

# FCC Radio Test Report

**FCC ID: 2AG5OPB-701-B**

**Report No.** : BTL-FCCP-2-2007T023  
**Equipment** : Pebblebee Found  
**Model Name** : PB-701-B  
**Brand Name** : Found  
**Applicant** : PB Inc.  
**Address** : PO Box 2962 Renton Washington United States 98056  
  
**Radio Function** : LTE Cat-M1 Band 2  
  
**FCC Rule Part(s)** : 47 CFR FCC Part 24 Subpart E  
47 CFR FCC Part 2  
ANSI/TIA/EIA-603-E-2016  
KDB 971168 D01 Power Meas License Digital Systems v03r01  
  
**Measurement Procedure(s)** : ANSI C63.10-2013  
  
**Date of Receipt** : 2020/7/9  
**Date of Test** : 2020/7/9 ~ 2020/7/24  
**Issued Date** : 2020/9/14

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

**Prepared by**

  
Peter Chen, Engineer



**Approved by**

  
Scott Hsu, Manager

**BTL Inc.**

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299      Fax: +886-2-2657-3331      Web: [www.newbtl.com](http://www.newbtl.com)

### Declaration

**BTL** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

**BTL**'s reports apply only to the specific samples tested under conditions. It is manufacturer's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

**BTL**'s laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

**BTL** is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

### Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

| Table of Contents                                           | Page      |
|-------------------------------------------------------------|-----------|
| <b>REPORT ISSUED HISTORY</b>                                | <b>5</b>  |
| <b>1 . SUMMARY OF TEST RESULTS</b>                          | <b>6</b>  |
| 1.1 TEST FACILITY                                           | 7         |
| 1.2 MEASUREMENT UNCERTAINTY                                 | 7         |
| 1.3 TEST ENVIRONMENT CONDITIONS                             | 7         |
| <b>2 . GENERAL INFORMATION</b>                              | <b>8</b>  |
| 2.1 GENERAL DESCRIPTION OF EUT                              | 8         |
| 2.2 DESCRIPTION OF TEST MODES                               | 9         |
| 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED | 10        |
| 2.4 DESCRIPTION OF SUPPORT UNITS                            | 10        |
| <b>3 . TEST RESULT</b>                                      | <b>11</b> |
| 3.1 RADIATED POWER MEASUREMENT                              | 11        |
| 3.1.1 LIMIT                                                 | 11        |
| 3.1.2 TEST PROCEDURES                                       | 11        |
| 3.1.3 TEST SETUP LAYOUT                                     | 11        |
| 3.1.4 TEST DEVIATION                                        | 11        |
| 3.1.5 TEST RESULTS                                          | 11        |
| 3.2 OCCUPIED BANDWIDTH MEASUREMENT                          | 12        |
| 3.2.1 TEST PROCEDURES                                       | 12        |
| 3.2.2 TEST SETUP LAYOUT                                     | 12        |
| 3.2.3 TEST DEVIATION                                        | 12        |
| 3.2.4 TEST RESULTS                                          | 12        |
| 3.3 CONDUCTED SPURIOUS EMISSIONS MEASUREMENT                | 13        |
| 3.3.1 LIMIT                                                 | 13        |
| 3.3.2 TEST PROCEDURES                                       | 13        |
| 3.3.3 TEST SETUP LAYOUT                                     | 13        |
| 3.3.4 TEST DEVIATION                                        | 13        |
| 3.3.5 TEST RESULTS                                          | 13        |
| 3.4 RADIATED SPURIOUS EMISSIONS MEASUREMENT                 | 14        |
| 3.4.1 LIMIT                                                 | 14        |
| 3.4.2 TEST PROCEDURES                                       | 14        |
| 3.4.3 TEST SETUP LAYOUT                                     | 14        |
| 3.4.4 TEST DEVIATION                                        | 15        |
| 3.4.5 TEST RESULTS (30MHZ TO 1000MHZ)                       | 15        |
| 3.4.6 TEST RESULTS (ABOVE 1000MHZ)                          | 15        |
| 3.5 BAND EDGE MEASUREMENT                                   | 16        |
| 3.5.1 LIMIT                                                 | 16        |
| 3.5.2 TEST PROCEDURES                                       | 16        |

| <b>Table of Contents</b>                                           | <b>Page</b> |
|--------------------------------------------------------------------|-------------|
| 3.5.3 TEST SETUP LAYOUT                                            | 16          |
| 3.5.4 TEST DEVIATION                                               | 16          |
| 3.5.5 TEST RESULTS                                                 | 16          |
| <b>3.6 PEAK TO AVERAGE RATIO MEASUREMENT</b>                       | <b>17</b>   |
| 3.6.1 LIMIT                                                        | 17          |
| 3.6.2 TEST PROCEDURES                                              | 17          |
| 3.6.3 TEST SETUP LAYOUT                                            | 17          |
| 3.6.4 TEST DEVIATION                                               | 17          |
| 3.6.5 TEST RESULTS                                                 | 17          |
| <b>3.7 FREQUENCY STABILITY MEASUREMENT</b>                         | <b>18</b>   |
| 3.7.1 LIMIT                                                        | 18          |
| 3.7.2 TEST PROCEDURES                                              | 18          |
| 3.7.3 TEST SETUP LAYOUT                                            | 18          |
| 3.7.4 TEST DEVIATION                                               | 18          |
| 3.7.5 TEST RESULTS                                                 | 18          |
| <b>4. LIST OF MEASUREMENT EQUIPMENTS</b>                           | <b>19</b>   |
| <b>5. EUT TEST PHOTOS</b>                                          | <b>20</b>   |
| <b>6. EUT PHOTOS</b>                                               | <b>20</b>   |
| <b>APPENDIX A - RADIATED POWER</b>                                 | <b>21</b>   |
| <b>APPENDIX B - OCCUPIED BANDWIDTH</b>                             | <b>23</b>   |
| <b>APPENDIX C - CONDUCTED SPURIOUS EMISSIONS</b>                   | <b>32</b>   |
| <b>APPENDIX D - RADIATED SPURIOUS EMISSIONS (30MHZ TO 1000MHZ)</b> | <b>37</b>   |
| <b>APPENDIX E - RADIATED SPURIOUS EMISSIONS (ABOVE 1000MHZ)</b>    | <b>40</b>   |
| <b>APPENDIX F - BAND EDGE</b>                                      | <b>43</b>   |
| <b>APPENDIX G - PEAK TO AVERAGE RATIO</b>                          | <b>48</b>   |
| <b>APPENDIX H - FREQUENCY STABILITY</b>                            | <b>53</b>   |

**REPORT ISSUED HISTORY**

| Report Version | Description                               | Issued Date |
|----------------|-------------------------------------------|-------------|
| R00            | Original Issue.                           | 2020/9/7    |
| R01            | Revised report to address TCB's comments. | 2020/9/14   |

## 1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

| FCC Part 24 Subpart E & Part 2 |                                     |          |        |
|--------------------------------|-------------------------------------|----------|--------|
| Standard(s) Section            | Test Item                           | Judgment | Remark |
| 2.1046<br>24.232(c)            | Equivalent Isotropic Radiated Power | PASS     | -----  |
| 2.1049                         | Occupied Bandwidth                  | PASS     | -----  |
| 2.1051<br>24.238(a)            | Conducted Spurious Emissions        | PASS     | -----  |
| 2.1053<br>24.238(a)            | Radiated Spurious Emissions         | PASS     | -----  |
| 24.238(a)                      | Band Edge Measurements              | PASS     | -----  |
| 24.232(d)                      | Peak To Average Ratio               | PASS     | -----  |
| 2.1055<br>24.235               | Frequency Stability                 | PASS     | -----  |

Note:

- (1) "N/A" denotes test is not applicable in this test report.
- (2) The report format version is TP.1.1.1

## 1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

The test sites and facilities are covered under FCC RN: 674415 and DN: TW0659.

C05       CB08       CB11       CB15       CB16  
 SR06

## 1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y \pm U$ , where expanded uncertainty  $U$  is based on a standard uncertainty multiplied by a coverage factor of  $k = 2$ , providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2  $U_{\text{cisp}}^2$  requirement.

A. Radiated emissions test :

| Test Site | Measurement Frequency Range | $U, (\text{dB})$ |
|-----------|-----------------------------|------------------|
| CB15      | 0.03 GHz ~ 0.2 GHz          | 4.17             |
|           | 0.2 GHz ~ 1 GHz             | 4.72             |
|           | 1 GHz ~ 6 GHz               | 5.21             |
|           | 6 GHz ~ 18 GHz              | 5.51             |
|           | 18 GHz ~ 26 GHz             | 3.69             |
|           | 26 GHz ~ 40 GHz             | 4.23             |

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

## 1.3 TEST ENVIRONMENT CONDITIONS

| Test Item                    | Environment Condition | Test Voltage | Tested by   |
|------------------------------|-----------------------|--------------|-------------|
| Output Power                 | 24.3 °C, 45 %         | DC 5V        | William Wei |
| EIRP                         | 24.3 °C, 45 %         | DC 5V        | William Wei |
| Occupied Bandwidth           | 24.3 °C, 45 %         | DC 5V        | William Wei |
| Conducted Spurious Emissions | 24.3 °C, 45 %         | DC 5V        | William Wei |
| Radiated Spurious Emissions  | 22 °C, 61 %           | DC 5V        | Aven Ho     |
| Band Edge                    | 24.3 °C, 45 %         | DC 5V        | William Wei |
| Peak to Average Ratio        | 24.3 °C, 45 %         | DC 5V        | William Wei |
| Frequency Stability          | Normal and Extreme    |              | William Wei |

