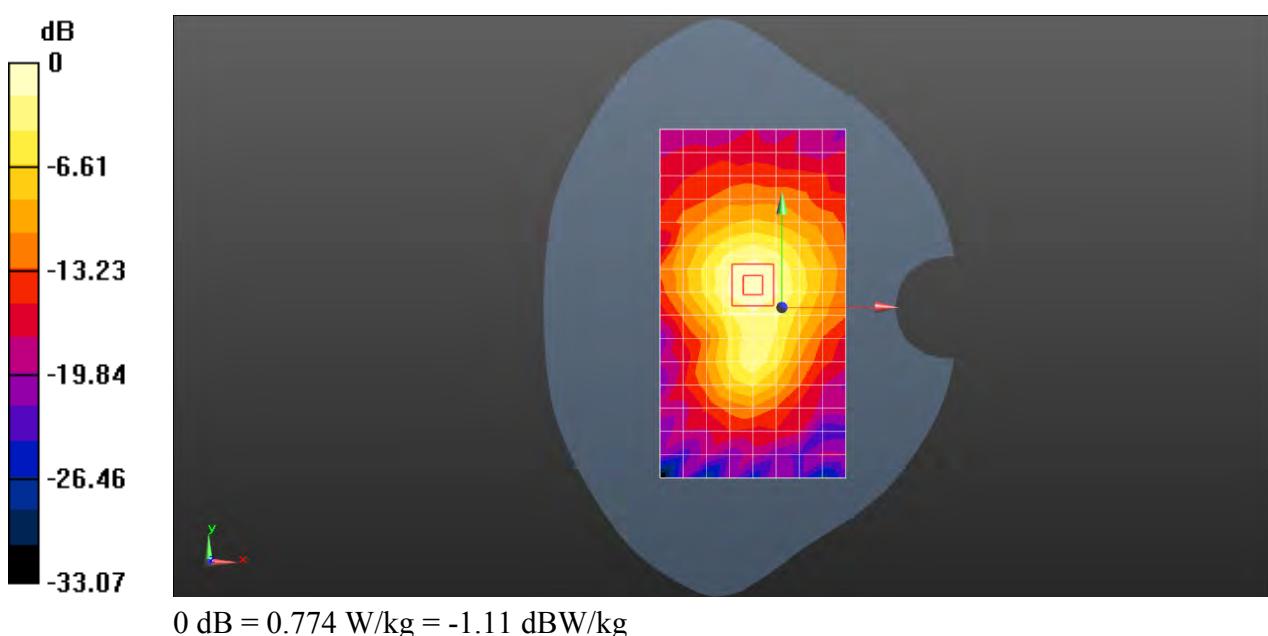
Medium: MSL2600; Medium parameters used: $f = 2535$ MHz; $\sigma = 2.085$ S/m; $\epsilon_r = 53.223$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(7.4, 7.4, 7.4); Calibrated: 2015-03-31;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (9x16x1): Measurement grid: $dx=12$ mm, $dy=12$ mm
Maximum value of SAR (measured) = 0.774 W/kg


Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 15.91 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 0.731 W/kg; SAR(10 g) = 0.374 W/kg

Maximum value of SAR (measured) = 0.810 W/kg

Test Laboratory: SGS-SAR Lab

AC50DIS Wi-Fi 802.11b 11CH Right touch cheek

DUT: AC50DIS; Type: Mobile Phone ; Serial: NA

Communication System: UID 0, WI-FI(2.4GHz) (0); Frequency: 2462 MHz; Duty Cycle: 1:1.022

