

TESTING CERT #1255.01

W66 N220 Commerce Court • Cedarburg, WI 53012

Phone: 262.375.4400 • Fax: 262.375.4248

www.lsr.com

TEST REPORT # 316019

LSR Job #: C-2526

Compliance Testing of:

Halo/Halo+

Test Date(s):

9/2/16 – 10/26/16

Prepared For:

Attn: Stephen Sheppard
White Stagg, LLC dba Halo Smart Labs
222 S. Church St. Suite 100
Charlotte, NC 28202

This Test Report is issued under the Authority of:

Shane Dock, EMC Engineer

Signature:

Date: 12/14/16

Test Report Reviewed by:

Adam Alger, Quality Systems Engineer

Signature:

Date: 12/13/16

Project Engineer:

Shane Dock, EMC Engineer

Signature:

Date: 12/14/16

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS

EXHIBIT 1. INTRODUCTION	4
1.1 - Scope.....	4
1.2 – Normative References.....	4
1.3 - LS Research, LLC Test Facility	5
1.4 – Location of Testing	5
1.5 – Test Equipment Utilized.....	5
EXHIBIT 2. PERFORMANCE ASSESSMENT	6
2.1 – Client Information	6
2.2 - Equipment Under Test (EUT) Information	6
2.3 - Associated Antenna Description.....	6
2.4 - EUT'S Technical Specifications.....	7
2.5 - Product Description	8
EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS	9
3.1 - Climate Test Conditions	9
3.2 - Applicability & Summary of EMC Emission Test Results	9
3.3 - Modifications Incorporated In The EUT For Compliance Purposes.....	9
3.4 - Deviations & Exclusions From Test Specifications	9
EXHIBIT 4. CONFORMANCE SUMMARY	10
EXHIBIT 5. UNWANTED EMISSIONS INTO THE RESTRICTED FREQUENCY BANDS.....	11
5.1 - Test Setup.....	11
5.2 - Test Procedure.....	11
5.3 - Test Equipment Utilized	12
5.4 - Test Results	12
5.5 - Calculation of Radiated Emissions Limits and reported data.	13
5.6 - Data	14
5.7 – Screen Captures.....	15
EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE.....	19
6.1 Test Setup.....	19
6.2 Test Procedure.....	19
6.3 Test Equipment Utilized.....	19
6.4 Test Results	19
6.5 FCC Limits of Conducted Emissions at the AC Mains Ports	20
6.6 Conducted Emissions Test Data Chart.....	21

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

6.7	Screen Captures – Conducted Emissions Test.....	22
EXHIBIT 7. OCCUPIED BANDWIDTH.....		23
7.1 - Limits.....		23
7.2 - Method of Measurements.....		23
7.3 - Test Data		24
7.4 – Screen Captures		24
EXHIBIT 8. BAND EDGE MEASUREMENTS		28
8.1 - Method of Measurements.....		28
8.2. Band edge screen captures.....		28
EXHIBIT 9. POWER OUTPUT (CONDUCTED): 15.247(b)		33
9.1 - Method of Measurements.....		33
9.2 - Test Data		33
EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS: 15.247(d)		37
10.1 - Limits.....		37
10.2 – Conducted Harmonic and Spurious RF Measurements		37
10.3 - Test Data		38
EXHIBIT 11. POWER SPECTRAL DENSITIES: 15.247(e)		39
11.1 Limits		39
11.2 Test Data		40
11.3 Screen Captures – Power Spectral Density		40
EXHIBIT 12. FREQUENCY STABILITY OVER VOLTAGE VARIATIONS		42
APPENDIX A – Test Equipment List.....		43
APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO		44
APPENDIX C - Uncertainty Statement		45

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

EXHIBIT 1. INTRODUCTION

1.1 - Scope

References:	FCC Part 15, Subpart C, Section 15.247
Title:	FCC : Telecommunication – Code of Federal Regulations, CFR 47, Part 15.
Purpose of Test:	To gain FCC and IC Certification Authorization for Low-Power License-Exempt Transmitters.
Test Procedures:	FCC KDB 558074 D01 DTS Measurement Guidance v03r05 ANSI C63.10 ANSI C63.4
Environmental Classification:	Residential

1.2 - Normative References

Publication	Year	Title
FCC CFR Parts 0-15	2016	Code of Federal Regulations – Telecommunications
ANSI C63.4	2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
FCC KDB 558074 D01 DTS Measurement Guidance v03r05	2016	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

1.3 - LS Research, LLC Test Facility

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) as conforming to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. Accreditation status can be verified at A2LA's web site: www.a2la2.org.

1.4 - Location of Testing

All testing was performed at the following location utilizing the facilities listed below, unless otherwise noted.

LS Research, LLC
W66 N220 Commerce Court
Cedarburg, Wisconsin, 53012 USA,

List of Facilities Located at LS Research, LLC:

Semi-Anechoic Chamber

1.5 - Test Equipment Utilized

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated by a calibration laboratory accredited to the requirements of ISO/IEC 17025, and traceable to the SI standard.

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 - Client Information

Manufacturer Name:	White Stagg, LLC dba Halo Smart Labs
Address:	222 S. Church St. Suite 100 Charlotte, NC 28202
Contact Name:	Stephen Sheppard

2.2 - Equipment Under Test (EUT) Information

The following information has been supplied by the applicant.

Product Name:	Halo/Halo+
Model Number:	SABCA1 (Halo)/ SABDA1 (Halo+)
Serial Number:	Engineering Sample 1 (Halo+ Radiated Emissions < 1 GHz) Engineering Sample 2 (Halo Radiated Emissions) Engineering Sample 3 (Conducted Radio Measurements) S163400038 (Radiated Emissions > 1 GHz)

2.3 - Associated Antenna Description

The antenna is a chip antenna and it is manufactured by Taiyo Yuden, model number AH316M245001-T. This antenna has a peak gain of 1.9 dB.

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

2.4 - EUT'S Technical Specifications

EUT Frequency Range (in MHz)	2405MHz – 2475MHz
Type of Modulation	DSSS
Transmitter Spurious (worst case) at 3 meters	52.5 dB μ V/m at 4820.89 on Channel 12 for the Halo+ Unit (52.7 dB μ V/m for the Halo Unit) (Average measurement)
Frequency Tolerance %, Hz, ppm	Better than 100 ppm
Microprocessor Model # (if applicable)	Zigbee: Silicon Labs EM3587-RTR
Antenna Information	
Detachable/non-detachable	Non-detachable
Type	Chip Antenna
Gain	1.9 dBi
EUT will be operated under FCC Rule Part(s)	Title 47 part 15.247
Modular Filing	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No

	Zigbee
Maximum Conducted Output Power (dBm)	18.599
Maximum Conducted Output Power (Watts)	0.072
Minimum Conducted Output Power (dBm)	8.366
Minimum Conducted Output Power (Watts)	0.007
99% Bandwidth (MHz)	2.417
6 dB Bandwidth (MHz)	1.628

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

2.5 - Product Description

Halo and Halo+ are both Dual-Principal Smoke and Carbon Monoxide (“CO”) Alarms that utilize a 120 VAC Mains connected primary power source with a non-user serviceable battery backup as a secondary power source. Halo and Halo+ both have 2.4 GHz WLAN send and receive wireless connectivity and 2.4 GHz ZigBee send and receive wireless connectivity. Halo+ comes with a National Oceanic and Atmospheric Administration (“NOAA”) All Hazards Weather Receiver Integrated Circuit (“IC”) and associated antenna. The Weather Receiver IC is receive only and does not have transmit functionality. Halo and Halo+ are both designed to detect hazardous levels of Smoke and CO, are intended for open area protection in indoor locations of residential units, and are equipped with visual and audible alarm indicators. Also integrated into the design is an alarm silencing feature, a smart-device application (“App”) remote control receiver for Testing and silencing, and a low battery indicator with silence functionality.

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 - Climate Test Conditions

Temperature:	70 -74° F
Humidity:	30-42%
Pressure:	728-741mmHg

3.2 - Applicability & Summary of EMC Emission Test Results

FCC and IC Paragraph	Test Requirements	Compliance (Yes/No)
FCC : 15.207	Power Line Conducted Emissions Measurements	Yes
FCC : 15.247 (a)(2)	99% Bandwidth	Yes
FCC : 15.247(b)(3) & 1.1310	Maximum Output Power	Yes
FCC :15.247(d)	RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	Yes
FCC:15.247 (a)(2)	6 dB Bandwidth of a Digital Modulation System	Yes
FCC:15.247 (e)	Power Spectral Density of a Digital Modulation System	Yes
FCC : 15.247(d), 15.209 & 15.205	Transmitter Radiated Emissions	Yes

3.3 - Modifications Incorporated In The EUT For Compliance Purposes

None Yes (explain below)

3.4 - Deviations & Exclusions From Test Specifications

None Yes (explain below)

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

EXHIBIT 4. CONFORMANCE SUMMARY

When tested between September 2nd and October 26 of 2016, it was determined that the EUT, the HALO and HALO+, were compliant with the requirements of:

FCC Title 47 CFR Part 15.247

Using the methods of ANSI C63.10-2013

Any modifications made to the EUT after the specified test date(s) will invalidate the data herein.

If some emissions measurements are seen to be within the uncertainty value, as listed in Appendix C there is a possibility that this unit may not meet the required limit specification if subsequently tested.

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

EXHIBIT 5. UNWANTED EMISSIONS INTO THE RESTRICTED FREQUENCY BANDS.