## 2. GENERAL INFORMATION

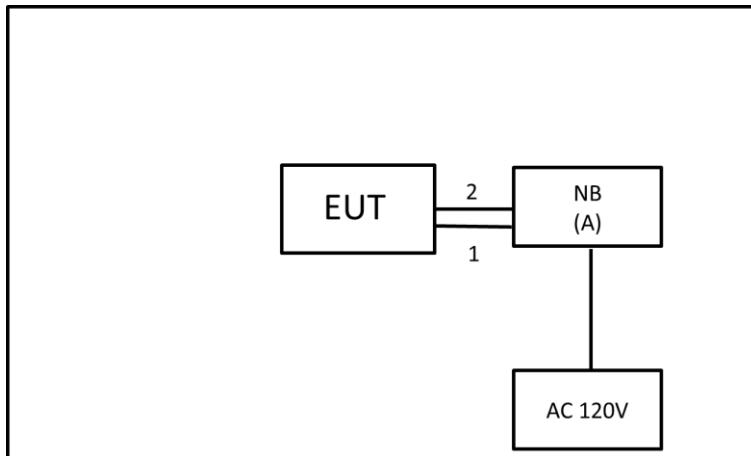
### 2.1 GENERAL DESCRIPTION OF EUT

|                     |                                  |
|---------------------|----------------------------------|
| Equipment           | Pebblebee Found                  |
| Model Name          | PB-701-B                         |
| Brand Name          | Found                            |
| Model Difference    | N/A                              |
| Power Source        | Supplied from Battery.           |
| Power Rating        | I/P: DC 5V 1A                    |
| Products Covered    | N/A                              |
| Hardware Version    | PB_GO_DVT                        |
| Software Version    | Firmware Ver: N.3.1.7            |
| Test Model          | PB-701-B                         |
| Sample Status       | Engineering Sample               |
| EUT Modification(s) | N/A                              |
| Modulation Type     | UL: QPSK,16QAM<br>DL: QPSK,16QAM |
| Maximum EIRP Power  | 16.47 dBm (0.0444 W)             |

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

### 2. Channel List:


| LTE Cat-M1 Band 2 |                 |                 |                           |                 |                             |
|-------------------|-----------------|-----------------|---------------------------|-----------------|-----------------------------|
| Test Frequency ID | Bandwidth (MHz) | N <sub>UL</sub> | Frequency of Uplink (MHz) | N <sub>DL</sub> | Frequency of Downlink (MHz) |
| Low Range         | 5               | 18625           | 1852.5                    | 625             | 1932.5                      |
|                   | 10              | 18650           | 1855                      | 650             | 1935                        |
|                   | 15              | 18675           | 1857.5                    | 675             | 1937.5                      |
|                   | 20              | 18700           | 1860                      | 700             | 1940                        |
| Mid Range         | 5/10/15/20      | 18900           | 1880                      | 900             | 1960                        |
| High Range        | 5               | 19175           | 1907.5                    | 1175            | 1987.5                      |
|                   | 10              | 19150           | 1905                      | 1150            | 1985                        |
|                   | 15              | 19125           | 1902.5                    | 1125            | 1982.5                      |
|                   | 20              | 19100           | 1900                      | 1100            | 1980                        |

## 2.2 DESCRIPTION OF TEST MODES

Following mode(s) is (were) found to be the worst case(s) and selected for the final test.

| LTE CAT-M1 BAND 2 MODE       |                   |                     |                   |             |         |
|------------------------------|-------------------|---------------------|-------------------|-------------|---------|
| Test Item                    | Available Channel | Tested Channel      | Channel Bandwidth | Modulation  | Mode    |
| Output Power                 | 18625 to 19175    | 18625, 18900, 19175 | 5MHz              | QPSK, 16QAM | 1RB/6RB |
|                              | 18650 to 19150    | 18650, 18900, 19150 | 10MHz             | QPSK, 16QAM | 1RB/6RB |
|                              | 18675 to 19125    | 18675, 18900, 19125 | 15MHz             | QPSK, 16QAM | 1RB/6RB |
|                              | 18700 to 19100    | 18700, 18900, 19100 | 20MHz             | QPSK, 16QAM | 1RB/6RB |
| Occupied Bandwidth           | 18625 to 19175    | 18625, 18900, 19175 | 5MHz              | QPSK, 16QAM | 1RB/6RB |
|                              | 18650 to 19150    | 18650, 18900, 19150 | 10MHz             | QPSK, 16QAM | 1RB/6RB |
|                              | 18675 to 19125    | 18675, 18900, 19125 | 15MHz             | QPSK, 16QAM | 1RB/6RB |
|                              | 18700 to 19100    | 18700, 18900, 19100 | 20MHz             | QPSK, 16QAM | 1RB/6RB |
| Conducted Spurious Emissions | 18625 to 19175    | 18900               | 5MHz              | QPSK        | 1RB     |
|                              | 18650 to 19150    | 18900               | 10MHz             | QPSK        | 1RB     |
|                              | 18675 to 19125    | 18900               | 15MHz             | QPSK        | 1RB     |
|                              | 18700 to 19100    | 18900               | 20MHz             | QPSK        | 1RB     |
| Radiated Spurious Emissions  | Cat-M1            |                     |                   |             |         |
| Band Edge                    | 18625 to 19175    | 18625, 19175        | 5MHz              | QPSK        | 1RB/6RB |
|                              | 18650 to 19150    | 18650, 19150        | 10MHz             | QPSK        | 1RB/6RB |
|                              | 18675 to 19125    | 18675, 19125        | 15MHz             | QPSK        | 1RB/6RB |
|                              | 18700 to 19100    | 18700, 19100        | 20MHz             | QPSK        | 1RB/6RB |
| Peak To Average Ratio        | 18625 to 19175    | 18625, 18900, 19175 | 5MHz              | QPSK, 16QAM | 1RB     |
|                              | 18650 to 19150    | 18650, 18900, 19150 | 10MHz             | QPSK, 16QAM | 1RB     |
|                              | 18675 to 19125    | 18675, 18900, 19125 | 15MHz             | QPSK, 16QAM | 1RB     |
|                              | 18700 to 19100    | 18700, 18900, 19100 | 20MHz             | QPSK, 16QAM | 1RB     |
| Frequency Stability          | 5MHz              |                     |                   |             |         |
|                              | 10MHz             |                     |                   |             |         |
|                              | 15MHz             |                     |                   |             |         |
|                              | 20MHz             |                     |                   |             |         |

## 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED



## 2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

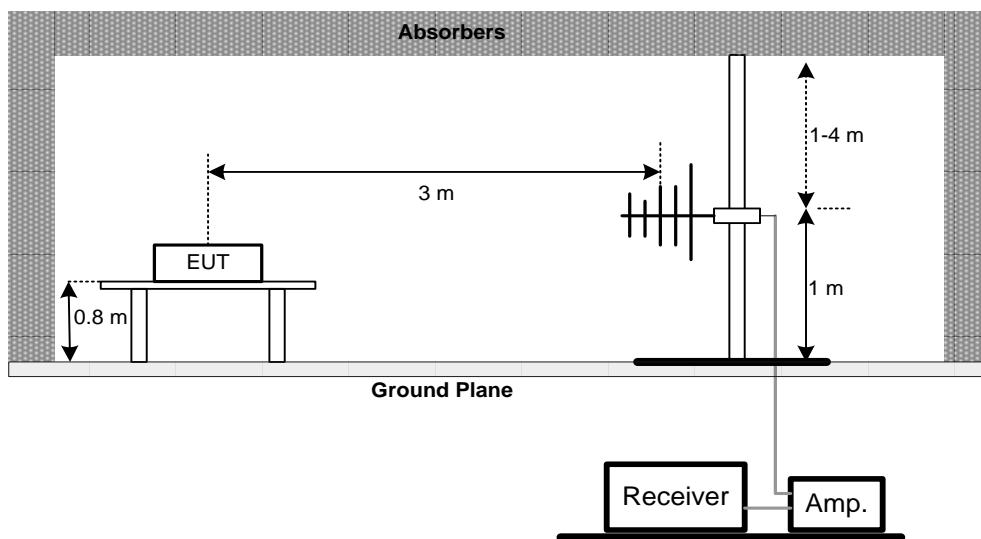
| Item | Equipment | Brand | Model No. | Series No. | Remarks                |
|------|-----------|-------|-----------|------------|------------------------|
| A    | NB        | HP    | TPN-I119  | NA         | Furnished by test lab. |

| Item | Cable Type           | Shielded | Ferrite Core | Length | Remarks                    |
|------|----------------------|----------|--------------|--------|----------------------------|
| 1    | USB Cable            | YES      | NA           | 0.15M  | Supplied by test requester |
| 2    | Fixture Cable to USB | NA       | NA           | 0.5M   | Supplied by test requester |

### 3. TEST RESULT

#### 3.1 RADIATED POWER MEASUREMENT

##### 3.1.1 LIMIT


Mobile / Portable station are limited to 2 watts e.i.r.p.

##### 3.1.2 TEST PROCEDURES

1. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The “Read Value” is the spectrum reading the maximum power value.
2. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to “Read Value” of step a. Record the power level of S.G
3. EIRP = Output power level of S.G – TX cable loss + Antenna gain of substitution horn.
4. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.R.P power - 2.15dBi.
5. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

##### 3.1.3 TEST SETUP LAYOUT

###### Radiated Power Measurement

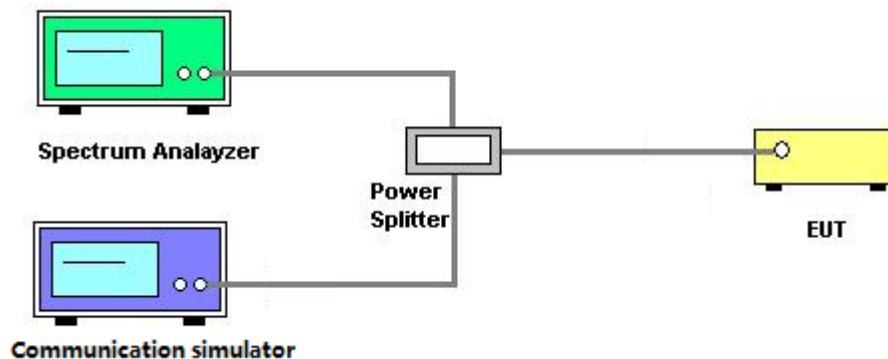


##### 3.1.4 TEST DEVIATION

No deviation

##### 3.1.5 TEST RESULTS

Please refer to the APPENDIX A.


### 3.2 OCCUPIED BANDWIDTH MEASUREMENT

#### 3.2.1 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 4.

1. The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth and 26dB bandwidth.
2. The EUT was connected to spectrum analyzer and system simulator via a power divider.
3.  $RBW = (1\% \sim 5\%) * EBW$   
 $VBW \geq 3 * RBW$
4. Set spectrum analyzer with Peak detector.

