

**RF Exposure**
**MPE Calculation**
**KDB 447498**
**Prediction of MPE limit at a given distance**

Equation from IEEE C95.1

$$S = \frac{EIRP}{4\pi R^2} \text{ re - arranged } R = \sqrt{\frac{EIRP}{S 4\pi}}$$

where:

S = power density

R = distance to the centre of radiation of the antenna

EIRP = EUT Maximum power

Note:

The following formula may be used to convert field strength (FS) in volts/metre to transmitter output power (TP) in watts:

$$TP = (FS \times D)^2 / (30 \times G)$$

where D is the distance in metres between the two antennas and G is the antenna numerical gain referenced to isotropic gain.

Result

| Prediction Frequency (MHz) | Maximum EIRP (mW) | Minimum Distance (cm) | Power density at distance (mW/cm <sup>2</sup> ) | Power density limit (S) (mW/cm <sup>2</sup> ) |
|----------------------------|-------------------|-----------------------|-------------------------------------------------|-----------------------------------------------|
| 905.2                      | 8.88              | 1.1                   | 0.58                                            | 0.60                                          |
| 910.5                      | 8.88              | 1.1                   | 0.57                                            | 0.61                                          |
| 915.91                     | 8.88              | 1.1                   | 0.57                                            | 0.61                                          |