5.1 - Test Setup

The test setup was assembled in accordance with Title 47, CFR FCC Part 15 and ANSI C63.10-2013. The EUT was placed on a 150 cm high non-conductive pedestal (80 cm for measurements under 1 GHz), centered on a flush mounted turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in continuous transmit mode for final testing. The unit has the capability to operate on 3 channels, controllable via proprietary software provided by the manufacturer.

The applicable limits apply at a 3 meter distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one of three (3) standard channels to comply with FCC Part 15.31(m).

5.2 - Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 25000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Biconical Antenna was used to measure emissions from 30 MHz to 200 MHz, and a Log Periodic Antenna was used to measure emissions from 200 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 18 GHz while a standard gain horn antenna was used in the 18 GHz to 25 GHz range. The maximum radiated RF emissions between 30MHz to 25 GHz were found by raising and lowering the sense antenna between 1 and 4 meters in height, using both horizontal and vertical antenna polarities. A tilt gear was utilized to keep the EUT within the cone of radiation for measurements above 1 GHz.

The EUT was positioned in 3 orthogonal orientations.

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

5.3 - Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at a calibration laboratory accredited to ISO 17025, and are traceable to the SI standard. The resulting correction factors and the cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with a resolution bandwidth of 120 kHz for measurements below 1 GHz (video bandwidth of at least 300 kHz), and a resolution bandwidth of 1 MHz for measurements above 1 GHz (video bandwidth of at least 3 MHz). For some plots, a reduced video bandwidth was used in order to identify spurious emissions (The relevant plots are labeled as such). In these cases, the standard video bandwidth was used with the appropriate detectors for measurement.

5.4 - Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.247 1 for a DTS transmitter. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

5.5 - Calculation of Radiated Emissions Limits and reported data.

Reported data:

For both fundamental and spurious emissions measurement, the data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement (dB μ V/m) + Antenna correction Factor + Cable factor (dB) + Miscellaneous factors when applicable (dB) – amplification factor when applicable (dB).

Generic example of reported data at 200 MHz:

Reported Measurement data = 18.2 (raw receiver measurement) + 15.8 (antenna factor) + 1.45 (cable factor) = 35.45 (dB μ V/m).

As specified in 15.247 (d), radiated emissions that fall within the restricted band described in 15.205(c) for FCC must comply with the general emissions limit.

The following table depicts the general radiated emission limits above 30 MHz. These limits are obtained from Title 47 CFR, Part 15.209, for radiated emissions measurements. These limits were applied to any signals found in the 15.205 restricted bands. The mentioned limits correspond to those limits listed in RSS GEN.

Frequency (MHz)	3 m Limit μ V/m	3 m Limit (dB μ V/m)	1 m Limit (dB μ V/m)
30-88	100	40.0	-
88-216	150	43.5	-
216-960	200	46.0	-
960-40,000	500	54.0	63.5

Sample conversion of field strength (μ V/m to dB μ V/m):

$\text{dB}\mu\text{V/m} = 20 \log_{10} (100) = 40 \text{ dB}\mu\text{V/m}$ (from 30-88 MHz)

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

5.6 - Data

Manufacturer:	White Stagg/Halo Smart Labs				
Date(s) of Test:	9/2/16, 10/21/16 – 10/26/16				
Project Engineer(s):	Shane Dock				
Test Engineer(s):	Shane Dock				
Voltage:	120 VAC, 60 Hz				
Operation Mode:	Continuous transmit, modulated				
Environmental Conditions in the Lab:	Temperature: 70-74° F Relative Humidity: 30-42%				
EUT Power:	X	Single Phase 120VAC			3 Phase ____ VAC
		Battery			Other: Bench DC Supply
EUT Placement:	X	150 cm non-conductive pedestal (80 cm for <1 GHz)			10cm Spacers
EUT Test Location:	X	3 Meter Semi-Anechoic FCC Listed Chamber			3/10m OATS
Measurements:		Pre-Compliance		Preliminary	X
Detectors Used:	X	Peak		X	Quasi-Peak
				X	Average

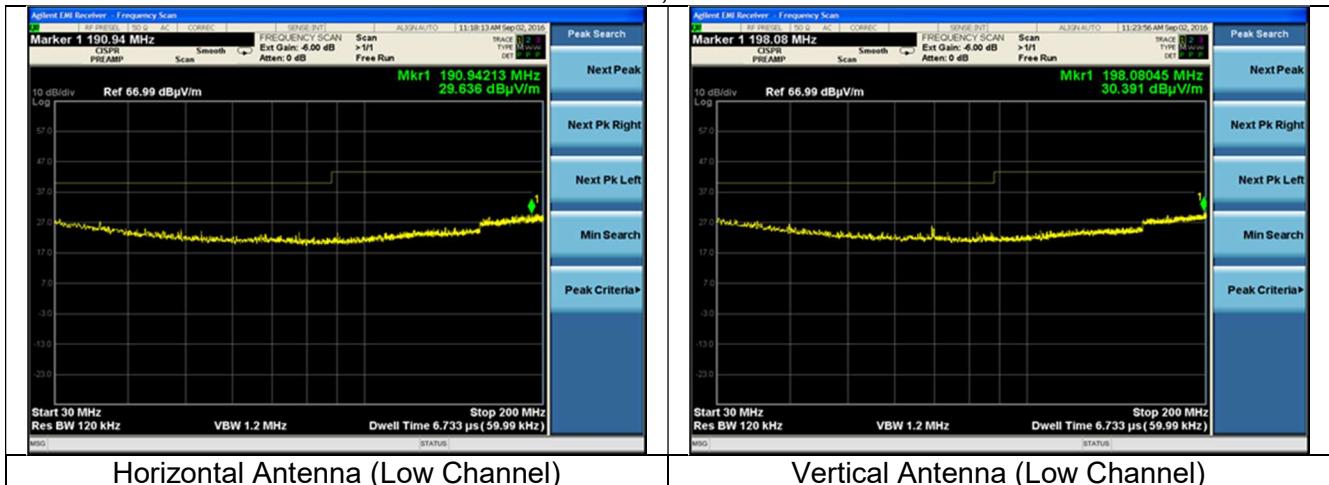
Note: Unless otherwise noted, all measurements and screen captures are for the Halo Plus Unit.

Measurements below 1 GHz:

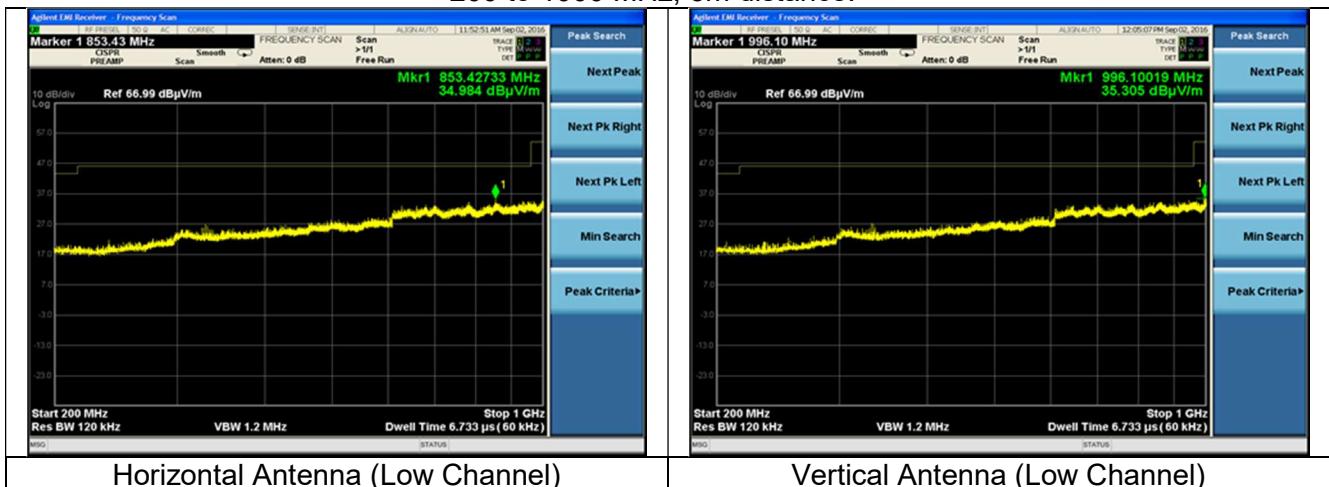
Frequency (MHz)	Height (m)	Azimuth (degree)	Quasi Peak Reading (dB μ V/m)	Quasi Peak Limit (dB μ V/m)	Margin (dB)	Antenna Polarity	EUT orientation	Notes
69.2	1.00	115	17.22	40.0	22.8	V	Vertical	-
184.6	1.00	50	23.5	43.5	20.0	H	Vertical	-
853.4	1.00	0	28.51	46.0	17.5	H	Vertical	Noise Floor
996.1	1.00	0	29.27	54.0	24.7	V	Vertical	Noise Floor

Measurements above 1 GHz:

Note: Table below shows the emissions from each channel in the restricted band in their worst-case orientations.