#### 3.2.2 TEST SETUP LAYOUT



#### 3.2.3 TEST DEVIATION

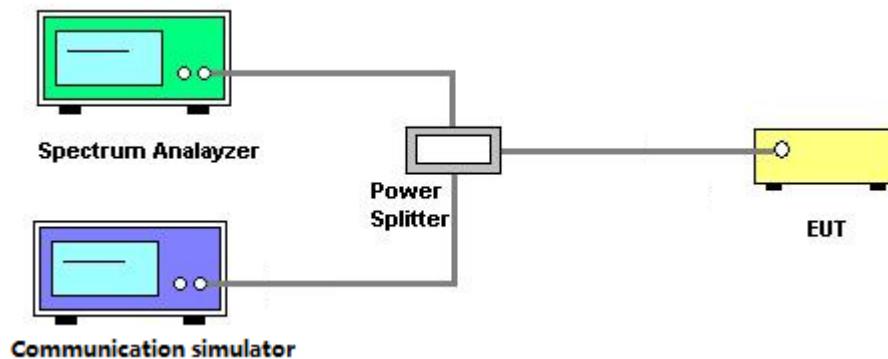
No deviation

#### 3.2.4 TEST RESULTS

Please refer to the APPENDIX B.

### 3.3 CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

#### 3.3.1 LIMIT


The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P)$  dB. The emission limit equal to -13dBm.

#### 3.3.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 6.

1. The EUT was connected to spectrum analyzer and system simulator via a power divider.
2. The band edges of low and high channels for the highest RF powers were measured. Set  $RBW \geq 1\%$  EBW in the 1MHz band immediately outside and adjacent to the band edge.
3. Set spectrum analyzer with Peak detector.
4. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

#### 3.3.3 TEST SETUP LAYOUT



#### 3.3.4 TEST DEVIATION

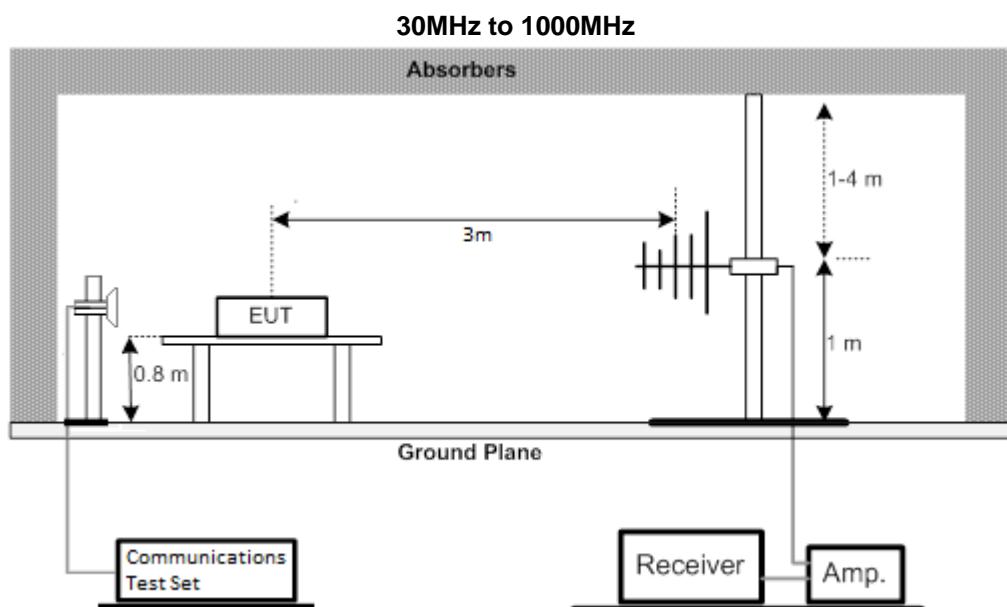
No deviation

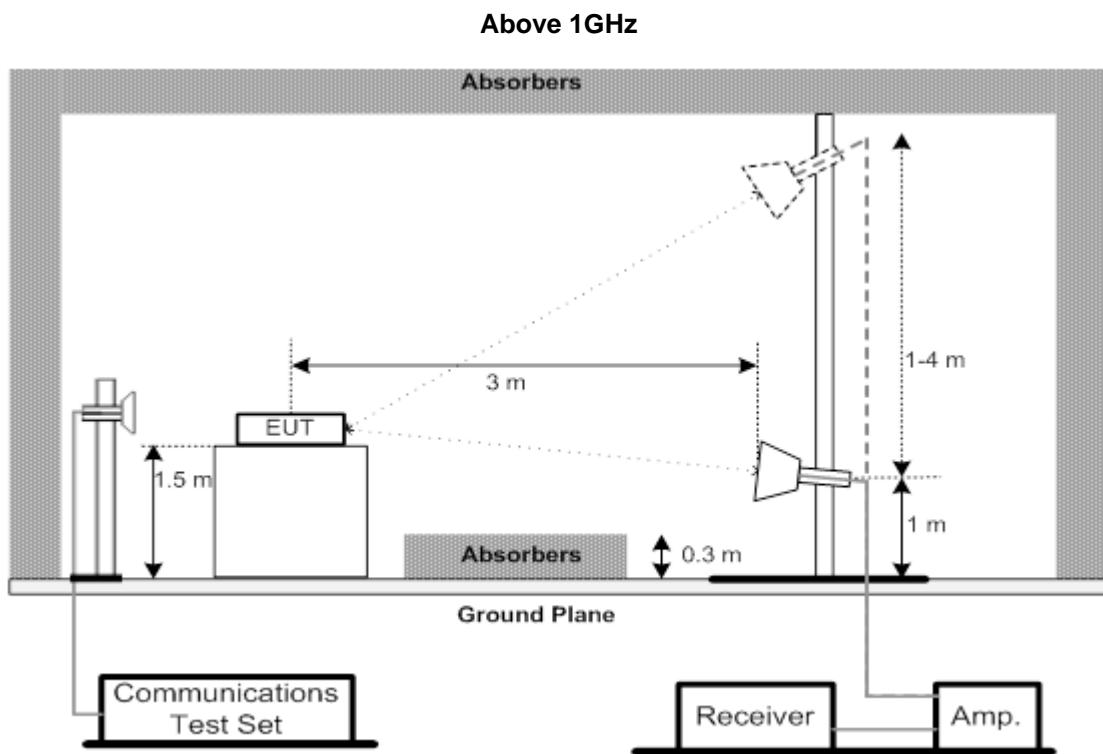
#### 3.3.5 TEST RESULTS

Please refer to the APPENDIX C.

### 3.4 RADIATED SPURIOUS EMISSIONS MEASUREMENT

#### 3.4.1 LIMIT


The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P)$  dB. The emission limit equal to -13dBm.


#### 3.4.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 6.2.

1. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
2. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value " of step a. Record the power level of S.G
3. EIRP = Output power level of S.G – TX cable loss + Antenna gain of substitution horn.
4. ERP can be calculated from EIRP by subtracting the gain of dipole, ERP = EIPR - 2.15dBi.
5. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

#### 3.4.3 TEST SETUP LAYOUT





### 3.4.4 TEST DEVIATION

No deviation

### 3.4.5 TEST RESULTS (30MHZ TO 1000MHZ)

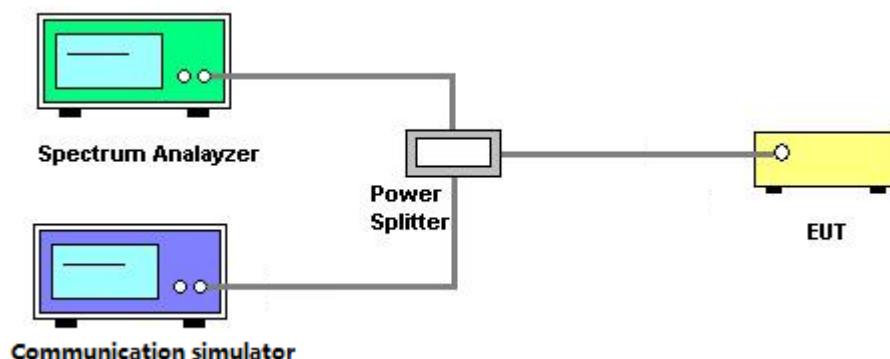
Please refer to the APPENDIX D.

### 3.4.6 TEST RESULTS (ABOVE 1000MHZ)

Please refer to the APPENDIX E.

### 3.5 BAND EDGE MEASUREMENT

#### 3.5.1 LIMIT


A Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P)$  dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

#### 3.5.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 6.

1. All measurements were done at low and high operational frequency range.
2. Record the max trace plot into the test report.

#### 3.5.3 TEST SETUP LAYOUT



#### 3.5.4 TEST DEVIATION

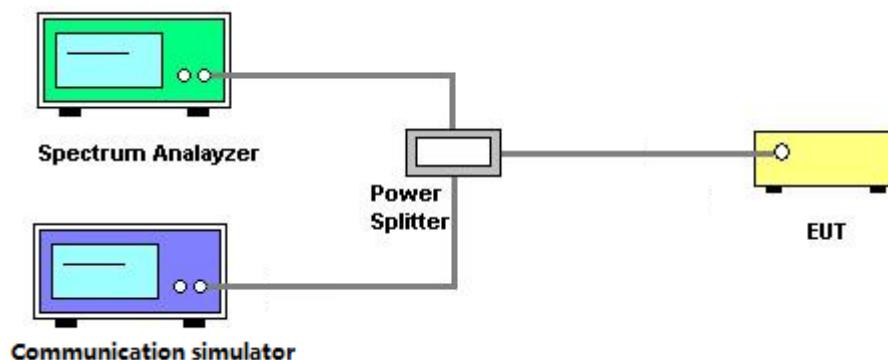
No deviation

#### 3.5.5 TEST RESULTS

Please refer to the APPENDIX F.

### 3.6 PEAK TO AVERAGE RATIO MEASUREMENT

#### 3.6.1 LIMIT


In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB.

#### 3.6.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 5.7.

1. Set resolution/measurement bandwidth  $\geq$  signal's occupied bandwidth;
2. Set the number of counts to a value that stabilizes the measured CCDF curve;
3. Record the maximum PAPR level associated with a probability of 0.1%.