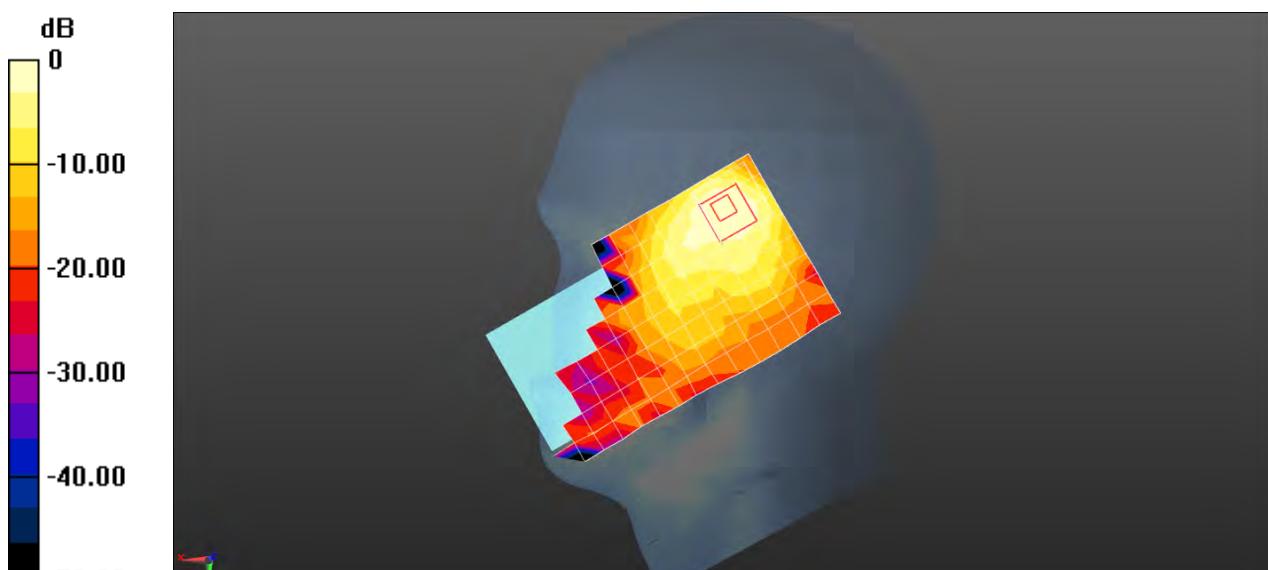
Medium: HSL2450; Medium parameters used: $f = 2462$ MHz; $\sigma = 1.797$ S/m; $\epsilon_r = 38.552$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(7.32, 7.32, 7.32); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Head/Area Scan (9x16x1): Measurement grid: $dx=12$ mm, $dy=12$ mm
Maximum value of SAR (measured) = 0.354 W/kg


Configuration/Head/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 7.469 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.898 W/kg

SAR(1 g) = 0.387 W/kg; SAR(10 g) = 0.180 W/kg

Maximum value of SAR (measured) = 0.438 W/kg

Test Laboratory: SGS-SAR Lab

AC50DIS Wi-Fi 802.11b 11CH Front side 15mm

DUT: AC50DIS; Type: Mobile Phone ; Serial: NA

Communication System: UID 0, WI-FI(2.4GHz) (0); Frequency: 2462 MHz; Duty Cycle: 1:1.022

Medium: MSL2450; Medium parameters used: $f = 2462$ MHz; $\sigma = 1.966$ S/m; $\epsilon_r = 51.603$; $\rho = 1000$ kg/m³