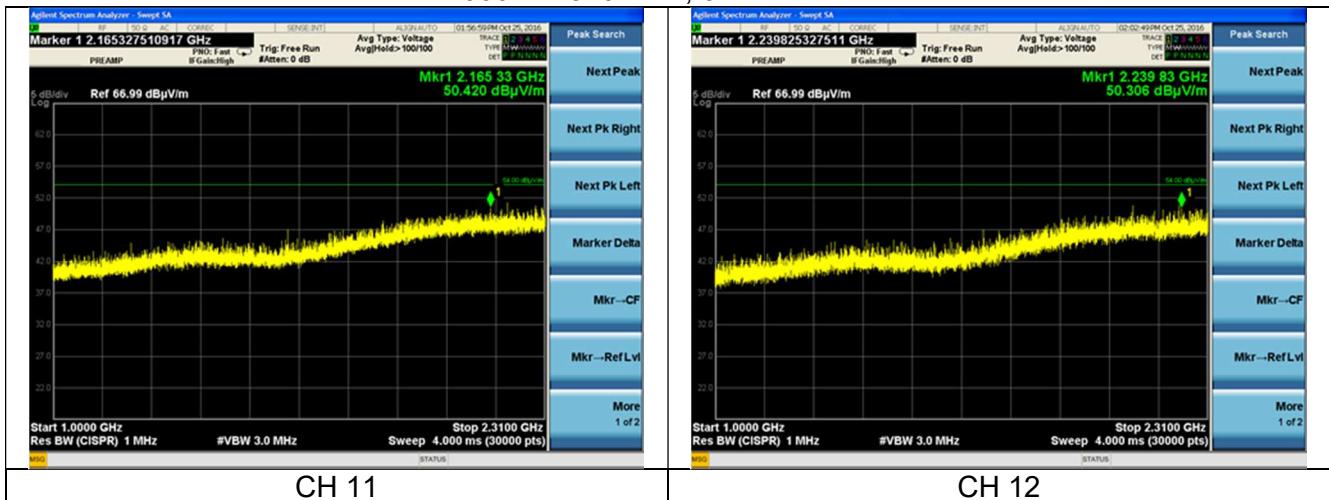

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dB μ V/m)	Avg Reading (dB μ V/m)	Avg Limit (dB μ V/m)	Margin (dB)	Antenna Polarity	EUT orientation
4821	1.05	22.25	58.6	52.5	54.0	1.5	Vertical	Vertical
4880	1.50	26.25	52.5	45.9	54.0	8.1	Vertical	Vertical
7320	1.70	14.75	56.4	49.0	54.0	5.0	Vertical	Vertical
4940	2.60	129.75	51.8	45.1	54.0	8.9	Vertical	Vertical
7410	2.00	21.75	57.5	50.4	54.0	3.6	Vertical	Vertical

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526


5.7 – Screen Captures.

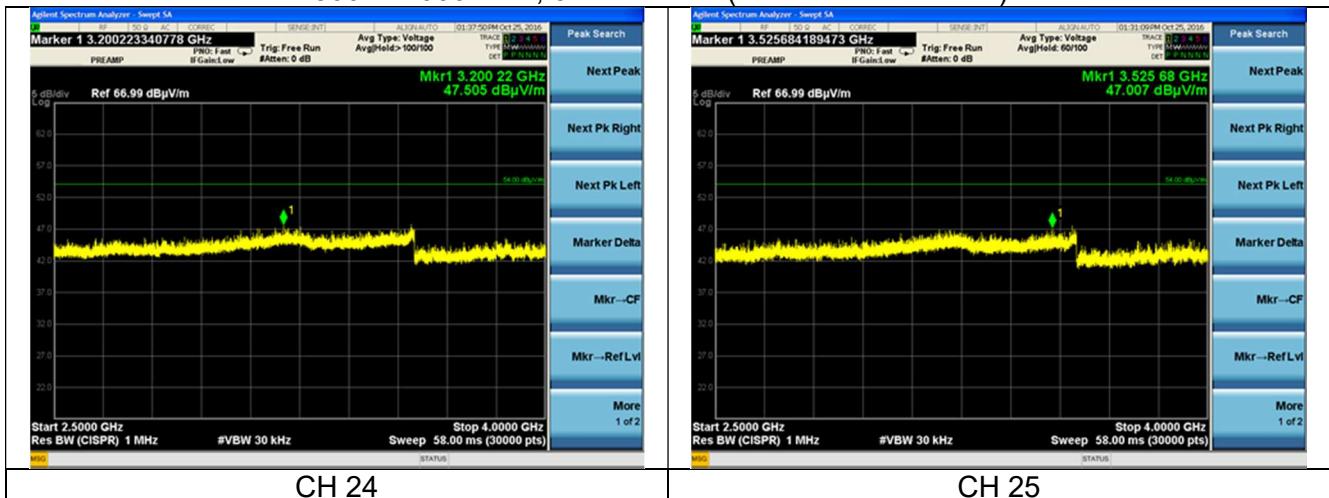
The screen captures below are those using the Peak detector of the analyzer. In addition, the screen captures presented are those which were deemed to be an appropriate representation of the spectrum scan.

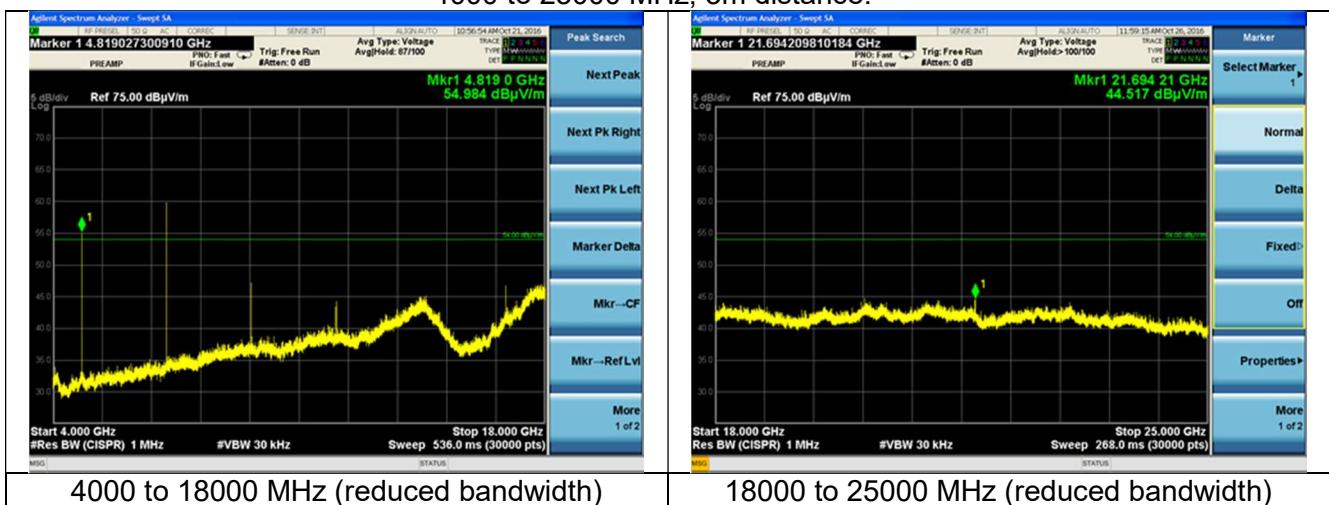
30 to 200 MHz, 3m distance



200 to 1000 MHz, 3m distance.

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526


1000 to 2310 MHz, 3m distance


Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

Note: The ranges 2310 to 2390 and 2483.5 to 2500 MHz are in section 8 of this report (Band-edges).

2500 to 4000 MHz, 3m distance. (Reduced Bandwidth)

4000 to 25000 MHz, 3m distance.

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

Halo Unit

The worst-case harmonic emission found in a restricted band for the Halo+ unit was checked on the same orientation and channel on the Halo unit. The emission was the second harmonic of channel 12:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBµV/m)	Avg Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
4820.98	189.66	354.75	58.6	52.7	54.0	1.3	Vertical	Vertical

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE

6.1 Test Setup

The test area and setup are in accordance with ANSI C63.4 and with Title 47 CFR, FCC Part 15. The EUT was placed on a non-conductive wooden table, with a height of 80 cm above the reference ground plane. The power supply was then plugged into a 50Ω (ohm) Line Impedance Stabilization Network (LISN). The AC power supply was provided via an appropriate broadband EMI Filter, and then to the LISN line input. Final readings were then taken and recorded. After the EUT was setup and connected to the LISN, the RF Sampling Port of the LISN was connected through an internal limiter to EMI receiver System. The LISN used has the ability to terminate the unused port with a 50Ω (ohm) load when switched to either L1 (line) or L2 (neutral).

6.2 Test Procedure

The EUT was investigated in continuous modulated transmit mode for this portion of the testing. The appropriate frequency range and bandwidths were selected on the EMI Receiver, and measurements were made. The bandwidth used for these measurements is 9 kHz, as specified in CISPR 16-1, Section 1, Table 4, for Quasi-Peak and Average detectors in the frequency range of 150 kHz to 30 MHz. Final readings were then taken and recorded.

6.3 Test Equipment Utilized

A list of the test equipment and accessories utilized for the Conducted Emissions test is provided in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. The emissions are measured on the EMI System, which contains correction factors to account for the equipment used in measurements.

6.4 Test Results

The EUT was found to **MEET** the Conducted Emission requirements of FCC Part 15.207 for Conducted Emissions for an Intentional Radiator. See the Data Charts and Graphs for more details of the test results.

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

6.5 FCC Limits of Conducted Emissions at the AC Mains Ports

Frequency Range (MHz)	Class B Limits (dB μ V)		Measuring Bandwidth
	Quasi-Peak	Average	
0.150 -0.50 *	66-56	56-46	RBW = 9 kHz
0.5 – 5.0	56	46	VBW \geq 9 kHz for QP
5.0 – 30	60	50	VBW = 1 Hz for Average

* The limit decreases linearly with the Logarithm of the frequency in this range.