#### 3.6.3 TEST SETUP LAYOUT



#### 3.6.4 TEST DEVIATION

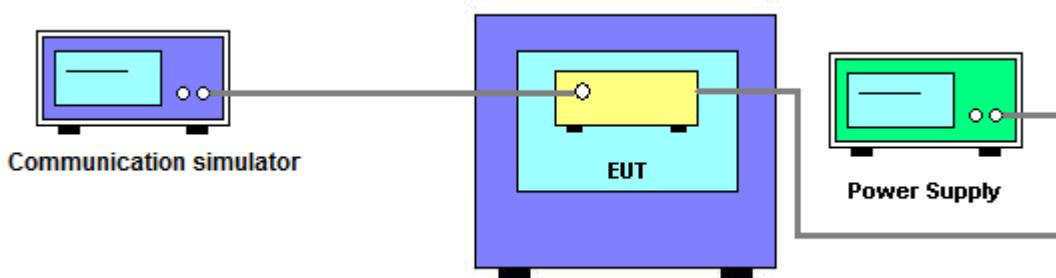
No deviation

#### 3.6.5 TEST RESULTS

Please refer to the APPENDIX G.

### 3.7 FREQUENCY STABILITY MEASUREMENT

#### 3.7.1 LIMIT


$\pm 1.5$  ppm is for base and fixed station.  $\pm 2.5$  ppm is for mobile station.

#### 3.7.2 TEST PROCEDURES

The testing follows FCC KDB 971168 v03r01 Section 9.

1. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
2. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
3. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the  $\pm 0.5^\circ\text{C}$  during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.
4. The frequency error was recorded frequency error from the communication simulator.

#### 3.7.3 TEST SETUP LAYOUT



#### 3.7.4 TEST DEVIATION

No deviation

#### 3.7.5 TEST RESULTS

Please refer to the APPENDIX H.

#### 4. LIST OF MEASUREMENT EQUIPMENTS

| ERIP Power Measurement |                              |              |          |            |                 |                  |
|------------------------|------------------------------|--------------|----------|------------|-----------------|------------------|
| Item                   | Kind of Equipment            | Manufacturer | Type No. | Serial No. | Calibrated Date | Calibrated Until |
| 1                      | Radio Communication Analyzer | Anritsu      | MT8821C  | 6262044728 | 2019/12/3       | 2020/12/2        |

| Radiated Emissions Measurement |                          |              |                   |             |                 |                  |
|--------------------------------|--------------------------|--------------|-------------------|-------------|-----------------|------------------|
| Item                           | Kind of Equipment        | Manufacturer | Type No.          | Serial No.  | Calibrated Date | Calibrated Until |
| 1                              | Preamplifier             | EMCI         | EMC001340         | 980555      | 2020/4/10       | 2021/4/9         |
| 2                              | Preamplifier             | EMCI         | EMC02325B         | 980217      | 2020/4/10       | 2021/4/9         |
| 3                              | Preamplifier             | EMCI         | EMC012645B        | 980267      | 2020/4/10       | 2021/4/9         |
| 4                              | Test Cable               | EMCI         | EMC104-SM-SM-800  | 150207      | 2020/4/10       | 2021/4/9         |
| 5                              | Test Cable               | EMCI         | EMC104-SM-SM-3000 | 151205      | 2020/4/10       | 2021/4/9         |
| 6                              | Test Cable               | EMCI         | EMC-SM-SM-7000    | 180408      | 2020/4/10       | 2021/4/9         |
| 7                              | MXE EMI Receiver         | Agilent      | N9038A            | MY554200087 | 2020/6/10       | 2021/6/9         |
| 8                              | Signal Analyzer          | Agilent      | N9010A            | MY56480554  | 2020/6/4        | 2021/6/3         |
| 9                              | Loop Ant                 | EMCO         | 6502              | 274         | 2020/6/16       | 2021/6/15        |
| 10                             | Horn Ant                 | SCHWARZBECK  | BBHA 9120D        | 9120D-01783 | 2019/8/14       | 2020/8/13        |
| 11                             | Trilog-Broadband Antenna | Schwarzbeck  | VULB 9168         | 0992        | 2020/7/10       | 2021/7/9         |
| 12                             | 5dB Attenuator           | EMCI         | EMCI-N-6-05       | AT-N0508    | 2020/7/10       | 2021/7/9         |

| Frequency Stability Measurement |                              |              |          |            |                 |                  |
|---------------------------------|------------------------------|--------------|----------|------------|-----------------|------------------|
| Item                            | Kind of Equipment            | Manufacturer | Type No. | Serial No. | Calibrated Date | Calibrated Until |
| 1                               | Radio Communication Analyzer | Anritsu      | MT8821C  | 6262044728 | 43802           | 2020/12/2        |
| 2                               | Thermal Chamber              | HOLINK       | H-T-1F-D | BA03101701 | 2020/7/2        | 2021/7/1         |

| Others Conducted Measurement |                   |              |          |            |                 |                  |
|------------------------------|-------------------|--------------|----------|------------|-----------------|------------------|
| Item                         | Kind of Equipment | Manufacturer | Type No. | Serial No. | Calibrated Date | Calibrated Until |
| 1                            | Spectrum Analyzer | Agilent      | N9010A   | MY54200240 | 2019/11/19      | 2020/11/18       |

Remark: "N/A" denotes no model name, no serial no. or no calibration specified.

All calibration period of equipment list is one year.

**5. EUT TEST PHOTOS**

Please refer to document Appendix No.: TP-2007T023-FCCP-2 (APPENDIX-TEST PHOTOS).

**6. EUT PHOTOS**

Please refer to document Appendix No.: EP-2007T023-1 (APPENDIX-EUT PHOTOS).

## **APPENDIX A - RADIATED POWER**

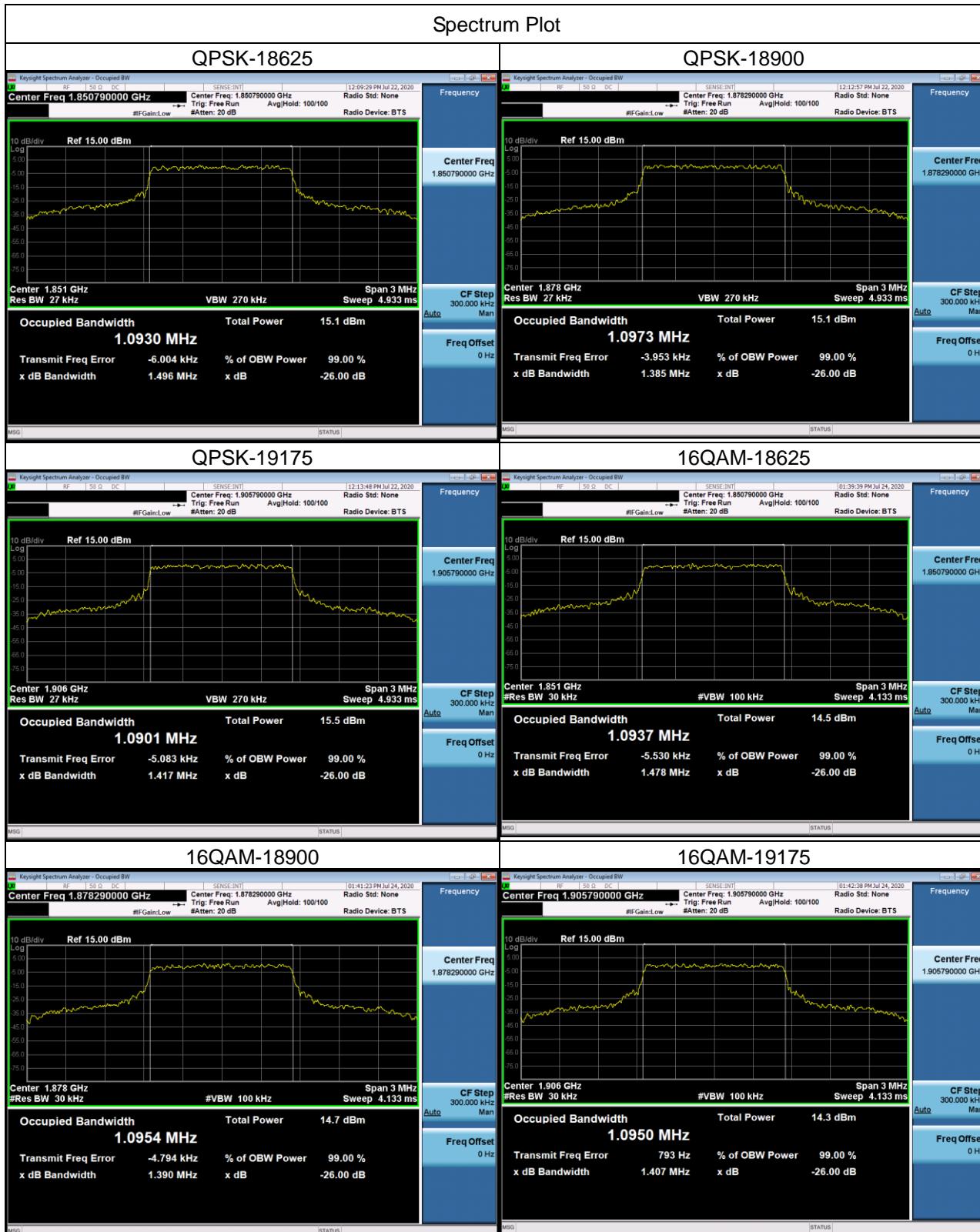
|           |                   |           |           |
|-----------|-------------------|-----------|-----------|
| Test Mode | LTE Cat-M1 Band 2 | Test Date | 2020/7/24 |
|-----------|-------------------|-----------|-----------|