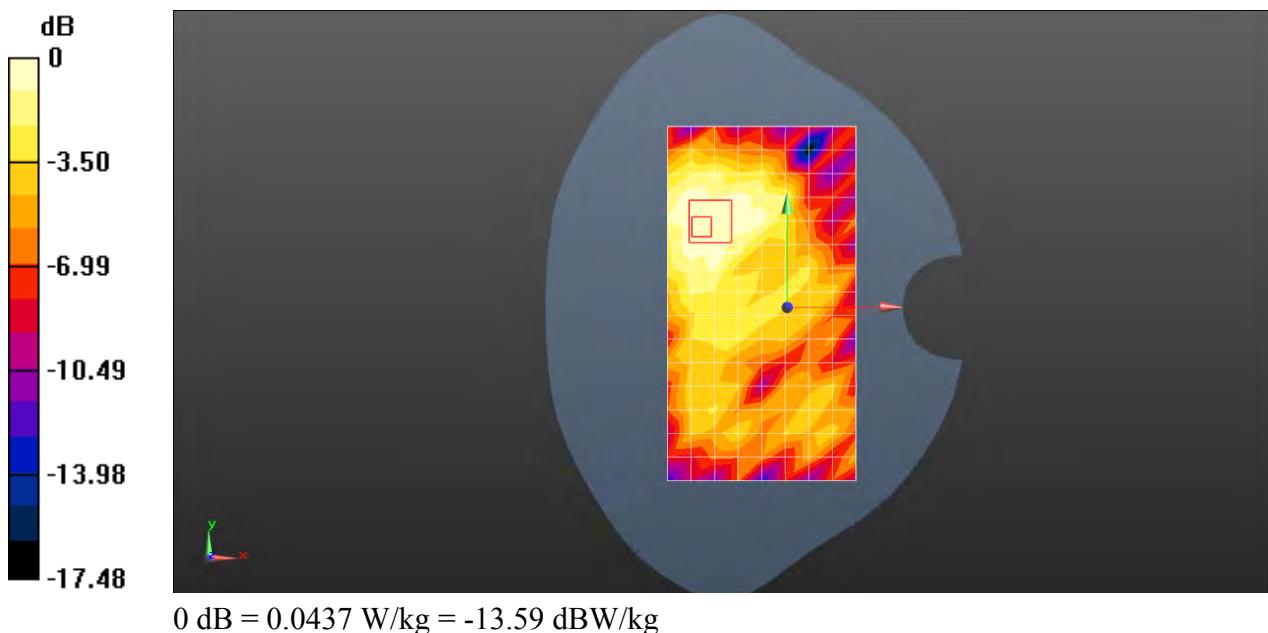
Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(7.47, 7.47, 7.47); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (9x16x1): Measurement grid: $dx=12$ mm, $dy=12$ mm

Maximum value of SAR (measured) = 0.0437 W/kg


Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 3.442 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.0910 W/kg

SAR(1 g) = 0.036 W/kg; SAR(10 g) = 0.018 W/kg

Maximum value of SAR (measured) = 0.0431 W/kg

Test Laboratory: SGS-SAR Lab

AC50DIS Wi-Fi 802.11b 11CH Left side 10mm

DUT: AC50DIS; Type: Mobile Phone ; Serial: NA

Communication System: UID 0, WI-FI(2.4GHz) (0); Frequency: 2462 MHz; Duty Cycle: 1:1.022

Medium: MSL2450; Medium parameters used: $f = 2462$ MHz; $\sigma = 1.966$ S/m; $\epsilon_r = 51.603$; $\rho = 1000$ kg/m³

