

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Report No.: SZEM150900609002

Email: ee.shenzhen@sgs.com Page: 1 of 101

FCC REPORT

Application No: SZEM1509006090CR

Applicant: New Audio LLC

Manufacturer/ Factory: Acoustic innovation(HuiZhou) Co,Ltd

Product Name: MW60 Bluetooth Headphone

Model No.(EUT): MW60

Trade mark: Master & Dynamic

FCC ID: 2AGA7MW60

Standards: 47 CFR Part 15, Subpart C (2014)

Date of Receipt: 2015-09-30

Date of Test: 2015-10-12 to 2015-10-27

Date of Issue: 2015-11-04

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM150900609002

Page: 2 of 101

2 Version

Revision Record							
Version	Chapter	Date	Modifier	Remark			
00		2015-11-03		Original			

Authorized for issue by:		
Tested By	Brir Chen	2015-10-27
	(Bill Chen) /Project Engineer	Date
Prepared By	Jarole Chen	2015-11-03
	(Jade Chen) /Clerk	Date
Checked By	Exic Fu	2015-11-03
	(Eric Fu) /Reviewer	Date

Report No.: SZEM150900609002

Page: 3 of 101

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2009)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2009)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2009)	PASS
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2009)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10 (2009)	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2009)	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2009)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2009)	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2009)	PASS

Report No.: SZEM150900609002

Page: 4 of 101

4 Contents

			Page						
1	CC	OVER PAGE	1						
2	VE	ERSION	2						
3	TE	TEST SUMMARY							
4		ONTENTS	_						
		ENERAL INFORMATION							
5	GE		_						
	5.1	CLIENT INFORMATION							
	5.2 5.3	GENERAL DESCRIPTION OF EUT	-						
	5.4	DESCRIPTION OF SUPPORT UNITS							
	5.5	TEST LOCATION							
	5.6	TEST FACILITY							
	5.7	DEVIATION FROM STANDARDS							
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS							
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER							
	5.10	EQUIPMENT LIST							
6	TE	ST RESULTS AND MEASUREMENT DATA	12						
	6.1	ANTENNA REQUIREMENT	12						
	6.2	CONDUCTED EMISSIONS							
	6.3	CONDUCTED PEAK OUTPUT POWER							
	6.4 6.5	20DB OCCUPY BANDWIDTH							
	6.6	HOPPING CHANNEL NUMBER							
	6.7	DWELL TIME							
	6.8	BAND-EDGE FOR RF CONDUCTED EMISSIONS							
	6.9	SPURIOUS RF CONDUCTED EMISSIONS							
	6.10	OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM							
	6.11	RADIATED SPURIOUS EMISSION							
		11.2 Transmitter Emission above 1GHz							
		RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY							
7	PH	HOTOGRAPHS - EUT TEST SETUP	100						
	7.1	CONDUCTED EMISSION	100						
	7.2	RADIATED EMISSION							
	7.3	RADIATED SPURIOUS EMISSION	101						
8	PH	HOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	101						

Report No.: SZEM150900609002

Page: 5 of 101

5 General Information

5.1 Client Information

Applicant:	New Audio LLC		
Address of Applicant:	132 W. 31st 7th Floor New York, NY 10001		
Manufacturer:	Acoustic innovation(HuiZhou) Co,Ltd		
Address of Manufacturer:	Xiangshuihe Industrial Area, Dayawan Development District, HuiZhou City, Guangdong Province, China.		
Factory:	Acoustic innovation(HuiZhou) Co,Ltd		
Address of Factory:	Xiangshuihe Industrial Area, Dayawan Development District, Hui Zhou City, Guangdong Province, China.		

5.2 General Description of EUT

<u> </u>	
Product Name:	MW60 Bluetooth Headphone
Model No.:	MW60
Trade mark:	Master & Dynamic
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	BT 4.0 dual mode
Bluelooth version.	This report is for classic mode
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK
Number of Channel:	79
Hopping Channel Type:	Adaptive Frequency Hopping systems
Sample Type:	Portable production
Antenna Type:	Integral
Antenna Gain:	2.0dBi
Power Supply:	DC3.7V (1 x 3.7V Rechargeable Battery) 300mAh
	Battery: Charge by DC 5V

Report No.: SZEM150900609002

Page: 6 of 101

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Note

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Report No.: SZEM150900609002

Page: 7 of 101

5.3 Test Environment

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	53 % RH	
Atmospheric Pressure:	1010mbar	

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM150900609002

Page: 8 of 101

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC - Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

The 3m Semi-anechoic chambers and the 10m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM150900609002

Page: 9 of 101

5.10 Equipment List

	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)		
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2015-05-13	2016-05-13		
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2015-10-09	2016-10-09		
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2015-05-13	2016-05-13		
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLIS N-T8-02	SEL0162	2015-08-30	2016-08-30		
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLIS N-T4-02	SEL0163	2015-08-30	2016-08-30		
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLIS N-T2-02	SEL0164	2015-08-30	2016-08-30		
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2015-05-13	2016-05-13		
8	Coaxial Cable	SGS	N/A	SEL0025	2015-05-13	2016-05-13		
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-09	2016-10-09		
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24	2016-10-24		
11	Barometer	Chang Chun	DYM3	SEL0088	2015-05-13	2016-05-13		

Report No.: SZEM150900609002

Page: 10 of 101

RE in Chamber							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)	
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2015-05-13	2016-05-13	
2	EMI Test Receiver	Agilent Technologies	N9038A	SEL0312	2015-09-16	2016-09-16	
3	EMI Test software	AUDIX	E3	SEL0050	N/A	N/A	
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2014-11-15	2017-11-15	
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2015-10-17	2016-10-17	
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2014-11-24	2017-11-24	
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2015-05-13	2016-05-13	
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2015-10-17	2016-10-17	
9	Coaxial cable	SGS	N/A	SEL0027	2015-05-13	2016-05-13	
10	Coaxial cable	SGS	N/A	SEL0189	2015-05-13	2016-05-13	
11	Coaxial cable	SGS	N/A	SEL0121	2015-05-13	2016-05-13	
12	Coaxial cable	SGS	N/A	SEL0178	2015-05-13	2016-05-13	
13	Band filter	Amindeon	82346	SEL0094	2015-05-13	2016-05-13	
14	Barometer	Chang Chun	DYM3	SEL0088	2015-05-13	2016-05-13	
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-09	2016-10-09	
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24	2016-10-24	
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2015-05-13	2016-05-13	
18	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2015-05-13	2016-05-13	

Report No.: SZEM150900609002

Page: 11 of 101

	RF connected test							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)		
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-09	2016-10-09		
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2015-10-24	2016-10-24		
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2015-10-17	2016-10-17		
4	Coaxial cable	SGS	N/A	SEL0178	2015-05-13	2016-05-13		
5	Coaxial cable	SGS	N/A	SEL0179	2015-05-13	2016-05-13		
6	Barometer	ChangChun	DYM3	SEL0088	2015-05-13	2016-05-13		
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2015-04-25	2016-04-25		
8	POWER METER	R & S	NRVS	SEL0144	2015-10-09	2016-10-09		
9	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2015-04-25	2016-04-25		

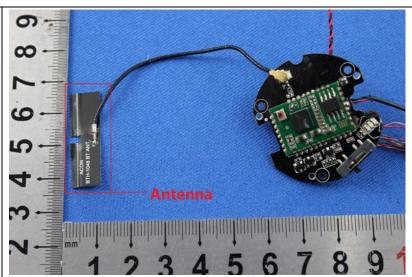
Report No.: SZEM150900609002

Page: 12 of 101

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

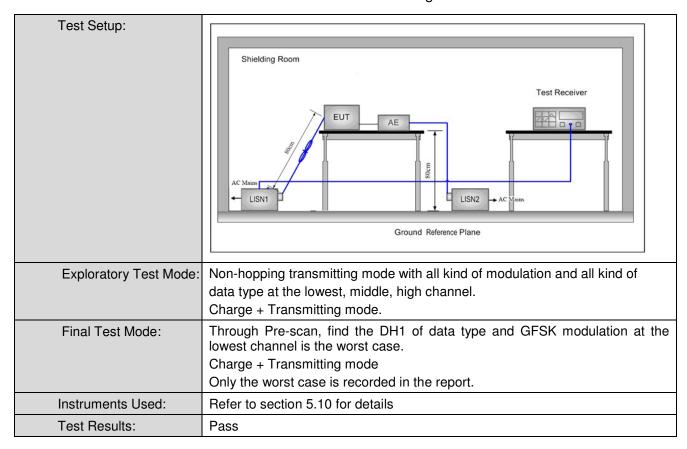
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.0dBi.

Report No.: SZEM150900609002

Page: 13 of 101

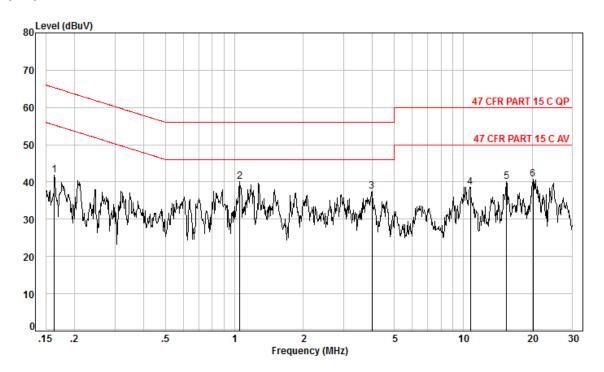

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207		
Test Method:	ANSI C63.10: 2009		
Test Frequency Range:	150kHz to 30MHz		
Limit:	Francisco varios (MIII-)	Limit (d	lBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithm	of the frequency.	
Test Procedure:	The mains terminal disturb room.	pance voltage test was	s conducted in a shielded
	 * Decreases with the logarithm of the frequency. 1) The mains terminal disturbance voltage test was conducted in a shielder room. 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement. 		is a 50Ω/50μH + 5Ω linear if the EUT were do to the ground or the unit being do to connect multiple of the LISN was not contact table 0.8m above the trangement, the EUT was derence plane. The rear do reference plane. The endit has been a plane for LISNs has distance was EUT. All other units of 0.8 m from the LISN 2. The positions of

Report No.: SZEM150900609002

Page: 14 of 101

Report No.: SZEM150900609002


Page: 15 of 101

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

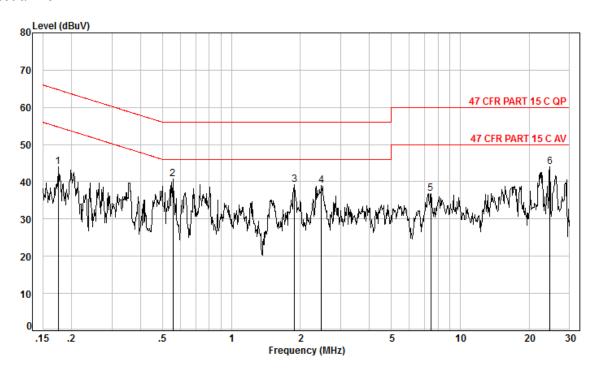
Live line:

Site : Shielding Room

Condition: 47 CFR PART 15 C AV CE Line

Job No. : 6090CR

Test Mode: Charge + TX mode


		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dВ	dB	dBuV	dBuV	dBuV	dВ	
1	0.16	0.07	9.82	32.02	41.91	55.30	-13.39	Peak
2	1.05	0.03	9.89	30.19	40.11	46.00	-5.89	Peak
3	3.99	0.10	10.08	27.22	37.40	46.00	-8.60	Peak
4	10.73	0.59	10.15	27.91	38.65	50.00	-11.35	Peak
5	15.47	0.98	10.17	29.01	40.16	50.00	-9.84	Peak
6	20.16	1.53	10.28	29.01	40.82	50.00	-9.18	Peak

Report No.: SZEM150900609002

Page: 16 of 101

Neutral line:

Site : Shielding Room

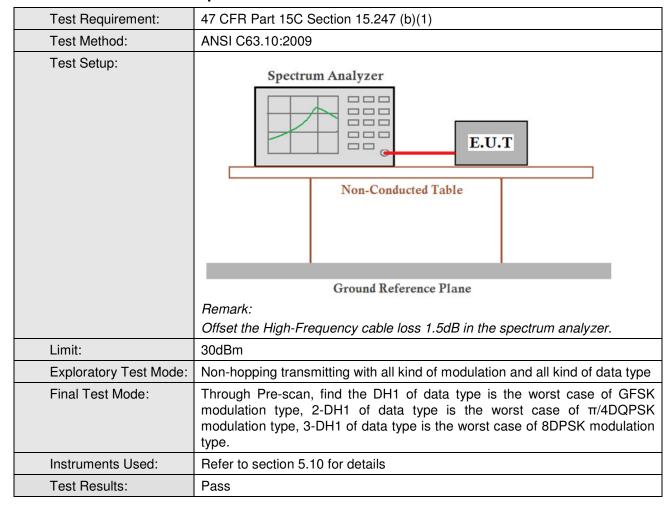
Condition: 47 CFR PART 15 C AV CE Neutral

