

FCC TEST REPORT

For

2251723 Ontario Inc o/a Vmedia

VBOX

Model No.: VBOX7

Additional Model No.: VBOX8, VBOX9, VBOX10

Prepared for	:	2251723 Ontario Inc o/a Vmedia
Address	:	5255 Yonge Street, suite 1210, Toronto, Canada
Prepared by	:	Shenzhen LCS Compliance Testing Laboratory Ltd.
Address	:	1F., Xingyuan Industrial Park, Tongda Road, Bao'an Blvd., Bao'an District, Shenzhen, Guangdong, China
Tel	:	(+86)755-82591330
Fax	:	(+86)755-82591332
Web	:	www.LCS-cert.com
Mail	:	webmaster@LCS-cert.com
Date of receipt of test sample	:	December 06, 2017
Number of tested samples	:	1
Serial number	:	Prototype
Date of Test	:	December 06, 2017~January 08, 2018
Date of Report	:	January 08, 2018

FCC TEST REPORT
FCC CFR 47 PART 15 E(15.407)

Report Reference No. : **LCS171206020AEE**

Date of Issue : January 08, 2018

Testing Laboratory Name : **Shenzhen LCS Compliance Testing Laboratory Ltd.**

Address : 1F., Xingyuan Industrial Park, Tongda Road, Bao'an Blvd.,
Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure : Full application of Harmonised standards Partial application of Harmonised standards
Other standard testing method

Applicant's Name : **2251723 Ontario Inc o/a Vmedia**

Address : 5255 Yonge Street, suite 1210, Toronto, Canada

Test Specification

Standard : FCC CFR 47 PART 15 E(15.407)

Test Report Form No. : LCSEMC-1.0

TRF Originator : Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF : Dated 2011-03

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

EUT Description : **VBOX**

Trade Mark : VBOX

Model/ Type reference : VBOX7

Ratings : DC 5V by AC/DC ADAPTER

Result : **Positive**

Compiled by:

Linda He/ File administrators

Supervised by:

Dick Su / Technique principal

Approved by:

Gavin Liang/ Manager

FCC -- TEST REPORT

Test Report No. : LCS171206020AEE	<u>January 08, 2018</u> Date of issue
--	--

EUT..... : VBOX

Type / Model..... : VBOX7

Applicant..... : 2251723 Ontario Inc o/a Vmedia

Address..... : 5255 Yonge Street, suite 1210, Toronto, Canada

Telephone..... : /

Fax..... : /

Manufacturer..... : Videostrong Technology Co., Ltd

Address..... : 402A ,Building B, Donglian Industrial 23rd District,Bao'an , Shenzhen, China

Telephone..... : /

Fax..... : /

Factory..... : Videostrong Technology Co., Ltd

Address..... : 402A ,Building B, Donglian Industrial 23rd District,Bao'an , Shenzhen, China

Telephone..... : /

Fax..... : /

Test Result:	Positive
---------------------	-----------------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
000	January 08, 2018	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. DESCRIPTION OF DEVICE (EUT)	6
1.2. HOST SYSTEM CONFIGURATION LIST AND DETAILS	7
1.3. EXTERNAL I/O PORT	7
1.4. DESCRIPTION OF TEST FACILITY	7
1.5. STATEMENT OF THE MEASUREMENT UNCERTAINTY	7
1.6. MEASUREMENT UNCERTAINTY	7
1.7. DESCRIPTION OF TEST MODES	8
2. TEST METHODOLOGY	9
2.1. EUT CONFIGURATION	9
2.2. EUT EXERCISE	9
2.3. GENERAL TEST PROCEDURES	9
3. SYSTEM TEST CONFIGURATION.....	10
3.1. JUSTIFICATION	10
3.2. EUT EXERCISE SOFTWARE.....	10
3.3. SPECIAL ACCESSORIES	10
3.4. BLOCK DIAGRAM/SCHEMATICS.....	10
3.5. EQUIPMENT MODIFICATIONS	10
3.6. TEST SETUP	10
4. SUMMARY OF TEST RESULTS.....	11
5. TEST RESULT	12
5.1. ON TIME AND DUTY CYCLE	12
5.2. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT.....	14
5.3. POWER SPECTRAL DENSITY MEASUREMENT	16
5.4. 6dB OCCUPIED BANDWIDTH MEASUREMENT	23
5.5. RADIATED EMISSIONS MEASUREMENT.....	30
5.6. POWER LINE CONDUCTED EMISSIONS	43
5.8. ANTENNA REQUIREMENTS.....	55
6. LIST OF MEASURING EQUIPMENTS	57

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT	: VBOX
Additional Model No.	: VBOX8, VBOX9, VBOX10
Model Declaration	: PCB board, structure and internal of these model(s) are the same, Only models name is different for these models.
Test Model	: VBOX7
Power Supply	: DC 5V by AC/DC ADAPTER
Hardware version	: VBOX7_V2.0
Software version	: V1.0
Bluetooth Version	: V4.1
Channel Number	: 79 Channels for Bluetooth V3.0(DSS) : 40 Channels for Bluetooth V4.1(DTS)
Modulation Technology	: GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V3.0(DSS) : GFSK for Bluetooth V4.1(DTS)
Data Rates	: Bluetooth V3.0(DSS): 1~3Mbps : Bluetooth V4.1(DTS): 1Mbps
WLAN	: Supported 802.11b/802.11g/802.11n/802.11a/802.11ac
WLAN FCC Operation Frequency	: IEEE 802.11b:2412-2462MHz IEEE 802.11g:2412-2462MHz IEEE 802.11n HT20:2412-2462MHz/5150-5250MHz/5725-5825MHz IEEE 802.11n HT40:2422-2452MHz/5150-5250MHz/5725-5825MHz IEEE 802.11a: 5150-5250MHz/5725.00-5825.00MHz IEEE 802.11ac: 5150-5250MHz/5725.00-5825.00MHz
WLAN Channel Number	: 11 Channels for WIFI 20MHz Bandwidth(802.11b/g/n-HT20) 7 Channels for WIFI 40MHz Bandwidth(802.11n-HT40) 4 Channels for 5180.00-5240.00MHz(802.11a/n/ac-HT20) 5 Channels for 5745.00-5825.00MHz(802.11a/n/ac-HT20) 2 Channels for 5190.00-5230.00MHz(802.11n/ac-HT40) 2 Channels for 5755.00-5795.00MHz(802.11n/ac-HT40) 1 Channels for 5210.00MHz(802.11ac-HT80) 1 Channels for 5775.00MHz(802.11ac-HT80)
WLAN Modulation Technology	: IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM,QPSK,BPSK) IEEE 802.11a: OFDM (64QAM, 16QAM,QPSK,BPSK) IEEE 802.11ac: OFDM (64QAM, 16QAM,QPSK,BPSK)
Antenna Type And Gain	: Two same PIFA Antenna; Chain 0 used for WIFI TX/RX, 2.0dBi(Max.); Chain 1 used for WIFI/Bluetooth TX/RX, 2.0dBi(Max.)

1.2. Host System Configuration List and Details

Manufacturer	Description	Model	Serial Number	Certificate
SHENZHEN KEYU POWER SUPPLY TECHNOLOGY CO., LTD.	AC/DC Charger of EUT	KA1201 A	---	FCC

1.3. External I/O Port

I/O Port Description	Quantity	Cable
A/V OUTPUT Port	1	N/A
LAN Port	1	N/A
HDMI Port	1	N/A
DC 5V IN Port	1	0.8m, unshielded
MICRO SD Card Slot	1	N/A
USB Port (Type A)	2	N/A

1.4. Description of Test Facility

FCC Registration Number. is 254912.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

NVLAP Registration Code is 600167-0

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

1.5. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 “Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements” and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item	Frequency Range	Uncertainty	Note
Radiation Uncertainty	9KHz~30MHz	3.10dB	(1)
	30MHz~200MHz	2.96dB	(1)
	200MHz~1000MHz	3.10dB	(1)
	1GHz~26.5GHz	3.80dB	(1)
	26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty	150kHz~30MHz	1.63dB	(1)
Power disturbance	30MHz~300MHz	1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description of Test Modes

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worst case was found when EUT in X position.

Worst-case mode and channel used for 150 kHz-30 MHz power line conducted emissions was the mode and channel with the highest output power that was determined to be IEEE 802.11a mode (High Channel).

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be IEEE 802.11a mode (High Channel).

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

IEEE 802.11a Mode : 6 Mbps, OFDM.

IEEE 802.11ac VHT20 Mode: MCS0

IEEE 802.11n HT20 Mode: MCS0, OFDM.

IEEE 802.11ac VHT40 Mode: MCS0, OFDM.

IEEE 802.11n HT40 Mode: MCS0, OFDM.

IEEE 802.11ac VHT80 Mode: MCS0, OFDM.

Antenna & Bandwidth

Antenna	Single (Port.1)			Two (Port.1 + Port.2)		
	20MHz	40MHz	80MHz	20MHz	40MHz	80MHz
IEEE 802.11a	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
IEEE 802.11n	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
IEEE 802.11ac	<input type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>

2. TEST METHODOLOGY

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

The radiated testing was performed at an antenna-to-EUT distance of 3 meters. All radiated and conducted emissions measurement was performed at Shenzhen LCS Compliance Testing Laboratory Ltd.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to FCC's request, Test Procedure 789033 D02 General UNII Test Procedures New Rules v01r02 and KDB 6622911 are required to be used for this kind of FCC 15.407 UII device.

According to its specifications, the EUT must comply with the requirements of the Section 15.203, 15.205, 15.207, 15.209 and 15.407 under the FCC Rules Part 15 Subpart E

2.3. General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

3. SYSTEM TEST CONFIGURATION

3.1. Justification

The system was configured for testing in a continuous transmits condition.

3.2. EUT Exercise Software

The system was configured for testing in a continuous transmits condition and change test channels by software (rftesttool-cn-v53) provided by application.

3.3. Special Accessories

Manufacturer	Description	Model	Serial Number	Certificate
Lenovo	PC	B470	--	DOC
Lenovo	AC/DC ADAPTER	ADP-90DDB	--	DOC

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart E		
FCC Rules	Description of Test	Result
§15.407(a)	Maximum Conducted Output Power	Compliant
§15.407(a)	Power Spectral Density	Compliant
§15.407(e)	6dB Bandwidth	Compliant
§15.407(b)	Radiated Emissions	Compliant
§15.407(b)	Band edge Emissions	Compliant
§15.407(g)	Frequency Stability	Note
§15.207(a)	Line Conducted Emissions	Compliant
§15.203	Antenna Requirements	Compliant
§2.1093	RF Exposure	Compliant

Note: The customer declared frequency stability is better than 20ppm which ensures that the signal remains in the allocated bands under all operational conditions stated in the user manual.

5. TEST RESULT

5.1. On Time and Duty Cycle

5.1.1. Standard Applicable

None; for reporting purpose only.

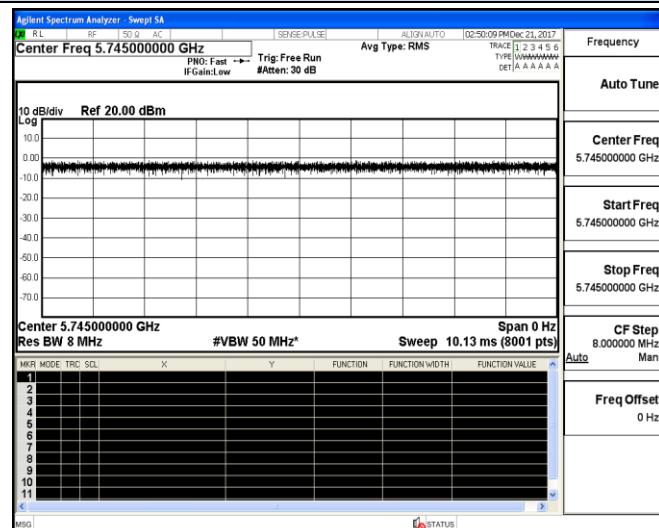
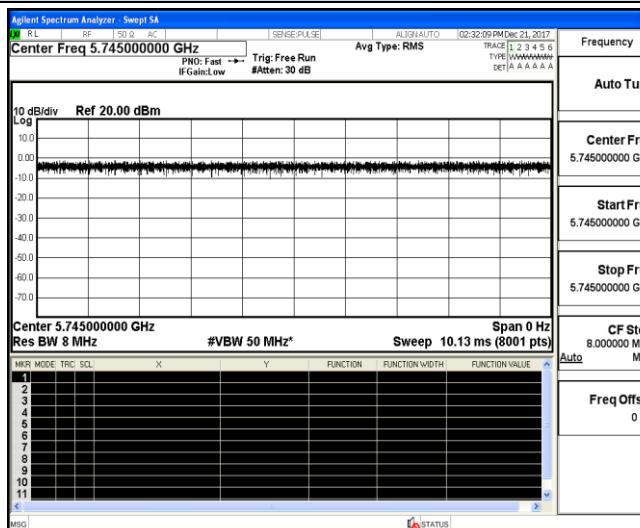

5.1.2. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of the spectrum analyzer.

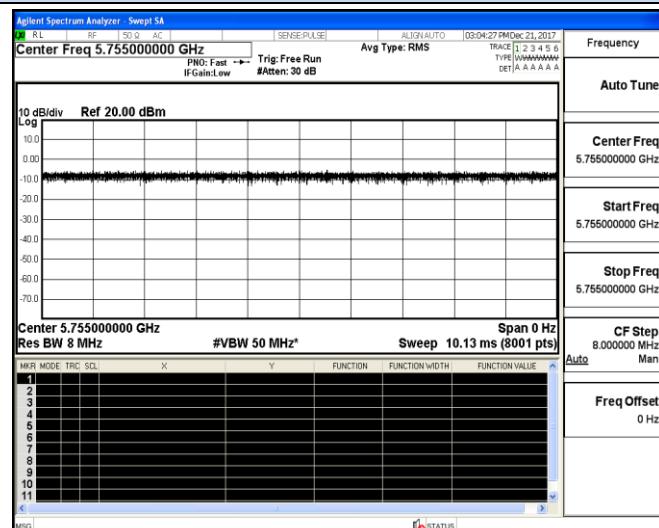
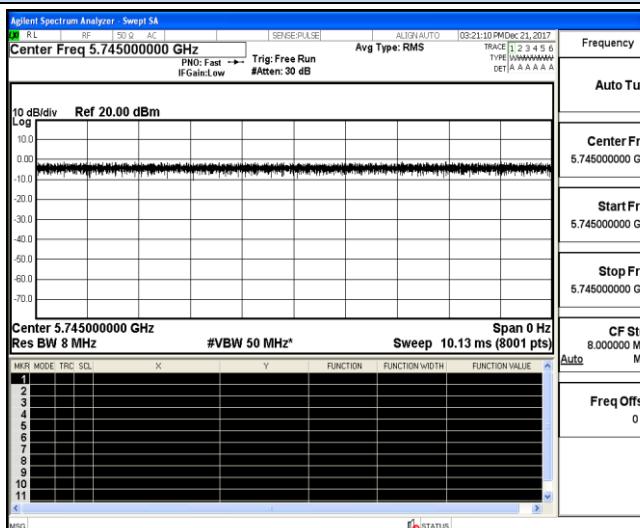
5.1.3. Test Procedures

1. Set the Centre frequency of the spectrum analyzer to the transmitting frequency;
2. Set the span=0MHz, RBW=8MHz, VBW=50MHz, Sweep time=5ms;
3. Detector = peak;
4. Trace mode = Single hold.