| Band | BW (MHz) | Channel | Frequency (MHz) | Mode  | Narrowband Index | UL RB Allocation | UL RB Offset | Average power (dBm) | EIRP power (dBm) |
|------|----------|---------|-----------------|-------|------------------|------------------|--------------|---------------------|------------------|
| 2    | 5        | 18625   | 1852.5          | QPSK  | 0                | 1                | 0            | 20.12               | 15.75            |
|      |          |         |                 |       | 0                | 6                | 0            | 20.03               | 15.66            |
|      |          |         |                 | 16QAM | 0                | 1                | 0            | 19.63               | 15.26            |
|      |          |         |                 |       | 0                | 6                | 0            | 19.64               | 15.27            |
|      |          | 18900   | 1880.0          | QPSK  | 0                | 1                | 0            | 20.29               | 15.92            |
|      |          |         |                 |       | 0                | 6                | 0            | 20.26               | 15.89            |
|      |          |         |                 | 16QAM | 0                | 1                | 0            | 19.73               | 15.36            |
|      |          |         |                 |       | 0                | 6                | 0            | 19.66               | 15.29            |
|      |          | 19175   | 1907.5          | QPSK  | 0                | 1                | 5            | 20.69               | 16.32            |
|      |          |         |                 |       | 0                | 6                | 0            | 20.63               | 16.26            |
|      |          |         |                 | 16QAM | 3                | 1                | 5            | 20.41               | 16.04            |
|      |          |         |                 |       | 3                | 6                | 0            | 20.47               | 16.10            |
| Band | BW (MHz) | Channel | Frequency (MHz) | Mode  | Narrowband Index | UL RB Allocation | UL RB Offset | Average power (dBm) | EIRP power (dBm) |
| 2    | 10       | 18650   | 1855.0          | QPSK  | 0                | 1                | 0            | 20.17               | 15.80            |
|      |          |         |                 |       | 0                | 6                | 0            | 20.08               | 15.71            |
|      |          |         |                 | 16QAM | 0                | 1                | 0            | 19.68               | 15.31            |
|      |          |         |                 |       | 0                | 6                | 0            | 19.69               | 15.32            |
|      |          | 18900   | 1880.0          | QPSK  | 0                | 1                | 0            | 20.34               | 15.97            |
|      |          |         |                 |       | 0                | 6                | 0            | 20.31               | 15.94            |
|      |          |         |                 | 16QAM | 0                | 1                | 0            | 19.78               | 15.41            |
|      |          |         |                 |       | 0                | 6                | 0            | 19.71               | 15.34            |
|      |          | 19150   | 1905.0          | QPSK  | 0                | 1                | 5            | 20.74               | 16.37            |
|      |          |         |                 |       | 0                | 6                | 0            | 20.68               | 16.31            |
|      |          |         |                 | 16QAM | 7                | 1                | 5            | 20.46               | 16.09            |
|      |          |         |                 |       | 7                | 6                | 0            | 20.52               | 16.15            |
| Band | BW (MHz) | Channel | Frequency (MHz) | Mode  | Narrowband Index | UL RB Allocation | UL RB Offset | Average power (dBm) | EIRP power (dBm) |
| 2    | 15       | 18675   | 1857.5          | QPSK  | 0                | 1                | 0            | 20.22               | 15.85            |
|      |          |         |                 |       | 0                | 6                | 0            | 20.13               | 15.76            |
|      |          |         |                 | 16QAM | 0                | 1                | 0            | 19.73               | 15.36            |
|      |          |         |                 |       | 0                | 6                | 0            | 19.74               | 15.37            |
|      |          | 18900   | 1880.0          | QPSK  | 0                | 1                | 0            | 20.39               | 16.02            |
|      |          |         |                 |       | 0                | 6                | 0            | 20.36               | 15.99            |
|      |          |         |                 | 16QAM | 0                | 1                | 0            | 19.83               | 15.46            |
|      |          |         |                 |       | 0                | 6                | 0            | 19.76               | 15.39            |
|      |          | 19125   | 1902.5          | QPSK  | 0                | 1                | 5            | 20.79               | 16.42            |
|      |          |         |                 |       | 0                | 6                | 0            | 20.73               | 16.36            |
|      |          |         |                 | 16QAM | 11               | 1                | 5            | 20.51               | 16.14            |
|      |          |         |                 |       | 11               | 6                | 0            | 20.57               | 16.20            |
| Band | BW (MHz) | Channel | Frequency (MHz) | Mode  | Narrowband Index | UL RB Allocation | UL RB Offset | Average power (dBm) | EIRP power (dBm) |
| 2    | 20       | 18700   | 1860.0          | QPSK  | 0                | 1                | 0            | 20.27               | 15.90            |
|      |          |         |                 |       | 0                | 6                | 0            | 20.18               | 15.81            |
|      |          |         |                 | 16QAM | 0                | 1                | 0            | 19.78               | 15.41            |
|      |          |         |                 |       | 0                | 6                | 0            | 19.79               | 15.42            |
|      |          | 18900   | 1880.0          | QPSK  | 0                | 1                | 0            | 20.44               | 16.07            |
|      |          |         |                 |       | 0                | 6                | 0            | 20.41               | 16.04            |
|      |          |         |                 | 16QAM | 0                | 1                | 0            | 19.88               | 15.51            |
|      |          |         |                 |       | 0                | 6                | 0            | 19.81               | 15.44            |
|      |          | 19100   | 1900.0          | QPSK  | 0                | 1                | 5            | 20.84               | <b>16.47</b>     |
|      |          |         |                 |       | 0                | 6                | 0            | 20.78               | 16.41            |
|      |          |         |                 | 16QAM | 15               | 1                | 5            | 20.56               | 16.19            |
|      |          |         |                 |       | 15               | 6                | 0            | 20.62               | 16.25            |

Antenna Gain: -4.37 dBi.

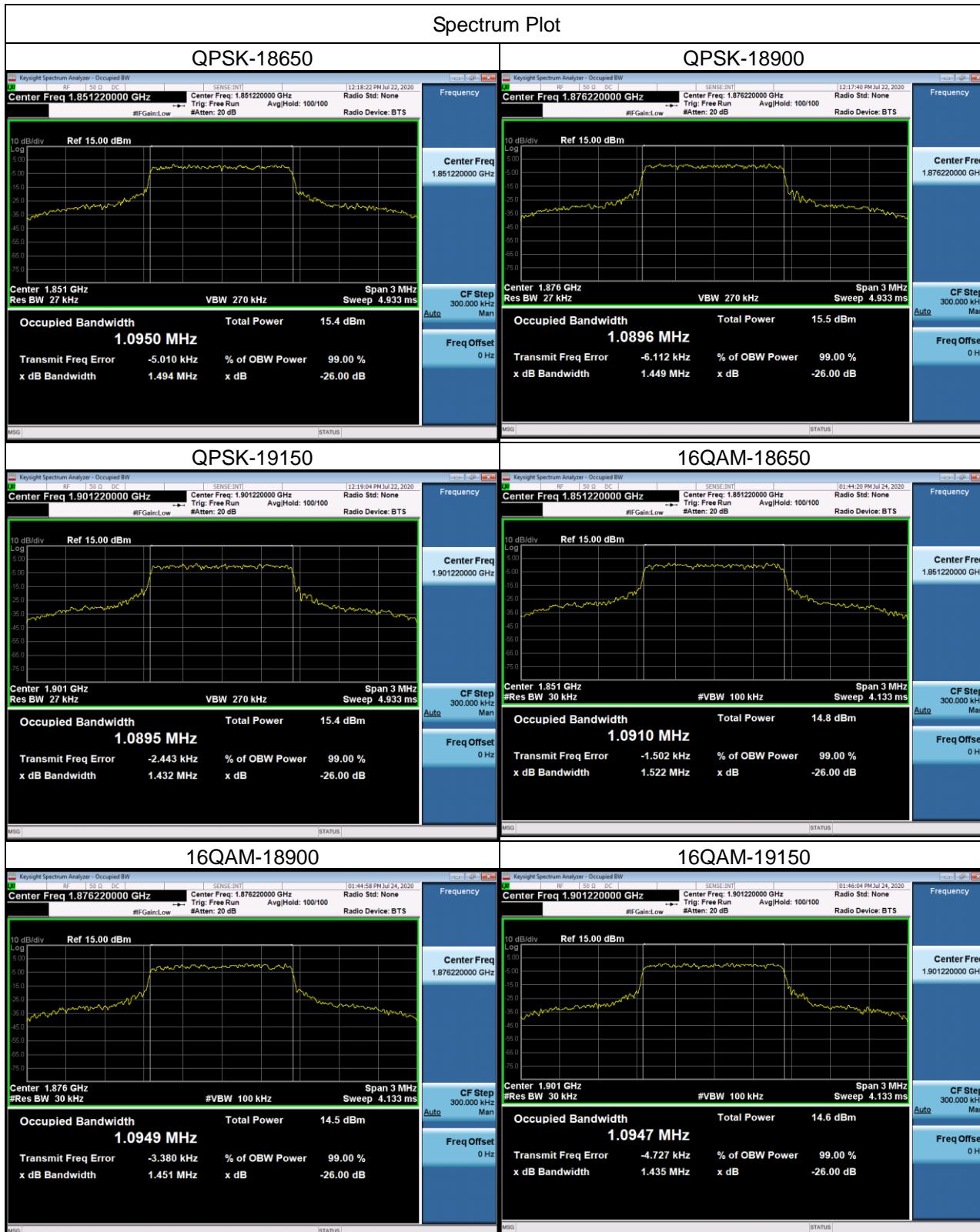
## **APPENDIX B - OCCUPIED BANDWIDTH**

|           |                   |           |           |
|-----------|-------------------|-----------|-----------|
| Test Mode | LTE Cat-M1 Band 2 | Test Date | 2020/7/24 |
|-----------|-------------------|-----------|-----------|