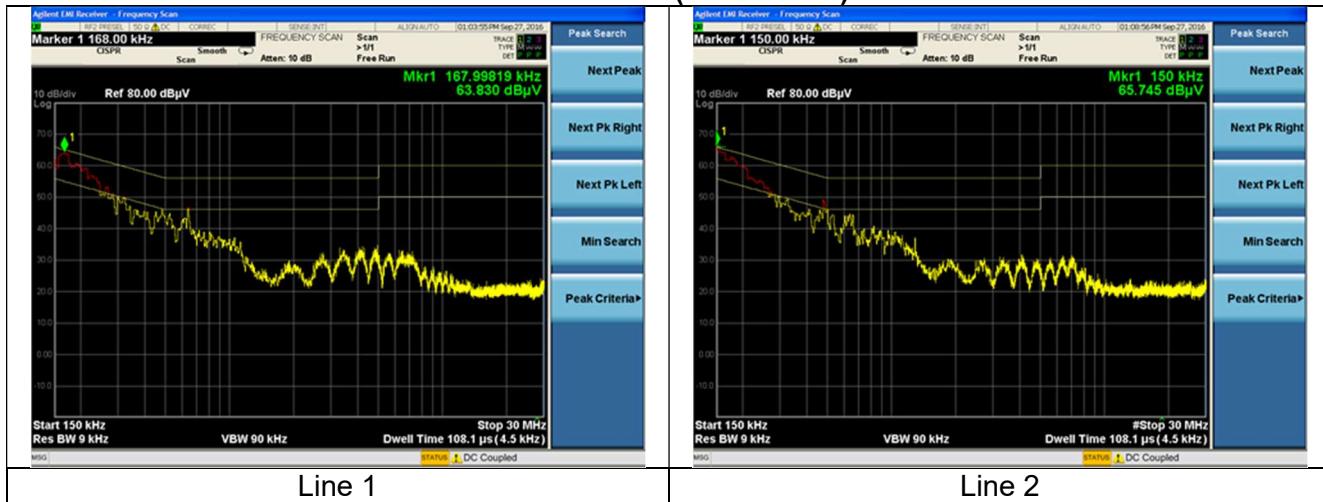
Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

6.6 Conducted Emissions Test Data Chart

Frequency Range inspected: 150 KHz to 30 MHz

Manufacturer:	White Stagg/Halo Smart Labs			
Date(s) of Test:	9/21/16			
Project Engineer:	Shane Dock			
Test Engineer:	Shane Dock			
Voltage:	120 VAC, 60 Hz			
Operation Mode:	Continuous transmit, modulated			
Environmental Conditions in the Lab:	Temperature: 71°F Relative Humidity: 40%			
Test Location:	X	AC Mains Test area		Chamber
EUT Placed On:	X	40cm from Vertical Ground Plane		10cm Spacers
	X	80cm above Ground Plane		Other:
Measurements:		Pre-Compliance	Preliminary	X Final
Detectors Used:		Peak	X Quasi-Peak	X Average

Note: All points measured below were measured with both radios transmitting on mid channel simultaneously, as this is worst case.


Line	Frequency (MHz)	Q-Peak Reading (dB μ V)	Q-Peak Limit (dB μ V)	Quasi-Peak Margin (dB)	Average Reading (dB μ V)	Average Limit (dB μ V)	Average Margin (dB)
1	0.150	59.7	66.0	6.3	38.0	56.0	18.0
1	0.168	57.1	65.1	8.0	36.7	55.1	18.4
1	0.190	54.8	64.0	9.2	34.1	54.0	19.9
2	0.150	59.4	66.0	6.6	37.7	56.0	18.3
2	0.177	56.5	64.6	8.1	35.4	54.6	19.2
2	0.478	42.3	56.4	14.1	30.6	46.4	15.8

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

6.7 Screen Captures – Conducted Emissions Test

These screen captures represent the worst-case Peak Emissions. For conducted emission measurements, both a Quasi-Peak detector function and an Average detector function are utilized.

Transmit Mode (Channel 18)

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

EXHIBIT 7. OCCUPIED BANDWIDTH

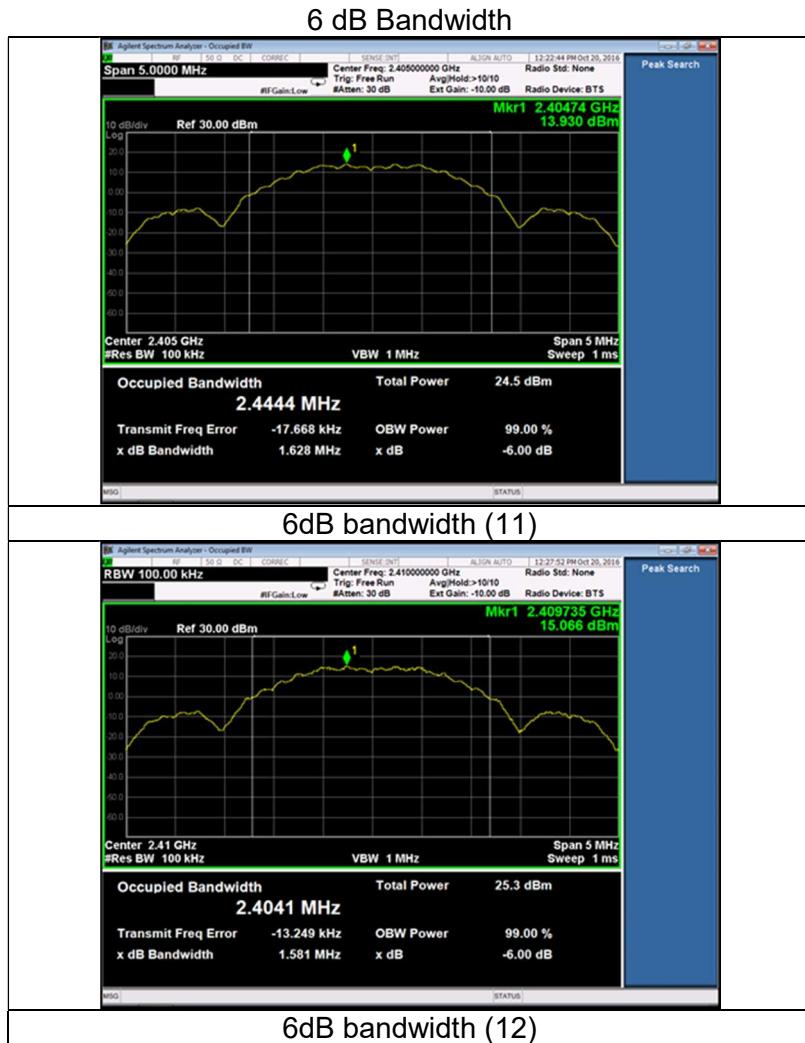
Test Engineer(s): Shane Dock

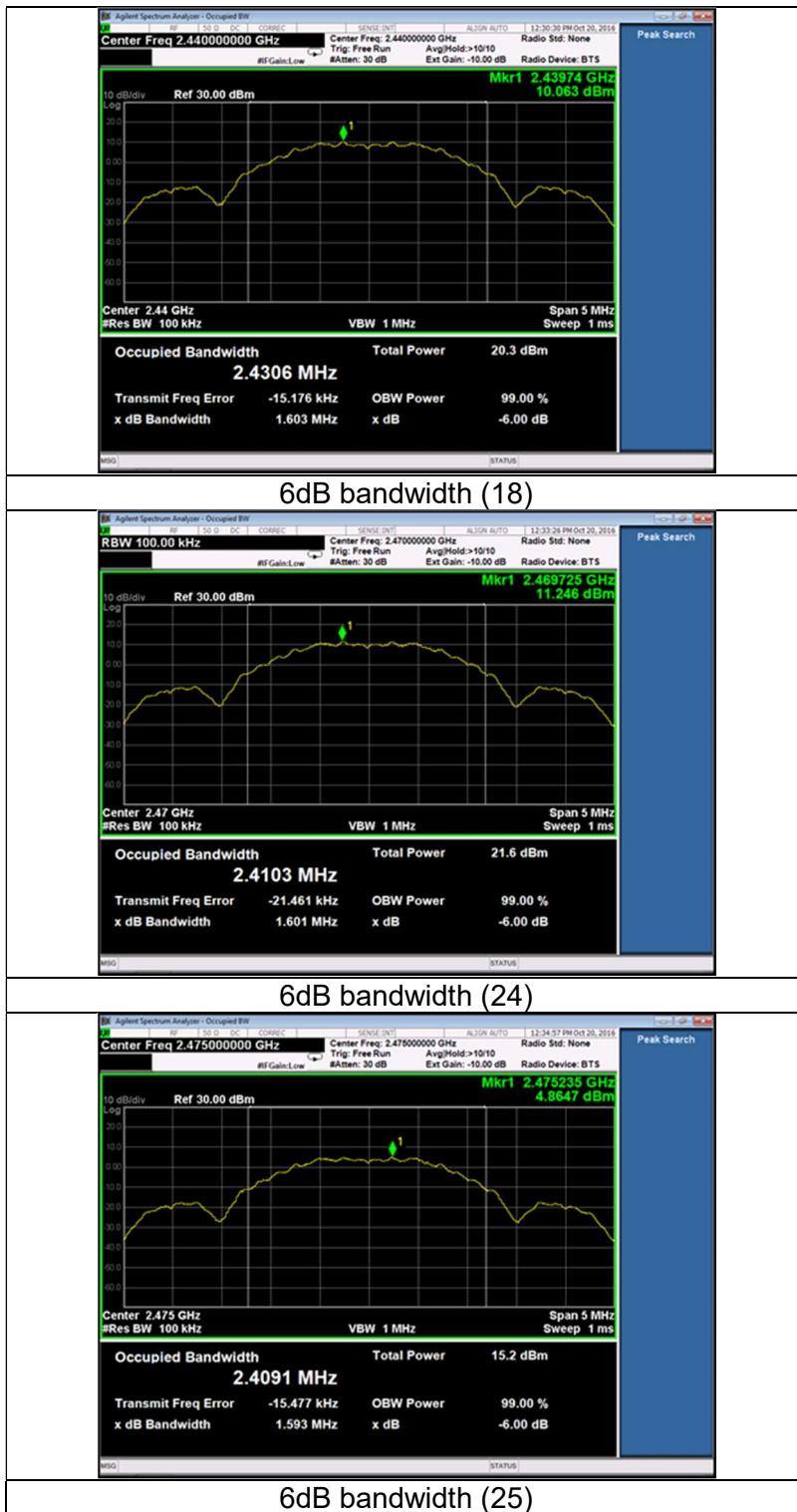
7.1 - Limits

For a DTS system operating in the 2400 to 2483.5 MHz band, the minimum 6dB emission bandwidth limit is 500 kHz.