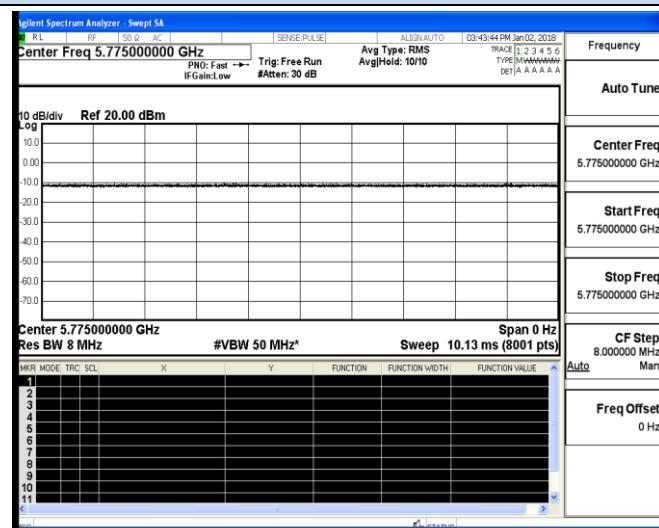
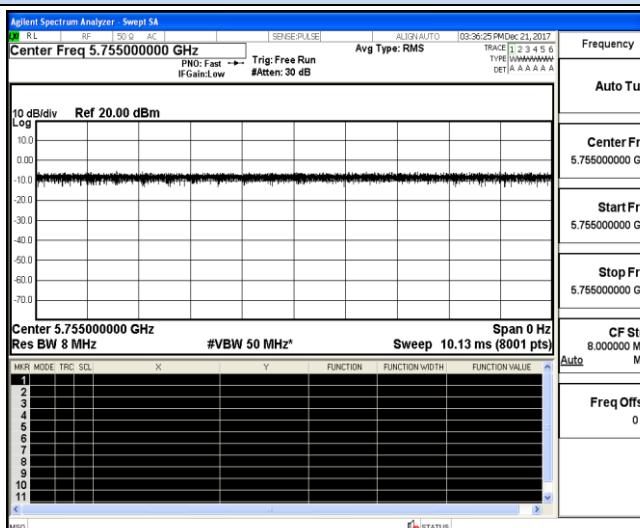
5.1.4. Test Setup Layout



5.1.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.



5.1.6. Test result

Mode	On Time B (ms)	Period (ms)	Duty Cycle x (Linear)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/B Minimum VBW(KHz)
IEEE 802.11a	5	5	1	100	0	0.010
IEEE 802.11n HT20	5	5	1	100	0	0.010
IEEE 802.11ac VHT20	5	5	1	100	0	0.010
IEEE 802.11n HT40	5	5	1	100	0	0.010
IEEE 802.11ac VHT40	5	5	1	100	0	0.010
IEEE 802.11ac VHT80	5	5	1	100	0	0.010



On Time and Duty Cycle

IEEE 802.11a

IEEE 802.11ac VHT20

IEEE 802.11ac VHT40

IEEE 802.11ac VHT80

5.2. Maximum Conducted Output Power Measurement

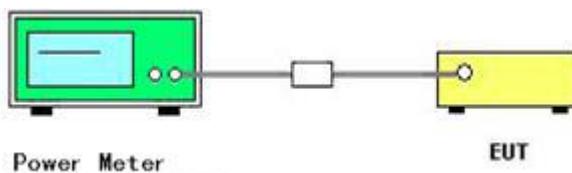
5.2.1. Standard Applicable

For 5725~5850MHz

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

5.2.2. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of the power meter.


5.2.3. Test Procedures

The transmitter output (antenna port) was connected to the power meter.

According to KDB 789033 D02 Section 3 (a) Method PM (Measurement using an RF average power meter):

- (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.
 - The EUT is configured to transmit continuously or to transmit with a constant duty cycle.
 - At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
 - The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section II.B.
- (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- (iv) Adjust the measurement in dBm by adding $10 \log (1/x)$ where x is the duty cycle (e.g., $10 \log (1/0.25)$ if the duty cycle is 25%).

5.2.4. Test Setup Layout

5.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.2.6. Test Result of Maximum Conducted Output Power

Temperature	25.1 °C	Humidity	52.4%
Test Engineer	Tom Liu	Configurations	IEEE 802.11a/n/ac

Test Mode	Channel	Frequency (MHz)	Measured Conducted Average Power (dBm)			Duty Cycle factor (dB)	Report Conducted Average Power (dBm)			Limits (dBm)	Verdict
			Antenna 0	Antenna 1	Sum		Antenna 0	Antenna 1	Sum		
IEEE 802.11a	149	5745	13.14	13.44	/	0.00	13.14	13.44	/	30.00	PASS
	157	5785	11.76	12.78	/	0.00	11.76	12.78	/		
	165	5825	11.60	12.9	/	0.00	11.60	12.9	/		
IEEE 802.11n HT20	149	5745	13.05	14.19	16.67	0.00	13.05	14.19	16.67	30.00	PASS
	157	5785	11.70	12.76	15.27	0.00	11.70	12.76	15.27		
	165	5825	11.52	12.71	15.17	0.00	11.52	12.71	15.17		
IEEE 802.11ac VHT20	149	5745	13.02	14.1	16.60	0.00	13.02	14.1	16.60	30.00	PASS
	157	5785	11.66	12.83	15.29	0.00	11.66	12.83	15.29		
	165	5825	11.49	12.88	15.25	0.00	11.49	12.88	15.25		
IEEE 802.11n HT40	151	5755	12.95	13.98	16.51	0.00	12.95	13.98	16.51	30.00	PASS
	159	5795	11.96	13.37	15.73	0.00	11.96	13.37	15.73		
	151	5755	12.91	13.64	16.30	0.00	12.91	13.64	16.30		
IEEE 802.11ac VHT40	159	5795	11.98	13.13	15.60	0.00	11.98	13.13	15.60	30.00	PASS
	155	5775	9.29	9.19	12.25	0.00	9.29	9.19	12.25		

Remark:

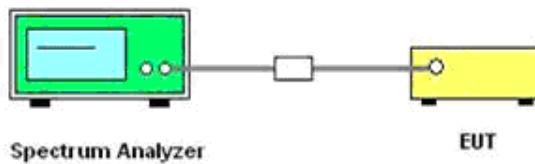
1. Measured output power at difference data rate for each mode and recorded worst case for each mode.
2. Test results including cable loss;
3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11a VHT20, IEEE 802.11ac VHT40 and IEEE 802.11ac VHT80;
4. For MIMO with CCD technology device, The Directional Gain= Gain of individual transmit antennas (dB) + Array gain;
Array gain = $10 \log (N_{ant})$, where N_{ant} is the number of transmit antennas.
5. Directional Gain = $2 + 10\log (2) = 5.01 \text{ dB} < 6 \text{ dB}$; no need reduce power limit;
6. Report conducted average power = measured conducted average power + Duty Cycle factor;

5.3. Power Spectral Density Measurement

5.3.1. Standard Applicable

For 5725~5850MHz

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.


5.3.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of Spectrum Analyzer.

5.3.3. Test Procedures

1. The transmitter was connected directly to a Spectrum Analyzer through a directional couple.
2. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
3. Set the RBW = 300 kHz.
4. Set the VBW $\geq 3 \times$ RBW
5. Span=Encompass the entire emissions bandwidth (EBW) of the signal
6. Detector = RMS.
7. Sweep time = auto couple.
8. Trace mode = max hold.
9. Allow trace to fully stabilize.
10. If measurement bandwidth of Maximum PSD is specified in 500 kHz, add $10 \log (500 \text{ kHz}/\text{RBW})$ to the measured result, whereas RBW ($< 500 \text{ kHz}$) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
11. If measurement bandwidth of Maximum PSD is specified in 1 MHz, add $10 \log (1\text{MHz}/\text{RBW})$ to the measured result, whereas RBW ($< 1 \text{ MHz}$) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
12. Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

5.3.4. Test Setup Layout

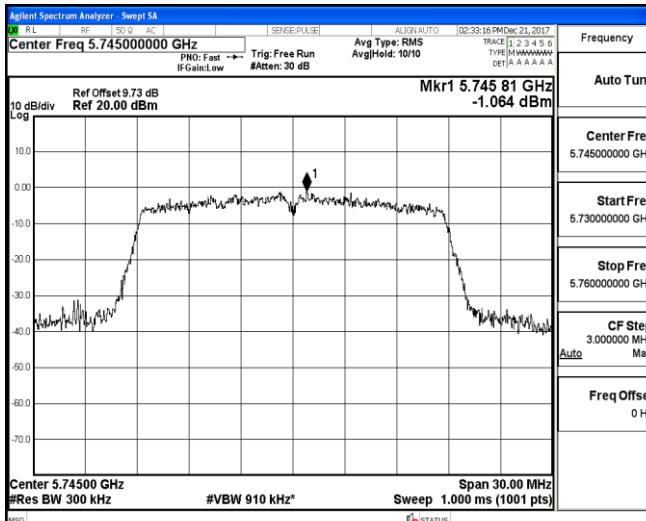
5.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.3.6. Test Result of Power Spectral Density

Temperature	25.1 °C			Humidity			52.4%		
Test Engineer	Tom Liu			Configurations			802.11a/n/ac		

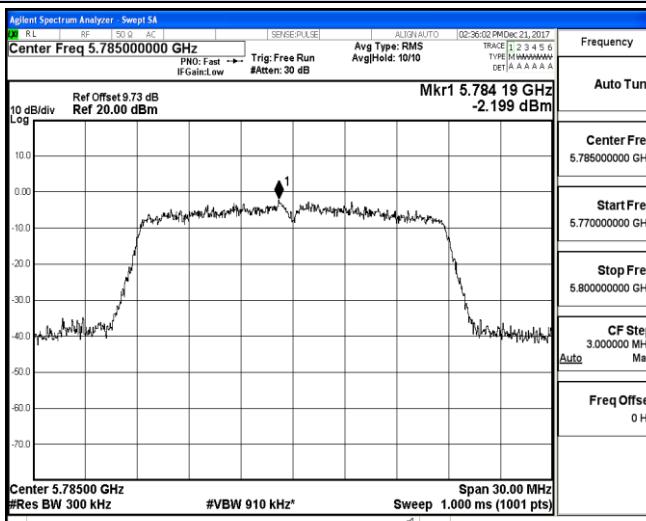
Test Mode	Channel	Frequency (MHz)	Measured Conducted PSD (dBm/300KHz)			Duty Cycle factor (dB)	RBW factor (dB)	Report Conducted PSD (dBm/500KHz)			Limits (dBm/500KHz)	Verdict
			Antenna 0	Antenna 1	Sum			Antenna 0	Antenna 1	Sum		
IEEE 802.11a	149	5745	-1.06	-0.52	/	0.00	2.218	1.158	1.698	/	30.00	PASS
	157	5785	-2.20	-1.12	/	0.00	2.218	0.018	1.098	/		
	165	5825	-2.37	-1.05	/	0.00	2.218	-0.152	1.168	/		
IEEE 802.11n HT20	149	5745	-0.83	0.22	2.74	0.00	2.218	1.388	2.438	4.958	30.00	PASS
	157	5785	-2.14	-1.10	1.42	0.00	2.218	0.078	1.118	3.638		
	165	5825	-2.56	-1.62	0.95	0.00	2.218	-0.342	0.598	3.168		
IEEE 802.11ac VHT20	149	5745	-1.37	-0.31	2.20	0.00	2.218	0.848	1.908	4.418	30.00	PASS
	157	5785	-2.31	-1.50	1.12	0.00	2.218	-0.092	0.718	3.338		
	165	5825	-2.30	-1.12	1.34	0.00	2.218	-0.082	1.098	3.558		
IEEE 802.11n HT40	151	5755	-4.38	-3.45	-0.88	0.00	2.218	-2.162	-1.232	1.338	30.00	PASS
	159	5795	-5.31	-4.16	-1.69	0.00	2.218	-3.092	-1.942	0.528		
IEEE 802.11ac VHT40	151	5755	-4.52	-3.71	-1.09	0.00	2.218	-2.302	-1.492	1.128	30.00	PASS
	159	5795	-5.45	-4.20	-1.77	0.00	2.218	-3.232	-1.982	0.448		
IEEE 802.11ac VHT80	155	5775	-10.99	-10.92	-7.94	0.00	2.218	-8.772	-8.702	-5.722	30.00	PASS

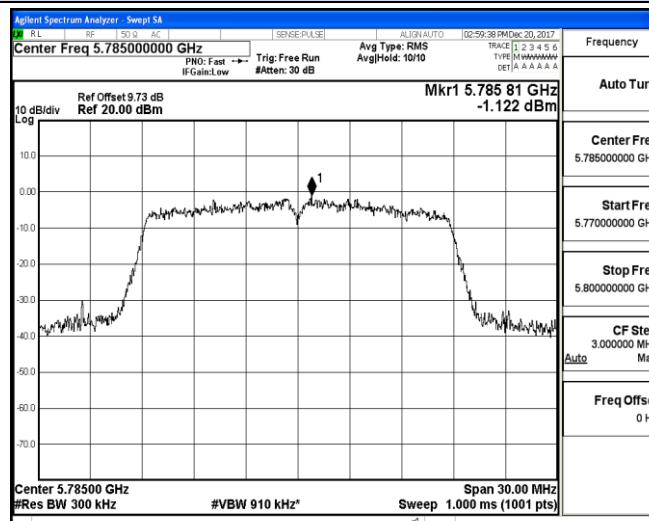

Remark:

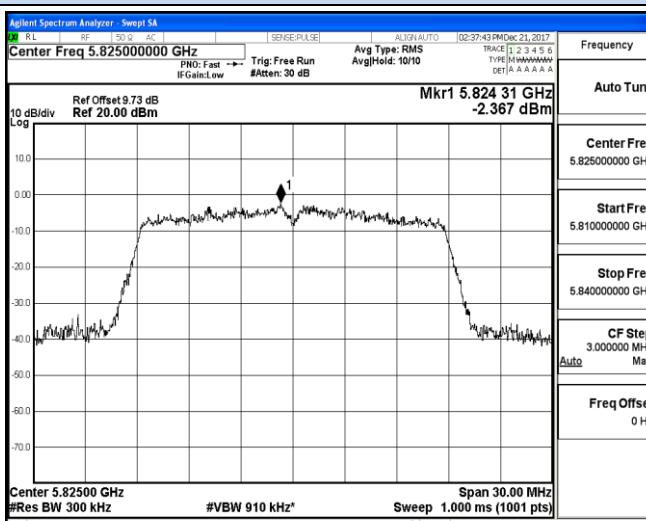
1. Measured power spectrum density at difference data rate for each mode and recorded worst case for each mode.
2. Test results including cable loss;
3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11a VHT20, IEEE 802.11ac VHT40 and IEEE 802.11ac VHT80;
4. For MIMO with CCD technology device, The Directional Gain= Gain of individual transmit antennas (dB) + Array gain;
Array gain = $10 \log (N_{ant})$, where N_{ant} is the number of transmit antennas.
5. Directional Gain = $2.15 + 10\log (2) = 5.01 \text{ dB} < 6 \text{ dB}$; no need reduce power spectrum density limit;
6. Report conducted PSD = measured conducted PSD + Duty Cycle factor + RBW factor;
7. RBW factor = $10 \log (500 \text{ KHz} / 300 \text{ KHz}) = 2.218 \text{ dB}$;
8. Please refer to following test plots;