Job No. : 6090CR

Test Mode: Charge + TX mode

		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB					dB	
	MUZ	ив	uв	dBuV	ubuv	abuv	ub	
1	0.17	0.07	9.82	34.08	43.97	54.72	-10.75	Peak
2	0.56	0.05	9.90	30.87	40.82	46.00	-5.18	Peak
3	1.89	0.04	10.11	29.02	39.17	46.00	-6.83	Peak
4	2.47	0.06	10.12	28.84	39.02	46.00	-6.98	Peak
5	7.45	0.28	10.13	26.50	36.91	50.00	-13.09	Peak
6	24.66	1.86	10.03	32.04	43.93	50.00	-6.07	Peak

Notes:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM150900609002

Page: 17 of 101

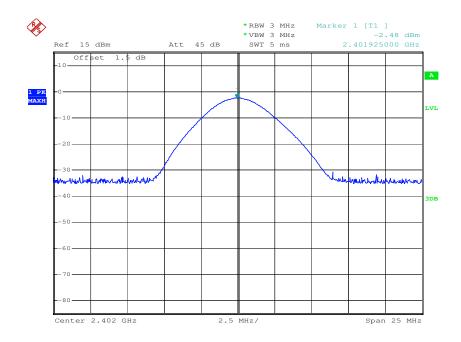
6.3 Conducted Peak Output Power

Report No.: SZEM150900609002

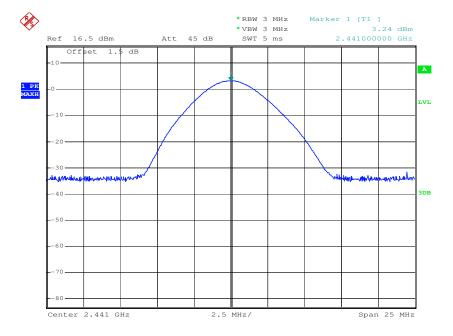
Page: 18 of 101

Measurement Data

measurement Data						
	GFSK mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-2.48	30.00	Pass			
Middle	3.24	30.00	Pass			
Highest	3.02	30.00	Pass			
	π/4DQPSK m	node				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-6.01	30.00	Pass			
Middle	0.27	30.00	Pass			
Highest	-0.20	30.00	Pass			
	8DPSK mod	de				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	-5.15	30.00	Pass			
Middle	0.99	30.00	Pass			
Highest	0.48	30.00	Pass			

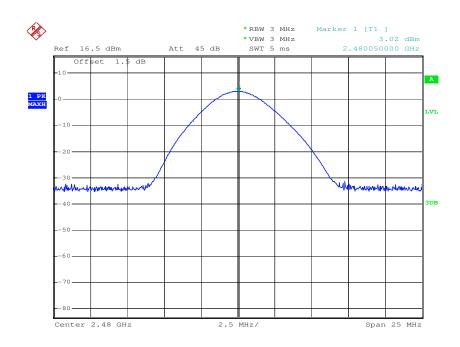


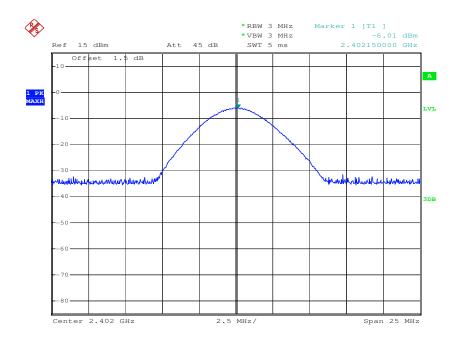
Report No.: SZEM150900609002


Page: 19 of 101

Test plot as follows:

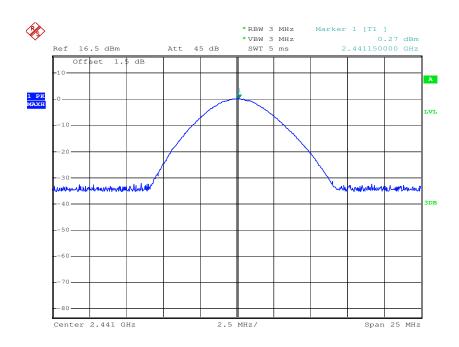
Test mode: GFSK Test channel: Lowest

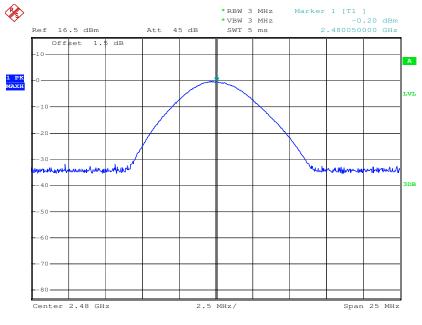



Report No.: SZEM150900609002

Page: 20 of 101

Test mode: GFSK Test channel: Highest

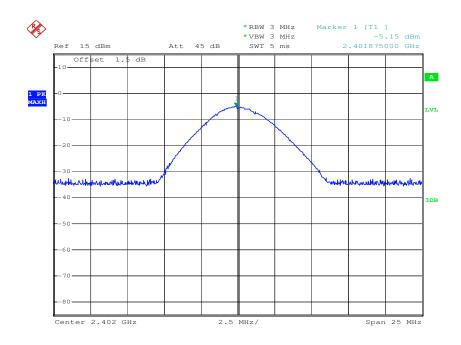


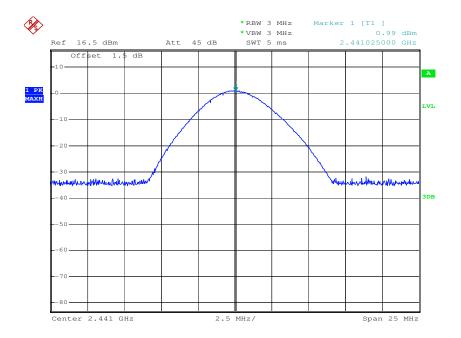

Report No.: SZEM150900609002

Page: 21 of 101

Test mode: π/4DQPSK Test channel: Middle

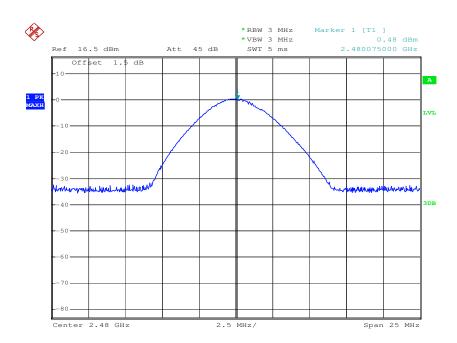
Test mode: π	π/4DQPSK	Test channel:	Highest
--------------	----------	---------------	---------




Report No.: SZEM150900609002

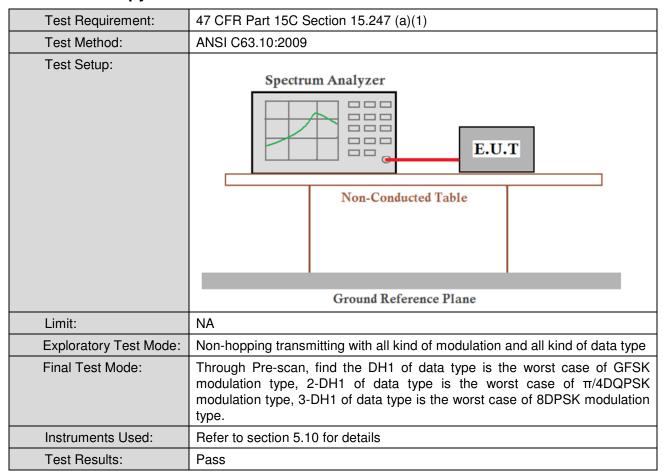
Page: 22 of 101

Test mode: 8DPSK Test channel: Lowest



Report No.: SZEM150900609002

Page: 23 of 101



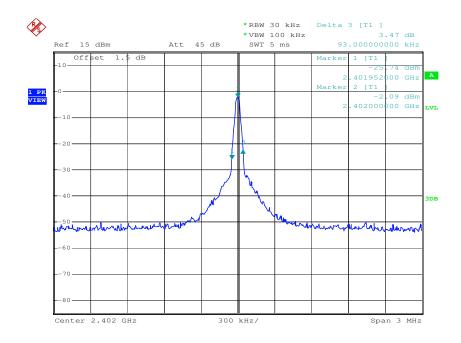
Report No.: SZEM150900609002

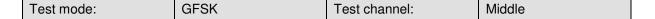
Page: 24 of 101

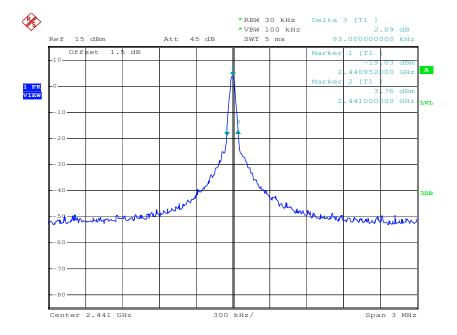
6.4 20dB Occupy Bandwidth

Measurement Data

Test channel	20dB Occupy Bandwidth (kHz)			
rest channel	GFSK	π/4DQPSK	8DPSK	
Lowest	93	1218	1214	
Middle	93	1219	1214	
Highest	98	1225	1232	

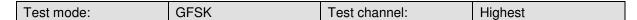


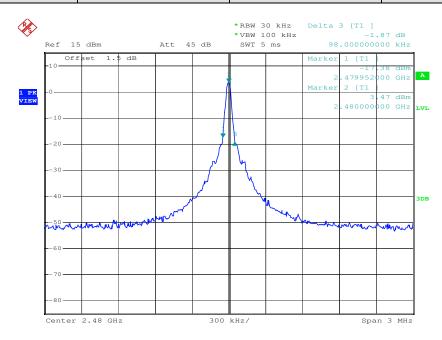

Report No.: SZEM150900609002

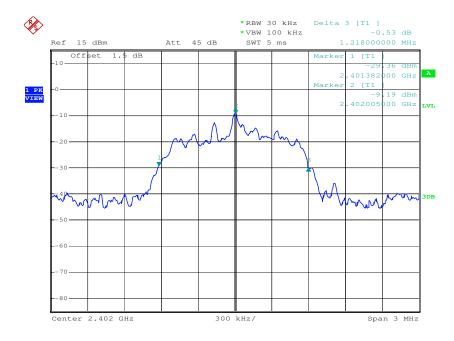

Page: 25 of 101

Test plot as follows:

Test mode: GFSK Test channel: Lowest

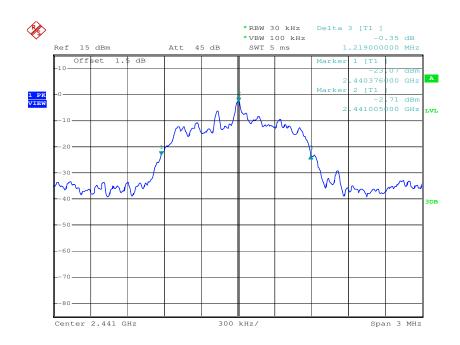


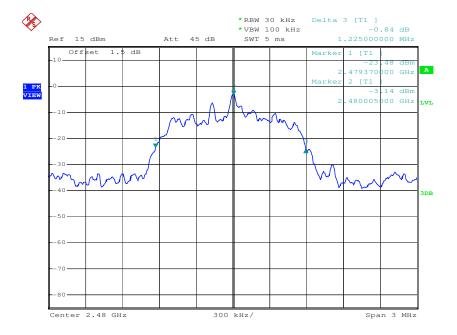



Report No.: SZEM150900609002

Page: 26 of 101

Test mode: π/4DQPSK Test channel: Lowest

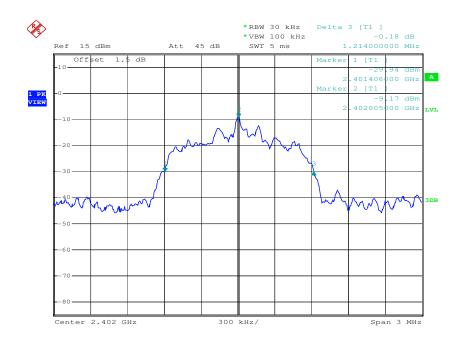


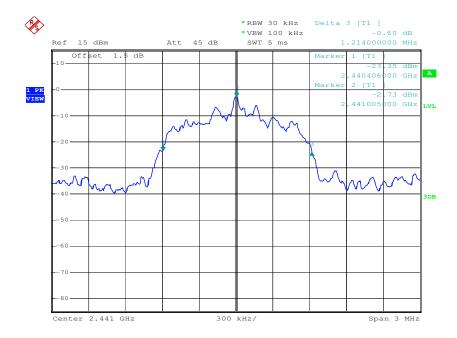

Report No.: SZEM150900609002

Page: 27 of 101

Test mode: π/4DQPSK Test channel: Middle

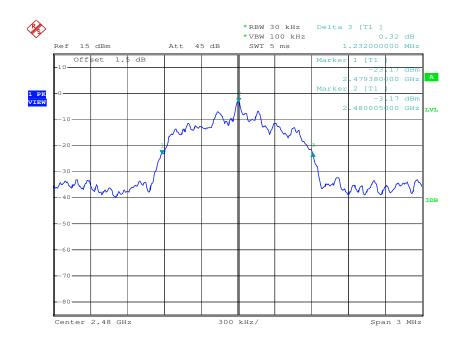
Test mode: π/4DQPSK Test channel: Highest