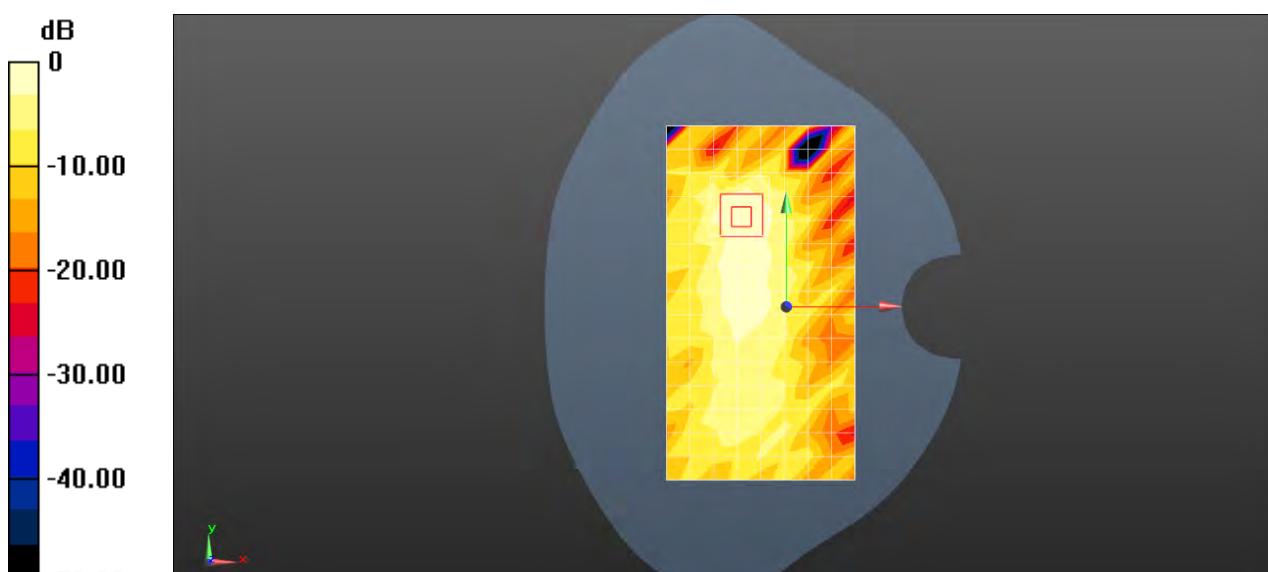
Phantom section: Flat Section

DASY 5 Configuration:

- Probe: EX3DV4 - SN3962; ConvF(7.47, 7.47, 7.47); Calibrated: 2014-11-24;
- Sensor-Surface: 4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE4 Sn918; Calibrated: 2014-12-29
- Phantom: SAM 1; Type: SAM V4.0; Serial: TP-1283
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Body/Area Scan (9x16x1): Measurement grid: $dx=12$ mm, $dy=12$ mm

Maximum value of SAR (measured) = 0.0825 W/kg


Configuration/Body/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 5.749 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.131 W/kg

SAR(1 g) = 0.072 W/kg; SAR(10 g) = 0.035 W/kg

Maximum value of SAR (measured) = 0.0834 W/kg

Appendix C

Calibration certificate

1. Dipole
D835V2-SN 4d015 (2013-11-25)
D1900V2-SN 5d028 (2013-11-27)
D2450V2-SN 733 (2013-11-26)
D2600V2-SN 1093 (2014-09-23)
2. DAE
DAE4-SN 918 (2014-12-29)
3. Probe
EX3DV4-SN 3962 (2014-11-24)
EX3DV4-SN 3962 (2015-03-31)

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: **SCS 108**

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Client **SGS-SZ (Auden)**

Certificate No: **D835V2-4d105_Nov13**

CALIBRATION CERTIFICATE

Object **D835V2 - SN: 4d105**

Calibration procedure(s) **QA CAL-05.v9**
 Calibration procedure for dipole validation kits above 700 MHz

Calibration date: **November 25, 2013**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-15
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by:	Name	Function	Signature
	Israe El-Naouq	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: November 26, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	40.8 \pm 6 %	0.94 mho/m \pm 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.50 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.64 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.26 W/kg \pm 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	54.7 \pm 6 %	1.01 mho/m \pm 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.28 W/kg \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.55 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.06 W/kg \pm 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω - 4.1 $j\Omega$
Return Loss	- 27.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.9 Ω - 6.0 $j\Omega$
Return Loss	- 23.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.395 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 26, 2010

DASY5 Validation Report for Head TSL

Date: 25.11.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d105

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.94$ S/m; $\epsilon_r = 40.8$; $\rho = 1000$ kg/m³