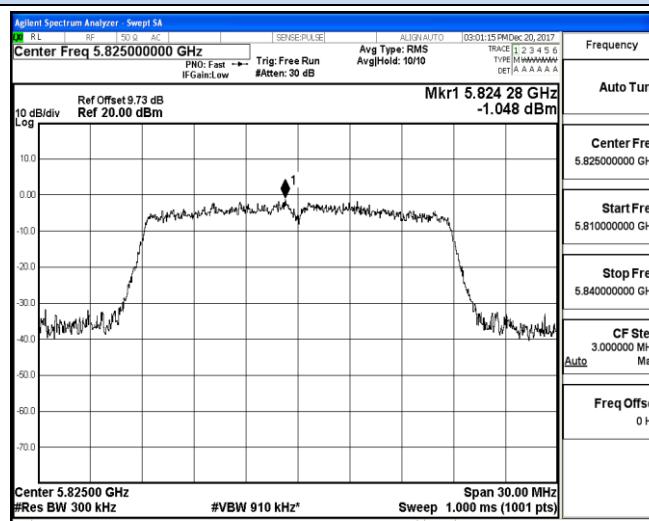
Power Spectral Density

IEEE 802.11a

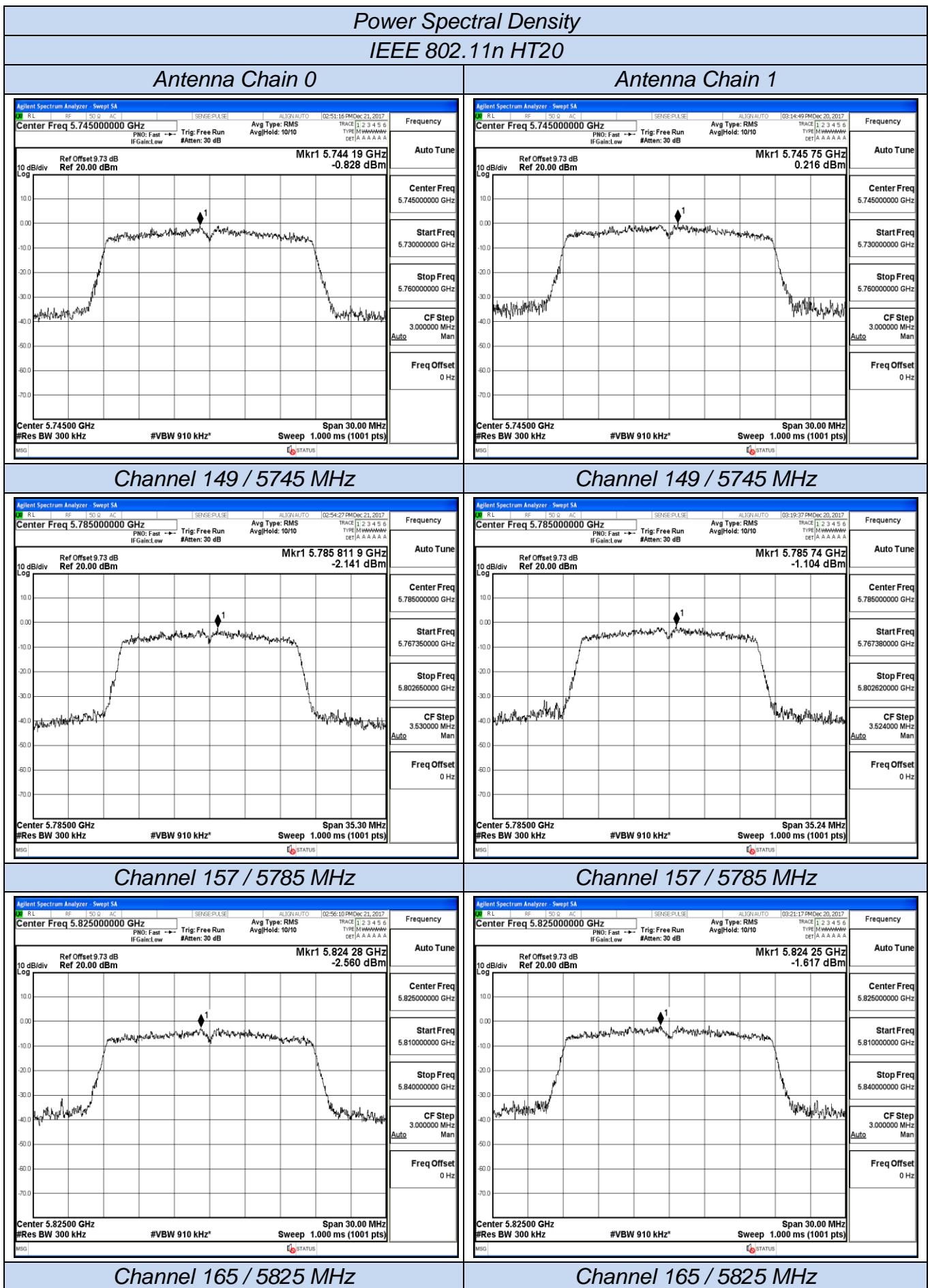

Antenna Chain 0

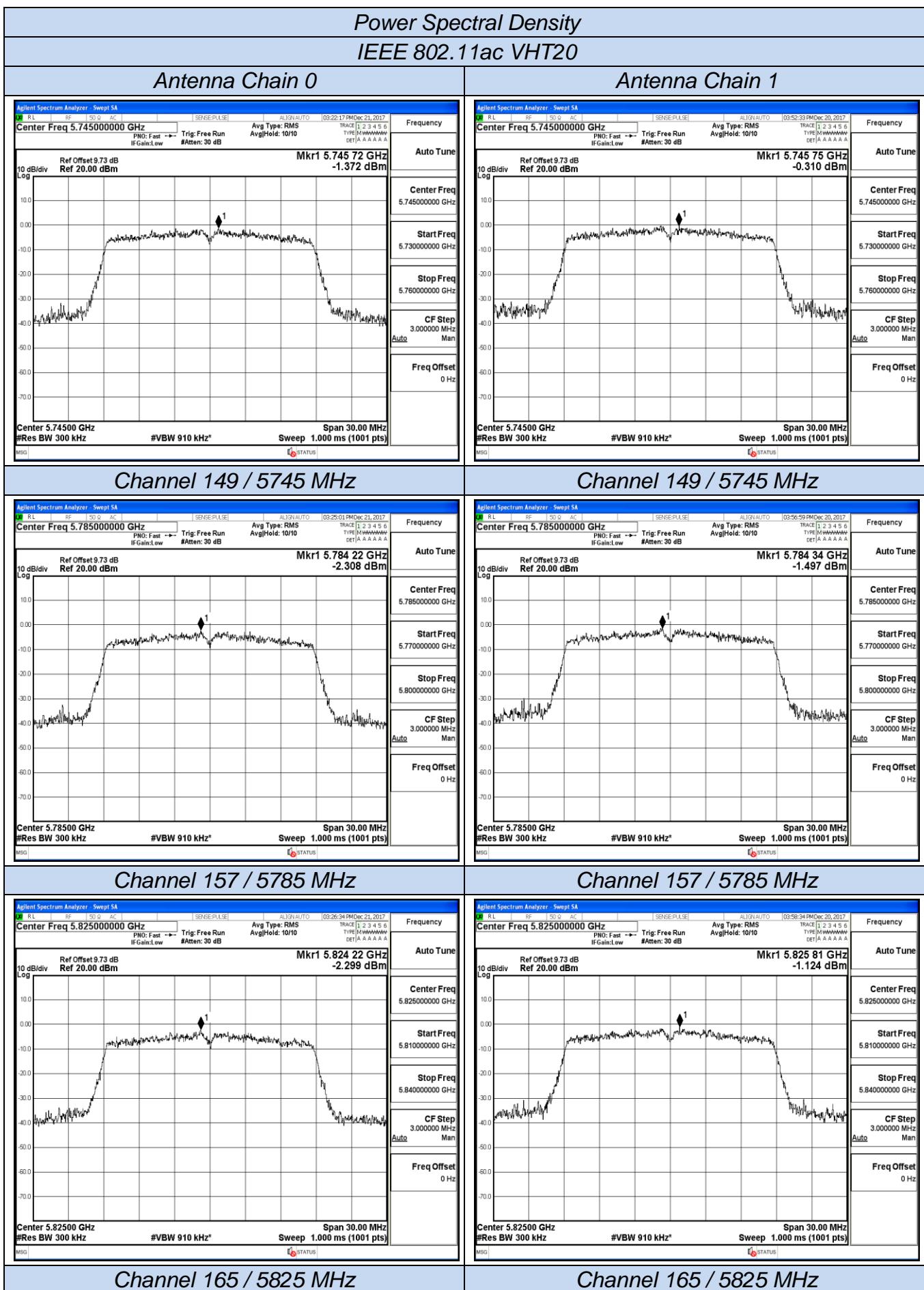

Antenna Chain 1

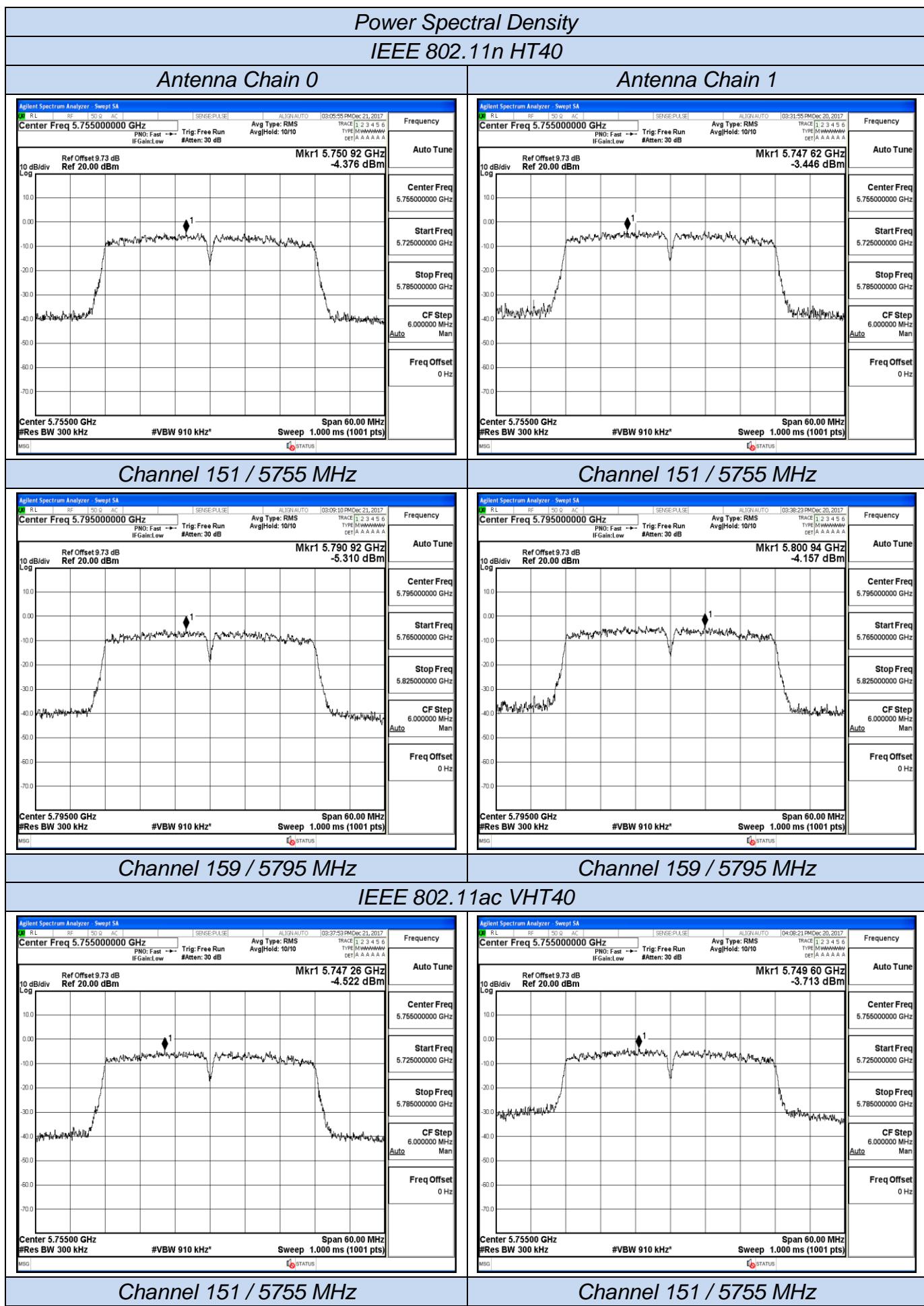

Channel 149 / 5745 MHz

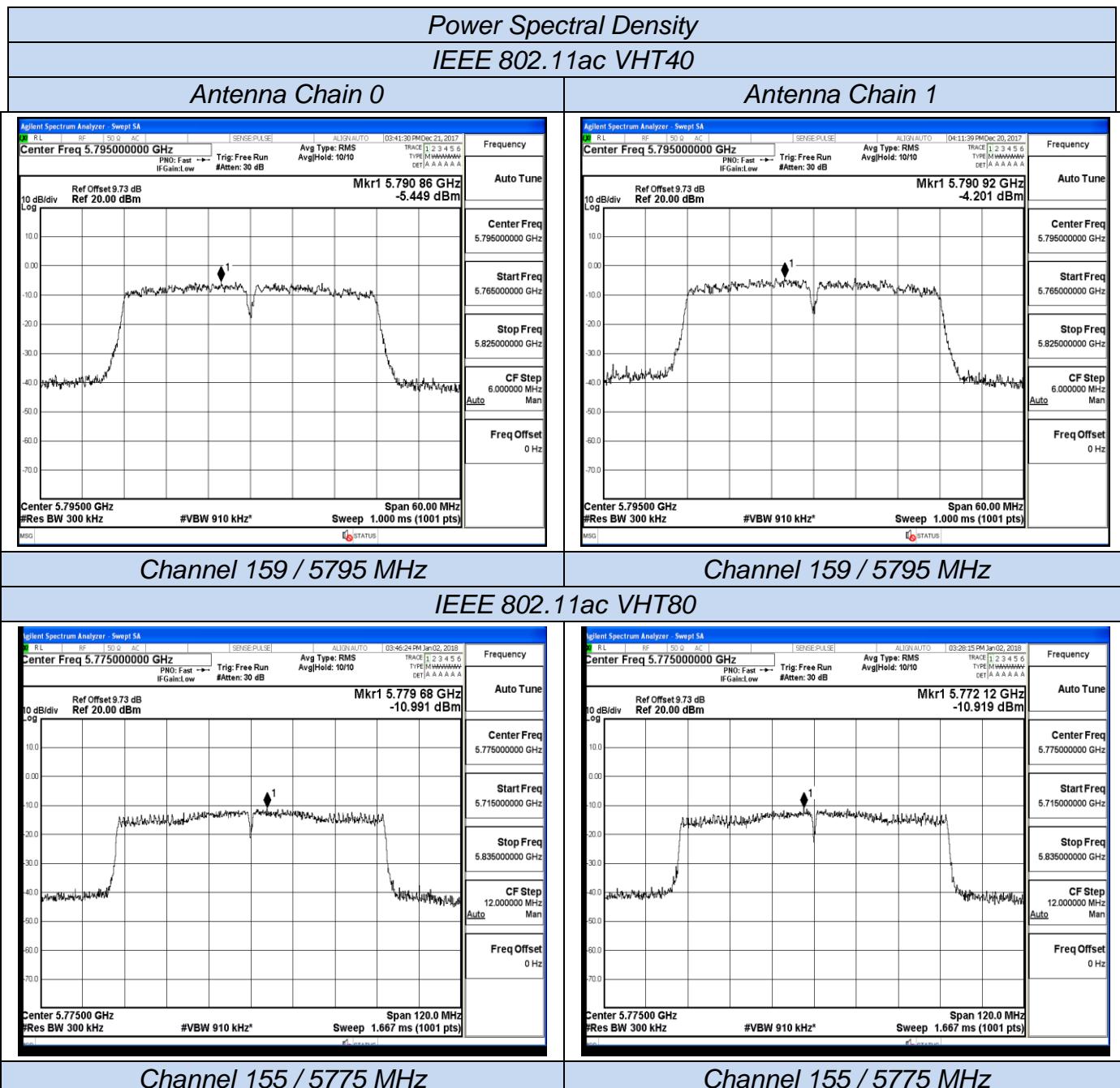

Channel 149 / 5745 MHz

Channel 157 / 5785 MHz




Channel 157 / 5785 MHz




Channel 165 / 5825 MHz

Channel 165 / 5825 MHz

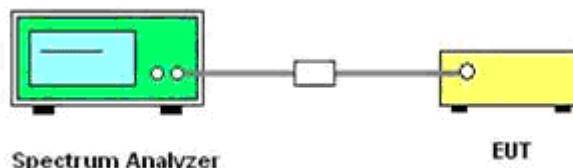
5.4. 6dB Occupied Bandwidth Measurement

5.4.1. Standard Applicable

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

5.4.2. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of the Spectrum Analyzer.