## LTE Cat-M1 Band 2\_5M

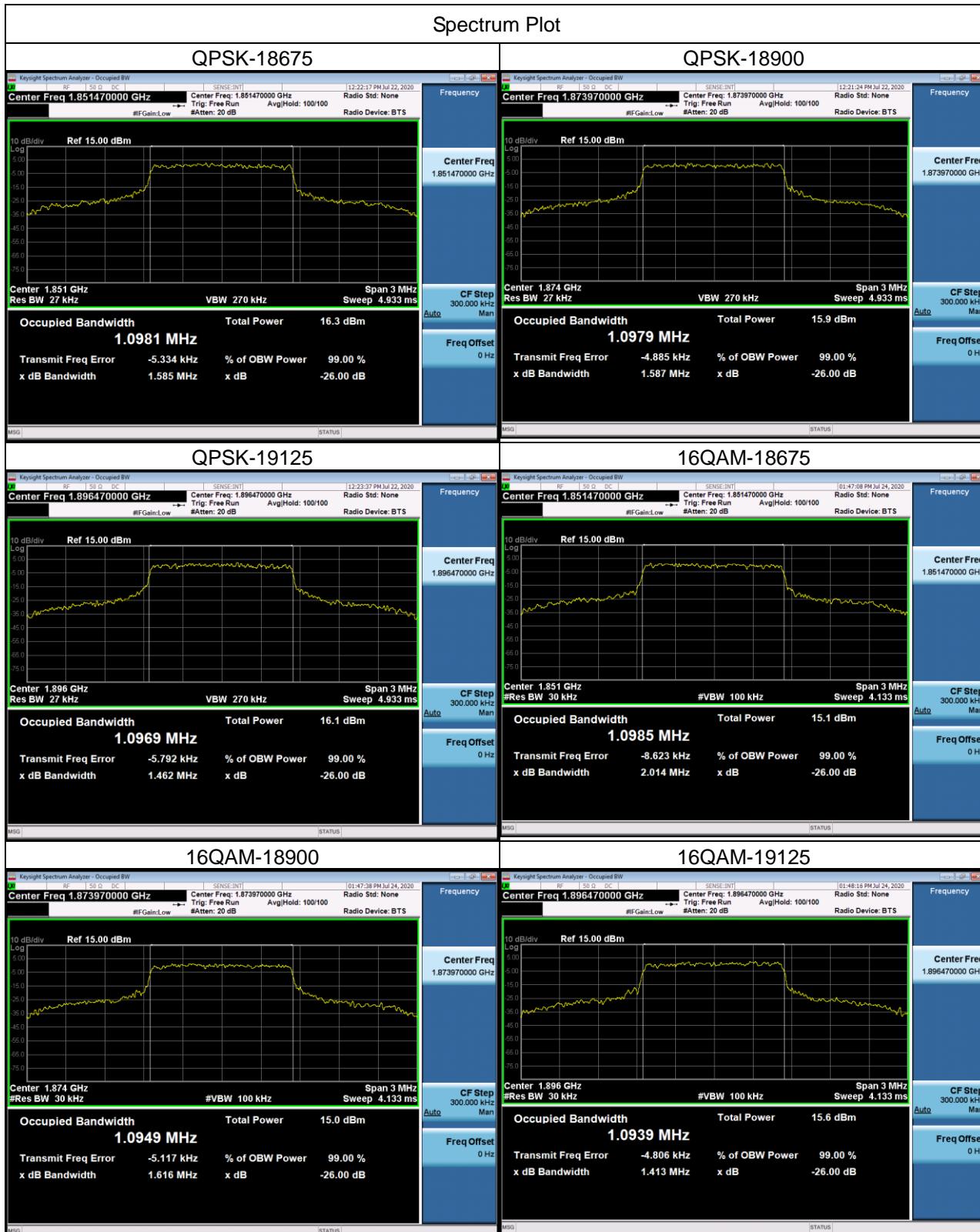
## QPSK

| Channel | Frequency (MHz) | 99% Occupied Bandwidth (MHz) | Channel | Frequency (MHz) | 26dB Bandwidth (MHz) |
|---------|-----------------|------------------------------|---------|-----------------|----------------------|
| 18625   | 1852.5          | 1.0930                       | 18625   | 1852.5          | 1.496                |
| 18900   | 1880.0          | 1.0973                       | 18900   | 1880.0          | 1.385                |
| 19175   | 1907.5          | 1.0901                       | 19175   | 1907.5          | 1.417                |


## 16QAM

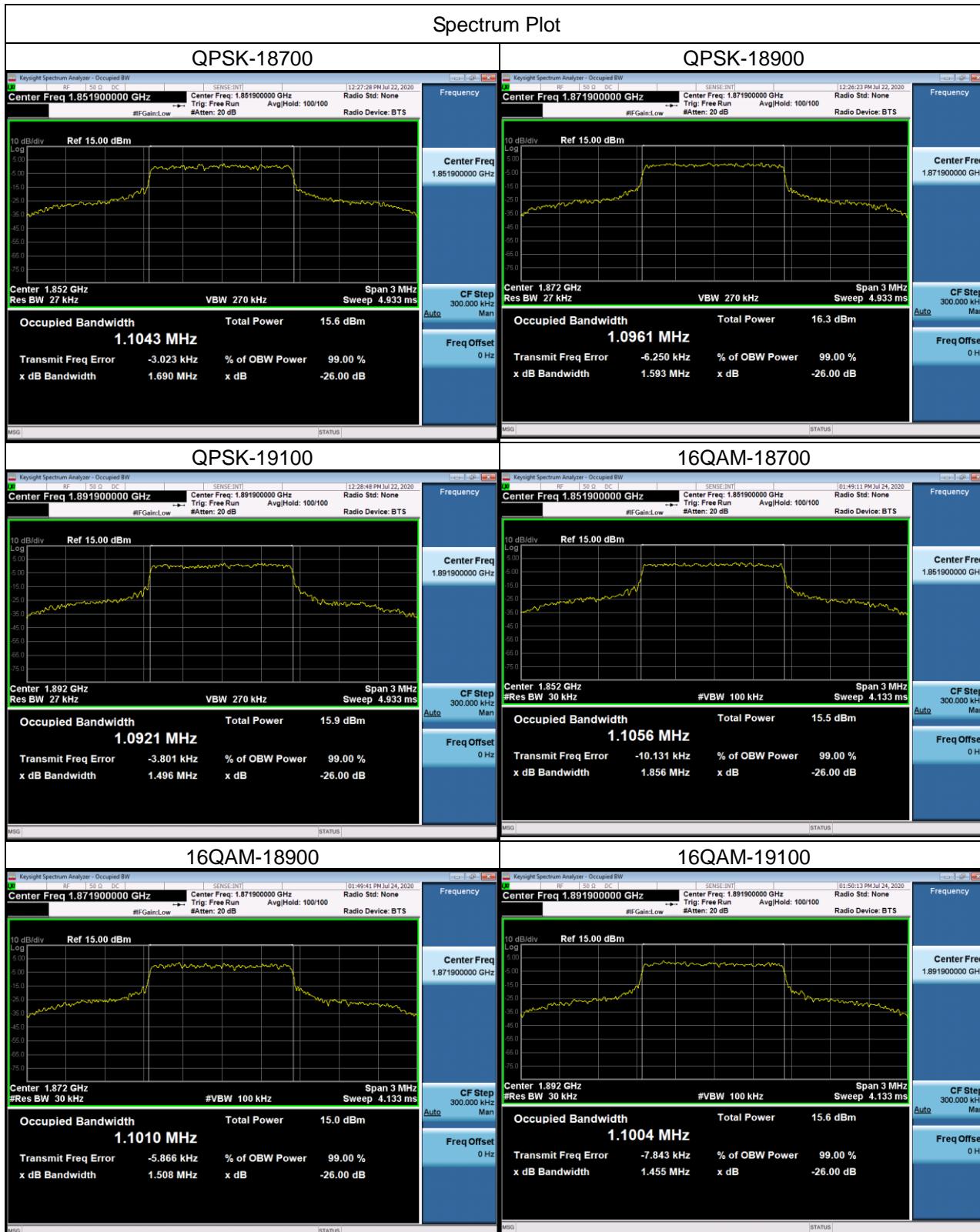
| Channel | Frequency (MHz) | 99% Occupied Bandwidth (MHz) | Channel | Frequency (MHz) | 26dB Bandwidth (MHz) |
|---------|-----------------|------------------------------|---------|-----------------|----------------------|
| 18625   | 1852.5          | 1.0937                       | 18625   | 1852.5          | 1.478                |
| 18900   | 1880.0          | 1.0954                       | 18900   | 1880.0          | 1.390                |
| 19175   | 1907.5          | 1.0950                       | 19175   | 1907.5          | 1.407                |




| LTE Cat-M1 Band 2_10M |                 |                              |         |                 |                      |
|-----------------------|-----------------|------------------------------|---------|-----------------|----------------------|
| QPSK                  |                 |                              |         |                 |                      |
| Channel               | Frequency (MHz) | 99% Occupied Bandwidth (MHz) | Channel | Frequency (MHz) | 26dB Bandwidth (MHz) |
| 18650                 | 1855            | 1.0950                       | 18650   | 1855            | 1.494                |
| 18900                 | 1880            | 1.0896                       | 18900   | 1880            | 1.449                |
| 19150                 | 1905            | 1.0895                       | 19150   | 1905            | 1.432                |

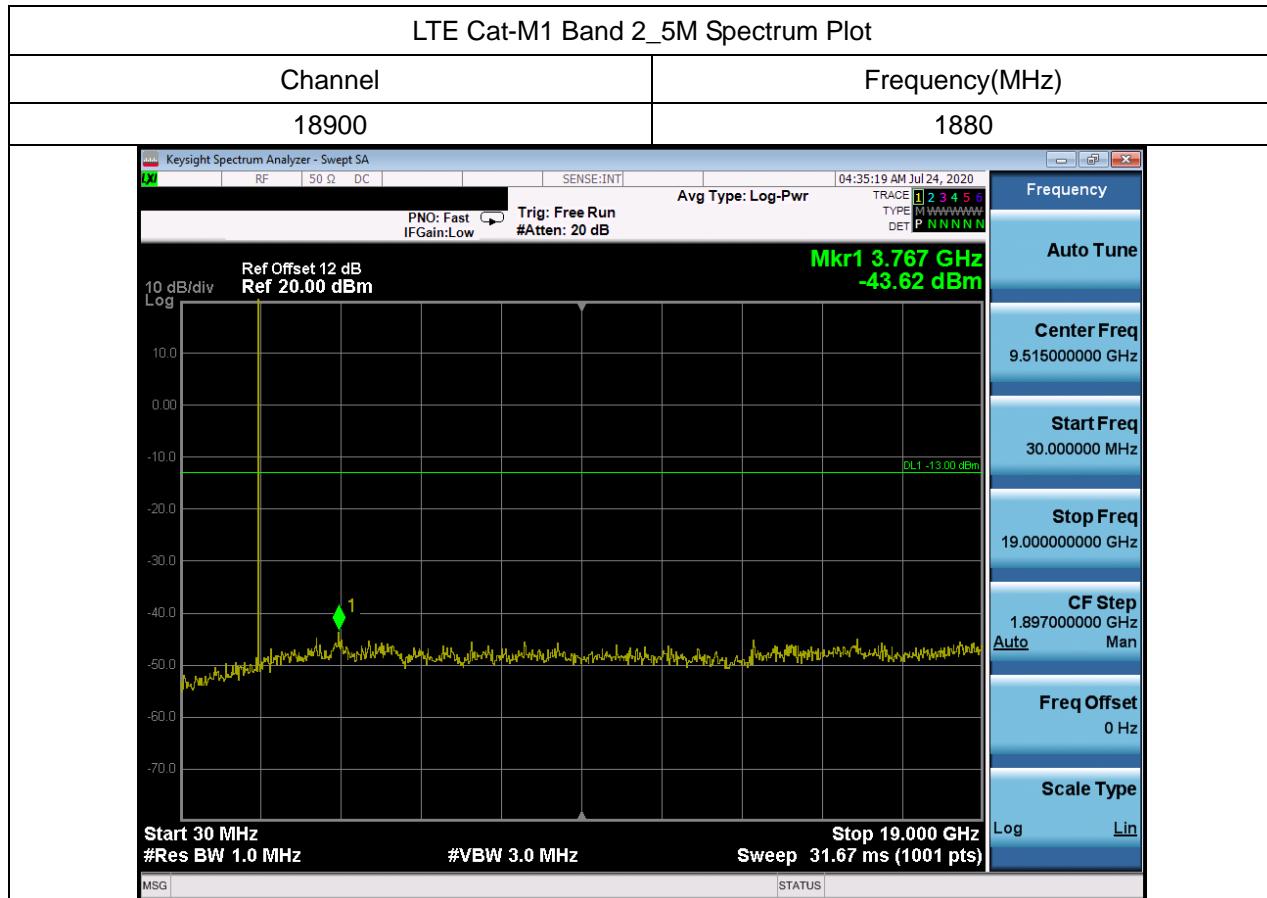
| 16QAM   |                 |                              |         |                 |                      |
|---------|-----------------|------------------------------|---------|-----------------|----------------------|
| Channel | Frequency (MHz) | 99% Occupied Bandwidth (MHz) | Channel | Frequency (MHz) | 26dB Bandwidth (MHz) |
| 18650   | 1855            | 1.0910                       | 18650   | 1855            | 1.522                |
| 18900   | 1880            | 1.0949                       | 18900   | 1880            | 1.451                |
| 19150   | 1905            | 1.0947                       | 19150   | 1905            | 1.435                |