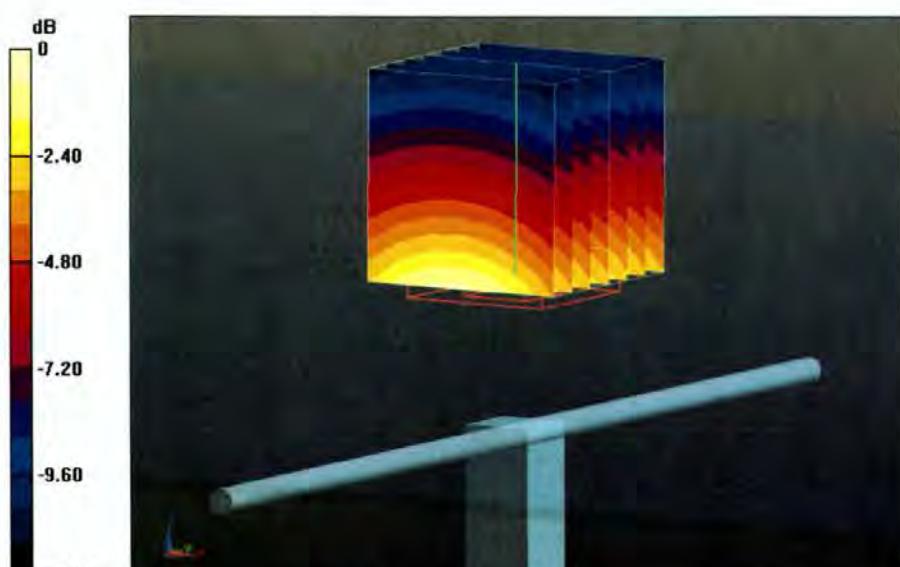
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

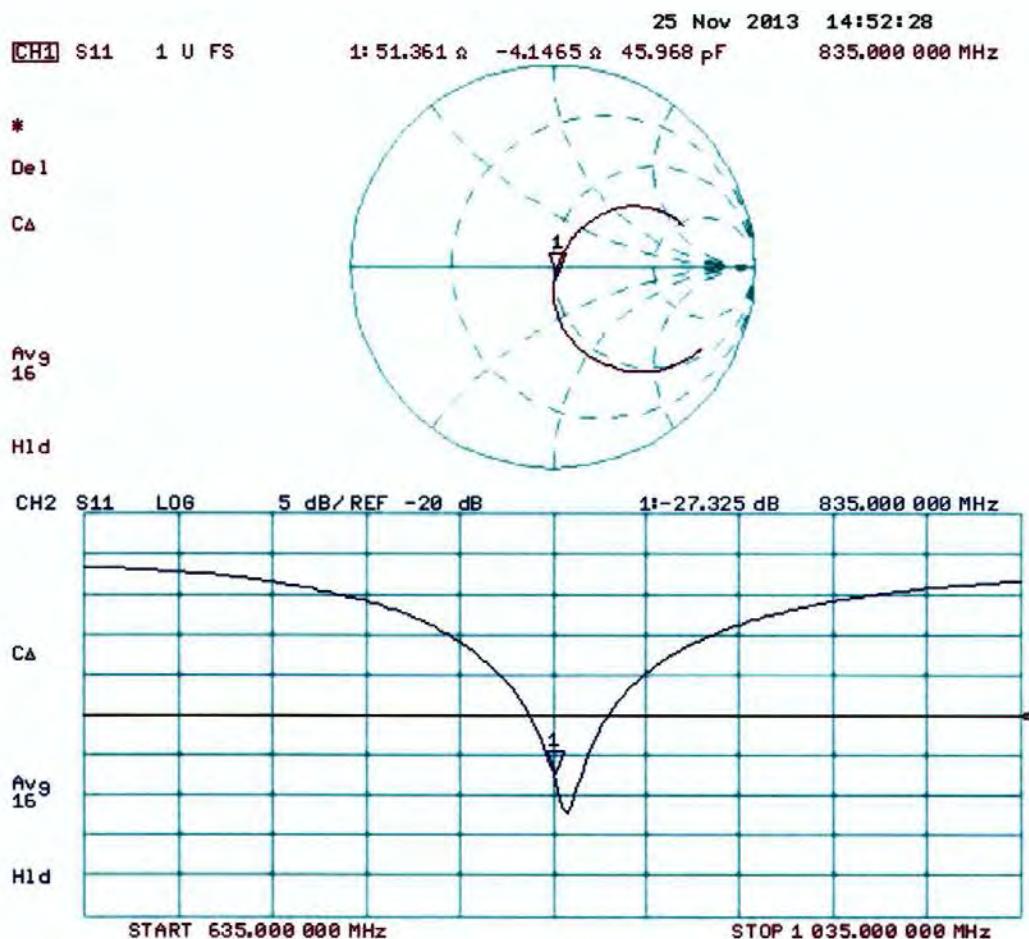
- Probe: ES3DV3 - SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.324 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 3.80 W/kg