Report No.: SZEM150900609002

Page: 28 of 101

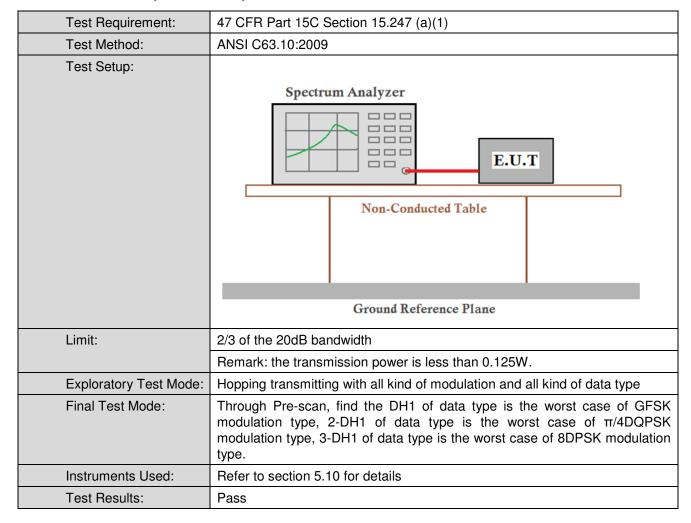
Test mode: 8DPSK Test channel: Lowest



Report No.: SZEM150900609002

Page: 29 of 101

Test mode: 8DPSK Test channel: Highest



Report No.: SZEM150900609002

Page: 30 of 101

6.5 Carrier Frequencies Separation

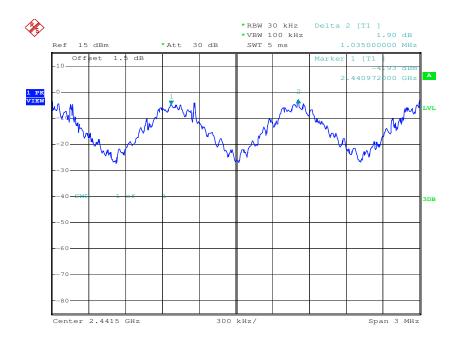
Report No.: SZEM150900609002

Page: 31 of 101

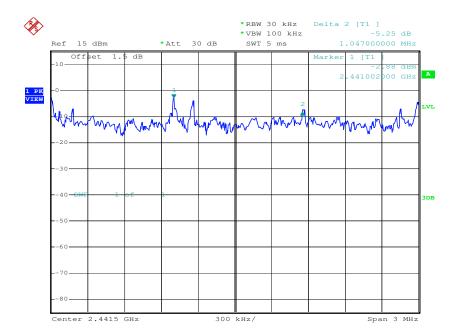
	GFSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
Middle	1035	≥65	Pass			
	π/4DQPSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
Middle	1047	≥817	Pass			
	8DPSK mode					
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
Middle	969	≥821	Pass			

Note: According to section 6.4,

rioterriocerumig te ecculeriori,					
Mada	20dB bandwidth (kHz)	Limit (kHz)			
Mode	(worse case)	(Carrier Frequencies Separation)			
GFSK	98	65			
π/4DQPSK	1225	817			
8DPSK	1232	821			



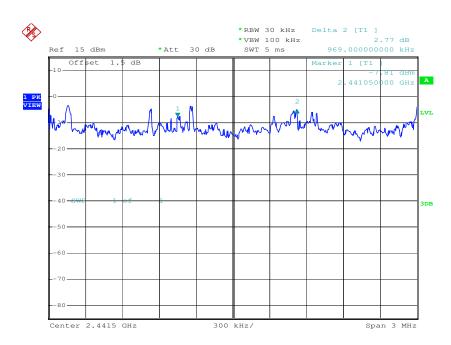
Report No.: SZEM150900609002


Page: 32 of 101

Test plot as follows:

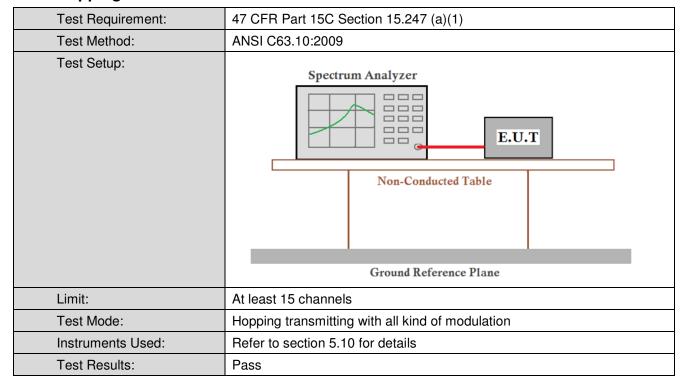
Ī	Test mode:	GFSK	Test channel:	Middle

Test mode: π/4DQPSK Test channel: Middle



Report No.: SZEM150900609002

Page: 33 of 101

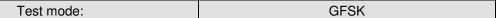


Report No.: SZEM150900609002

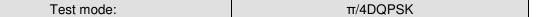
Page: 34 of 101

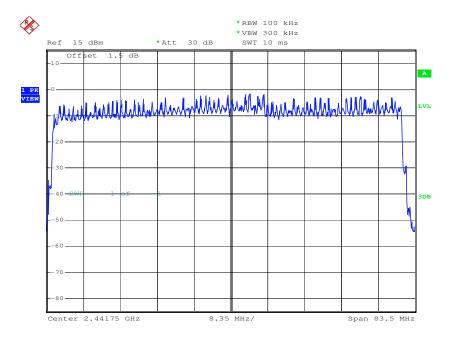
6.6 Hopping Channel Number

Measurement Data

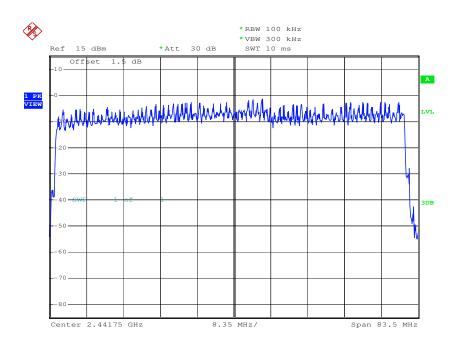

Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15




Report No.: SZEM150900609002

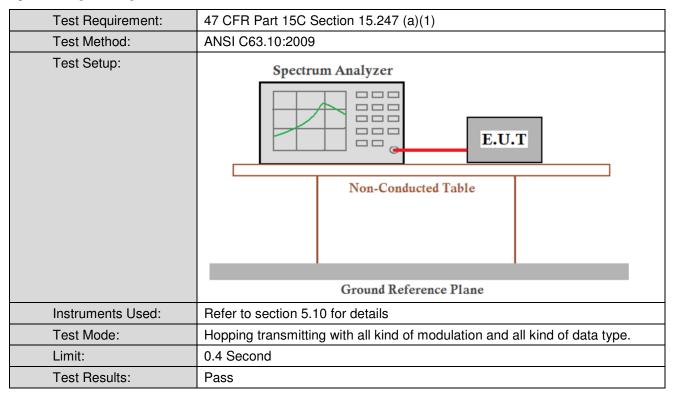

Page: 35 of 101

Test plot as follows:



Report No.: SZEM150900609002

Page: 36 of 101



Report No.: SZEM150900609002

Page: 37 of 101

6.7 Dwell Time

Measurement Data

Mode	Packet	Dwell time (second)	Limit (second)
GFSK	DH1	0.13	≤0.4
	DH3	0.27	≤0.4
	DH5	0.32	≤0.4
π/4DQPSK	2-DH1	0.05	≤0.4
	2-DH3	0.27	≤0.4
	2-DH5	0.32	≤0.4
8DPSK	3-DH1	0.13	≤0.4
	3-DH3	0.27	≤0.4
	3-DH5	0.35	≤0.4

Report No.: SZEM150900609002

Page: 38 of 101

Remark:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

On (ms)*total number=dwell time (ms)

The middle channel (2441MHz), as below:

DH1 time slot=0.408 (ms)*total number=130.56 (ms)

DH3 time slot=1.668 (ms)* total number = 266.88 (ms)

DH5 time slot= 2.924 (ms)^* total number = 321.64 (ms)

2-DH1 time slot=0.421 (ms)*total number=46.31 (ms)

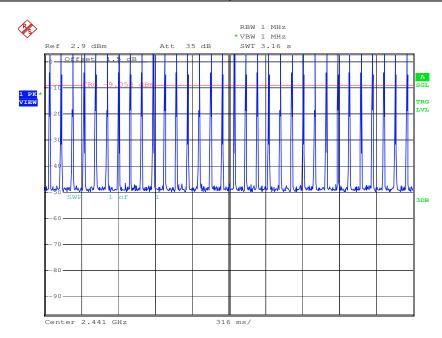
2-DH3 time slot=1.680 (ms)* total number = 268.80(ms)

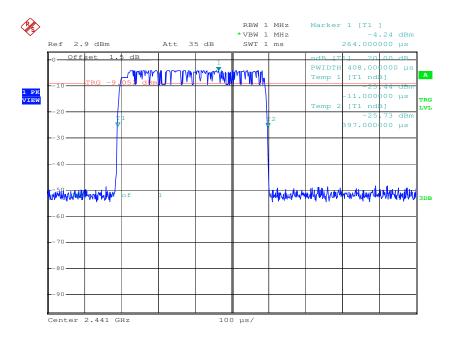
2-DH5 time slot=2.924 (ms)* total number = 321.64(ms)

3-DH1 time slot=0.418 (ms)*total number=133.76 (ms)

3-DH3 time slot=1.671 (ms)* total number = 267.36(ms)

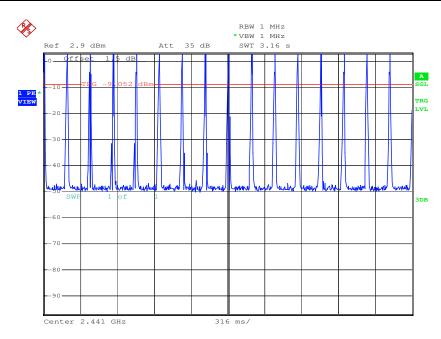

3-DH5 time slot=2.928 (ms)* total number = 351.36(ms)

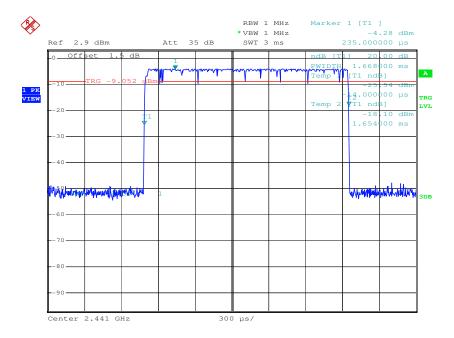



Report No.: SZEM150900609002

Page: 39 of 101

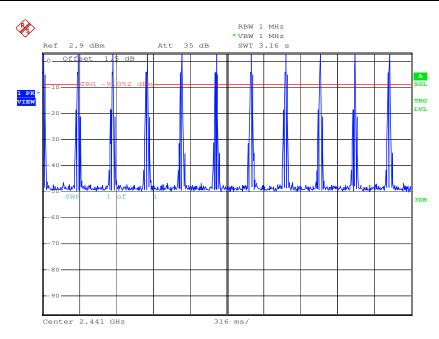
Test plot as follows:

