

DR900VX

3x3 MIMO 802.11ac Mini PCIe WiFi Module Dual Band Wireless Access Points

Features

- Qualcomm-Atheros QCA9880 chipset
- Support 2.4GHz & 5GHz
- IEEE 802.11ac compliant & backward compatible with 802.11a/b/g/n
- 3x3 MIMO Technology, up to 1.3Gbps
- Mini PCI Express edge connector
- RoHS compliance ensure a high level protection of human health and the environment from risks that can be posed by chemicals
- Supports Spatial Multiplexing, Cyclic-Delay Diversity (CDD), Low-Density Parity Check (LDPC) Codes, Maximal Ratio Combining (MRC), Space Time Block Code (STBC)
- Supports IEEE 802.11d, e, h, i, k, r, v time stamp, and w standards
- Cards are individually calibrated for Quality Assurance

Applications

- Security Surveillance
- Commercial radio coverage
- Hotel Wireless application
- Country coverage
- Forest fire protection engineering
- Some special scene application

Product Description

DR900VX based on QCA9880 chipset is an enterprise wireless module integrated with 3x3 5G high power Radio module and 3x3 2.4G high power Radio module designed specifically to provide users with mobile access to high-bandwidth video streaming, voice, and data transmission for office and challenging RF environment in factories, warehouses establishment.

Specifications

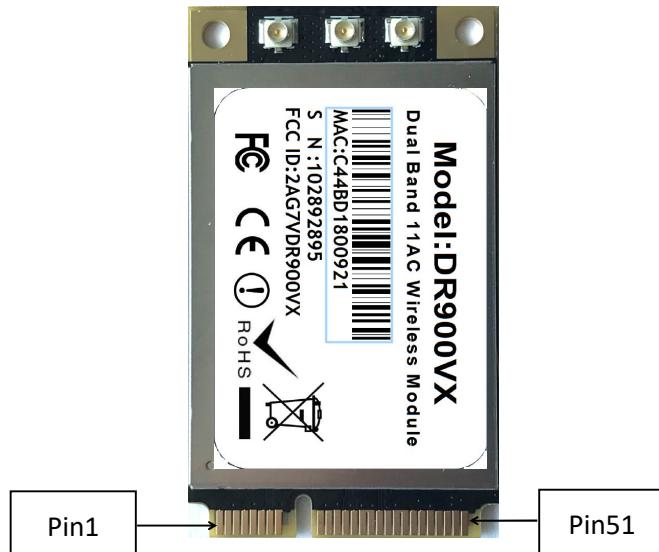
Symbol	Parameter
Chipset	QCA9880
Host Interface	Mini PCI Express 1.1 Standard
Antenna Connector	3 x UF.L
Frequency Range	2.4GHz: 2412 ~ 2462MHz 5GHz: 4940~4990MHz, 5150~5250MHz, 5725~5850MHz
Operating Voltage	3.3V DC
Power Consumption	
Modulation Techniques	OFDM: BPSK, QPSK, DBPSK, DQPSK, 16-QAM, 64-QAM, 256-QAM
Environmental Temperature	Operating: -40°C to 70°C, Storage: -40°C to 90°C
Environmental Humidity, non-condensing	Operating: 5% to 95%, Storage: Max. 90%
ROHS Compliance	YES
Dimensions (WxHxD)	30.0mm x 50.9mm x 3.2mm

RF Performance Table

Operating Mode	Data Rate	Max Tune-up Output Power	
		1 Chain	3 Chains
2.4 GHz 802.11b	1Mbps	25.00dBm	/
2.4 GHz 802.11g	6Mbps	23.50dBm	/
2.4 GHz 802.11n HT20	MCS0	/	28.00dBm
2.4 GHz 802.11n HT40	MCS0	/	24.50dBm

Operating Mode	Data Rate	RX Sensitivity	Tolerance
2.4 GHz 802.11b	1Mbps	-95dBm	±2dB
2.4 GHz 802.11g	6Mbps	-94dBm	±2dB
2.4 GHz 802.11n HT20	MCS0	-93dBm	±2dB
2.4 GHz 802.11n HT40	MCS0	-92dBm	±2dB