SAR(1 g) = 2.5 W/kg; SAR(10 g) = 1.61 W/kg

Maximum value of SAR (measured) = 2.92 W/kg

0 dB = 2.92 W/kg = 4.65 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 25.11.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d105

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 1.007$ S/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³

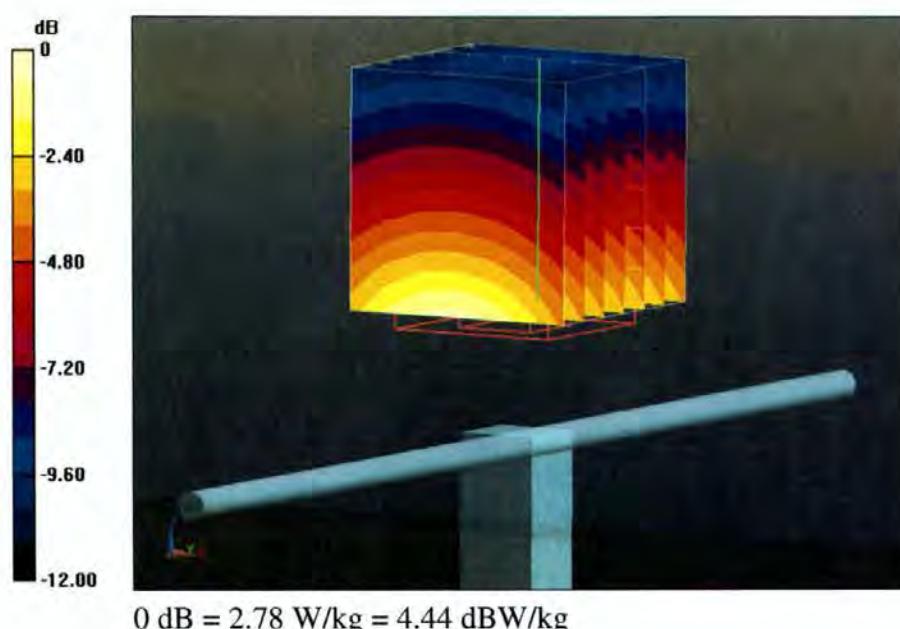
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