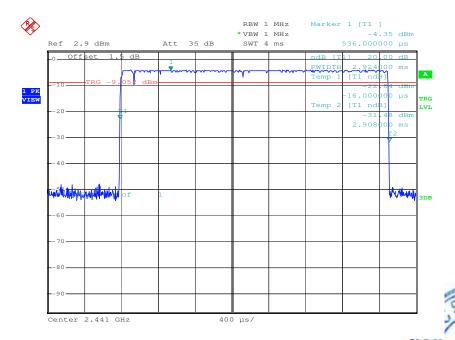




Report No.: SZEM150900609002

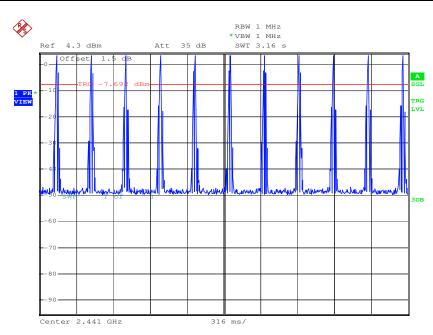
Page: 40 of 101

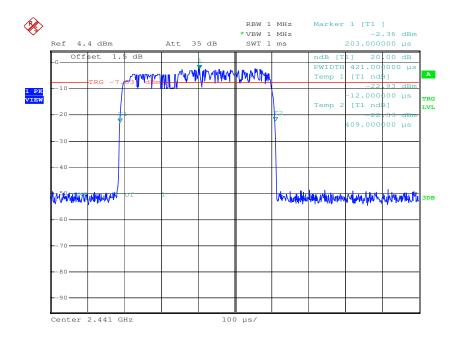




Report No.: SZEM150900609002

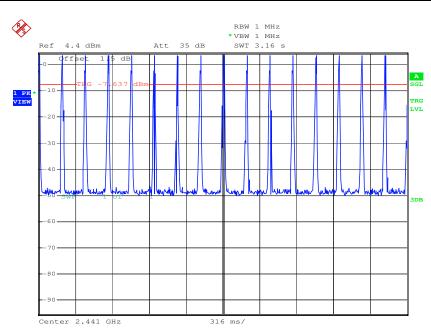
Page: 41 of 101

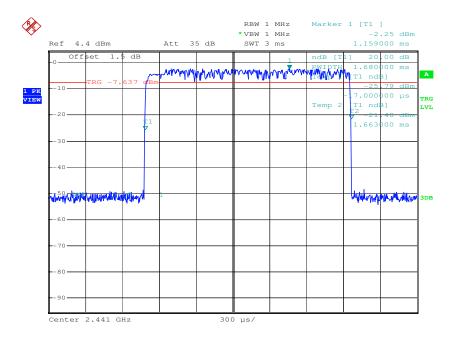




Report No.: SZEM150900609002

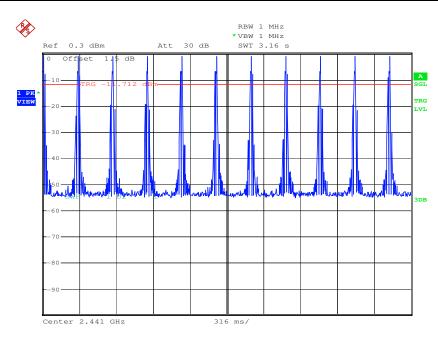
Page: 42 of 101

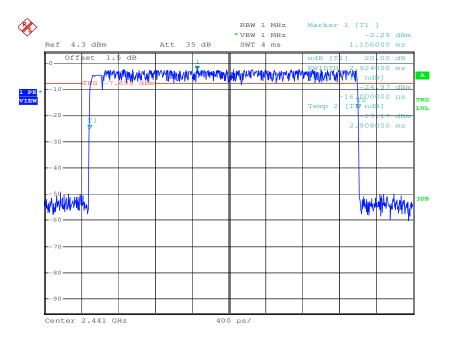




Report No.: SZEM150900609002

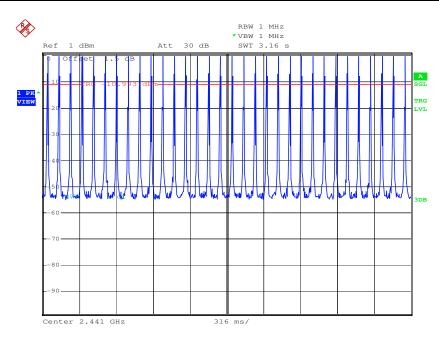
Page: 43 of 101

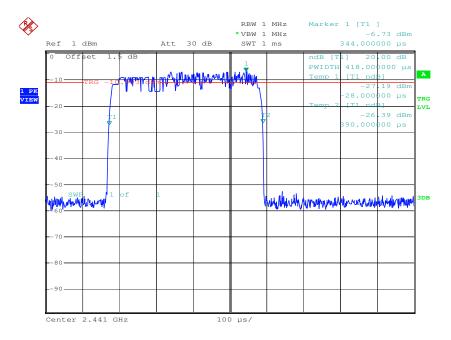




Report No.: SZEM150900609002

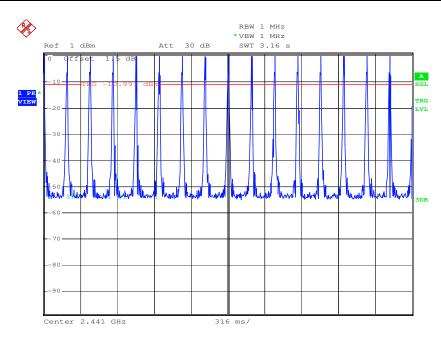
Page: 44 of 101

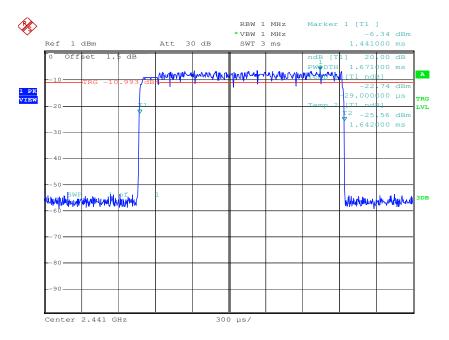




Report No.: SZEM150900609002

Page: 45 of 101

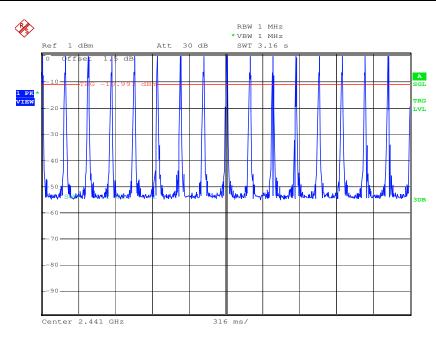


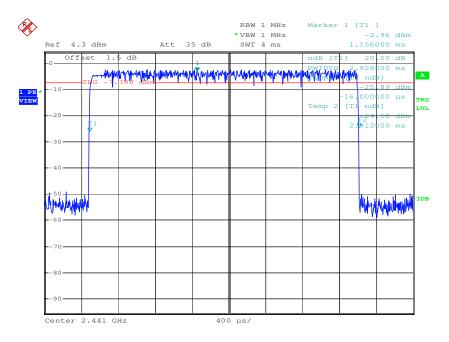


Report No.: SZEM150900609002

Page: 46 of 101

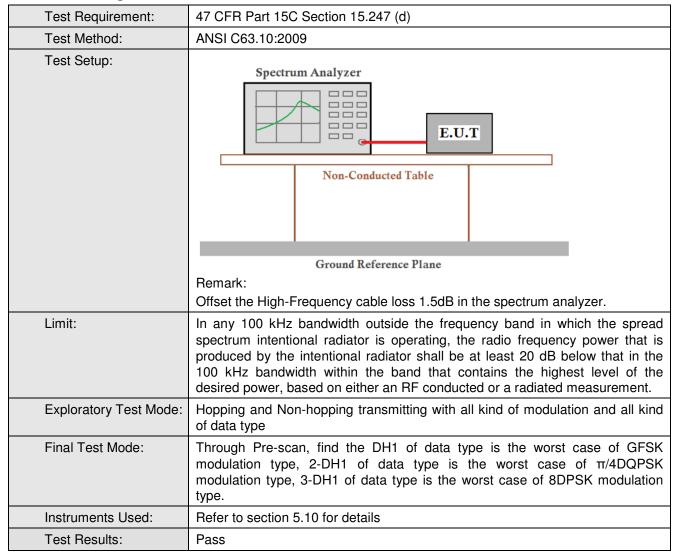






Report No.: SZEM150900609002

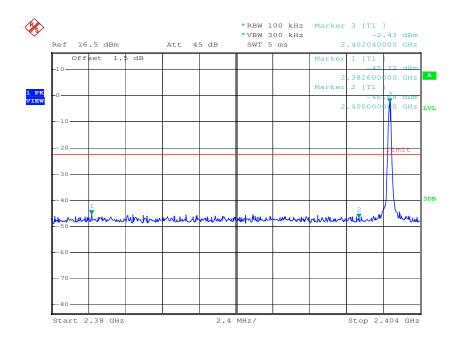
Page: 47 of 101

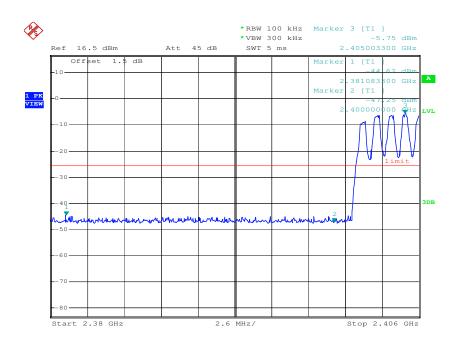


Report No.: SZEM150900609002

Page: 48 of 101

6.8 Band-edge for RF Conducted Emissions

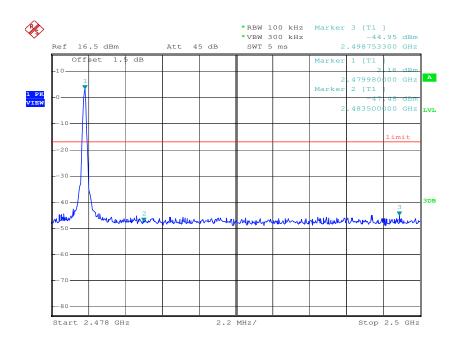


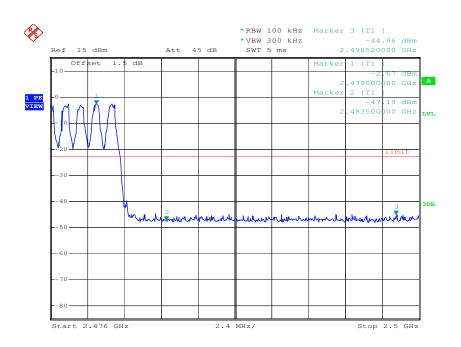

Report No.: SZEM150900609002

Page: 49 of 101

Test plot as follows:

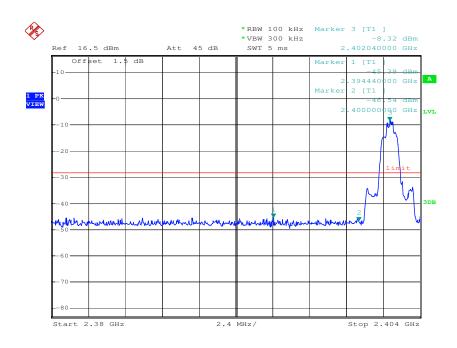
Test mode: GFSK Test channel: Lowest

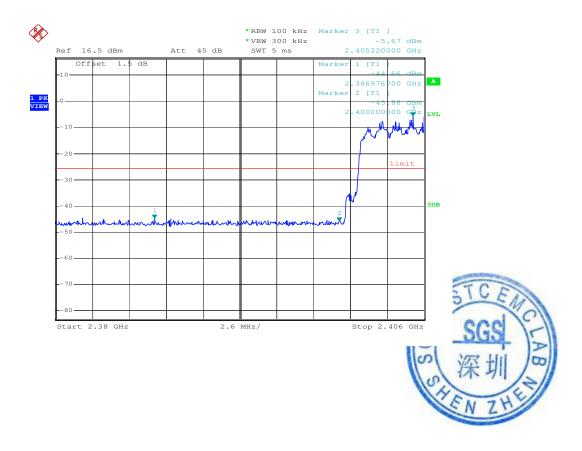




Report No.: SZEM150900609002

Page: 50 of 101

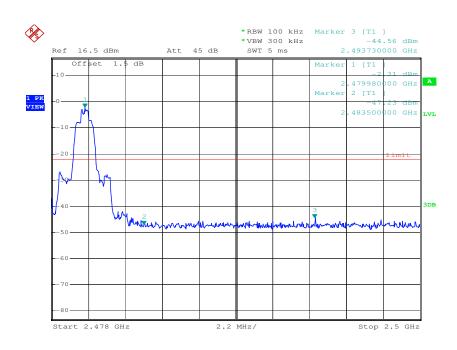


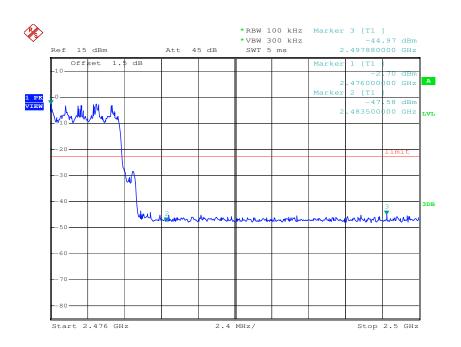


Report No.: SZEM150900609002

Page: 51 of 101

Test mode: π/4DQPSK Test channel: Lowest

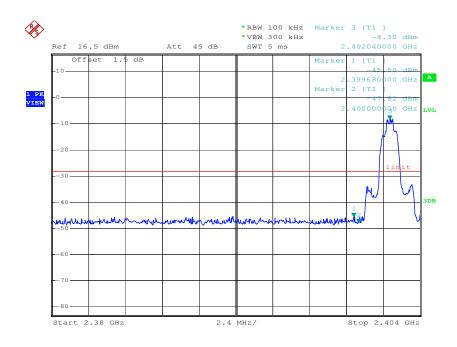


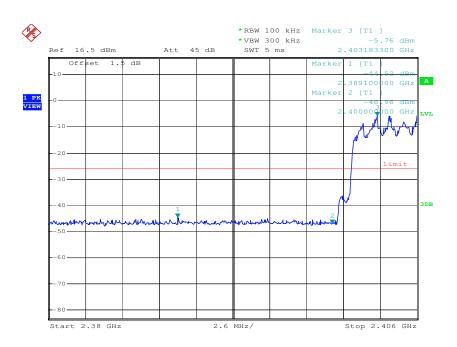


Report No.: SZEM150900609002

Page: 52 of 101

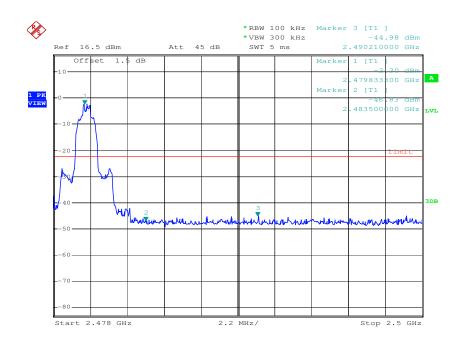
Test mode: π/4DQPSK Test channel: Highest