Operating Mode	Data Rate	Max Tune-up Output Power	
		1 Chain	3 Chains
4.9 GHz	6Mbps	/	22.50dBm
Operating Mode	Data Rate	RX Sensitivity	
4.9 GHz	6Mbps	-94dBm	


Operating Mode	Data Rate	Max Tune-up Output Power	
		1 Chain	3 Chains
5 GHz(5150-5250MHz) 802.11a	6Mbps	17.50dBm	/
5GHz(5150-5250MHz) 802.11n/ac HT20	MCS0	/	21.00dBm
5GHz(5150-5250MHz) 802.11n/ac HT40	MCS0	/	17.00dBm
5 GHz(5150-5250MHz) 802.11ac 80	MCS0	/	15.00dBm
Operating Mode	Data Rate	Max Tune-up Output Power	
		1 Chain	3 Chains
5 GHz(5725-5850MHz) 802.11a	6Mbps	20.50dBm	/
5GHz(5725-5850MHz) 802.11n/ac HT20	MCS0	/	24.00dBm
5GHz(5725-5850MHz) 802.11n/ac HT40	MCS0	/	23.00dBm
5 GHz(5725-5850MHz) 802.11ac 80	MCS0	/	23.00dBm

GPIO Pin Mapping

GPIO Pin	Function		
GPIO0	WLAN_DIS		
GPIO1	WLAN_LED		
GPIO2	MCI_CLK_IN		
GPIO3	MCI_CLK_OUT		
GPIO4	MCI_DATA_OUT		
GPIO5	MCI_DATA_IN		
GPIO12	TMS		
13	TCK		
14	TDI		
15	TDO		
16	CPU_WARM_RESET / JTEG RESET		
17	GPIO17_BT_LED		
19	ANT_A		
20	ANT_B		
21	FEM_BS		
22	FEM_MODE		

MiniPCIe Slot Pin Assignment

TOP Side		Bottom Side	
1	PCIE_WAKE_L	2	VCC_3V3
3	NC	4	GND
5	NC	6	NC
7	PCIE_CLKREQ_L	8	NC
9	GND	10	NC
11	PCIE_REFCLK_N	12	NC
13	PCIE_REFCLK_P	14	NC
15	GND	16	NC
Mechanical key			
17	NC	18	GND
19	NC	20	GPIO0_WLAN_DIS
21	GND	22	PCIE_RST_L
23	PCIE_TX_N	24	VCC_3V3
25	PCIE_TX_P	26	GND
27	GND	28	NC
29	GND	30	NC
31	PCIE_RX_P	32	NC
33	PCIE_RX_N	34	GND
35	GND	36	NC
37	GND	38	NC
39	VCC_3V3 (RESERVED)	40	GND
41	VCC_3V3 (RESERVED)	42	NC
43	GND	44	GPIO1_WLAN_LED
45	NC	46	GPIO17_BT_LED
47	NC	48	NC
49	NC	50	GND
51	NC	52	VCC_3V3

- 1) the picture show us the Pin 1 and the pin51, the pin numbers are increasing by odd numbers on the top side;
- 2) and increasing by even numbers from Pin2 to Pin52 on the bottom side; the pin2 is on the bottom of the pin1

Version

Version	CPU	Feature
DR900VX	QCA9880	
DR900VX-MX	QCA9880	
DR900VX-4.9	QCA9880	
DR600VX	QCA9880	The differences of them are model names
DR600VX-MX	QCA9880	
DR600VX-4.9	QCA9880	

OEM/Integrators Installation:

1.0 This module has been tested and found to comply with 15.247/15.407/PART90Y requirements for Modular Approval.

This module can work with 2.4G, 4.9G and 5G, but the three band can't work together.