Spectrum Parameter	Setting
Attenuation	Auto
Span	> 26dB Bandwidth
Detector	Peak
Trace	Max Hold
Sweep Time	100ms

5

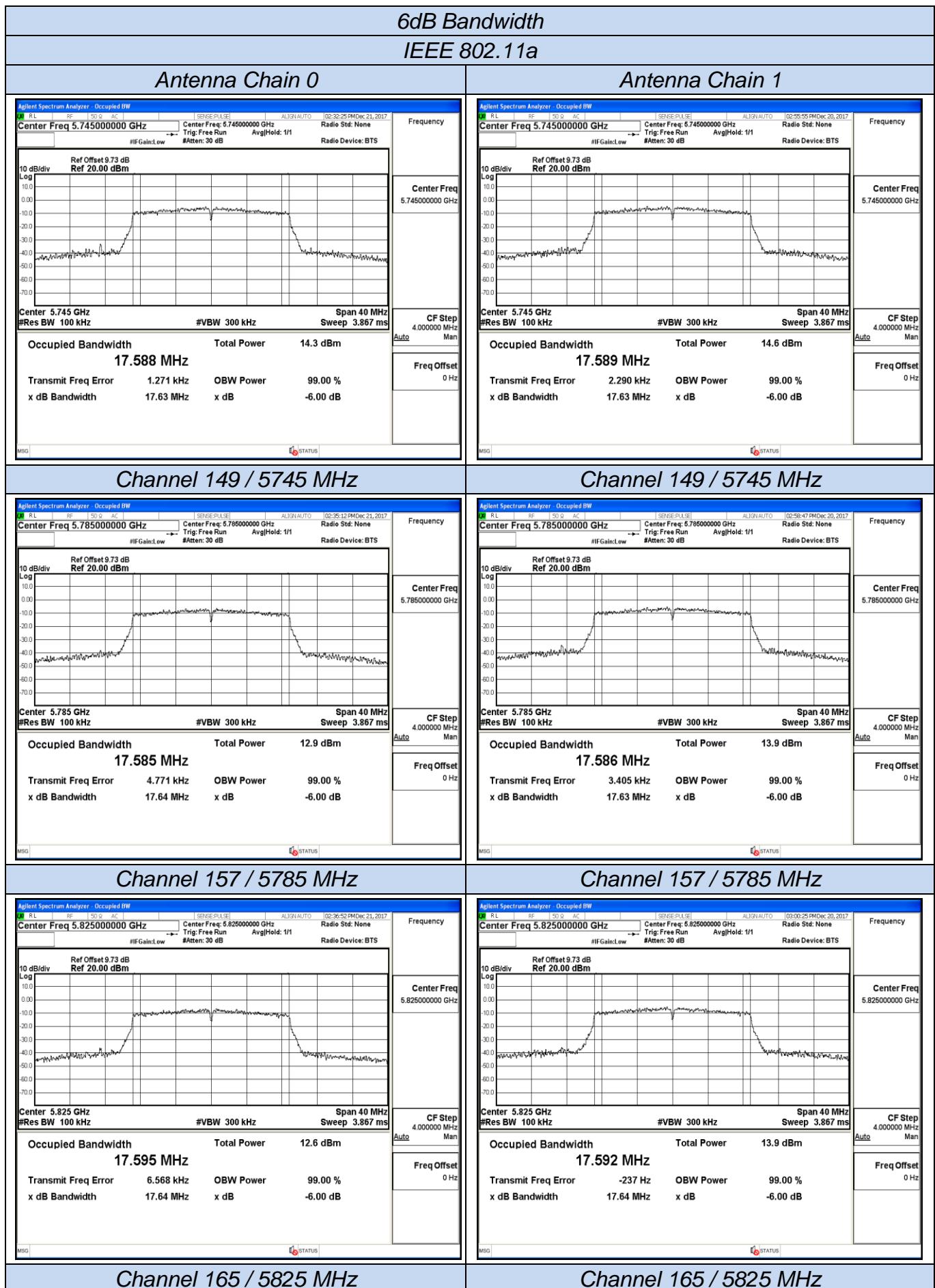
5.4.3. Test Procedures

1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
2. The resolution bandwidth of 100 kHz and the video bandwidth of 300 kHz were used.
3. Measured the spectrum width with power higher than 6dB below carrier.

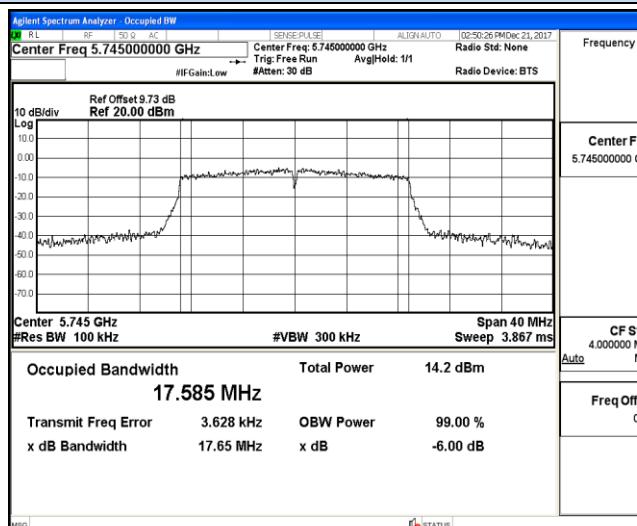
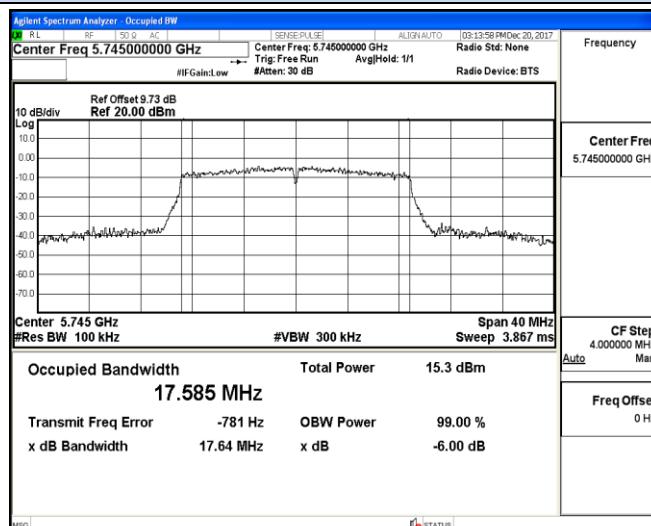
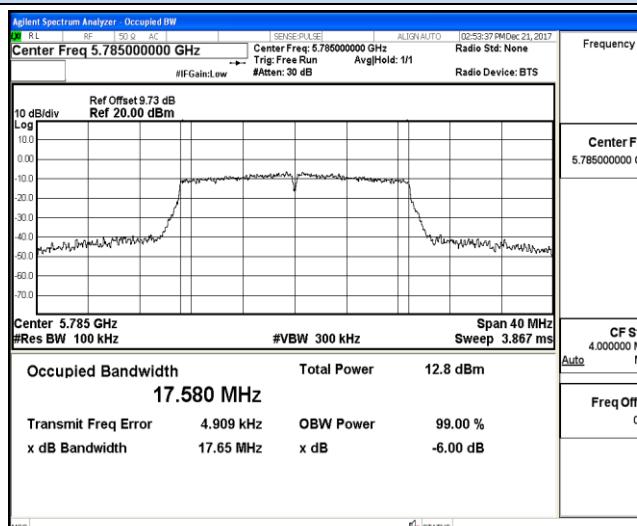
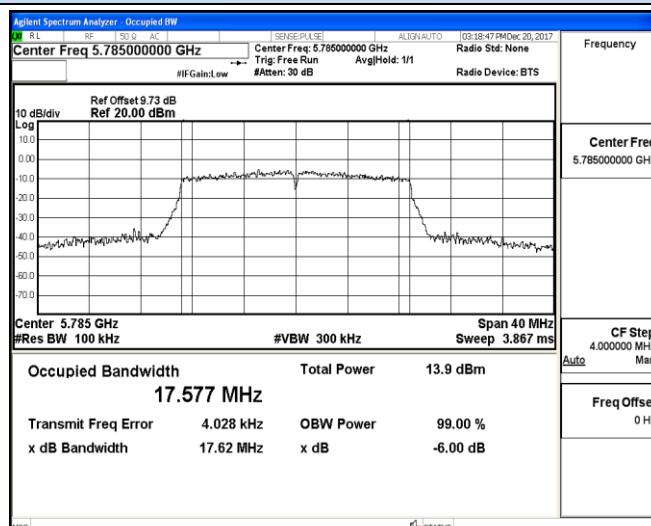
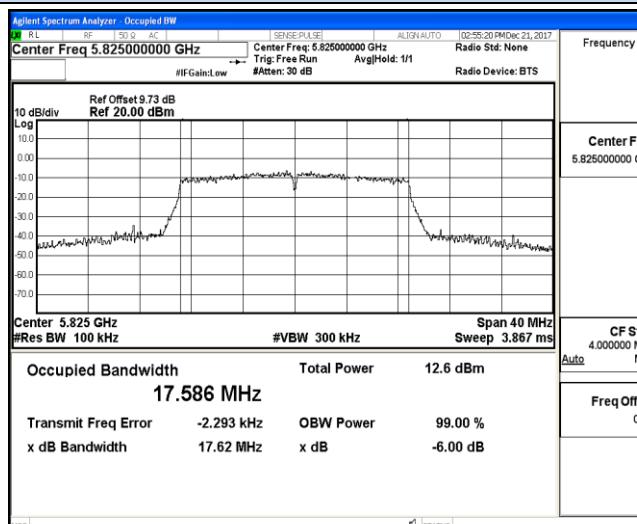
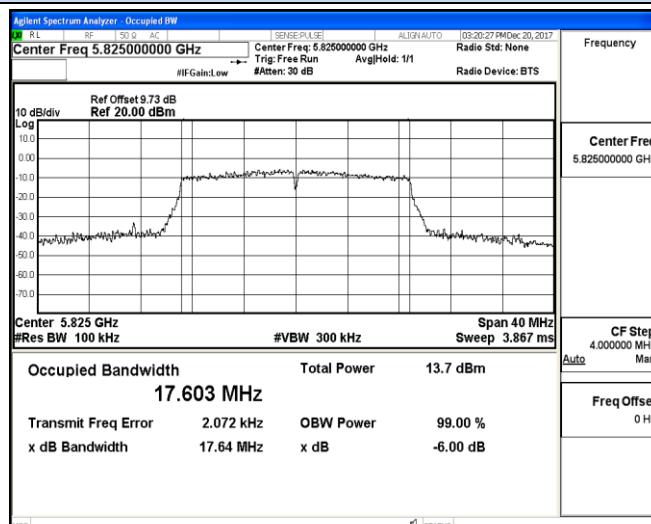
5.4.4. Test Setup Layout

5.4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

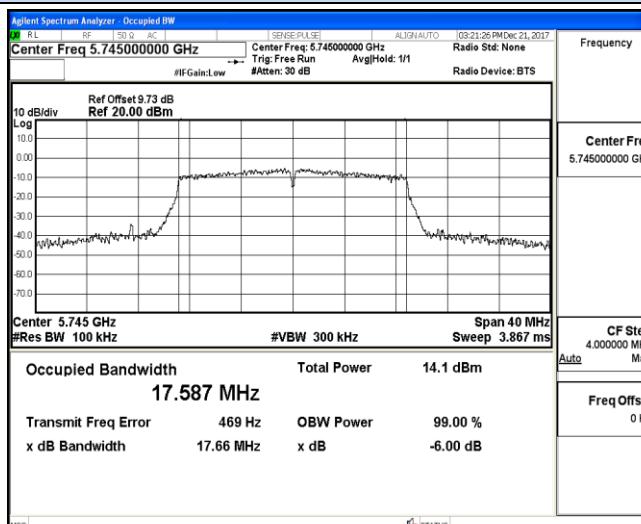

5.4.6. Test Result of 6dB Occupied Bandwidth

Temperature	25.1 °C	Humidity	52.4%
Test Engineer	Tom Liu	Configurations	IEEE 802.11a/n/ac