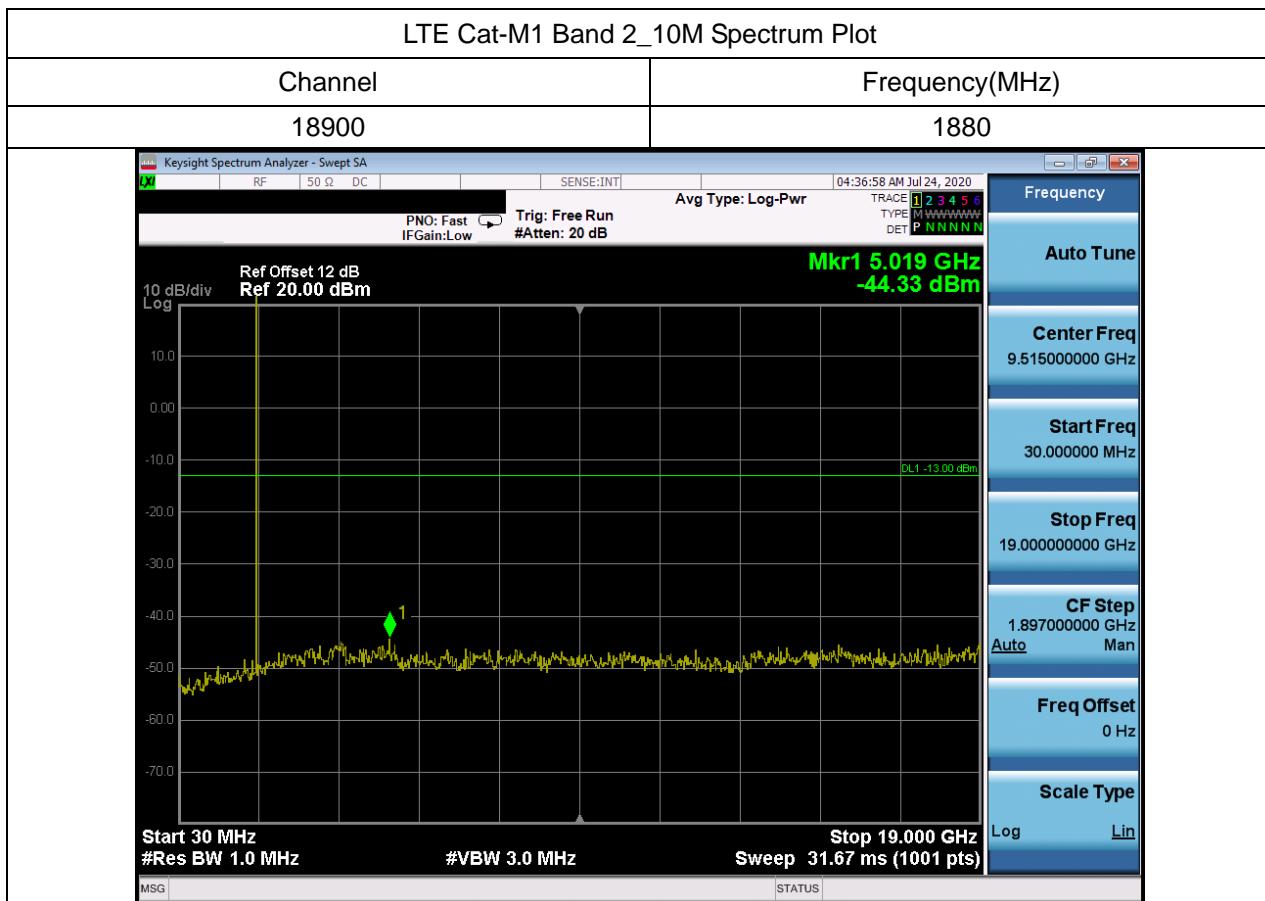


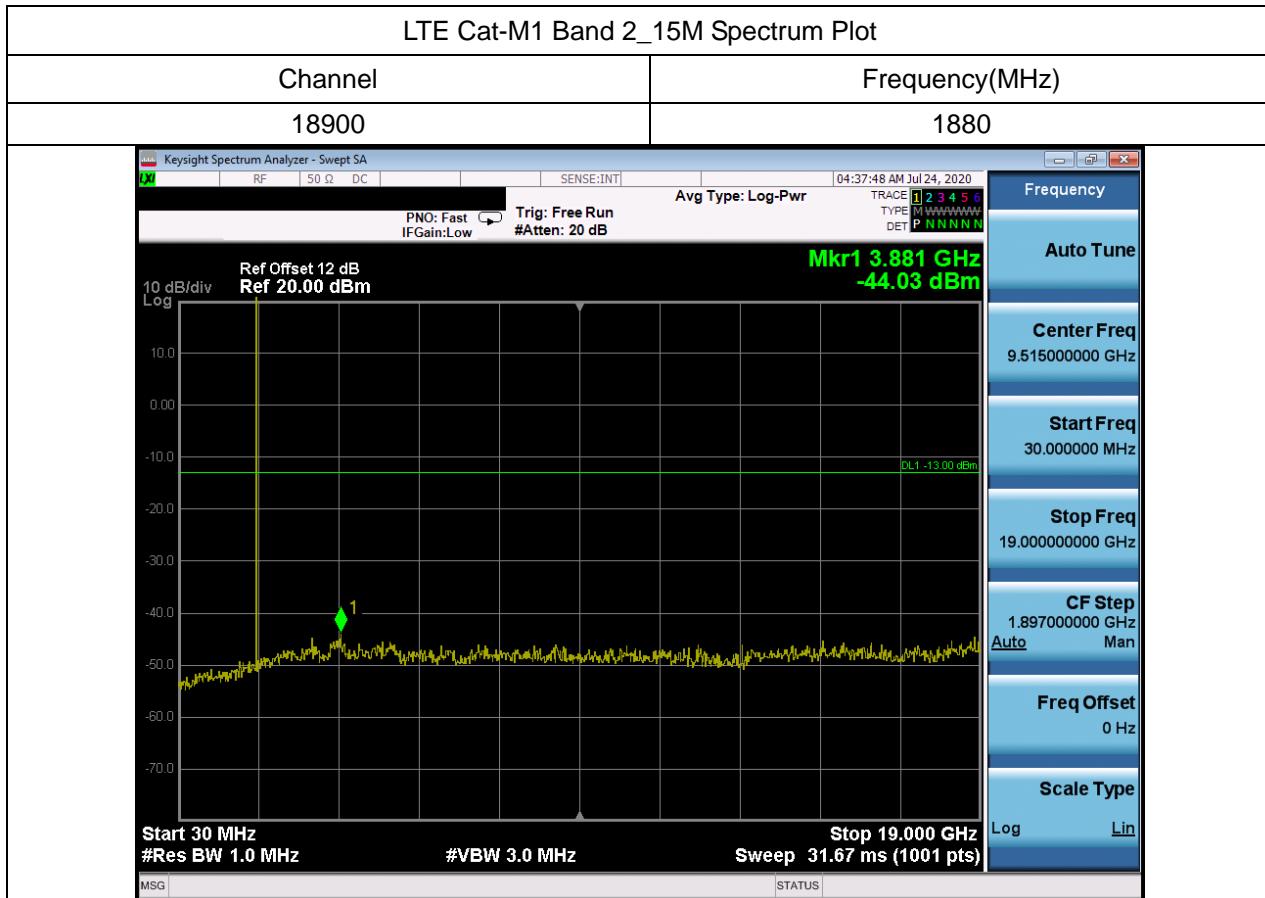

| LTE Cat-M1 Band 2_15M |                 |                              |         |                 |                      |
|-----------------------|-----------------|------------------------------|---------|-----------------|----------------------|
| QPSK                  |                 |                              |         |                 |                      |
| Channel               | Frequency (MHz) | 99% Occupied Bandwidth (MHz) | Channel | Frequency (MHz) | 26dB Bandwidth (MHz) |
| 18675                 | 1857.5          | 1.0981                       | 18675   | 1857.5          | 1.585                |
| 18900                 | 1880.0          | 1.0979                       | 18900   | 1880.0          | 1.587                |
| 19125                 | 1902.5          | 1.0969                       | 19125   | 1902.5          | 1.462                |