7.2 - Method of Measurements

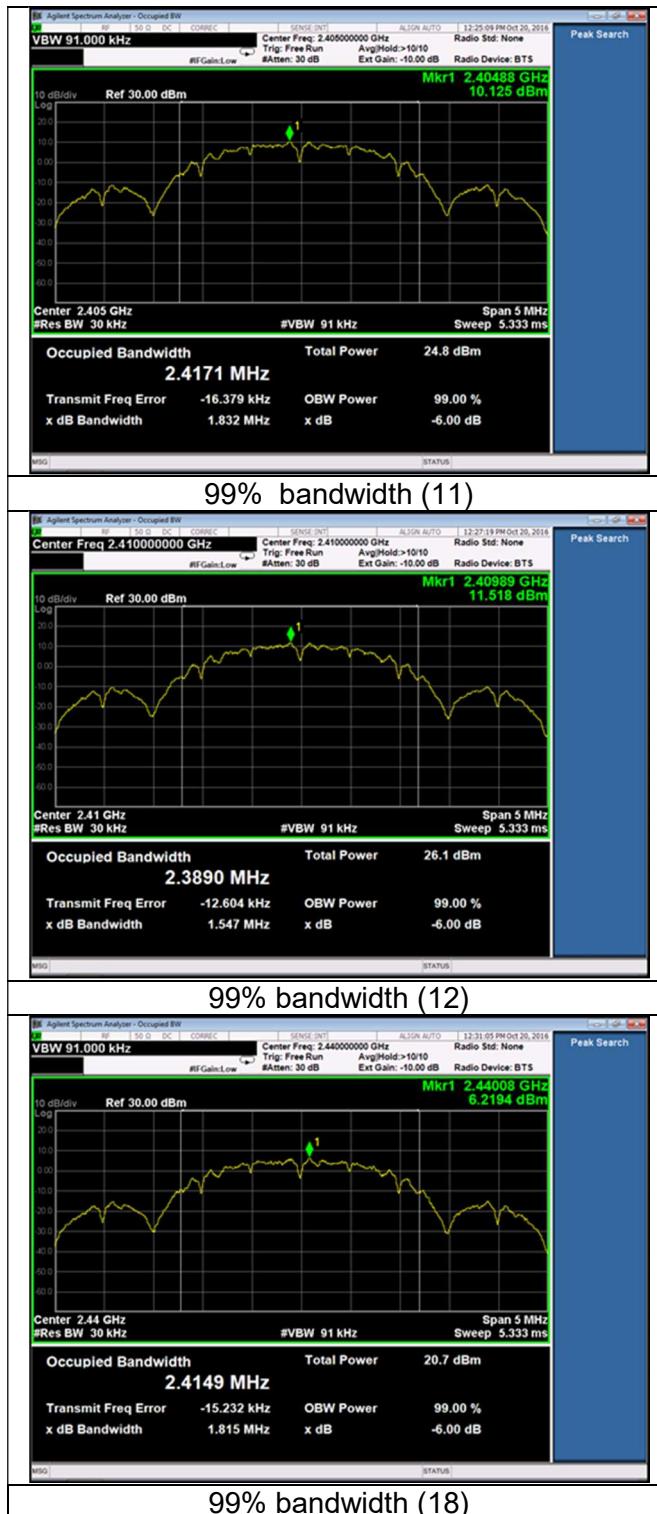
For this portion of the tests, a direct measurement of the transmitted signal was performed at the antenna port of the EUT, via a cable connection to a spectrum analyzer. An attenuator was placed in series with the cable to protect the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings thereby allowing direct measurements, without the need for any further corrections. The EUT was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. A bandwidth measurement function that is built into the spectrum analyzer was used to measure the 20dB/emission bandwidth while the 6dB bandwidth was measured in accordance **FCC OET KDB 558074 section 8**.

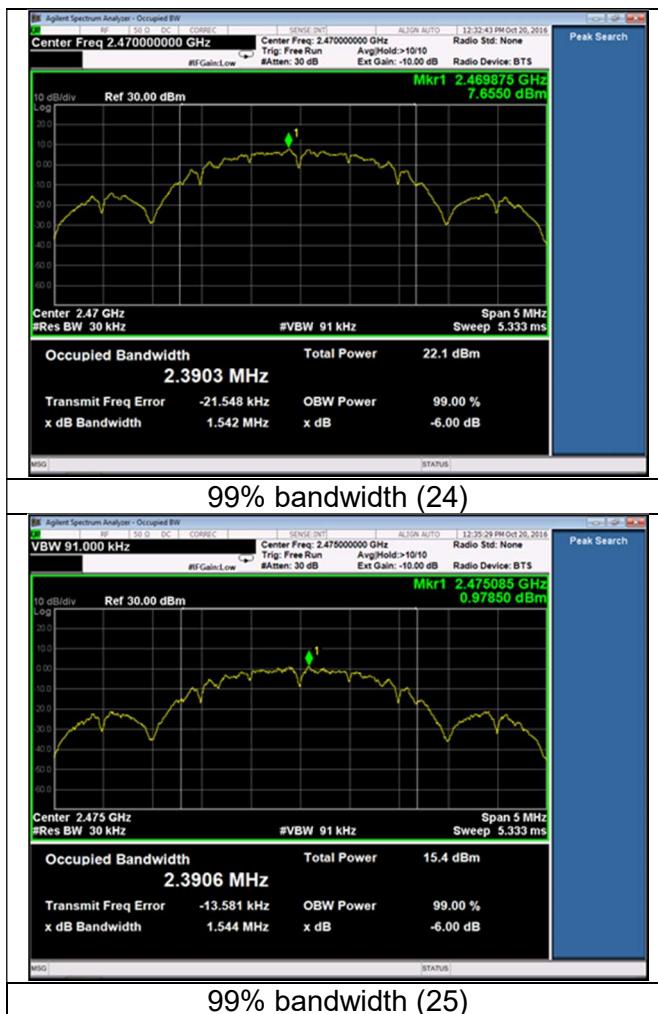

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526


7.3 - Test Data

Channel	6 dB BW (MHz)	99% BW (MHz)
11	1.628	2.417
12	1.581	2.389
18	1.603	2.415
24	1.601	2.390
25	1.593	2.391

7.4 - Screen Captures


Examples of bandwidth measurements:



Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

99% Bandwidth

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

EXHIBIT 8. BAND EDGE MEASUREMENTS

Test Engineer(s): Shane Dock

8.1 - Method of Measurements

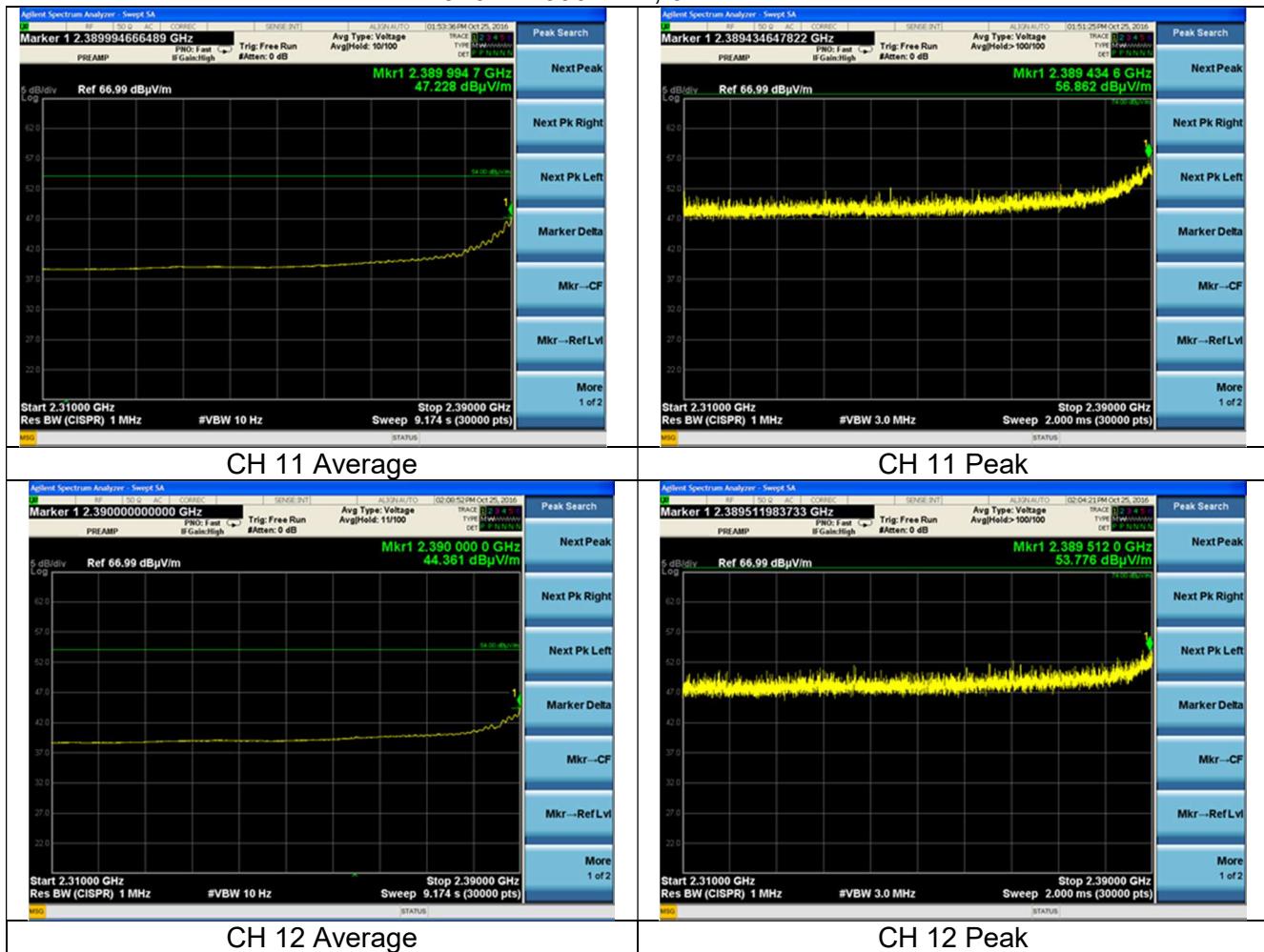
FCC 15.247 requires a measurement of spurious emission levels at the restricted band to be compliant to the general emissions limit, in particular at the Band-Edges where the intentional radiator operates. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source.