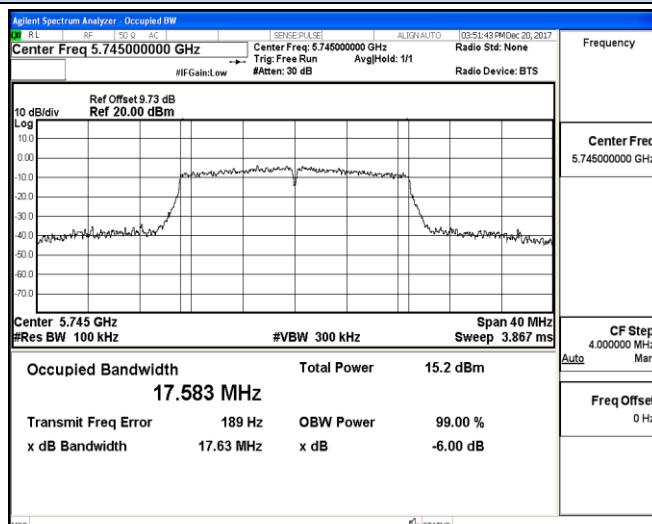






Test Mode	Channel	Frequency (MHz)	6dB Bandwidth (MHz)		Limits (MHz)	Verdict
			Antenna 0	Antenna 1		
IEEE 802.11a	149	5745	17.63	17.63	≥0.500	PASS
	157	5785	17.64	17.63		
	163	5825	17.64	17.64		
IEEE 802.11n HT20	149	5745	17.65	17.64	≥0.500	PASS
	157	5785	17.65	17.62		
	163	5825	17.62	17.64		
IEEE 802.11ac VHT20	149	5745	17.66	17.63	≥0.500	PASS
	157	5785	17.63	17.65		
	163	5825	17.64	17.63		
IEEE 802.11n HT40	151	5755	36.39	36.39	≥0.500	PASS
	159	5795	36.37	36.16		
IEEE 802.11ac VHT40	151	5755	36.38	36.38	≥0.500	PASS
	159	5795	36.39	36.36		
IEEE 802.11ac VHT80	155	5775	75.46	75.48	≥0.500	PASS

Remark:

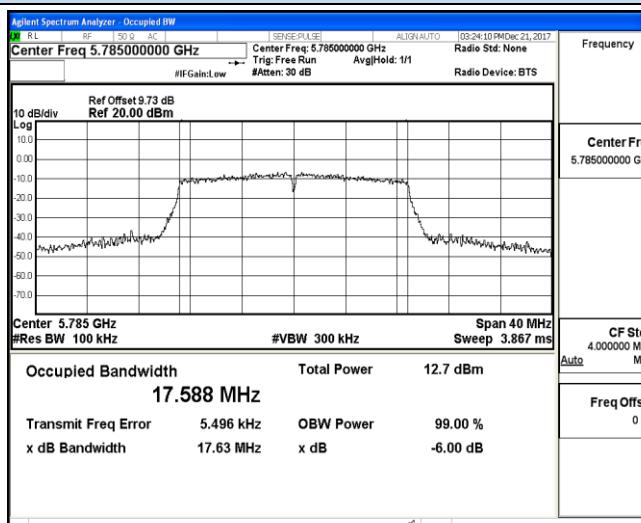
1. Measured 6dB bandwidth at difference data rate for each mode and recorded worst case for each mode.
2. Test results including cable loss;
3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11a VHT20, IEEE 802.11ac VHT40 and IEEE 802.11ac VHT80;
4. Please refer to following test plots;

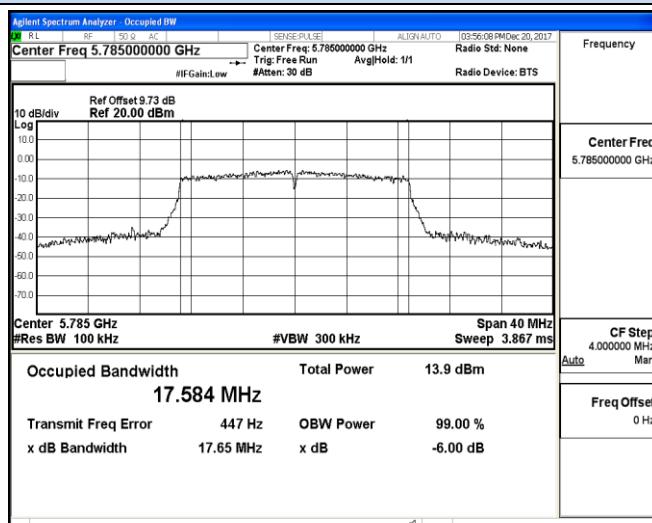

6dB Bandwidth
IEEE 802.11n HT20

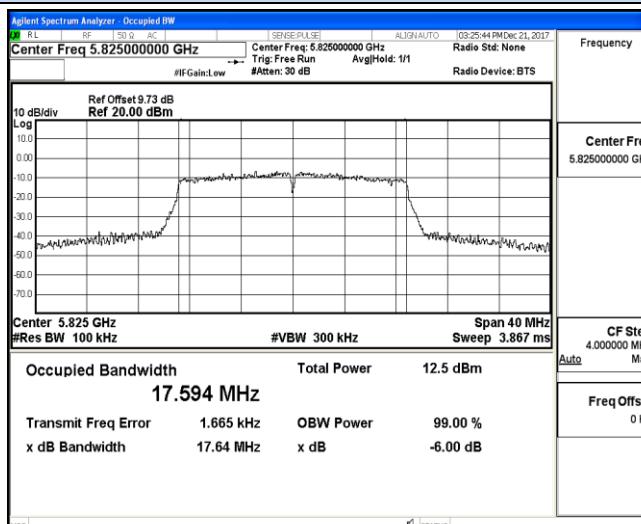
Antenna Chain 0**Antenna Chain 1****Channel 149 / 5745 MHz****Channel 149 / 5745 MHz****Channel 157 / 5785 MHz****Channel 157 / 5785 MHz****Channel 165 / 5825 MHz****Channel 165 / 5825 MHz**

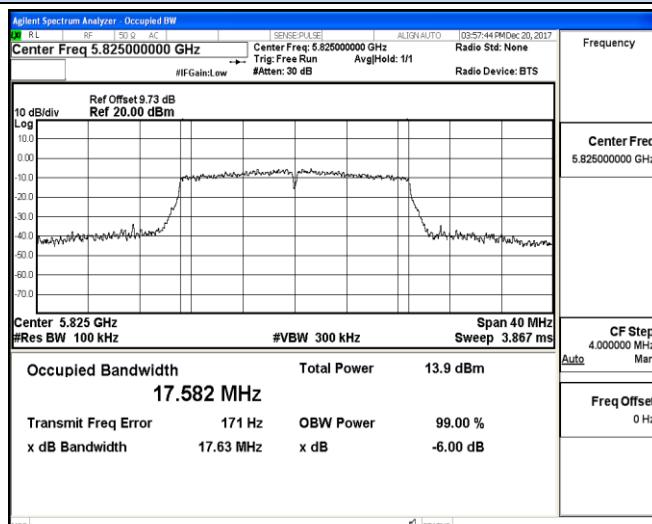

6dB Bandwidth

IEEE 802.11ac VHT20


Antenna Chain 0

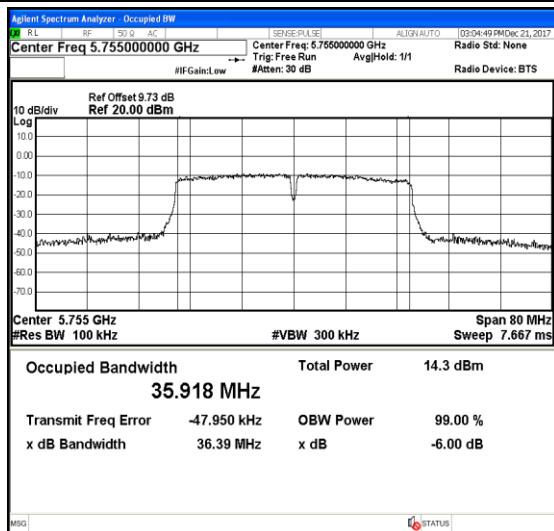

Antenna Chain 1


Channel 149 / 5745 MHz


Channel 149 / 5745 MHz

Channel 157 / 5785 MHz

Channel 157 / 5785 MHz


Channel 165 / 5825 MHz

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.