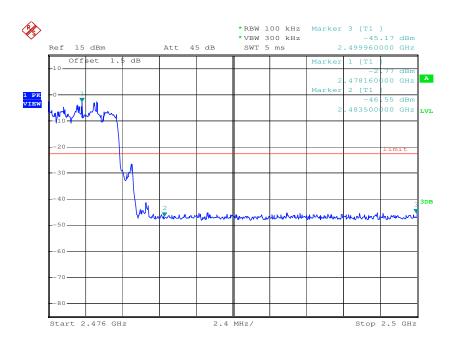




Report No.: SZEM150900609002

Page: 53 of 101





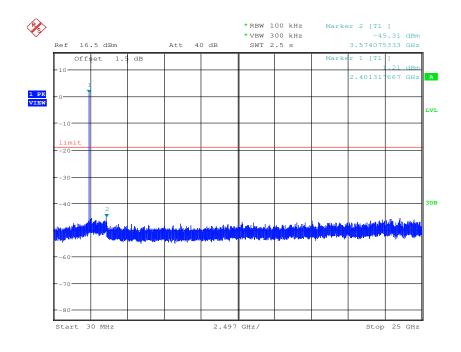
Report No.: SZEM150900609002

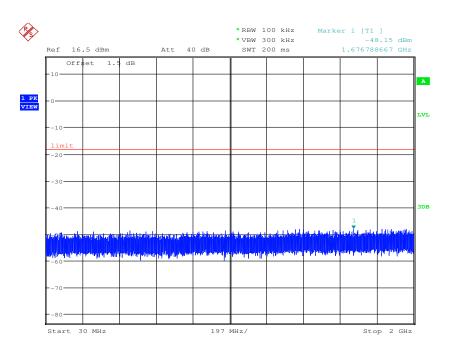
Page: 54 of 101

Report No.: SZEM150900609002

Page: 55 of 101

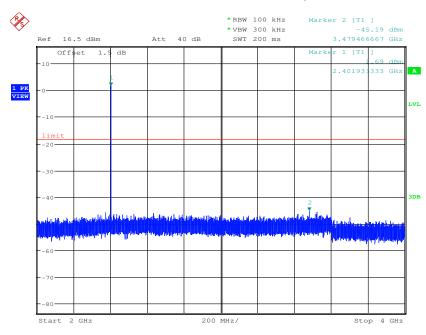
6.9 Spurious RF Conducted Emissions

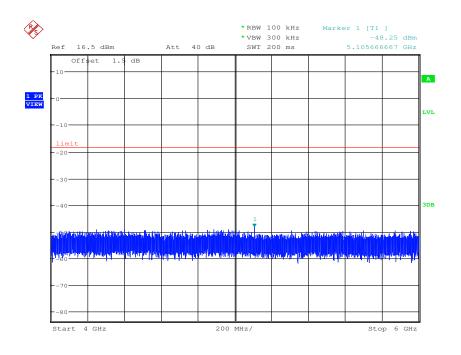

Test Requirement:	47 CFR Part 15C Section 15.247 (d)		
Test Method:	ANSI C63.10:2009		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type		
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worst case of GFSK modulation type, 2-DH1 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH1 of data type is the worst case of 8DPSK modulation type.		
Instruments Used:	Refer to section 5.10 for details		
Test Results:	Pass		