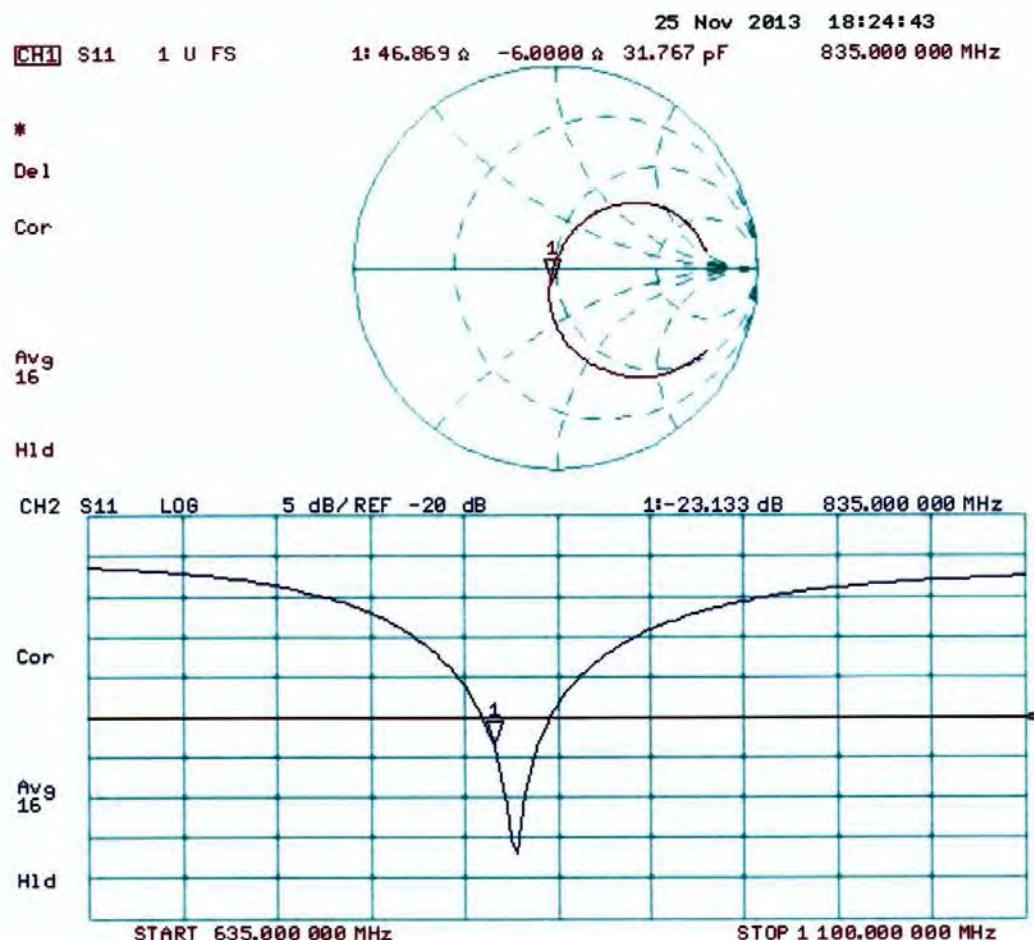
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