The Band-edge measurements were performed conducted (100 kHz bandwidth) and radiated. The measurement of band-edge was performed to satisfy FCC 15.247(d).

Per FCC KDB 558074 D01 Measurement Guidance v03r05 (section 11), conducted measurements were performed with 100 kHz bandwidth for all emissions outside of the band of operation. For measuring radiated emissions in the restricted band, a bandwidth of 120 kHz (below 1000MHz) or 1MHz (above 1000MHz) was used in accordance with C63.4.

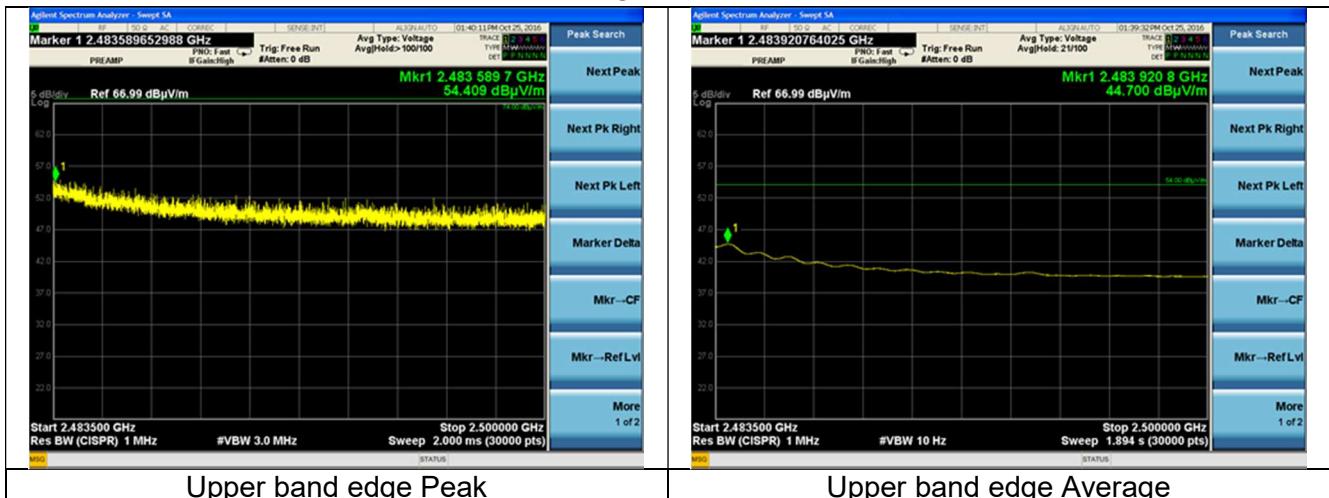
For both conducted and radiated measurements, correction factors and the cable loss factors were entered into the EMI Receiver database. As a result, the plots taken from the EMI Receiver accounts for all applicable correction factor as well as cable loss, and can therefore be entered into the database as a corrected meter reading.

8.2. Band Edge Screen Captures

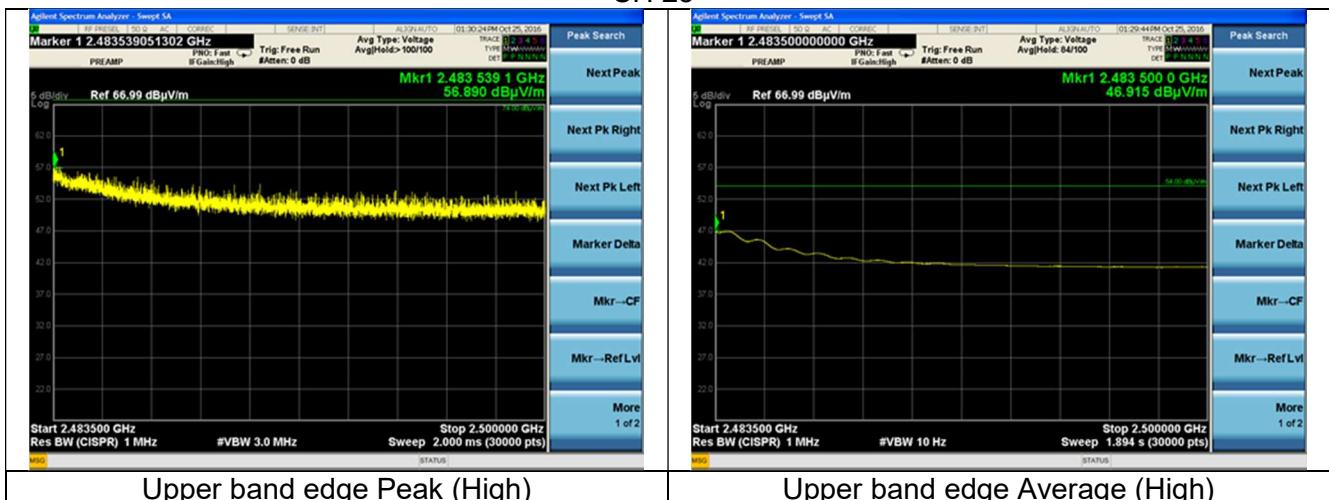

The data presented below are samples selected from the various data rates and channels tested.

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

Band-edge in Restricted Band


Radiated Band-edge in Restricted Band:

2310 to 2390 MHz, 3m distance



Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

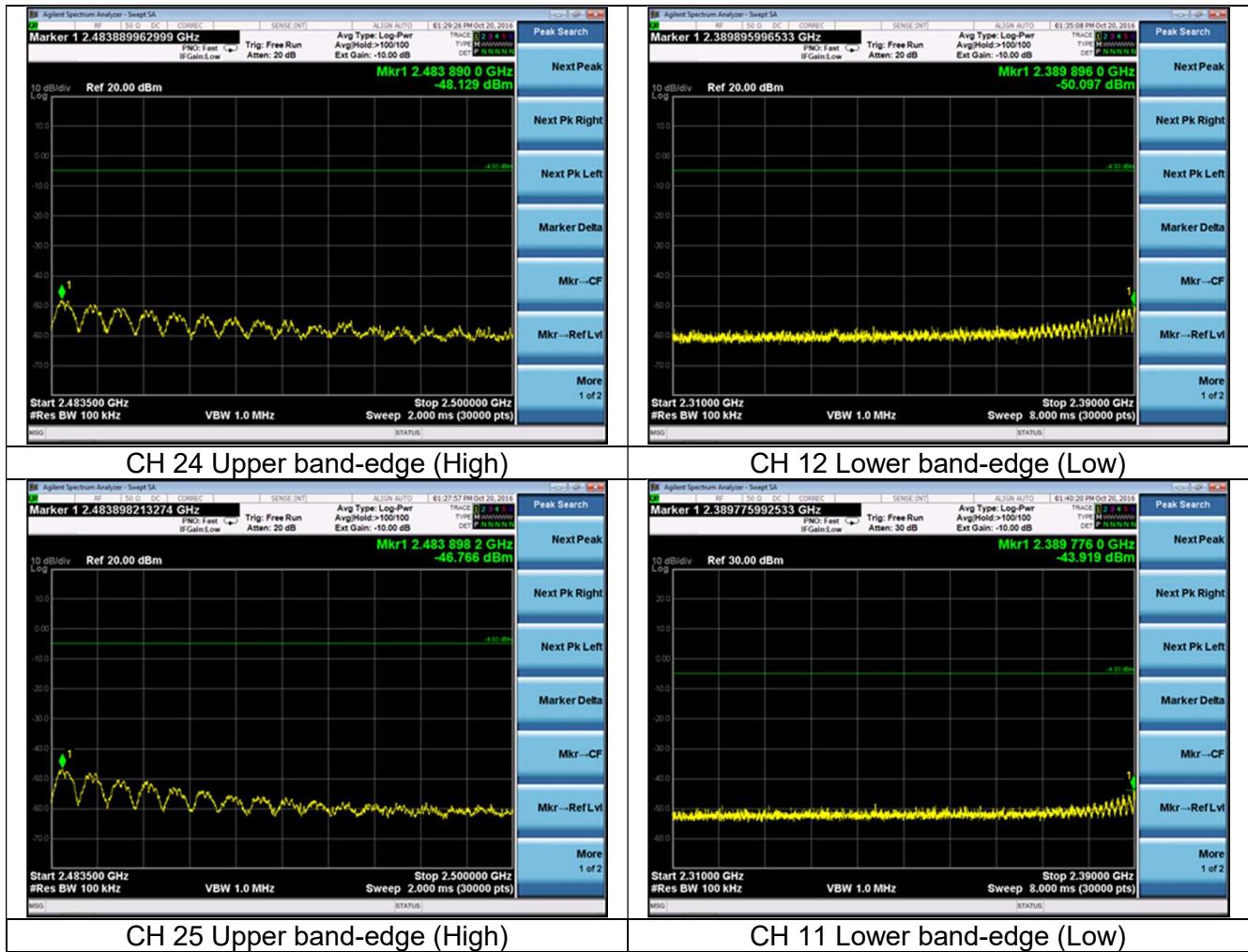
2483.5 to 2500 MHz Restricted band
CH 24