Report No.: SZEM150900609002

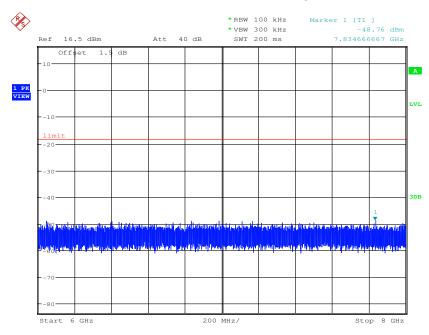
Page: 56 of 101

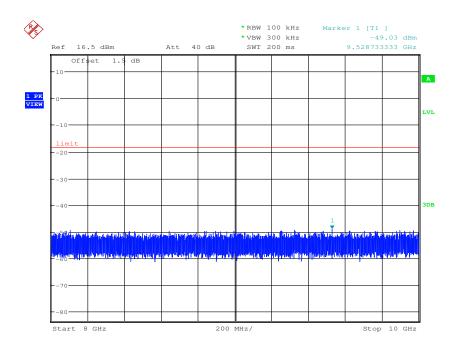




Report No.: SZEM150900609002

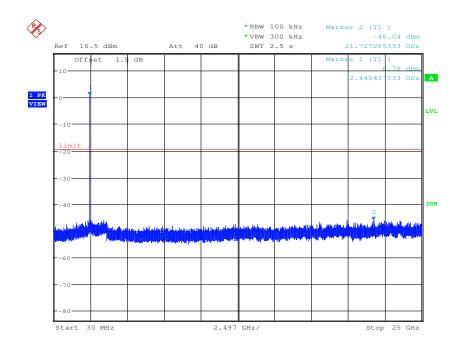
Page: 57 of 101

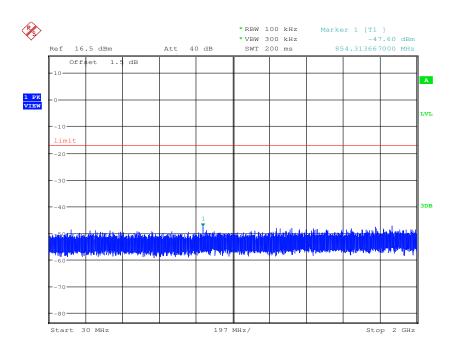




Report No.: SZEM150900609002

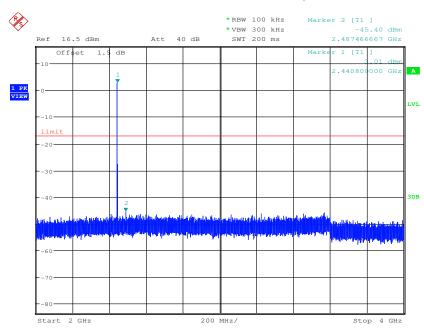
Page: 58 of 101

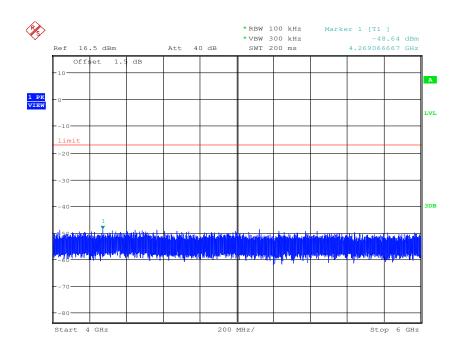




Report No.: SZEM150900609002

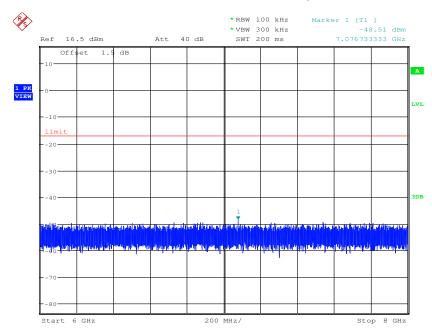
Page: 59 of 101

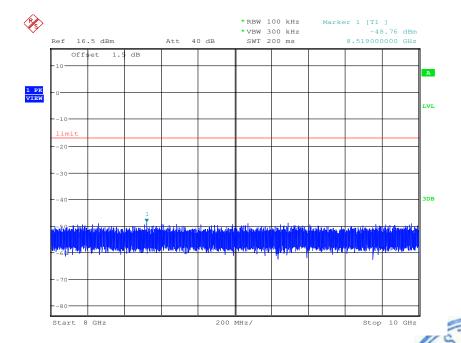




Report No.: SZEM150900609002

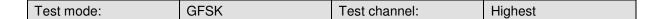
Page: 60 of 101

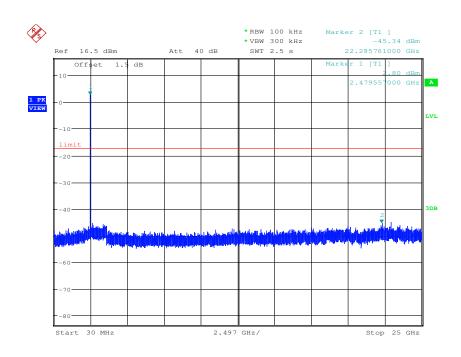


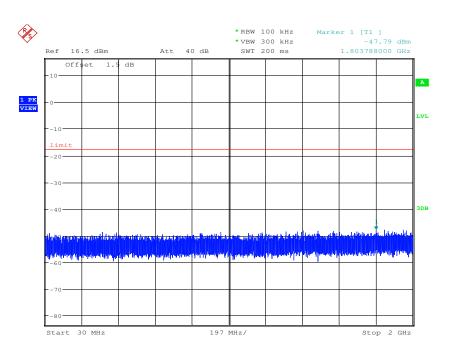


Report No.: SZEM150900609002

Page: 61 of 101

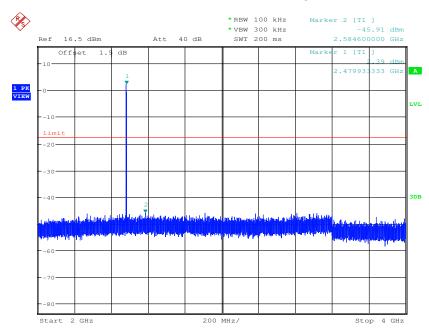


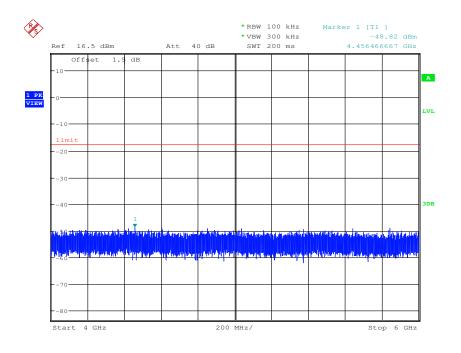




Report No.: SZEM150900609002

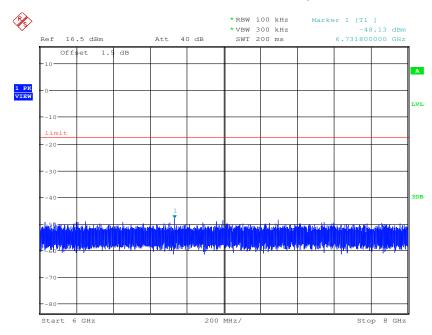
Page: 62 of 101

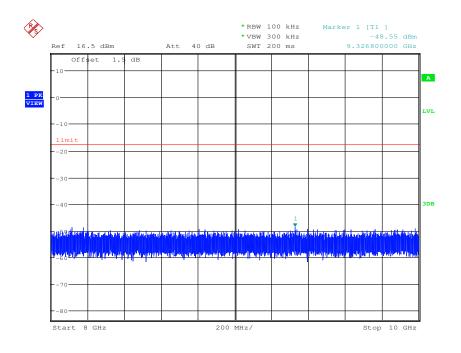




Report No.: SZEM150900609002

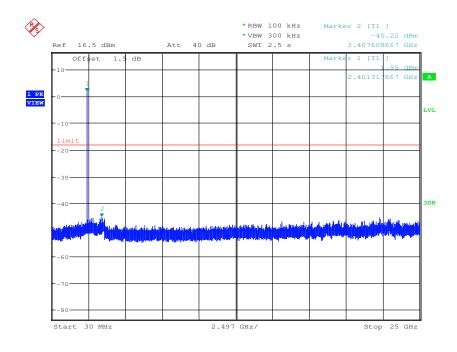
Page: 63 of 101

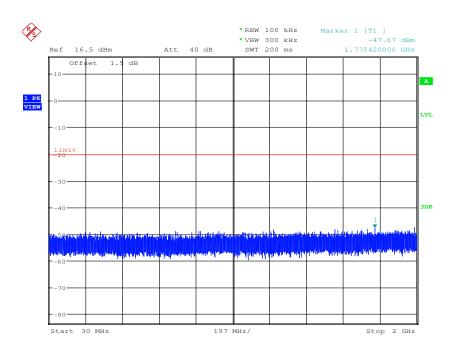




Report No.: SZEM150900609002

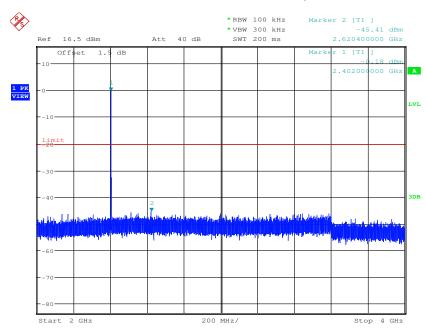
Page: 64 of 101

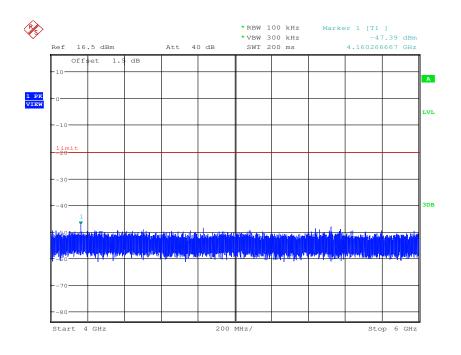




Report No.: SZEM150900609002

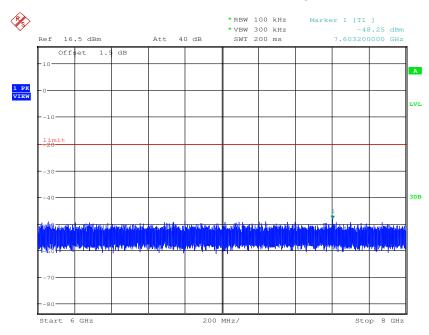
Page: 65 of 101

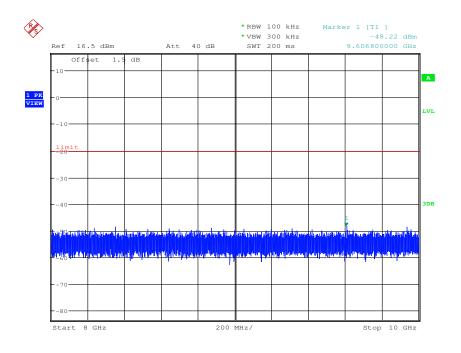




Report No.: SZEM150900609002

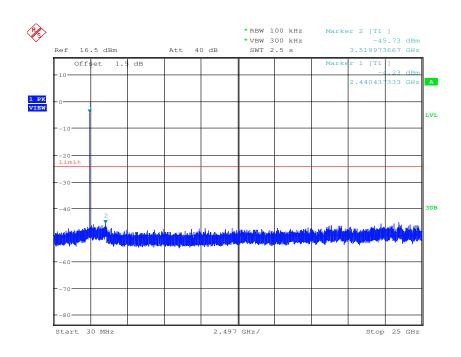
Page: 66 of 101

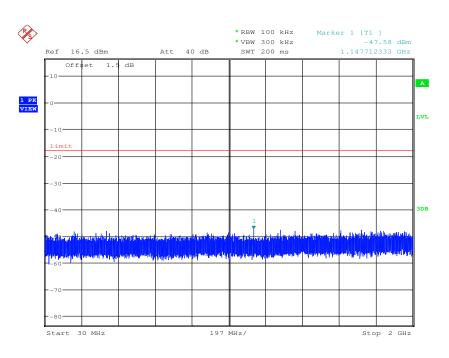




Report No.: SZEM150900609002

Page: 67 of 101

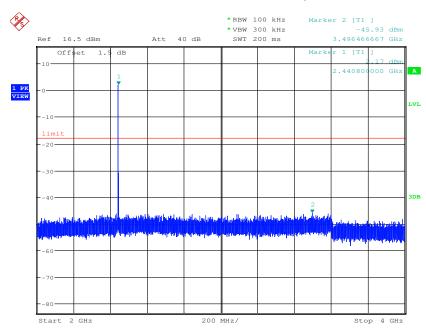


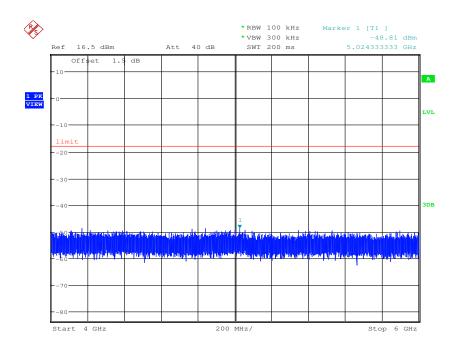


Report No.: SZEM150900609002

Page: 68 of 101

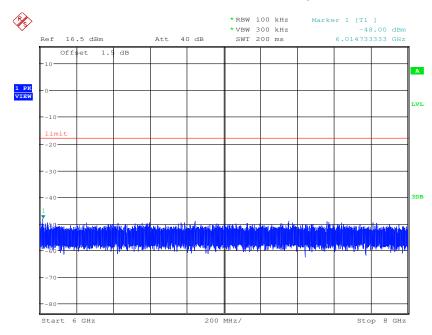
Test mode: π/4DQPSK Test channel: Middle

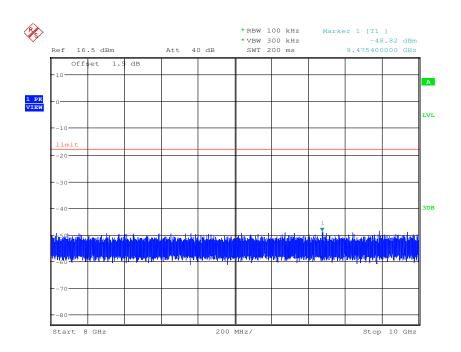




Report No.: SZEM150900609002

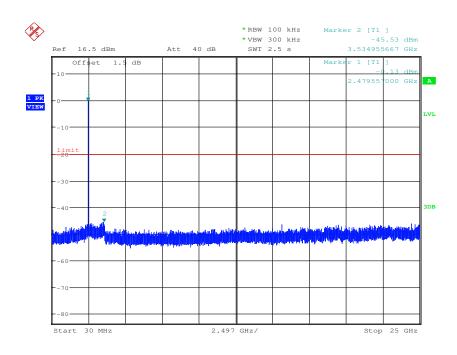
Page: 69 of 101

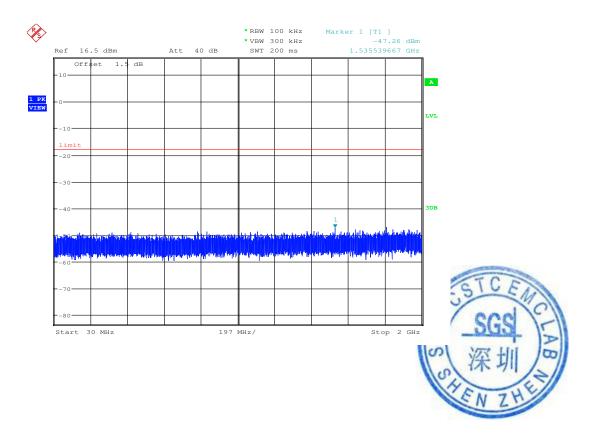




Report No.: SZEM150900609002

Page: 70 of 101

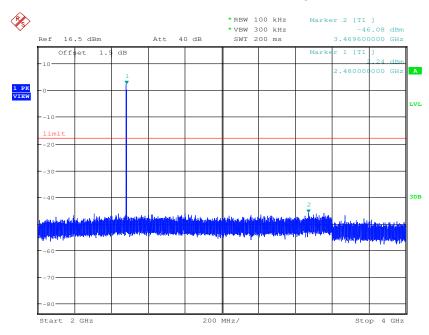


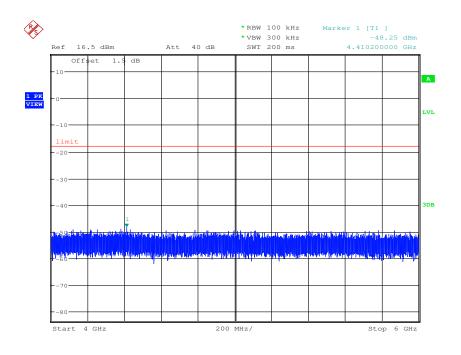


Report No.: SZEM150900609002

Page: 71 of 101

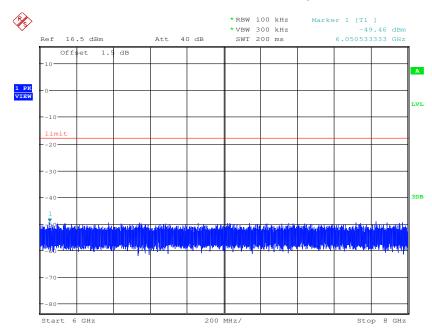
Test mode: π/4DQPSK Test channel: Highest