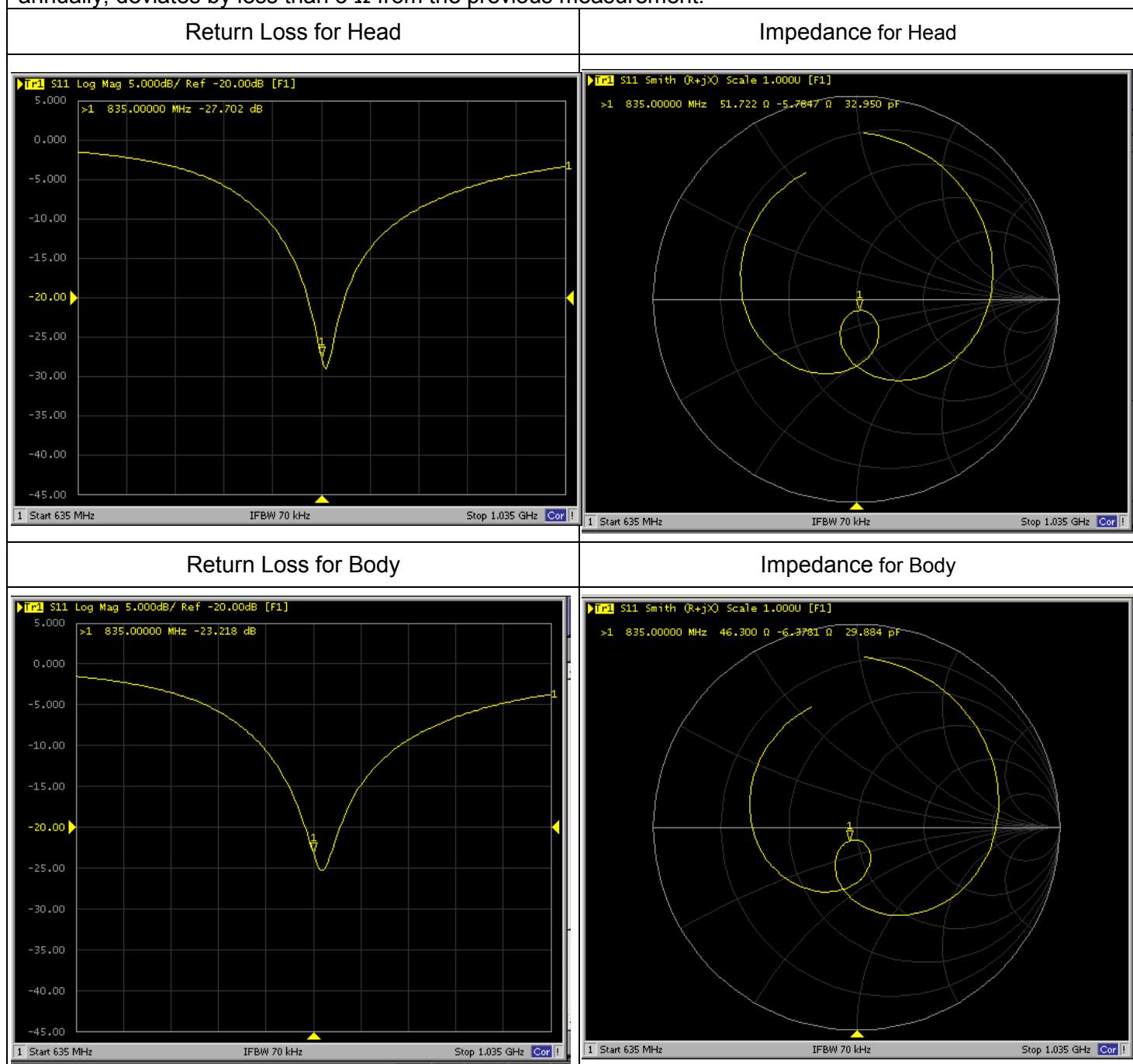
Reference Value = 54.53 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 3.53 W/kg

SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.55 W/kg

Maximum value of SAR (measured) = 2.78 W/kg

Impedance Measurement Plot for Body TSL



Dipole Calibration for Impedance and Return-loss

Model NO.:	D835V2	Serial NO.:	4d105	Measurement Date:	2014-11-24
Liquid Type	Target Value:		Measured Value:		verdict
	Impedance	Return Loss	Impedance	Return Loss	
Head	51.4 Ω -4.1j Ω	-27.3dB	51.7 Ω -5.8j Ω	-27.7dB	Complied
Body	46.9 Ω -6.0j Ω	-23.1dB	46.3 Ω -6.4j Ω	-23.2dB	Complied

Remark: According to KDB 865664 D01, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements:

- 1) The most recent return-loss result, measured at least annually, deviates by less than 20% from the previous measurement and meeting the required 20 dB minimum return-loss requirement.
- 2) The most recent measurement of the real and imaginary parts of the impedance, measured at least annually, deviates by less than 5 Ω from the previous measurement.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Client

SGS-SZ (Auden)

Accreditation No.: **SCS 108**

Certificate No: **D1900V2-5d028_Nov13**

CALIBRATION CERTIFICATE

Object **D1900V2 - SN: 5d028**

Calibration procedure(s) **QA CAL-05.v9**
 Calibration procedure for dipole validation kits above 700 MHz

Calibration date: **November 27, 2013**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-15
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by: **Jeton Kastrati** **Laboratory Technician**

Approved by: **Katja Pokovic** **Technical Manager**

Issued: November 27, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.