CH 25

Radiated Band Edge Data

Channel	Frequency (MHz)	Peak (dBuV/m)	Peak Limit (dBuV/m)	Peak Margin (dBuV/m)
11	2389.4	56.9	74.0	17.1
12	2389.5	53.8	74.0	20.2
24	2483.6	54.4	74.0	19.6
25	2483.5	56.9	75.0	18.1

Channel	Frequency (MHz)	Average (dBuV/m)	Average Limit (dBuV/m)	Average Margin (dBuV/m)
11	2390.0	47.2	54.0	6.8
12	2390.0	44.4	54.0	9.6
24	2483.9	44.7	54.0	9.3
25	2483.5	46.9	55.0	8.1


Conducted Band Edge Reference Pictures

Refer to Section 7.4 (6 dB bandwidth screenshots) for reference levels. Display lines on spurious pictures do not represent limit line.

Channel	Reference Level (dBm)	Limit (dBm)
11	13.930	-6.070
12	15.066	-4.934
18	10.063	-9.937
24	11.246	-8.754
25	4.865	-15.135

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

Band-edge in 100 kHz bandwidth (Conducted Band Edge)

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

EXHIBIT 9. POWER OUTPUT (CONDUCTED): 15.247(b)

Test Engineer(s): Shane Dock

9.1 - Method of Measurements

The conducted RF output power of the EUT was measured at the antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings thereby allowing direct measurements without the need for any further corrections. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source.

Measurement procedure used was FCC OET KDB 558074 D01 Measurement Guidance v03r05 section 9.1.1.

Peak Conducted Output Power Limit = 1 Watt (30 dBm).

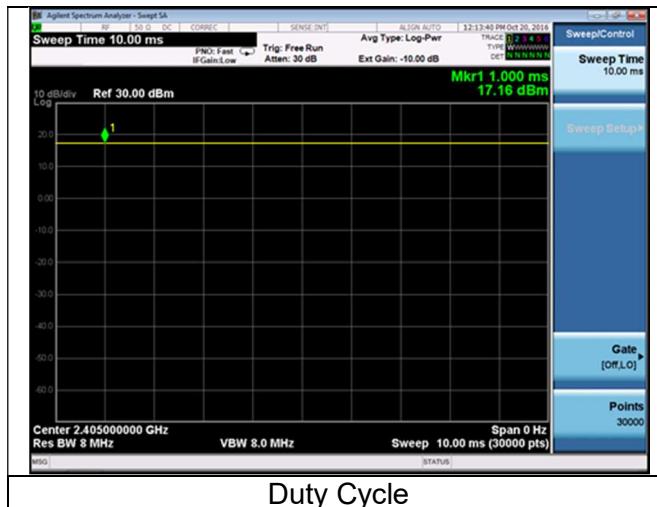
9.2 - Test Data

The data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement (dBm) + Cable factor (dB) + Miscellaneous factors when applicable (dB).

Generic example of reported data at 2440 MHz:

Reported Measurement data = 8.55 (raw receiver measurement in dBm) + 0.85 (cable factor in dB) = 9.4 (dBm).

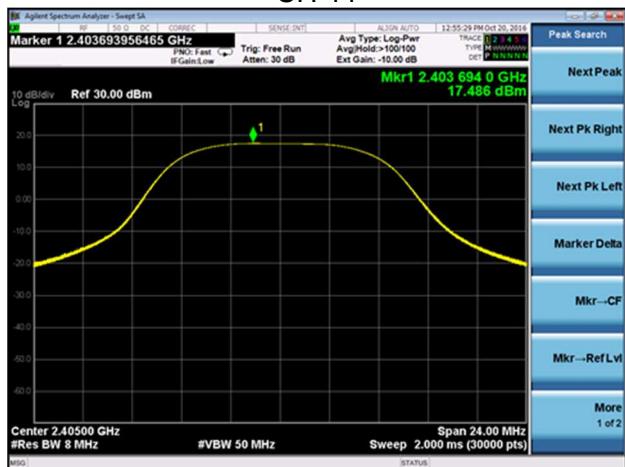

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

9.2.1. Maximum conducted peak power:

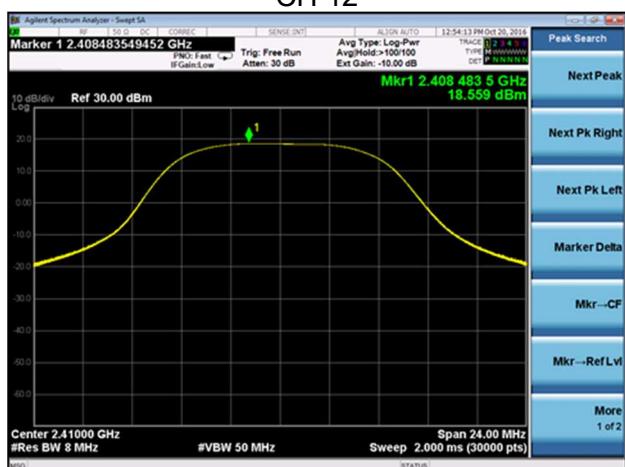
9.2.1.1 Duty cycle:

Measurement procedure: **FCC OET KDB 558074 D01 Measurement Guidance v03r05.**

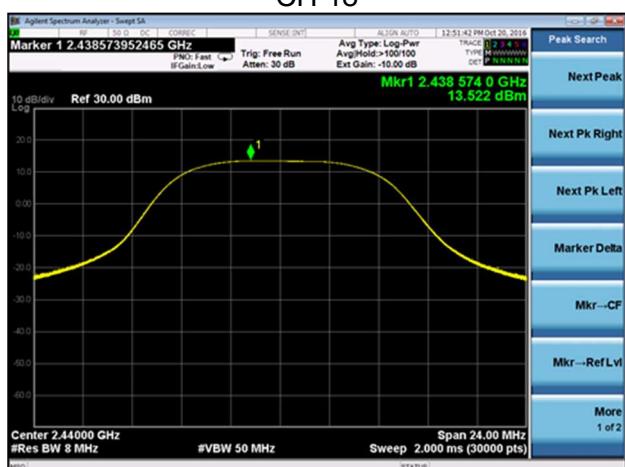
Screen captures:


100%, so no duty cycle correction is necessary.

9.2.1.2 Maximum conducted (average) output power:


Channel	Pout (dBm)
11	17.486
12	18.559
18	13.522
24	14.755
25	8.366

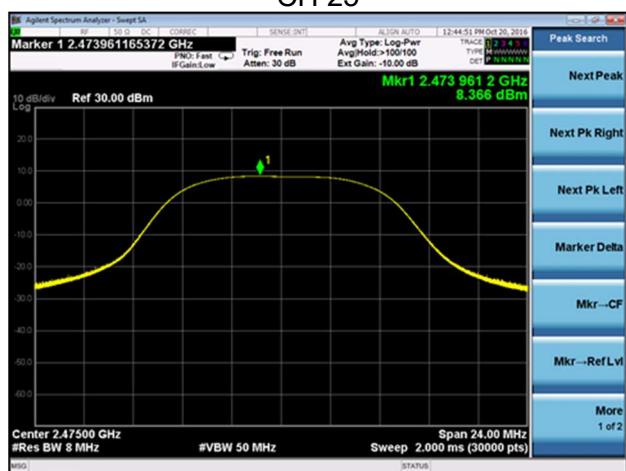
Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526


CH 11

CH 12



CH 18



Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

CH 24

CH 25

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

EXHIBIT 10. CONDUCTED SPURIOUS EMISSIONS: 15.247(d)

Test Engineer(s): Shane Dock

10.1 - Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

10.2 - Conducted Harmonic and Spurious RF Measurements

FCC Part 15.247(d) and IC RSS 247 both require a measurement of conducted harmonic and spurious RF emission levels, as reference to the carrier level when measured in a 100 kHz bandwidth. For this test, the spurious and harmonic RF emissions from the EUT were measured at the EUT antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct readings of the measurements made without the need for any further corrections. A spectrum analyzer was used with the resolution bandwidth set to 100 kHz for this portion of the tests. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with measurements from a peak detector presented in the chart below. Screen captures were acquired and any noticeable spurious and harmonic signals were identified and measured.

Measurement procedure used was FCC OET KDB 558074 D01 Measurement Guidance v03r05 section 11.