1.1. Summarize the specific operational use conditions

This module can be used in Commercial radio coverage and other equipment. The input voltage to the module should be nominally 3.3VDC, the ambient temperature of the module is -40°~70°. And the antenna needs to be changed, the certification should be re-applied.

1.2. Limited module procedures

NA

1.3. Trace antenna designs

NA

1.4. RF exposure considerations

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body. If the device built into a host as a portable usage, the additional RF exposure evaluation may be required as specified by 2.1093.

1.5. Antennas

Antenna type: External fixed omni antenna	2.4GHz band Peak Gain 2(dBi)	4.9GHz band Peak Gain 2(dBi)	5150GHz~ 5250GHz Peak Gain 2(dBi)	5725GHz~ 5850GHz Peak Gain 2(dBi)
---	------------------------------------	------------------------------------	--	--

1.6. Label and compliance information

When the module is installed in the host device, the FCC ID label must be visible through a window on the final device or it must be visible when an access panel, door or cover is easily re-moved. If not, a second label must be placed on the outside of the final device that contains the following text: "Contains FCC ID: 2AG7VDR900VX". The FCC ID can be used only when all FCC ID compliance requirements are met.

1.7. Information on test modes and additional testing requirements

- The modular transmitter has been fully tested by the module grantee on the required number of channels, modulation types, and modes, it should not be necessary for the host installer to re-test all the available transmitter modes or settings. It is recommended that the host product manufacturer, installing the modular transmitter, perform some investigative measurements to confirm that the resulting composite system does not exceed the spurious emissions limits or band edge limits (e.g., where a different antenna may be causing additional emissions).
- The testing should check for emissions that may occur due to the intermixing of emissions with the other transmitters, digital circuitry, or due to physical properties of the host product (enclosure). This investigation is especially important when integrating multiple modular transmitters where the certification is based on testing each of them in a stand-alone configuration. It is important to note that host product manufacturers should not assume that because the modular transmitter is certified that they do not have any responsibility for final product compliance.

c) If the investigation indicates a compliance concern the host product manufacturer is obligated to mitigate the issue. Host products using a modular transmitter are subject to all the applicable individual technical rules as well as to the general conditions of operation in Sections 15.5, 15.15, and 15.29 to not cause interference. The operator of the host product will be obligated to stop operating the device until the interference have been corrected .

1.8. Additional testing, Part 15 Sub part B disclaimer The final host / module combination need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device.

The host integrator installing this module into their product must ensure that the final composite product complies with the FCC requirements by a technical assessment or evaluation to the FCC rules, including the transmitter operation and should refer to guidance in KDB 996369. For host products with certified modular transmitter, the frequency range of investigation of the composite system is specified by rule in Sections 15.33(a)(1) through (a)(3), or the range applicable to the digital device, as shown in Section 15.33(b)(1), whichever is the higher frequency range of investigation When testing the host product, all the transmitters must be operating. The transmitters can be enabled by using publicly-available drivers and turned on, so the transmitters are active. In certain conditions it might be appropriate to use a technology-specific call box (test set) where accessory 50 devices or drivers are not available. When testing for emissions from the unintentional radiator, the transmitter shall be placed in the receive mode or idle mode, if possible. If receive mode only is not possible then, the radio shall be passive (preferred) and/or active scanning. In these cases, this would need to enable activity on the communication BUS (i.e., PCIe, SDIO, USB) to ensure the unintentional radiator circuitry is enabled. Testing laboratories may need to add attenuation or filters depending on the signal strength of any active beacons (if applicable) from the enabled radio(s). See ANSI C63.4, ANSI C63.10 and ANSI C63.26 for further general testing details.

The product under test is set into a link/association with a partnering WLAN device, as per the normal intended use of the product. To ease testing, the product under test is set to transmit at a high duty cycle, such as by sending a file or streaming some media content.

FCC Statement:

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device complies with part 15 of the FCC Rules . Operation is subject tn the fol lowing two conditions:

- (1) This device may not cause harmful interference, and
- (2) This device must accept any interference received, including interference that may cause undesired operation.