6dB Bandwidth

IEEE 802.11n HT40

Antenna Chain 0

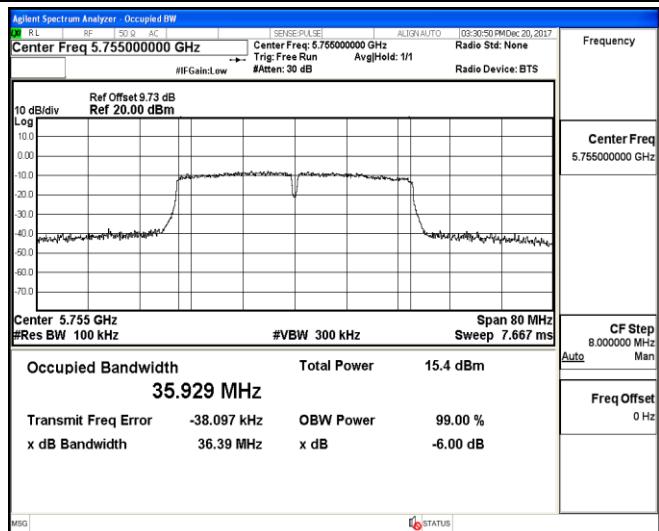
Frequency

Center Freq

CF Step

Auto

Man


Freq Offset

0 Hz

MSG

STATUS

Antenna Chain 1

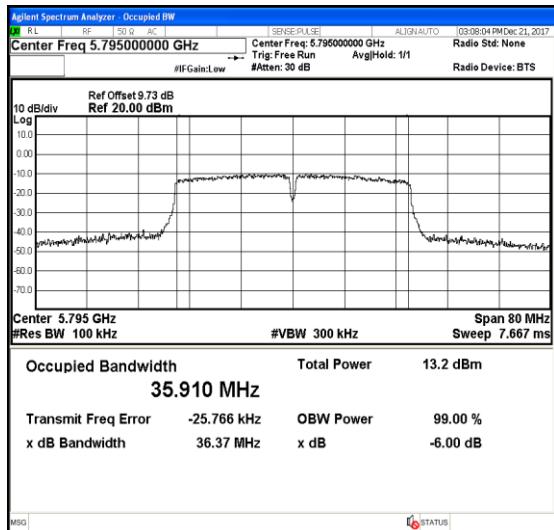
Frequency

Center Freq

CF Step

Auto

Man


Freq Offset

0 Hz

MSG

STATUS

Channel 151 / 5755 MHz

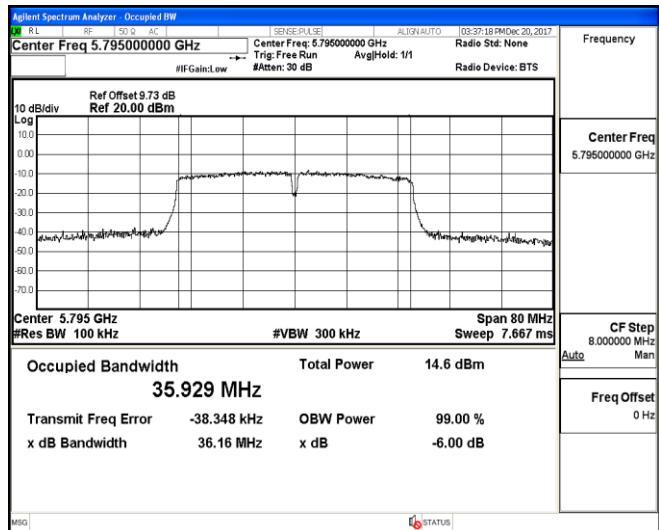
Frequency

Center Freq

CF Step

Auto

Man


Freq Offset

0 Hz

MSG

STATUS

Channel 151 / 5755 MHz

Frequency

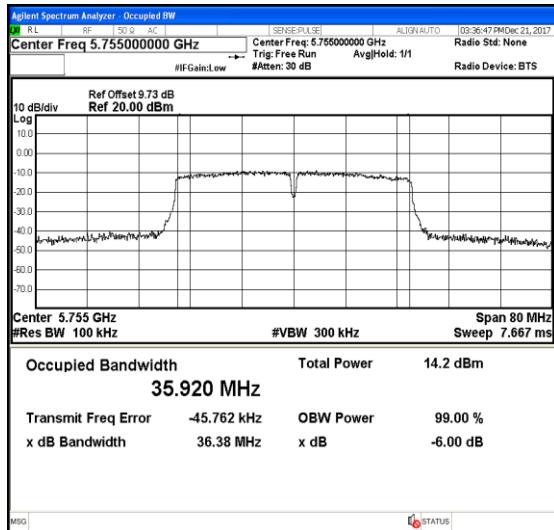
Center Freq

CF Step

Auto

Man

Freq Offset


0 Hz

MSG

STATUS

Channel 159 / 5795 MHz

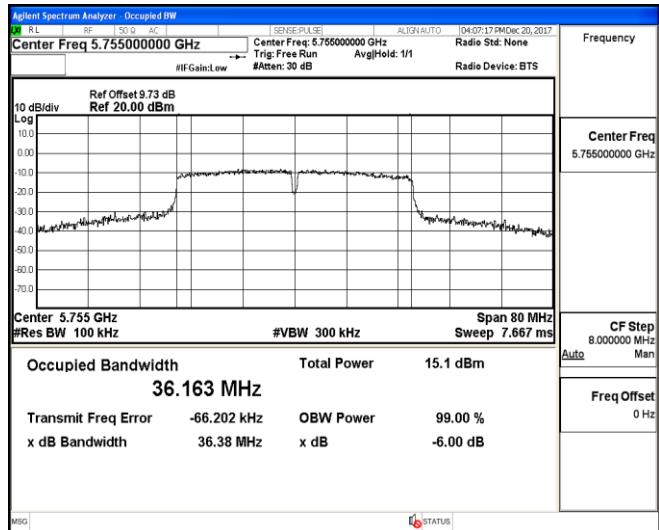
IEEE 802.11ac VHT40

Frequency

Center Freq

CF Step

Auto


Man

Freq Offset

0 Hz

MSG

STATUS

Frequency

Center Freq

CF Step

Auto

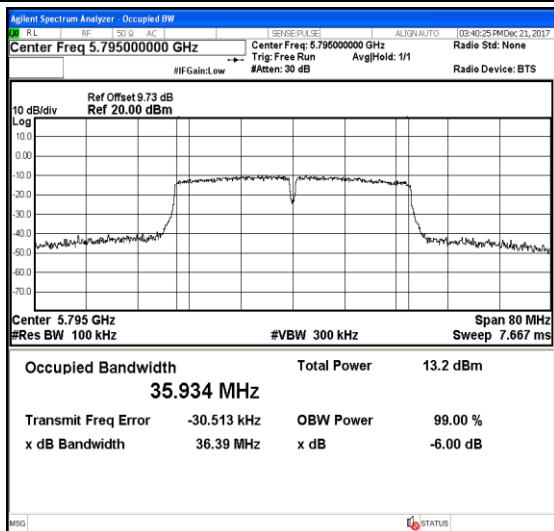
Man

Freq Offset

0 Hz

MSG

STATUS


Channel 151 / 5755 MHz

IEEE 802.11n HT40

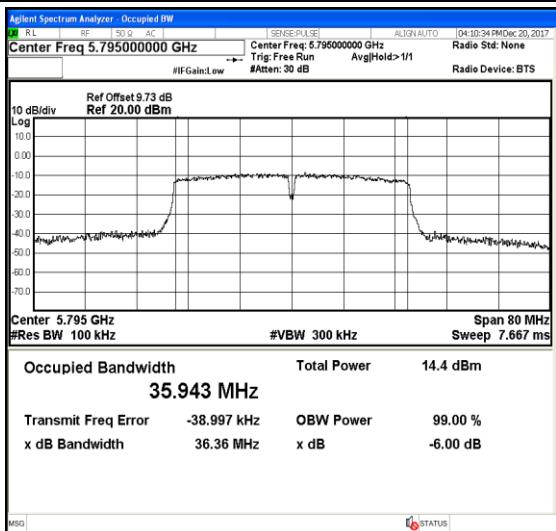
6dB Bandwidth

IEEE 802.11ac VHT40

Antenna Chain 0

Frequency

Center Freq


CF Step

Freq Offset

MSG

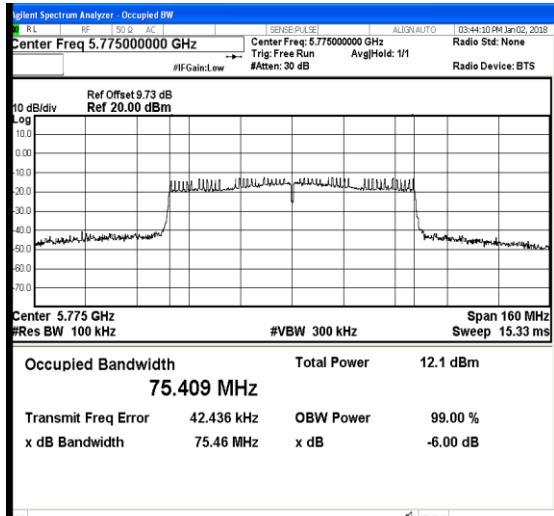
STATUS

Antenna Chain 1

Frequency

Center Freq

CF Step


Freq Offset

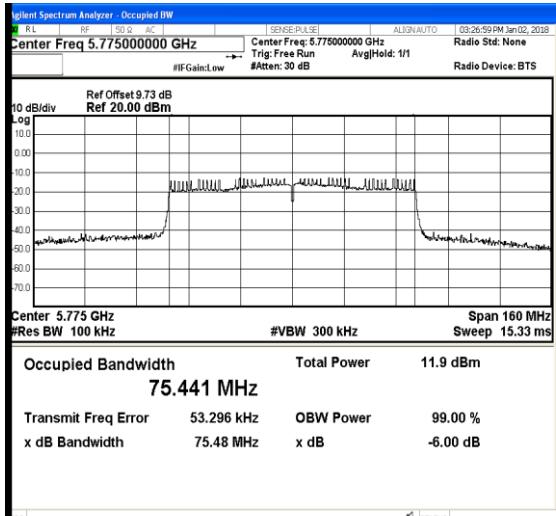
MSG

STATUS

Channel 159 / 5795 MHz

IEEE 802.11ac VHT80

Frequency


Center Freq

CF Step

Freq Offset

MSG

STATUS

Frequency

Center Freq

CF Step

Freq Offset

MSG

STATUS

Channel 155 / 5775 MHz

Channel 155 / 5775 MHz

5.5. Radiated Emissions Measurement

5.5.1. Standard Applicable

15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2\)
13.36-13.41			

\1\ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

\2\ Above 38.6

For transmitters operating in the 5.725-5.85 GHz band:

All emissions shall be limited to a level of -27 dBm/MHz (68.2 dBuV/m at 3m) at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz (105.2 dBuV/m at 3m) at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 (110.8 dBuV/m at 3m) dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz (122.2 dBuV/m at 3m) at the band edge.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.5.2. Measuring Instruments and Setting

Please refer to section 6 of equipment list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10 th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 1/B kHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/AVG
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/AVG
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP

5.5.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- If the EUT is a floor standing device, it is placed on the ground.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Premeasurement:

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 meter.
- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Premeasurement:

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 to 3 meter.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ($\pm 45^\circ$) and antenna movement between 1 and 4 meter.
- The final measurement will be done with QP detector with an EMI receiver.
- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 3 meter.
- The EUT was set into operation.

Premeasurement:

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height scan range is 1 meter to 2.5 meter.
- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

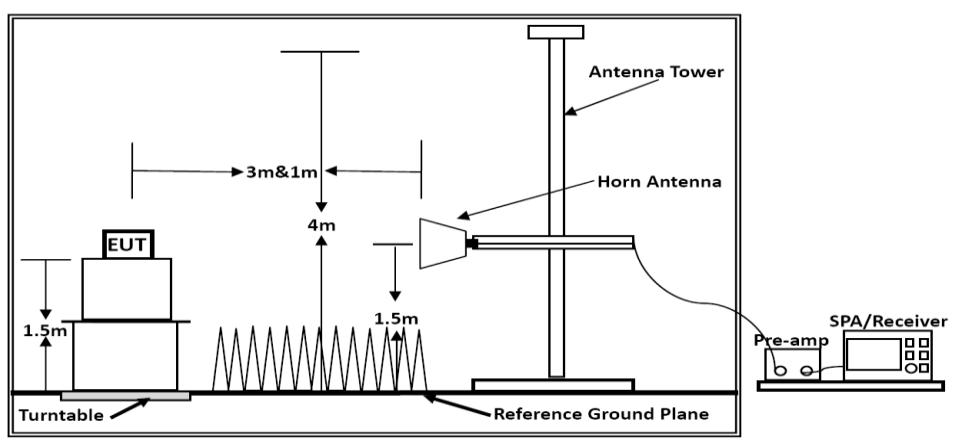
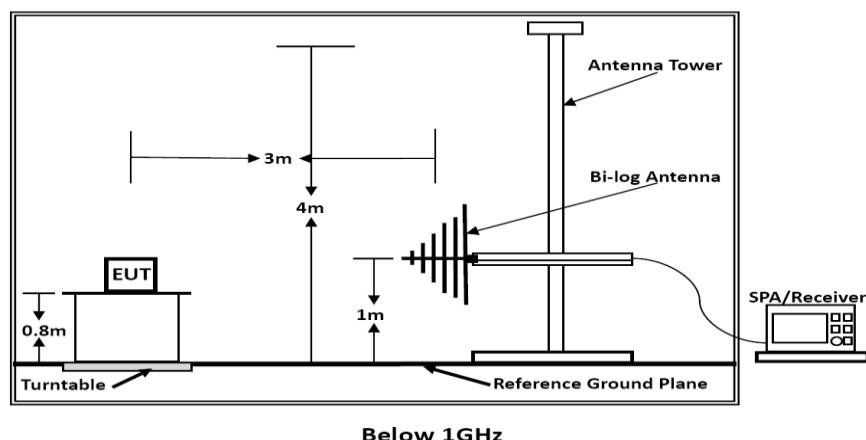
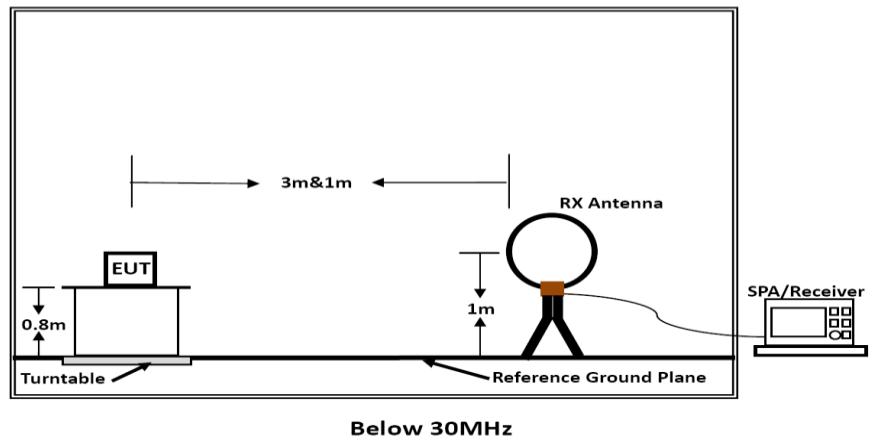
- The final measurement will be performed with minimum the six highest peaks.
- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position ($\pm 45^\circ$) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- The measurement distance is 1 meter.
- The EUT was set into operation.

Premeasurement:




- The antenna is moved spherical over the EUT in different polarizations of the antenna.

Final measurement:

- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

5.5.4. Test Setup Layout

For radiated emissions below 30MHz

Above 18 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade from 3m to 1m.

Distance extrapolation factor = $20 \log (\text{specific distance [3m]} / \text{test distance [1.5m]})$ (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

5.5.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

5.5.6. Results of Radiated Emissions (9 KHz~30MHz)

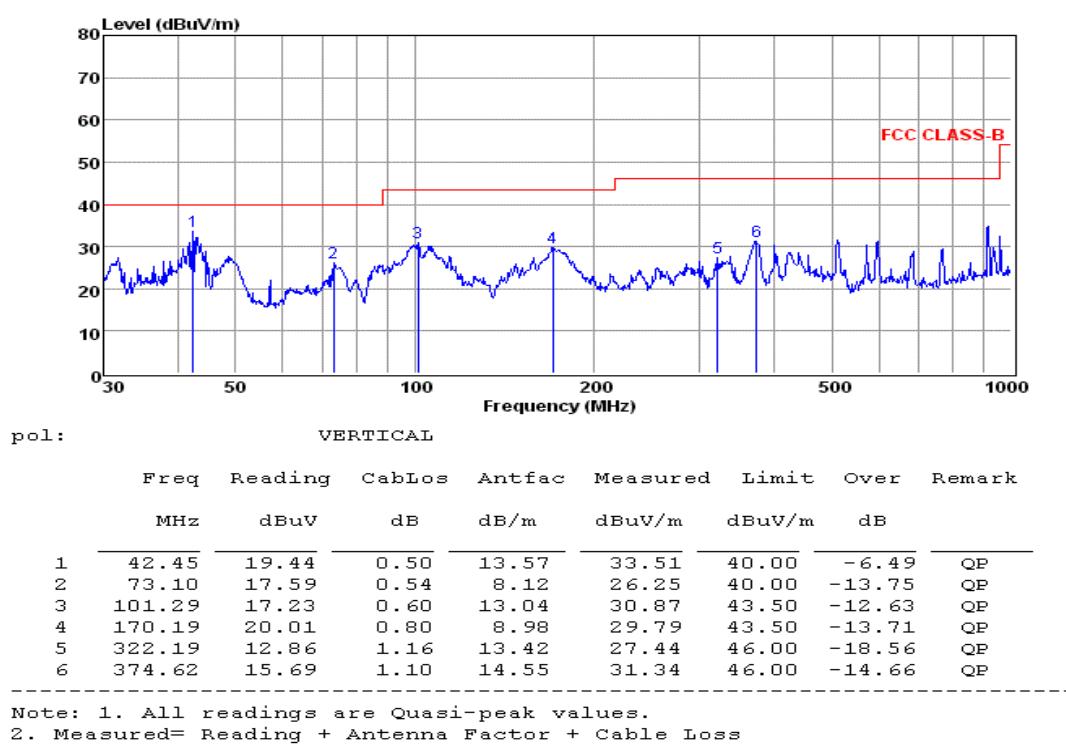
Temperature	24.5°C	Humidity	56.2%
Test Engineer	Tom Liu	Configurations	IEEE 802.11a/n/ac

Freq. (MHz)	Level (dBuV)	Over Limit (dB)	Over Limit (dBuV)	Remark
-	-	-	-	See Note

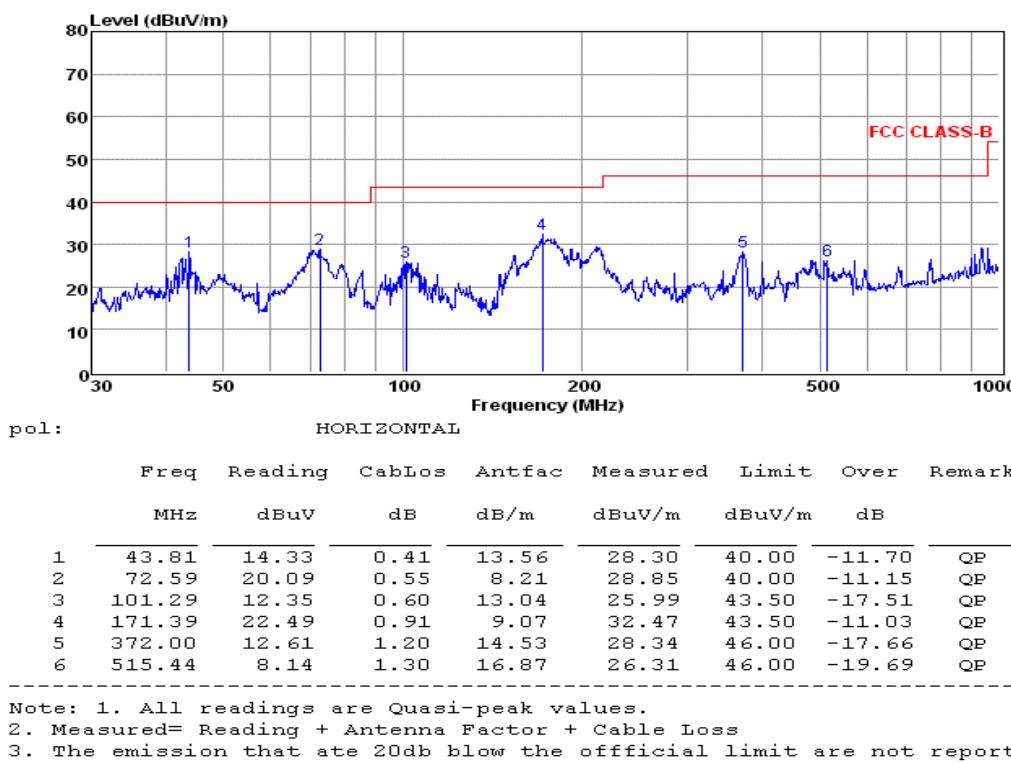
Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);


Limit line = specific limits (dBuV) + distance extrapolation factor.