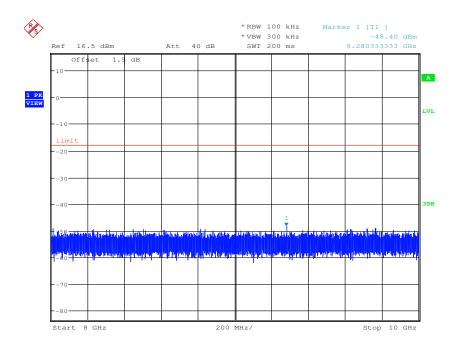




Report No.: SZEM150900609002

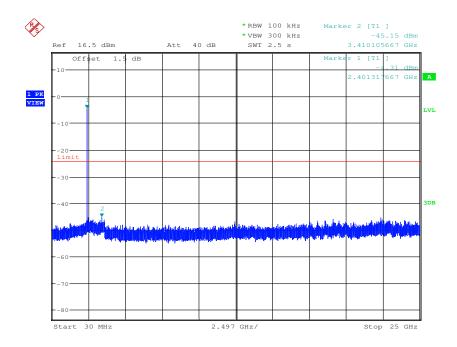
Page: 72 of 101

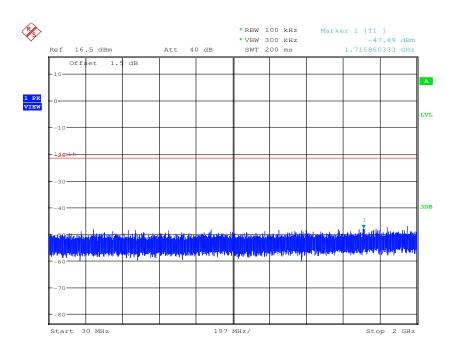




Report No.: SZEM150900609002

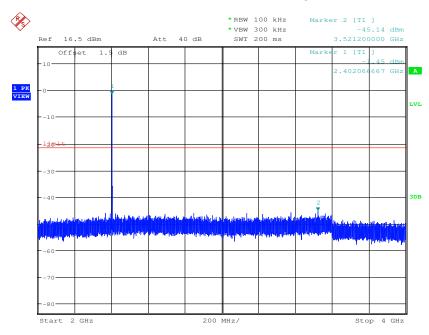
Page: 73 of 101

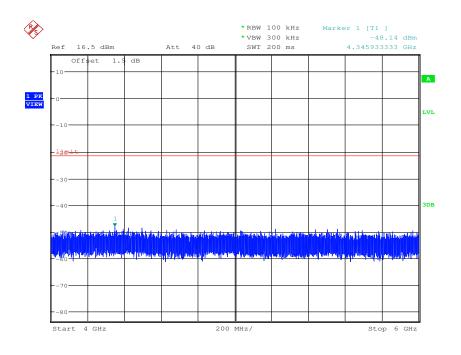




Report No.: SZEM150900609002

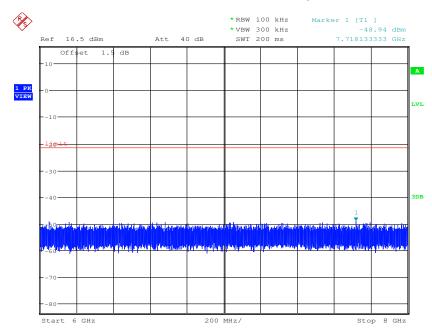
Page: 74 of 101

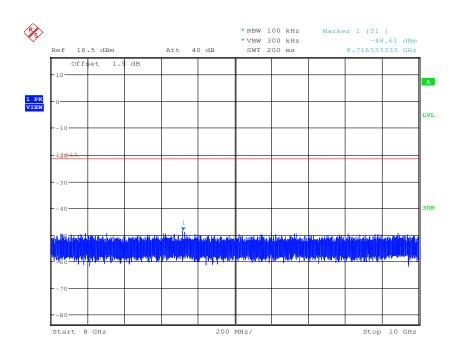




Report No.: SZEM150900609002

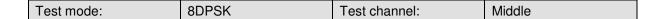
Page: 75 of 101

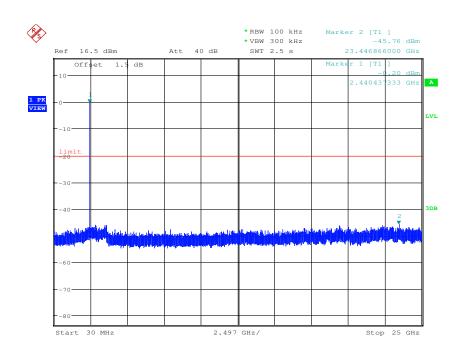


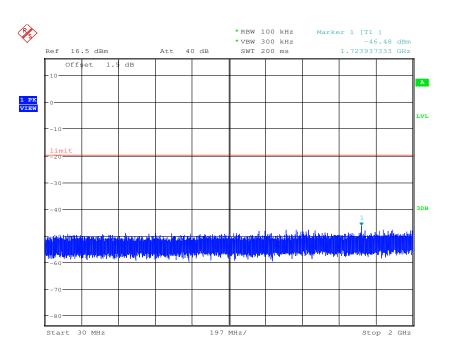


Report No.: SZEM150900609002

Page: 76 of 101

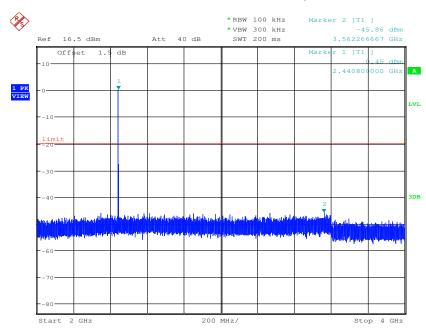


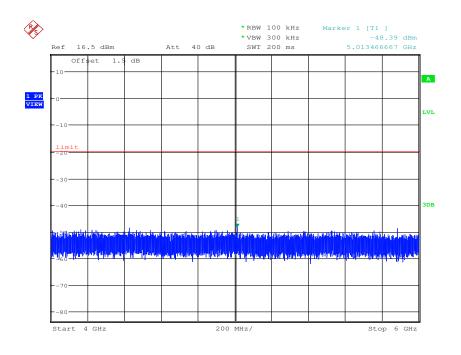




Report No.: SZEM150900609002

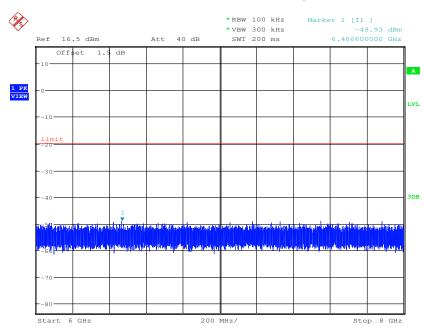
Page: 77 of 101

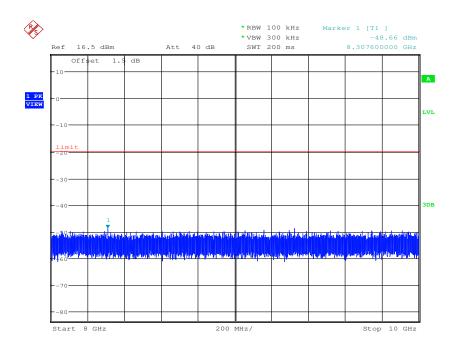




Report No.: SZEM150900609002

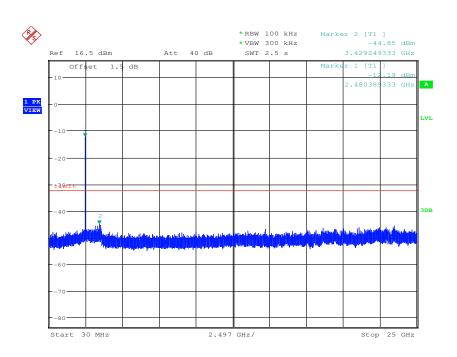
Page: 78 of 101

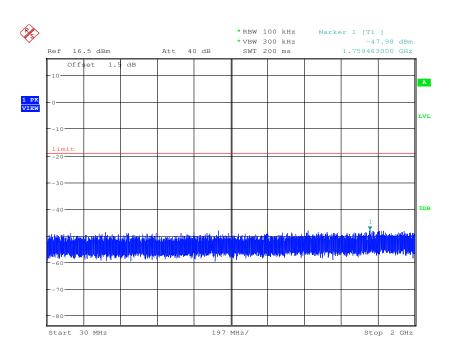




Report No.: SZEM150900609002

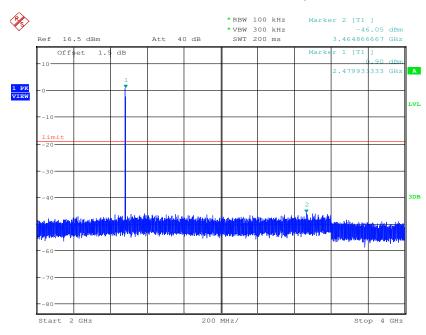
Page: 79 of 101

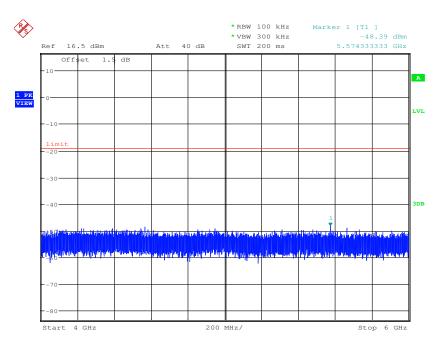




Report No.: SZEM150900609002

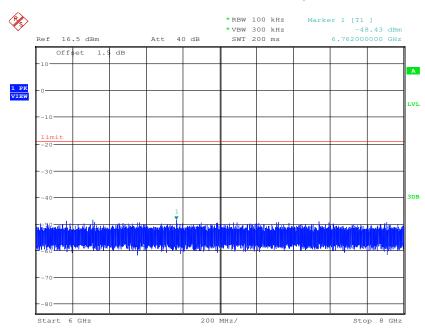
Page: 80 of 101

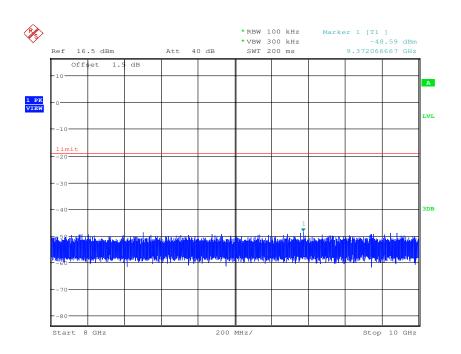




Report No.: SZEM150900609002

Page: 81 of 101





Report No.: SZEM150900609002

Page: 82 of 101

Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

Report No.: SZEM150900609002

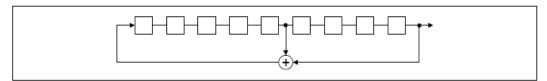
Page: 83 of 101

6.10 Other requirements Frequency Hopping Spread Spectrum System

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

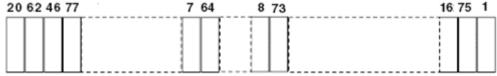
The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage


outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: SZEM150900609002

Page: 84 of 101

Compliance for section 15.247(g)

According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h)

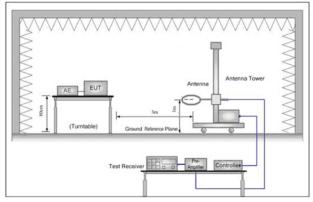
According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.

Report No.: SZEM150900609002

Page: 85 of 101

6.11 Radiated Spurious Emission


Test Requirement:	47 CFR Part 15C Section	on 1	5.209 and 15.	205			
Test Method:	ANSI C63.10: 2009						
Test Site:	Measurement Distance	: 3m	n (Semi-Anech	oic Cham	ber)		
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark	
	0.009MHz-0.090MH	Z	Peak	10kHz	z 30kHz	Peak	
	0.009MHz-0.090MH	Z	Average	10kHz	z 30kHz	Average	
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	z 30kHz	Quasi-peak	
	0.110MHz-0.490MH	z	Peak	10kHz	z 30kHz	Peak	
	0.110MHz-0.490MH	Z	Average	10kHz	z 30kHz	Average	
	0.490MHz -30MHz		Quasi-peak	10kHz	z 30kHz	Quasi-peak	
	30MHz-1GHz		Quasi-peak	100 kH	lz 300kHz	Quasi-peak	
	Above 1GHz		Peak	1MHz	3MHz	Peak	
	Above 1GHz		Peak	1MHz	10Hz	Average	
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m	
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300	
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30	
	1.705MHz-30MHz		30	-	-	30	
	30MHz-88MHz		100	40.0	Quasi-peak	3	
	88MHz-216MHz		150	43.5	Quasi-peak	3	
	216MHz-960MHz		200	46.0	Quasi-peak	3	
	960MHz-1GHz		500	54.0	Quasi-peak	3	
	Above 1GHz		500	54.0	Average	3	
	Note: 15.35(b), Unless emissions is 20dE applicable to the e peak emission lev	3 ab equi	ove the maxim	num perm est. This p	itted average	emission limit	

Report No.: SZEM150900609002

Page: 86 of 101

Test Setup:

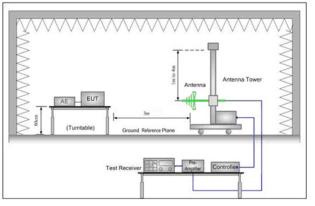


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

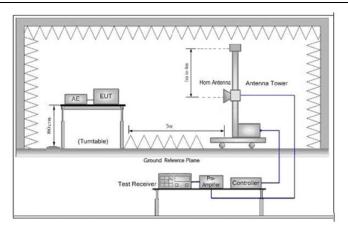


Figure 3. Above 1 GHz

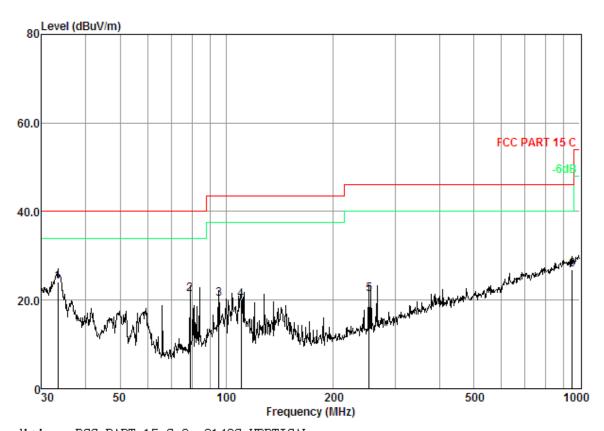
Test Procedure:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB

Report No.: SZEM150900609002

Page: 87 of 101

	margin would be re-tested one by one using peak, guest peak or						
	margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.						
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz)						
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.						
	i. Repeat above procedures until all frequencies measured was complete.						
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of						
	data type						
	Charge + Transmitting mode.						
Final Test Mode:	Through Pre-scan, find the DH1 of data type and GFSK modulation is the worst case.						
	Pretest the EUT at Transmitting mode and Charge + Transmitting mode, found the Charge + Transmitting mode which it is worse case						
	For below 1GHz part, through pre-scan, the worst case is the lowest channel.						
	Only the worst case is recorded in the report.						
Instruments Used:	Refer to section 5.10 for details						
Test Results:	Pass						



Report No.: SZEM150900609002

Page: 88 of 101

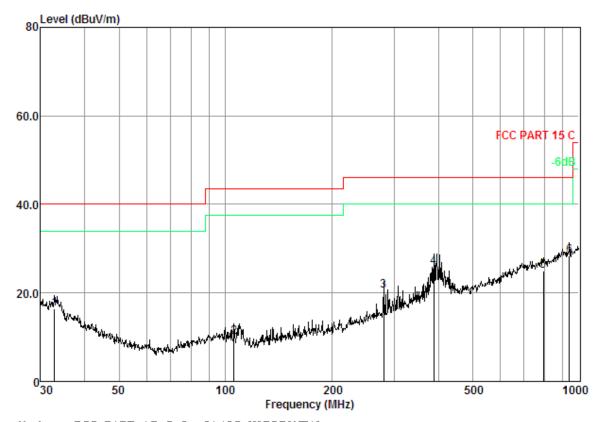
6.11.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting mode	Vertical

Condition: FCC PART 15 C 3m 3142C VERTICAL

Job No. : 6090CR

Test Mode: Charge+TX mode


Freq	CableA Loss		Preamp Factor				Over Limit
MHz	dB	dB/m	dB	dBuV	$\overline{\text{dBuV/m}}$	$\overline{\text{dBuV/m}}$	dB
1 33.33 2 78.97 3 95.09 4 110.18 5 252.95 6 952.09	1.41 1.49	16. 64 7. 61 8. 91 8. 57 12. 36 23. 40	25. 25 25. 31 25. 54 24. 93	35. 27 35. 57 31. 48	21.31 20.28 20.09 21.43	40.00 43.50 43.50	-23. 22 -23. 41 -24. 57