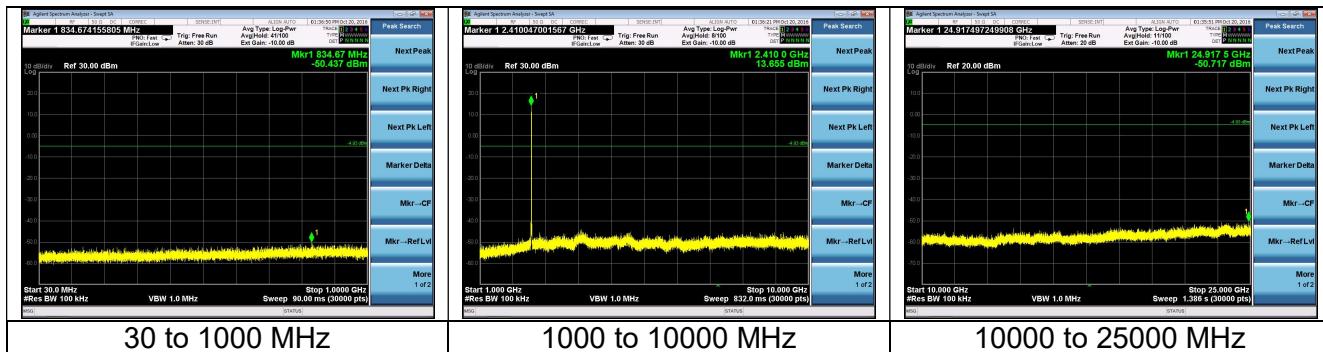
The data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement (dBm) + Cable factor (dB) + Miscellaneous factors when applicable (dB).

Generic example of reported data at 2440 MHz:

Reported Measurement data = 8.55 (raw receiver measurement in dBm) + 0.85 (cable factor in dB) = 9.4 (dBm).

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526


10.3 - Test Data

The data presented below are samples selected from the various data rates and channels tested. Display lines on captures do not represent limit lines, so refer to the fundamental picture for limits. Pictures below are samples.

Note: Refer to 6 dB bandwidth screenshots in Section 7.4 for limits

Channel	Reference Level (dBm)	Limit (dBm)
11	13.930	-6.070
12	15.066	-4.934
18	10.063	-9.937
24	11.246	-8.754
25	4.865	-15.135

Example: Channel 12

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

EXHIBIT 11. POWER SPECTRAL DENSITIES: 15.247(e)

11.1 Limits

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

In accordance with FCC Part 15.247(e) and RSS 247, the peak power spectral density should not exceed +8 dBm in any 3 kHz band. This measurement was performed along with the conducted power output readings as described in previous sections. The peak output frequency for each representative frequency was scanned, with a narrow bandwidth, and reduced sweep, and a power density measurement was performed.

Measurement procedure used was FCC OET KDB 558074 D01 Measurement Guidance v03r05 section 10.2.

The data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement (dBm) + Cable factor (dB) + Miscellaneous factors when applicable (dB).

Generic example of reported data at 2440 MHz:

Reported Measurement data = 8.55 (raw receiver measurement in dBm) + 0.85 (cable factor in dB) = 9.4 (dBm).

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

11.2 Test Data

Channel	PSD (dBm)
11	2.467
12	3.297
18	-1.550
24	-0.486
25	-7.330

11.3 Screen Captures - Power Spectral Density



CH 11

CH 12

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

CH 18

CH 24

CH 25

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

EXHIBIT 12. FREQUENCY STABILITY OVER VOLTAGE VARIATIONS

Test Engineer(s): Shane Dock

The frequency stability of the device was examined as a function of the input voltage available to the EUT. A Spectrum Analyzer was used to measure the RF output power and frequency at the appropriate frequency markers. Power was supplied by an external bench-type DC power supply (To simulate battery power) and by a variable AC voltage supply (To simulate AC mains power). Each supply was tested separately and was varied $\pm 15\%$ from the nominal values. If the unit could not be changed by 10% it was instead changed to its minimum or maximum value.

The power was then cycled On/Off to observe system response. No unusual response was observed, the emission characteristics were well behaved, and the system returned to the same state of operation as before the power cycle. The stability was found to be approximately 6.99 ppm.

Battery

Voltage (VDC)	Channels		
	Low (MHz)	Mid (MHz)	High (MHz)
3.4	2404.9931	2440.0040	2475.0064
3.8	2404.9763	2440.0096	2475.0092
4.2	2404.9875	2440.0152	2475.0148
Deviation (Hz)	16800	11200	8400

120 VAC

Voltage (VDC)	Channels		
	Low (MHz)	Mid (MHz)	High (MHz)
108	2404.9987	2440.0068	2475.0036
120	2404.9819	2440.0011	2475.0120
138	2404.9912	2440.0087	2475.0064
Deviation (Hz)	16800	7600	8400

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

APPENDIX A - Test Equipment List

a Laird Business

Date : 29-Aug-2016

Type Test : Conducted AC Mains Emissions

Job # : C-2526

Prepared By: Shane Dock

Customer : White Stagg/Halo Smart Labs

Quote # : 316019

No.	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960088	8GHz MXE Spectrum Analyzer	Agilent	N9038A	MY51210138	2/24/2016	2/24/2017	Active Calibration
2	EE 960089	LISN - 15A	COM-POWER	LJ215A	191943	3/8/2016	3/8/2017	Active Calibration

Project Engineer: Shane Dock

Quality Assurance: Hybrid

a Laird Business

Date : 29-Aug-2016

Type Test : Conducted Radio

Job # : C-2526

Prepared By: Shane Dock

Customer : White Stagg/Halo Smart Labs

Quote # : 316019

No.	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960087	44GHz EXA Spectrum Analyzer	Agilent	N9010A	MY53400296	12/18/2015	12/18/2016	Active Calibration
2	AA 960143	Phasellex	Gore	EKD01D01048.0	5546519	6/26/2015	6/26/2017	Active Calibration

Project Engineer: Shane Dock

Quality Assurance: Hybrid

a Laird Business

Date : 21-Sep-2016

Type Test : Radiated Emissions

Job # : C-2526

Prepared By: Shane Dock

Customer : White Stagg/Halo Smart Labs

Quote # : 316019

No.	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	AA 960174	Small Horn Antenna 18-40 GHz	ETS-Lindgren	3116C-PA	00206880	4/23/2016	4/23/2017	Active Calibration
2	AA 960171	Cable - low loss 6m	A.H. Systems, Inc.	SAC-26G-6	386	3/31/2016	3/31/2017	Active Verification
3	EE 960085	N9038A MXE 26.5GHz Receiver	Agilent	N9038A	MY51210148	5/12/2016	5/12/2017	Active Calibration
4	AA 960007	Double Ridge Horn Antenna	EMCO	3115	9311-4138	7/22/2016	7/22/2017	Active Calibration
5	EE 960160	0.8-21GHz LNA	Mini-Circuits	ZVA-213X-S+	977711030	7/22/2016	7/22/2017	Active Calibration
6	EE 960088	8GHz MXE Spectrum Analyzer	Agilent	N9038A	MY51210138	2/24/2016	2/23/2017	Active Calibration
7	AA 960154	2.4GHz High Pass Filter	KWM	HPF-L-14186	7272-02	7/25/2016	7/25/2017	Active Calibration
8	AA 960153	2.4GHz High Pass Filter	KWM	HPF-L-14186	7272-04	4/29/2016	4/29/2017	Active Calibration
9	AA 960005	Biconical Antenna	EMCO	93110B	9601-2280	1/14/2016	1/13/2017	Active Calibration
10	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	3/31/2016	3/31/2017	Active Calibration

Project Engineer: Shane Dock

Quality Assurance: Hybrid

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO

STANDARD #	DATE	Am. 1	Am. 2
ANSI C63.4	2014		
ANSI C63.10	2013		
FCC 47 CFR, Parts 15	2016		

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526

APPENDIX C - Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of $k = 2$.

Measurement Type	Configuration	Uncertainty Values
<i>Radiated Emissions</i>	<i>Biconical Antenna</i>	5.0 dB
<i>Radiated Emissions</i>	<i>Log Periodic Antenna</i>	5.3 dB
<i>Radiated Emissions</i>	<i>Horn Antenna</i>	4.7 dB
<i>AC Line Conducted Emissions</i>	AMN	3.4 dB
<i>Telecom Conducted Emissions</i>	AAN	4.9 dB
<i>Disturbance Power (Emissions)</i>	<i>Absorbing Clamp</i>	4.1 dB
<i>Radiated Immunity</i>	3 Volts/Meter	2.2 dB
<i>Conducted Immunity</i>	CDN/EM/BCI	2.4/3.5/3.4 dB
<i>EFT Burst / Surge</i>	<i>Peak pulse voltage</i>	164 volts
<i>ESD Immunity</i>	15 kV level	1377 Volts

Parameter	ETSI U.C.+/-	U.C.+/-
Radio Frequency, from F0	1×10^{-7}	0.55×10^{-7}
Occupied Channel Bandwidth	5 %	2 %
RF conducted Power (PM)	1.5 dB	1.2 dB
RF conducted emissions (SA)	3.0 dB	1.7 dB
All emissions, radiated	6.0 dB	5.3 dB
Temperature	1° C	0.65° C
Humidity	5 %	2.9 %
Supply voltages	3 %	1 %

Prepared For: White Stagg, LLC dba Halo Smart Labs	Model #: See Section 2.2	Report #: 316019
EUT: Halo/Halo+	Serial #: See Section 2.2	LSR Job #: C-2526