5.5.7. Results of Radiated Emissions (30MHz~1GHz)


Temperature	24.5°C	Humidity	56.2%
Test Engineer	Tom Liu	Configurations	IEEE 802.11a, 5745MHz

Test result for IEEE 802.11a-5745MHz@Chain 0

Horizontal:

Vertical:

Note:

Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11a-5745MHz) @ Chain 0.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

5.5.8. Results for Radiated Emissions (Above 1GHz)

Remark: Measured all modes and recorded worst case;

IEEE 802.11a/ Antenna Chain 0

Channel 149 / 5745 MHz

Freq GHz	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
17.235	58.15	33.23	35.04	3.91	60.25	68.20	-8.10	Peak	Horizontal
17.235	40.25	33.23	35.04	3.91	42.35	54.00	-11.65	Average	Horizontal
17.235	57.41	33.23	35.04	3.91	59.51	68.20	-8.69	Peak	Vertical
17.235	38.48	33.23	35.04	3.91	40.58	54.00	-13.42	Average	Vertical

Channel 157 / 5785 MHz

Freq GHz	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
17.355	59.64	33.27	35.15	3.93	61.69	68.20	-6.51	Peak	Horizontal
17.355	40.62	33.27	35.15	3.93	42.67	54.00	-11.33	Average	Horizontal
17.355	58.65	33.27	35.15	3.93	60.70	68.20	-7.50	Peak	Vertical
17.355	40.78	33.27	35.15	3.93	42.83	54.00	-11.17	Average	Vertical

Channel 163 / 5825 MHz

Freq GHz	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
17.475	56.78	33.32	35.14	3.97	58.93	68.20	-9.27	Peak	Horizontal
17.475	40.02	33.32	35.14	3.97	42.17	54.00	-11.83	Average	Horizontal
17.475	56.94	33.32	35.14	3.97	59.09	68.20	-9.11	Peak	Vertical
17.475	41.48	33.32	35.14	3.97	43.63	54.00	-10.37	Average	Vertical

IEEE 802.11n-HT20/Combined Antenna Chain 0 and Antenna Chain 1

Channel 149 / 5745 MHz

Freq GHz	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
17.235	61.26	33.23	35.04	3.91	63.36	68.20	-4.99	Peak	Horizontal
17.235	44.43	33.23	35.04	3.91	46.53	54.00	-7.47	Average	Horizontal
17.235	56.95	33.23	35.04	3.91	59.05	68.20	-9.15	Peak	Vertical
17.235	42.59	33.23	35.04	3.91	44.69	54.00	-9.31	Average	Vertical

Channel 157 / 5785 MHz

Freq GHz	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
17.355	60.99	33.27	35.15	3.93	63.04	68.20	-5.16	Peak	Horizontal
17.355	44.98	33.27	35.15	3.93	47.03	54.00	-6.97	Average	Horizontal
17.355	58.74	33.27	35.15	3.93	60.79	68.20	-7.41	Peak	Vertical
17.355	41.25	33.27	35.15	3.93	43.30	54.00	-10.70	Average	Vertical

Channel 163 / 5825 MHz

Freq GHz	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
17.475	59.59	33.32	35.14	3.97	61.74	68.20	-6.46	Peak	Horizontal
17.475	41.88	33.32	35.14	3.97	44.03	54.00	-9.97	Average	Horizontal
17.475	58.61	33.32	35.14	3.97	60.76	68.20	-7.44	Peak	Vertical
17.475	41.40	33.32	35.14	3.97	43.55	54.00	-10.45	Average	Vertical

IEEE 802.11ac VHT20/ Combined Antenna Chain 0 and Antenna Chain 1

Channel 149 / 5745 MHz

Freq GHz	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
17.235	59.97	33.23	35.04	3.91	62.07	68.20	-6.28	Peak	Horizontal
17.235	42.27	33.23	35.04	3.91	44.37	54.00	-9.63	Average	Horizontal
17.235	57.51	33.23	35.04	3.91	59.61	68.20	-8.59	Peak	Vertical
17.235	40.89	33.23	35.04	3.91	42.99	54.00	-11.01	Average	Vertical

Channel 157 / 5785 MHz

Freq GHz	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
17.355	58.70	33.27	35.15	3.93	60.75	68.20	-7.45	Peak	Horizontal
17.355	44.26	33.27	35.15	3.93	46.31	54.00	-7.69	Average	Horizontal
17.355	59.19	33.27	35.15	3.93	61.24	68.20	-6.96	Peak	Vertical
17.355	41.68	33.27	35.15	3.93	43.73	54.00	-10.27	Average	Vertical

Channel 163 / 5825 MHz

Freq GHz	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
17.475	60.70	33.32	35.14	3.97	62.85	68.20	-5.35	Peak	Horizontal
17.475	41.73	33.32	35.14	3.97	43.88	54.00	-10.12	Average	Horizontal
17.475	58.11	33.32	35.14	3.97	60.26	68.20	-7.94	Peak	Vertical
17.475	40.48	33.32	35.14	3.97	42.63	54.00	-11.37	Average	Vertical

*IEEE 802.11n HT40 / Antenna Chain 0 and Antenna Chain 1**Channel 151 / 5755 MHz*

Freq GHz	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
17.265	60.32	33.23	35.04	3.91	62.42	68.20	-5.93	Peak	Horizontal
17.265	41.33	33.23	35.04	3.91	43.43	54.00	-10.57	Average	Horizontal
17.265	58.18	33.23	35.04	3.91	60.28	68.20	-7.92	Peak	Vertical
17.265	40.37	33.23	35.04	3.91	42.47	54.00	-11.53	Average	Vertical

Channel 159 / 5795 MHz

Freq GHz	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
17.385	59.26	33.27	35.15	3.93	61.31	68.20	-6.89	Peak	Horizontal
17.385	42.67	33.27	35.15	3.93	44.72	54.00	-9.28	Average	Horizontal
17.385	59.39	33.27	35.15	3.93	61.44	68.20	-6.76	Peak	Vertical
17.385	42.46	33.27	35.15	3.93	44.51	54.00	-9.49	Average	Vertical

*IEEE 802.11ac VHT40 / Antenna Chain 0 and Antenna Chain 1**Channel 151 / 5755 MHz*

Freq GHz	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
17.265	60.85	33.23	35.04	3.91	62.95	68.20	-5.40	Peak	Horizontal
17.265	41.96	33.23	35.04	3.91	44.06	54.00	-9.94	Average	Horizontal
17.265	59.52	33.23	35.04	3.91	61.62	68.20	-6.58	Peak	Vertical
17.265	41.99	33.23	35.04	3.91	44.09	54.00	-9.91	Average	Vertical

Channel 159 / 5795 MHz

Freq GHz	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
17.385	59.16	33.27	35.15	3.93	61.21	68.20	-6.99	Peak	Horizontal
17.385	41.09	33.27	35.15	3.93	43.14	54.00	-10.86	Average	Horizontal
17.385	59.30	33.27	35.15	3.93	61.35	68.20	-6.85	Peak	Vertical
17.385	43.34	33.27	35.15	3.93	45.39	54.00	-8.61	Average	Vertical

IEEE 802.11ac VHT80 / Antenna Chain 0 and Antenna Chain 1

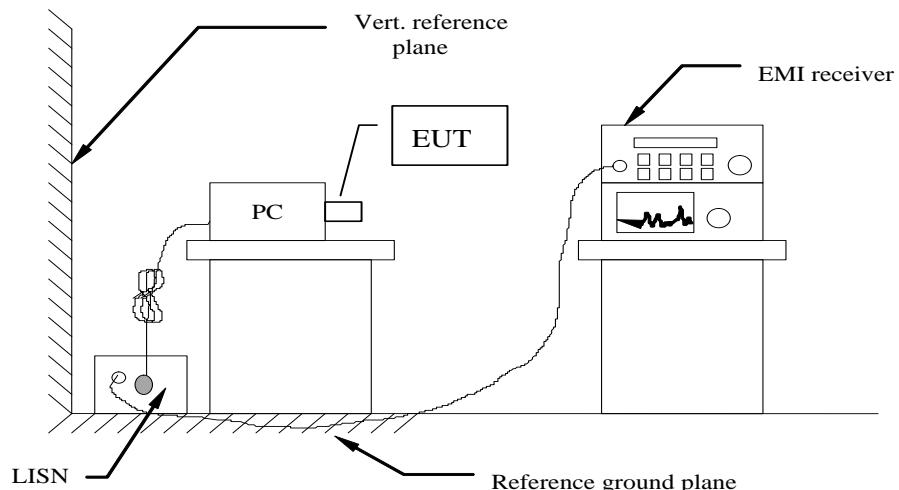
Channel 155 / 5775 MHz

Freq GHz	Read Level dBuV	Ant. Fac dB/m	Pre. Fac dB	Cab.Los dB	Measured Level dBuV	Limit Line dBuV/m	Over limit dB	Remark	Pol/Phase
17.325	58.68	33.27	35.15	3.93	60.73	68.2	-7.47	Peak	Horizontal
17.325	43.18	33.27	35.15	3.93	45.23	54.0	-8.77	Average	Horizontal
17.325	60.44	33.27	35.15	3.93	62.49	68.2	-5.71	Peak	Vertical
17.325	43.44	33.27	35.15	3.93	45.49	54.0	-8.51	Average	Vertical

Notes:

1. Measuring frequencies from 9 KHz ~40 GHz, No emission found between lowest internal used/generated frequencies to 30MHz.
2. Radiated emissions measured in frequency range from 9 KHz ~40GHz were made with an instrument using Peak detector mode.
3. Data of measurement within this frequency range shown “---” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
4. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11a VHT20, IEEE 802.11ac VHT40 and IEEE 802.11ac VHT80;

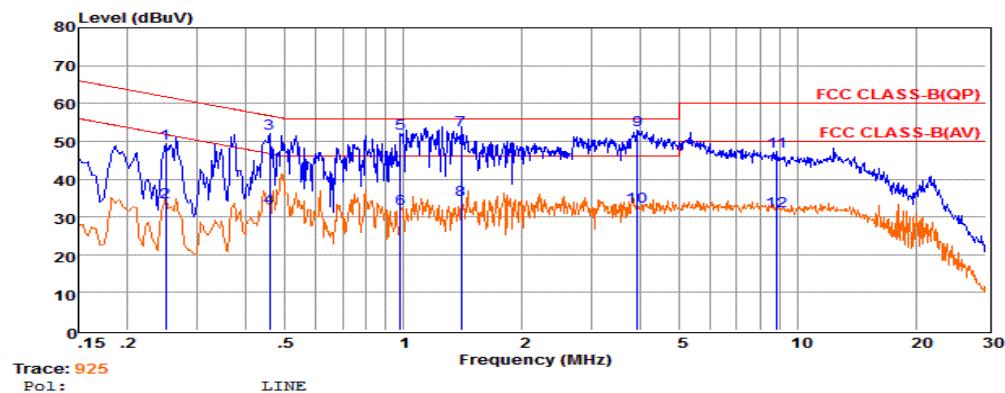
5.6. Power line conducted emissions


5.6.1 Standard Applicable

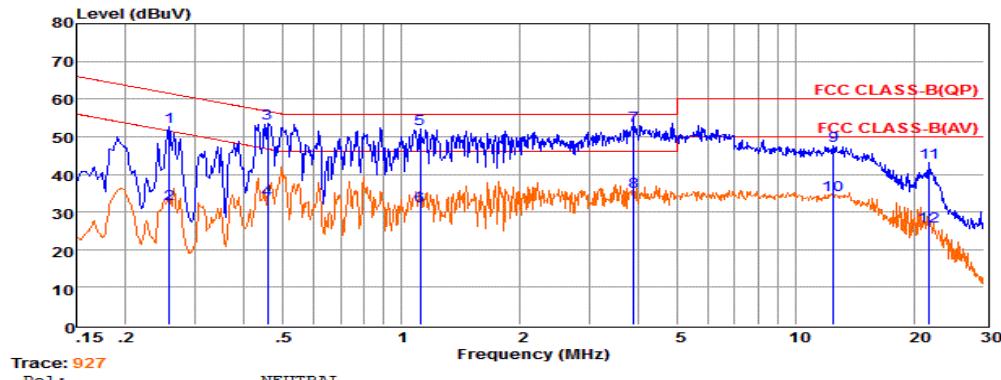
According to §15.207 (a): For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range are listed as follows:

Frequency Range (MHz)	Limits (dB μ V)	
	Quasi-peak	Average
0.15 to 0.50	66 to 56*	56 to 46*
0.50 to 5	56	46
5 to 30	60	50

* Decreasing linearly with the logarithm of the frequency


5.6.2 Block Diagram of Test Setup

5.6.3 Test Results


PASS.

The test data please refer to following page.

The worst result for EEE 802.11a-5745MHz @Chain 0

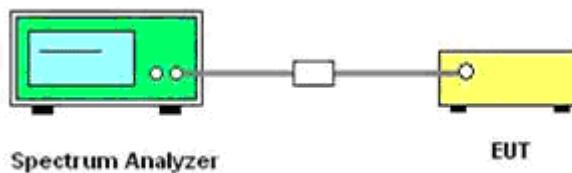
Freq	Reading	LISNFac	CabLos	Aux2Fac	Measured	Limit	Over	Remark
MHz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	0.25	29.83	9.63	0.03	10.00	49.49	61.78	-12.29 QP
2	0.25	14.34	9.63	0.03	10.00	34.00	51.77	-17.77 Average
3	0.46	32.40	9.62	0.04	10.00	52.06	56.71	-4.65 QP
4	0.46	12.64	9.62	0.04	10.00	32.30	46.71	-14.41 Average
5	0.98	32.51	9.63	0.05	10.00	52.19	56.00	-3.81 QP
6	0.98	12.47	9.63	0.05	10.00	32.15	46.00	-13.85 Average
7	1.40	33.14	9.63	0.05	10.00	52.82	56.00	-3.18 QP
8	1.40	14.74	9.63	0.05	10.00	34.42	46.00	-11.58 Average
9	3.92	33.11	9.65	0.06	10.00	52.82	56.00	-3.18 QP
10	3.92	12.99	9.65	0.06	10.00	32.70	46.00	-13.30 Average
11	8.87	27.44	9.69	0.08	10.00	47.21	60.00	-12.79 QP
12	8.87	11.63	9.69	0.08	10.00	31.40	50.00	-18.60 Average

Remarks: 1. Measured = Reading + LISNFac + Cable Loss + Aux2 Fac.
2. The emission levels that are 20dB below the official limit are not reported.

Freq	Reading	LISNFac	CabLos	Aux2Fac	Measured	Limit	Over	Remark
MHz	dBuV	dB	dB	dB	dBuV	dBuV	dB	
1	0.26	32.89	9.60	0.03	10.00	52.52	61.51	-8.99 QP
2	0.26	12.52	9.60	0.03	10.00	32.15	51.51	-19.36 Average
3	0.46	33.79	9.62	0.04	10.00	53.45	56.71	-3.26 QP
4	0.46	13.71	9.62	0.04	10.00	33.37	46.71	-13.34 Average
5	1.12	32.30	9.63	0.05	10.00	51.98	56.00	-4.02 QP
6	1.12	11.86	9.63	0.05	10.00	31.54	46.00	-14.46 Average
7	3.88	33.11	9.65	0.06	10.00	52.82	56.00	-3.18 QP
8	3.88	15.76	9.65	0.06	10.00	35.47	46.00	-10.53 Average
9	12.45	27.62	9.73	0.09	10.00	47.44	60.00	-12.56 QP
10	12.45	14.60	9.73	0.09	10.00	34.42	50.00	-15.58 Average
11	21.83	23.26	9.82	0.12	10.00	43.20	60.00	-16.80 QP
12	21.83	6.27	9.82	0.12	10.00	26.21	50.00	-23.79 Average

Remarks: 1. Measured = Reading + LISNFac + Cable Loss + Aux2 Fac.
2. The emission levels that are 20dB below the official limit are not reported.

***Note: Pre-scan all modes and recorded the worst case results in this report (IEEE 802.11a) @ Chain 0 for 120V/60Hz.


5.7 Undesirable Emissions Measurement

5.7.1 LIMIT

According to §15.407 (b) Undesirable emission limits. Except as shown in paragraph (b) (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (a) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (b) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (c) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (d) For transmitters operating in the 5.725-5.85 GHz band:
 - (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
 - (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
 - (e) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
 - (f) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
 - (g) The provisions of §15.205 apply to intentional radiators operating under this section.
 - (h) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

5.7.2 TEST CONFIGURATION

5.7.3 TEST PROCEDURE

1. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
2. Set the RBW = 1MHz.
3. Set the VBW \geq 3MHz
4. Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$. (This ensures that bin-to-bin spacing is $\leq \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
5. Manually set sweep time $\geq 10 \times (\text{number of points in sweep}) \times (\text{total on/off period of the transmitted signal})$.
6. Set detector = power averaging (rms).