Report No.: SZEM150900609002

Page: 89 of 101

Condition: FCC PART 15 C 3m 3142C HORIZONTAL

Job No. : 6090CR

Test Mode: Charge+TX mode

	Freq			Preamp Factor				Over Limit
_	MHz	dB	dB/m	dB	dBuV	$\overline{\text{dBuV/m}}$	$\overline{\text{dBuV/m}}$	dB
1 2 3 4 5	32. 86 105. 64 280. 02 387. 99 793. 40 938. 83	2.66 3.22 4.84	16. 93 8. 81 13. 03 16. 17 22. 08 23. 30	25. 71 26. 18 24. 68 25. 47 25. 91 25. 65	29. 52 31. 95 23. 91	10. 09 20. 53 25. 87 24. 92	46.00 46.00 46.00	-23.53 -33.41 -25.47 -20.13 -21.08 -17.62

Report No.: SZEM150900609002

Page: 90 of 101

6.11.2 Transmitter Emission above 1GHz

Test mode:		GFSK(DH1)	Tes	t channel:	Lowest	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3663.017	6.87	33.05	38.81	46.04	47.15	74	-26.85	Vertical
4804.000	6.42	34.70	39.24	49.41	51.29	74	-22.71	Vertical
6016.949	8.08	36.28	39.18	45.53	50.71	74	-23.29	Vertical
7206.000	8.92	35.63	39.07	45.86	51.34	74	-22.66	Vertical
9608.000	9.99	37.33	37.93	41.34	50.73	74	-23.27	Vertical
12297.040	11.06	39.07	38.95	42.22	53.40	74	-20.60	Vertical
3684.279	6.86	33.06	38.82	45.19	46.29	74	-27.71	Horizontal
4804.000	6.42	34.7	39.24	54.61	56.49	74	-17.51	Horizontal
5904.828	7.93	36.12	39.19	45.99	50.85	74	-23.15	Horizontal
7206.000	8.92	35.63	39.07	44.62	50.1	74	-23.9	Horizontal
9608.000	9.99	37.33	37.93	40.24	49.63	74	-24.37	Horizontal
12190.740	10.9	38.94	38.86	42.75	53.73	74	-20.27	Horizontal

Worse case	mode:	GFSK(DH1)) 7	Γest channel:	Lowest		Remark:		Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Prean facto (dB)	r Level	Emission Level (dBµV/m)	Lim (dBµV		Over Limit (dB)	Polarization
4804.000	6.41	34.7	39.2	4 47.51	49.38	54		-4.62	Horizontal

Report No.: SZEM150900609002

Page: 91 of 101

Test mode:	(GFSK(DH1)	Test	channel:	Middle	Rema	rk:	Peak
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
3636.612	6.89	33.03	38.80	45.37	46.49	74	-27.51	Vertical
4882.000	6.59	34.78	39.26	50.78	52.89	74	-21.11	Vertical
6043.124	8.07	36.25	39.18	45.80	50.94	74	-23.06	Vertical
7323.000	9.08	35.50	39.06	45.20	50.72	74	-23.28	Vertical
9764.000	9.90	37.81	37.84	41.48	51.35	74	-22.65	Vertical
12512.420	11.31	39.23	39.13	42.14	53.55	74	-20.45	Vertical
3689.614	6.86	33.07	38.82	45.46	46.57	74	-27.43	Horizontal
4882.000	6.59	34.78	39.26	56.84	58.95	74	-15.05	Horizontal
6229.564	8.03	36.04	39.16	47.23	52.14	74	-21.86	Horizontal
7323.000	9.08	35.50	39.06	45.37	50.89	74	-23.11	Horizontal
9764.000	9.90	37.81	37.84	40.75	50.62	74	-23.38	Horizontal
12297.040	11.06	39.07	38.95	42.42	53.60	74	-20.40	Horizontal

Worse case	mode:	GFSK(DH1)) Te	st channel:	Middle	Re	mark:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Polarization
4882.000	6.58	34.78	39.26	50.20	52.30	54	-1.70	Horizontal

Report No.: SZEM150900609002

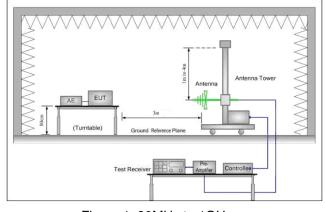
Page: 92 of 101

Test mode:		GFSK(DH1)	Test	channel:	Highest	Rema	rk:	Peak
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBμV/m)	Over limit (dB)	Polarization
3678.952	6.87	33.06	38.82	44.70	45.81	74	-28.19	Vertical
4960.000	6.76	34.86	39.29	50.82	53.15	74	-20.85	Vertical
6043.124	8.07	36.25	39.18	45.37	50.51	74	-23.49	Vertical
7440.000	9.23	35.43	39.05	44.89	50.50	74	-23.50	Vertical
9920.000	9.81	38.27	37.75	41.95	52.28	74	-21.72	Vertical
12190.740	10.90	38.94	38.86	42.83	53.81	74	-20.19	Vertical
3705.664	6.85	33.08	38.83	45.90	47.00	74	-27.00	Horizontal
4960.000	6.76	34.86	39.29	55.69	58.02	74	-15.98	Horizontal
5964.939	8.03	36.23	39.19	45.94	51.01	74	-22.99	Horizontal
7440.000	9.23	35.43	39.05	44.56	50.17	74	-23.83	Horizontal
9920.000	9.81	38.27	37.75	40.83	51.16	74	-22.84	Horizontal
12279.260	11.03	39.05	38.94	42.07	53.21	74	-20.79	Horizontal

Worse case	mode:	GFSK(DH1))	Test	t channel:	Highest	Rem		nark:	Average
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Prea fact (dl	tor	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/		Over Limit (dB)	Polarization
4960.000	6.75	34.86	39.	29	46.70	49.02	54		-4.98	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits.



Report No.: SZEM150900609002

Page: 93 of 101

6.12Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10: 2009									
Test Site:	Measurement Distance: 3m	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Limit:	Frequency	Limit (dBuV/m @3m)	Remark							
	30MHz-88MHz	40.0	Quasi-peak Value							
	88MHz-216MHz	43.5	Quasi-peak Value							
	216MHz-960MHz	46.0	Quasi-peak Value							
	960MHz-1GHz	54.0	Quasi-peak Value							
	Above 1GHz	54.0	Average Value							
	Above IGHZ	74.0	Peak Value							
			_							
Test Setup:										

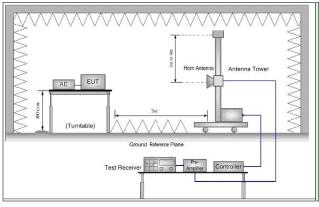


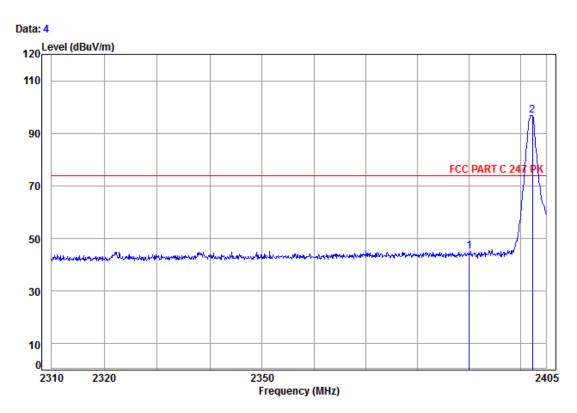
Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: SZEM150900609002

Page: 94 of 101

Test Procedure:	a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.					
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.					
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.					
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360					
	degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and					
	Specified Bandwidth with Maximum Hold Mode.					
	Place a marker at the end of the restricted band closest to the					
	transmit frequency to show compliance. Also measure any					
	emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel					
	g. Test the EUT in the lowest channel, the Highest channel					
	h. The radiation measurements are performed in X, Y, Z axis					
	positioning for Transmitting mode, and found the X axis positioning which it is the worst case.					
	Repeat above procedures until all frequencies measured was complete.					
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of					
	data type					
	Transmitting mode, Charge + Transmitting mode.					
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.					
	Pretest the EUT at Transmitting mode and Charge + Transmitting mode, found the Charge + Transmitting mode which it is worse case					
	Only the worst case is recorded in the report.					
Instruments Used:	Refer to section 5.10 for details					
Test Results:	Pass					



Report No.: SZEM150900609002

Page: 95 of 101

Test plot as follows:

Worse case mode: GFSK (DH5) Test channel: Lowest Remark: Peak Vertical

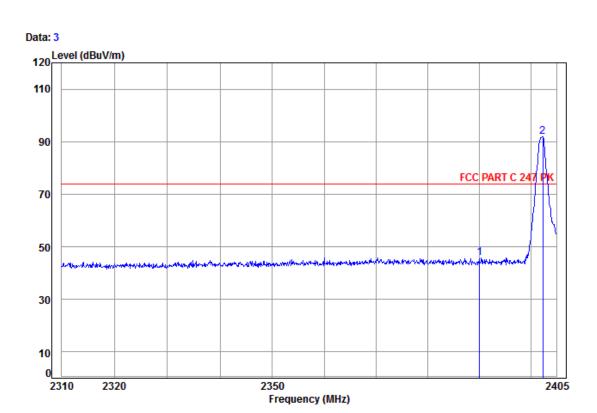
Site : chamber

Condition: FCC PART C 247 PK 3m Vertical

Job No: : 6090CR

Mode: : 2402 Band edge

: BT


				Preamp Factor			Freq	
dB	dBuV/m	dBuV/m	dBuV	dB	dB/m	dB	MHz	-
							2390.00	

Report No.: SZEM150900609002

Page: 96 of 101

Worse case mode:	GFSK (DH5)	Test channel:	Lowest	Remark:	Peak	Horizontal

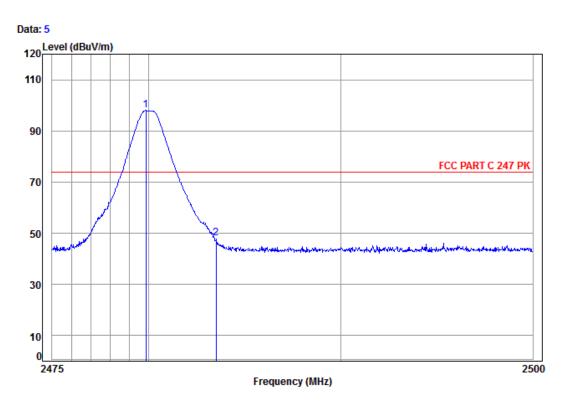
Site : chamber

Condition: FCC PART C 247 PK 3m Horizontal

Job No: : 6090CR

Mode: : 2402 Band edge

: BT


				Preamp Factor			Freq	
dB	dBuV/m	dBuV/m	dBuV	dB	dB/m	dB	MHz	-
							2390.00 2402.38	

Report No.: SZEM150900609002

Page: 97 of 101

Worse case mode: GFSK (DH5) Test channel: Highest Remark: Peak Vertical

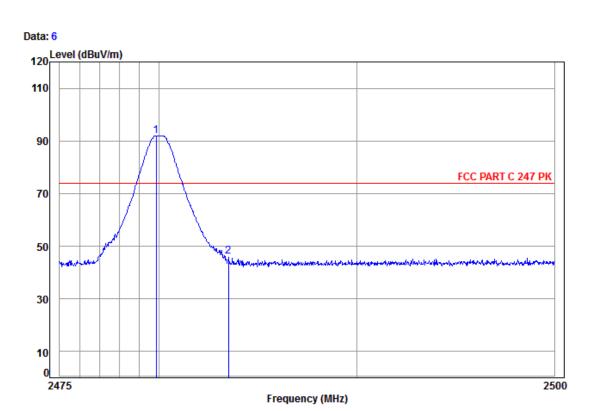
Site : chamber

Condition: FCC PART C 247 PK 3m Vertical

Job No: : 6090CR

Mode: : 2480 Band edge

: BT


Cable Ant Preamp Read Limit 0ver Loss Factor Factor Level Level Line Limit MHz dΒ dB/m dBuV dBuV/m dBuV/m 2479.86 5.02 32.44 38.47 98.98 97.97 74.00 23.97 2 pk 2483.50 5.03 32.44 38.47 49.01 48.01 74.00 -25.99

Report No.: SZEM150900609002

Page: 98 of 101

I WOISE CASE HOUE. I CHI SIN (DIIS) LESI CHAHHEL. HIGHESI NEHIAIN. LEAN HOHZOHIAI	Worse case mode:	GFSK (DH5)	Test channel:	Highest	Remark:	Peak	Horizontal
---	------------------	------------	---------------	---------	---------	------	------------

Site : chamber

Condition: FCC PART C 247 PK 3m Horizontal

Job No: : 6090CR

Mode: : 2480 Band edge

: BT

				Preamp Factor			Freq	
dB	dBuV/m	dBuV/m	dBuV	dB	dB/m	dB	MHz	-
							2479.86 2483.50	

Report No.: SZEM150900609002

Page: 99 of 101

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

2) The peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM150900609002

Page: 100 of 101

7 Photographs - EUT Test Setup

Test model No.: MW60

7.1 Conducted Emission

7.2 Radiated Emission

Report No.: SZEM150900609002

Page: 101 of 101

7.3 Radiated Spurious Emission

8 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1509006090CR.