7. Sweep time = auto couple.
8. Trace mode = max hold.
9. Allow trace to fully stabilize.

5. 7.4 Test Results

For Antenna Chain 0

IEEE 802.11a							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict
5650.000	-41.12	2.000	-39.12	Peak	-27.000	-12.12	PASS
5700.000	-39.90	2.000	-37.90	Peak	10.000	-47.90	PASS
5720.000	-33.99	2.000	-31.99	Peak	15.600	-47.59	PASS
5725.000	-30.06	2.000	-28.06	Peak	27.000	-55.06	PASS
5850.000	-34.50	2.000	-32.50	Peak	27.000	-59.50	PASS
5855.000	-38.83	2.000	-36.83	Peak	15.600	-52.43	PASS
5875.000	-39.97	2.000	-37.97	Peak	10.000	-47.97	PASS
5925.000	-40.67	2.000	-38.67	Peak	-27.000	-11.67	PASS

IEEE 802.11n HT20

Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict
5650.000	-41.27	2.000	-39.27	Peak	-27.000	-12.27	PASS
5700.000	-40.82	2.000	-38.82	Peak	10.000	-48.82	PASS
5720.000	-34.32	2.000	-32.32	Peak	15.600	-47.92	PASS
5725.000	-28.30	2.000	-26.30	Peak	27.000	-53.30	PASS
5850.000	-34.82	2.000	-32.82	Peak	27.000	-59.82	PASS
5855.000	-39.88	2.000	-37.88	Peak	15.600	-53.48	PASS
5875.000	-40.79	2.000	-38.79	Peak	10.000	-48.79	PASS
5925.000	-41.02	2.000	-39.02	Peak	-27.000	-12.02	PASS

IEEE 802.11ac VHT20

Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict
5650.000	-41.74	2.000	-39.74	Peak	-27.000	-12.74	PASS
5700.000	-40.76	2.000	-38.76	Peak	10.000	-48.76	PASS
5720.000	-33.98	2.000	-31.98	Peak	15.600	-47.58	PASS
5725.000	-30.03	2.000	-28.03	Peak	27.000	-55.03	PASS
5850.000	-35.48	2.000	-33.48	Peak	27.000	-60.48	PASS
5855.000	-39.11	2.000	-37.11	Peak	15.600	-52.71	PASS
5875.000	-40.93	2.000	-38.93	Peak	10.000	-48.93	PASS
5925.000	-41.75	2.000	-39.75	Peak	-27.000	-12.75	PASS

IEEE 802.11n HT40

Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict
5650.000	-40.25	2.000	-38.25	Peak	-27.000	-11.25	PASS
5700.000	-35.35	2.000	-33.35	Peak	10.000	-43.35	PASS
5720.000	-33.54	2.000	-31.54	Peak	15.600	-47.14	PASS
5725.000	-32.01	2.000	-30.01	Peak	27.000	-57.01	PASS
5850.000	-39.32	2.000	-37.32	Peak	27.000	-64.32	PASS
5855.000	-39.97	2.000	-37.97	Peak	15.600	-53.57	PASS
5875.000	-41.32	2.000	-39.32	Peak	10.000	-49.32	PASS
5925.000	-41.30	2.000	-39.30	Peak	-27.000	-12.30	PASS

IEEE 802.11ac VHT40							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict
5650.000	-41.63	2.000	-39.63	Peak	-27.000	-12.63	PASS
5700.000	-37.72	2.000	-35.72	Peak	10.000	-45.72	PASS
5720.000	-32.56	2.000	-30.56	Peak	15.600	-46.16	PASS
5725.000	-31.68	2.000	-29.68	Peak	27.000	-56.68	PASS
5850.000	-39.24	2.000	-37.24	Peak	27.000	-64.24	PASS
5855.000	-39.29	2.000	-37.29	Peak	15.600	-52.89	PASS
5875.000	-41.22	2.000	-39.22	Peak	10.000	-49.22	PASS
5925.000	-40.48	2.000	-38.48	Peak	-27.000	-11.48	PASS

IEEE 802.11ac VHT80							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict
5650.000	-42.42	2.000	-40.42	Peak	-27.000	-13.42	PASS
5700.000	-37.26	2.000	-35.26	Peak	10.000	-45.26	PASS
5720.000	-36.31	2.000	-34.31	Peak	15.600	-49.91	PASS
5725.000	-33.31	2.000	-31.31	Peak	27.000	-58.31	PASS
5850.000	-36.56	2.000	-34.56	Peak	27.000	-61.56	PASS
5855.000	-38.13	2.000	-36.13	Peak	15.600	-51.73	PASS
5875.000	-40.95	2.000	-38.95	Peak	10.000	-48.95	PASS
5925.000	-40.95	2.000	-38.95	Peak	-27.000	-11.95	PASS

For Antenna Chain 1

IEEE 802.11a							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict
5650.000	-40.32	2.000	-38.32	Peak	-27.000	-11.32	PASS
5700.000	-40.49	2.000	-38.49	Peak	10.000	-48.49	PASS
5720.000	-32.39	2.000	-30.39	Peak	15.600	-45.99	PASS
5725.000	-29.29	2.000	-27.29	Peak	27.000	-54.29	PASS
5850.000	-34.39	2.000	-32.39	Peak	27.000	-59.39	PASS
5855.000	-37.25	2.000	-35.25	Peak	15.600	-50.85	PASS
5875.000	-41.02	2.000	-39.02	Peak	10.000	-49.02	PASS
5925.000	-42.08	2.000	-40.08	Peak	-27.000	-13.08	PASS

IEEE 802.11n HT20							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict
5650.000	-40.86	2.000	-38.86	Peak	-27.000	-11.86	PASS
5700.000	-41.16	2.000	-39.16	Peak	10.000	-49.16	PASS
5720.000	-33.22	2.000	-31.22	Peak	15.600	-46.82	PASS
5725.000	-27.58	2.000	-25.58	Peak	27.000	-52.58	PASS
5850.000	-34.97	2.000	-32.97	Peak	27.000	-59.97	PASS
5855.000	-37.42	2.000	-35.42	Peak	15.600	-51.02	PASS
5875.000	-40.25	2.000	-38.25	Peak	10.000	-48.25	PASS
5925.000	-41.10	2.000	-39.10	Peak	-27.000	-12.10	PASS

IEEE 802.11ac VHT20							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict
5650.000	-41.26	2.000	-39.26	Peak	-27.000	-12.26	PASS
5700.000	-41.05	2.000	-39.05	Peak	10.000	-49.05	PASS
5720.000	-35.60	2.000	-33.60	Peak	15.600	-49.20	PASS
5725.000	-31.60	2.000	-29.6	Peak	27.000	-56.6	PASS
5850.000	-34.32	2.000	-32.32	Peak	27.000	-59.32	PASS
5855.000	-37.61	2.000	-35.61	Peak	15.600	-51.21	PASS
5875.000	-40.62	2.000	-38.62	Peak	10.000	-48.62	PASS
5925.000	-41.72	2.000	-39.72	Peak	-27.000	-12.72	PASS

IEEE 802.11n HT40							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict
5650.000	-41.22	2.000	-39.22	Peak	-27.000	-12.22	PASS
5700.000	-34.57	2.000	-32.57	Peak	10.000	-42.57	PASS
5720.000	-29.25	2.000	-27.25	Peak	15.600	-42.85	PASS
5725.000	-27.55	2.000	-25.55	Peak	27.000	-52.55	PASS
5850.000	-37.99	2.000	-35.99	Peak	27.000	-62.99	PASS
5855.000	-38.84	2.000	-36.84	Peak	15.600	-52.44	PASS
5875.000	-41.26	2.000	-39.26	Peak	10.000	-49.26	PASS
5925.000	-41.53	2.000	-39.53	Peak	-27.000	-12.53	PASS

IEEE 802.11ac VHT40							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict
5650.000	-41.00	2.000	-39.00	Peak	-27.000	-12.00	PASS
5700.000	-37.94	2.000	-35.94	Peak	10.000	-45.94	PASS
5720.000	-34.20	2.000	-32.20	Peak	15.600	-47.80	PASS
5725.000	-32.74	2.000	-30.74	Peak	27.000	-57.74	PASS
5850.000	-38.53	2.000	-36.53	Peak	27.000	-63.53	PASS
5855.000	-39.69	2.000	-37.69	Peak	15.600	-53.29	PASS
5875.000	-40.93	2.000	-38.93	Peak	10.000	-48.93	PASS
5925.000	-41.27	2.000	-39.27	Peak	-27.000	-12.27	PASS

IEEE 802.11ac VHT80							
Frequency (MHz)	Conducted Power (dBm)	Antenna Gain (dBi)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	Verdict
5650.000	-43.87	2.000	-41.87	Peak	-27.000	-14.87	PASS
5700.000	-36.31	2.000	-34.31	Peak	10.000	-44.31	PASS
5720.000	-36.31	2.000	-34.31	Peak	15.600	-49.91	PASS
5725.000	-35.25	2.000	-33.25	Peak	27.000	-60.25	PASS
5850.000	-34.26	2.000	-32.26	Peak	27.000	-59.26	PASS
5855.000	-37.73	2.000	-35.73	Peak	15.600	-51.33	PASS
5875.000	-37.73	2.000	-35.73	Peak	10.000	-45.73	PASS
5925.000	-37.73	2.000	-35.73	Peak	-27.000	-8.73	PASS

For Combined Antenna Chain 0 and Antenna Chain 1

IEEE 802.11n HT20								
Frequency (MHz)	Conducted Power (dBm)			Directional Gain (dB)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB
	Antenna 0	Antenna 1	Sum					
5650.000	-41.27	-40.86	-38.05	5.010*	-33.04	Peak	-27.000	-6.04
5700.000	-40.82	-41.16	-37.98	5.010*	-32.97	Peak	10.000	-42.97
5720.000	-34.32	-33.22	-30.72	5.010*	-25.71	Peak	15.600	-41.31
5725.000	-28.30	-27.58	-24.91	5.010*	-19.9	Peak	27.000	-46.9
5850.000	-34.82	-34.97	-31.88	5.010*	-26.87	Peak	27.000	-53.87
5855.000	-39.88	-37.42	-35.47	5.010*	-30.46	Peak	15.600	-46.06
5875.000	-40.79	-40.25	-37.50	5.010*	-32.49	Peak	10.000	-42.49
5925.000	-41.02	-41.10	-38.05	5.010*	-33.04	Peak	-27.000	-6.04

IEEE 802.11ac VHT20								
Frequency (MHz)	Conducted Power (dBm)			Directional Gain (dB)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB
	Antenna 0	Antenna 1	Sum					
5650.000	-41.74	-41.26	-38.48	5.010*	-33.47	Peak	-27.000	-6.47
5700.000	-40.76	-41.05	-37.89	5.010*	-32.88	Peak	10.000	-42.88
5720.000	-33.98	-35.60	-31.70	5.010*	-26.69	Peak	15.600	-42.29
5725.000	-30.03	-31.60	-27.73	5.010*	-22.72	Peak	27.000	-49.72
5850.000	-35.48	-34.32	-31.85	5.010*	-26.84	Peak	27.000	-53.84
5855.000	-39.11	-37.61	-35.29	5.010*	-30.28	Peak	15.600	-45.88
5875.000	-40.93	-40.62	-37.76	5.010*	-32.75	Peak	10.000	-42.75
5925.000	-41.75	-41.72	-38.72	5.010*	-33.71	Peak	-27.000	-6.71

IEEE 802.11n HT40								
Frequency (MHz)	Conducted Power (dBm)			Directional Gain (dB)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB
	Antenna 0	Antenna 1	Sum					
5650.000	-40.25	-41.22	-37.70	5.010*	-32.69	Peak	-27.000	-5.69
5700.000	-35.35	-34.57	-31.93	5.010*	-26.92	Peak	10.000	-36.92
5720.000	-33.54	-29.25	-27.88	5.010*	-22.87	Peak	15.600	-38.47
5725.000	-32.01	-27.55	-26.22	5.010*	-21.21	Peak	27.000	-48.21
5850.000	-39.32	-37.99	-35.59	5.010*	-30.58	Peak	27.000	-57.58
5855.000	-39.97	-38.84	-36.36	5.010*	-31.35	Peak	15.600	-46.95
5875.000	-41.32	-41.26	-38.28	5.010*	-33.27	Peak	10.000	-43.27
5925.000	-41.30	-41.53	-38.40	5.010*	-33.39	Peak	-27.000	-6.39

IEEE 802.11ac VHT40								
Frequency (MHz)	Conducted Power (dBm)			Directional Gain (dB)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB
	Antenna 0	Antenna 1	Sum					
5650.000	-41.63	-41.00	-38.29	5.010*	-33.28	Peak	-27.000	-6.28
5700.000	-37.72	-37.94	-34.82	5.010*	-29.81	Peak	10.000	-39.81
5720.000	-32.56	-34.20	-30.29	5.010*	-25.28	Peak	15.600	-40.88
5725.000	-31.68	-32.74	-29.17	5.010*	-24.16	Peak	27.000	-51.16
5850.000	-39.24	-38.53	-35.86	5.010*	-30.85	Peak	27.000	-57.85
5855.000	-39.29	-39.69	-36.48	5.010*	-31.47	Peak	15.600	-47.07
5875.000	-41.22	-40.93	-38.06	5.010*	-33.05	Peak	10.000	-43.05
5925.000	-40.48	-41.27	-37.85	5.010*	-32.84	Peak	-27.000	-5.84

IEEE 802.11ac VHT80									
Frequency (MHz)	Conducted Power (dBm)			Directional Gain (dB)	EIRP (dBm/1MHz)	Detector	Limit (dBm/1MHz)	Over limit dB	
	Antenna 0	Antenna 1	Sum						
5650.000	-42.42	-43.87	-40.07	5.010*	-35.06	Peak	-27.000	-8.06	PASS
5700.000	-37.26	-36.31	-33.75	5.010*	-28.74	Peak	-27.000	-38.74	PASS
5720.000	-36.31	-36.31	-33.30	5.010*	-28.29	Peak	-17.000	-43.89	PASS
5725.000	-33.31	-35.25	-31.16	5.010*	-26.15	Peak	-17.000	-53.15	PASS
5850.000	-36.56	-34.26	-32.25	5.010*	-27.24	Peak	-17.000	-54.24	PASS
5855.000	-38.13	-37.73	-34.92	5.010*	-29.91	Peak	-17.000	-45.51	PASS
5875.000	-40.95	-37.73	-36.04	5.010*	-31.03	Peak	-27.000	-41.03	PASS
5925.000	-40.95	-37.73	-36.04	5.010*	-31.03	Peak	-27.000	-4.03	PASS

Remark:

1. Measured unwanted emission at difference data rate for each mode and recorded worst case for each mode.
2. Test results including cable loss;
3. Worst case data at 6Mbps at IEEE 802.11a; MCS0 at IEEE 802.11n HT20, IEEE 802.11n HT40, IEEE 802.11a VHT20, IEEE 802.11ac VHT40 and IEEE 802.11ac VHT80;
4. For MIMO with CCD technology device, The Directional Gain= Gain of individual transmit antennas (dBi) + Array gain;
Array gain = $10 \log (N_{ant})$, where N_{ant} is the number of transmit antennas.
5. * $5.010=2.000+10*\log(2)$.
6. E.I.R.P = Conducted power + Directional Gain
7. Please refer to following test plots;