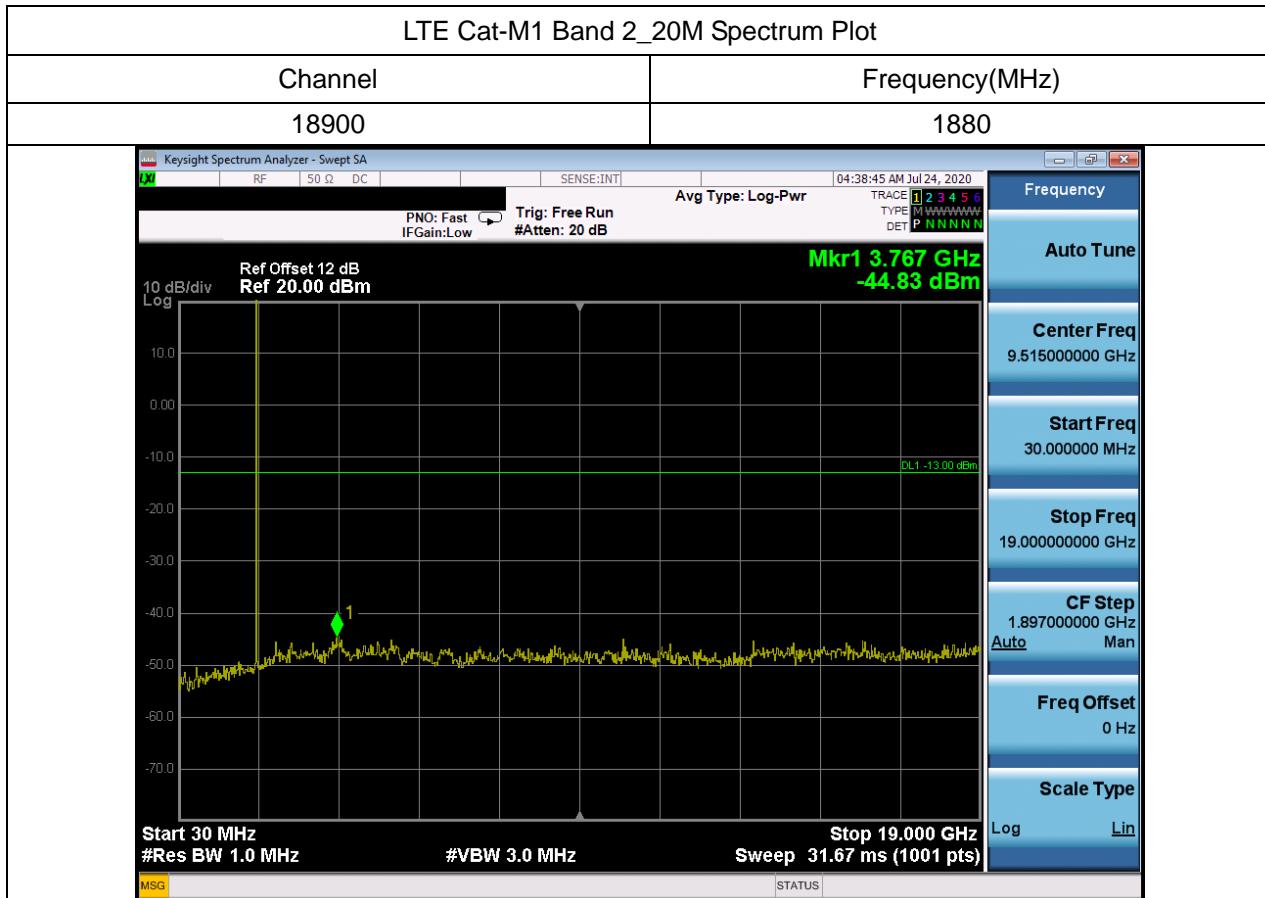
| 16QAM   |                 |                              |         |                 |                      |
|---------|-----------------|------------------------------|---------|-----------------|----------------------|
| Channel | Frequency (MHz) | 99% Occupied Bandwidth (MHz) | Channel | Frequency (MHz) | 26dB Bandwidth (MHz) |
| 18675   | 1857.5          | 1.0985                       | 18675   | 1857.5          | 2.014                |
| 18900   | 1880.0          | 1.0949                       | 18900   | 1880.0          | 1.616                |
| 19125   | 1902.5          | 1.0939                       | 19125   | 1902.5          | 1.413                |




| LTE Cat-M1 Band 2_20M |                 |                              |         |                 |                      |
|-----------------------|-----------------|------------------------------|---------|-----------------|----------------------|
| QPSK                  |                 |                              |         |                 |                      |
| Channel               | Frequency (MHz) | 99% Occupied Bandwidth (MHz) | Channel | Frequency (MHz) | 26dB Bandwidth (MHz) |
| 18700                 | 1860            | 1.1043                       | 18700   | 1860            | 1.690                |
| 18900                 | 1880            | 1.0961                       | 18900   | 1880            | 1.593                |
| 19100                 | 1900            | 1.0921                       | 19100   | 1900            | 1.496                |

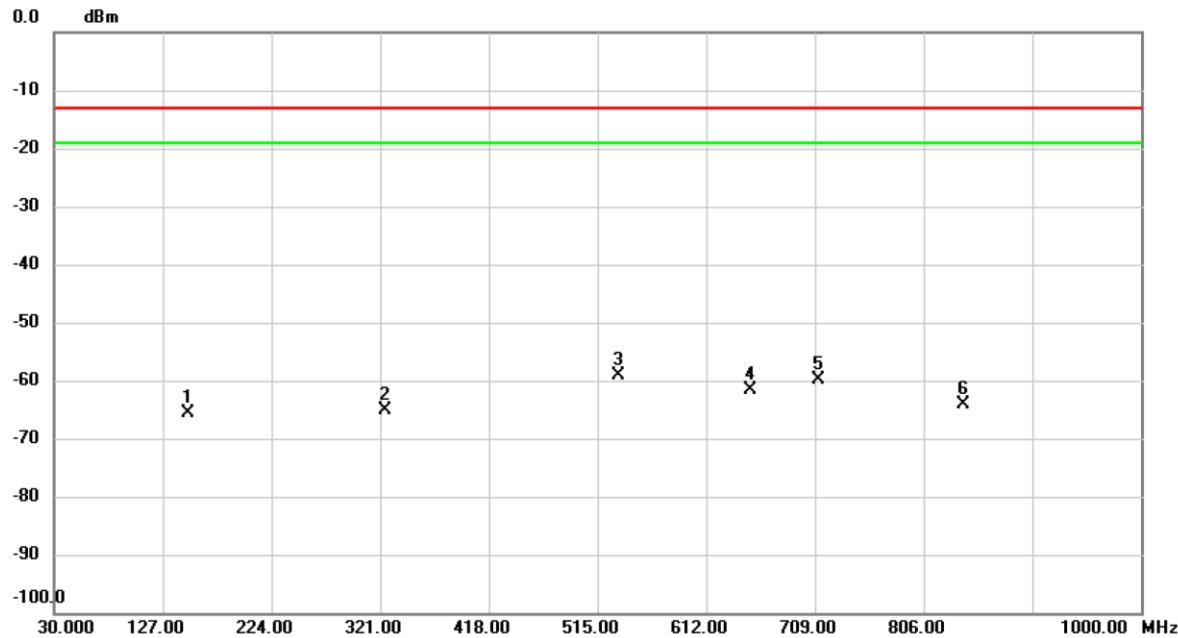

| 16QAM   |                 |                              |         |                 |                      |
|---------|-----------------|------------------------------|---------|-----------------|----------------------|
| Channel | Frequency (MHz) | 99% Occupied Bandwidth (MHz) | Channel | Frequency (MHz) | 26dB Bandwidth (MHz) |
| 18700   | 1860            | 1.1056                       | 18700   | 1860            | 1.856                |
| 18900   | 1880            | 1.1010                       | 18900   | 1880            | 1.508                |
| 19100   | 1900            | 1.1004                       | 19100   | 1900            | 1.455                |





## APPENDIX C - CONDUCTED SPURIOUS EMISSIONS

|           |                   |           |           |
|-----------|-------------------|-----------|-----------|
| Test Mode | LTE Cat-M1 Band 2 | Test Date | 2020/7/24 |
|-----------|-------------------|-----------|-----------|



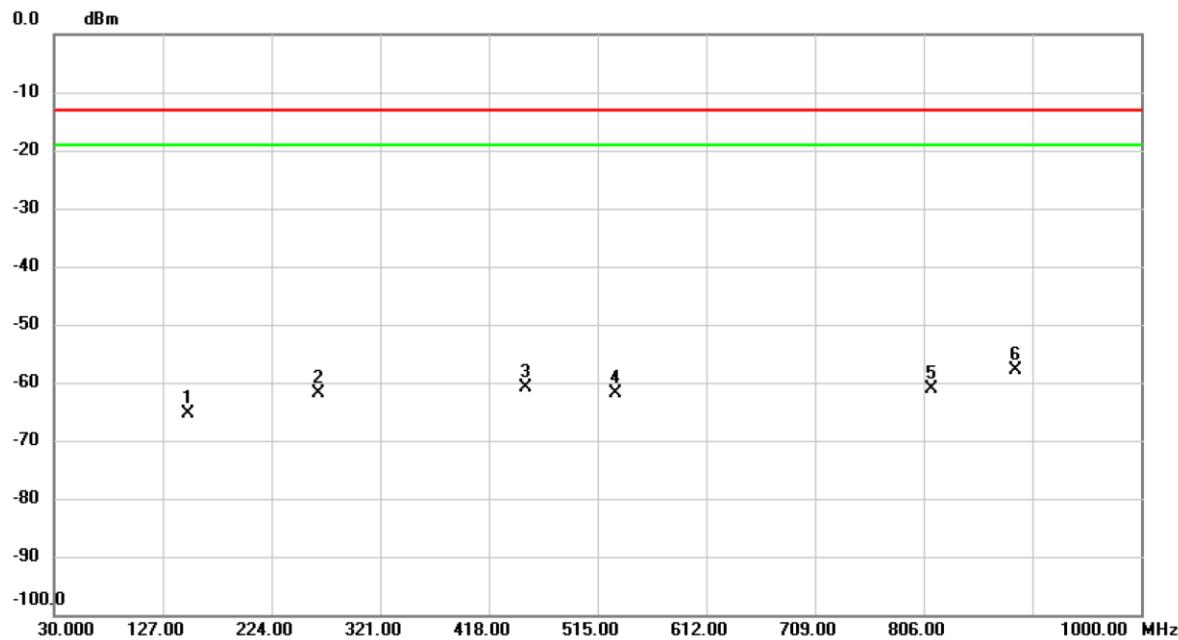







**APPENDIX D - RADIATED SPURIOUS EMISSIONS (30MHZ TO 1000MHZ)**

|           |                   |              |           |
|-----------|-------------------|--------------|-----------|
| Test Mode | LTE Cat-M1 Band 2 | Test Date    | 2020/7/24 |
| -         | -                 | Polarization | Vertical  |



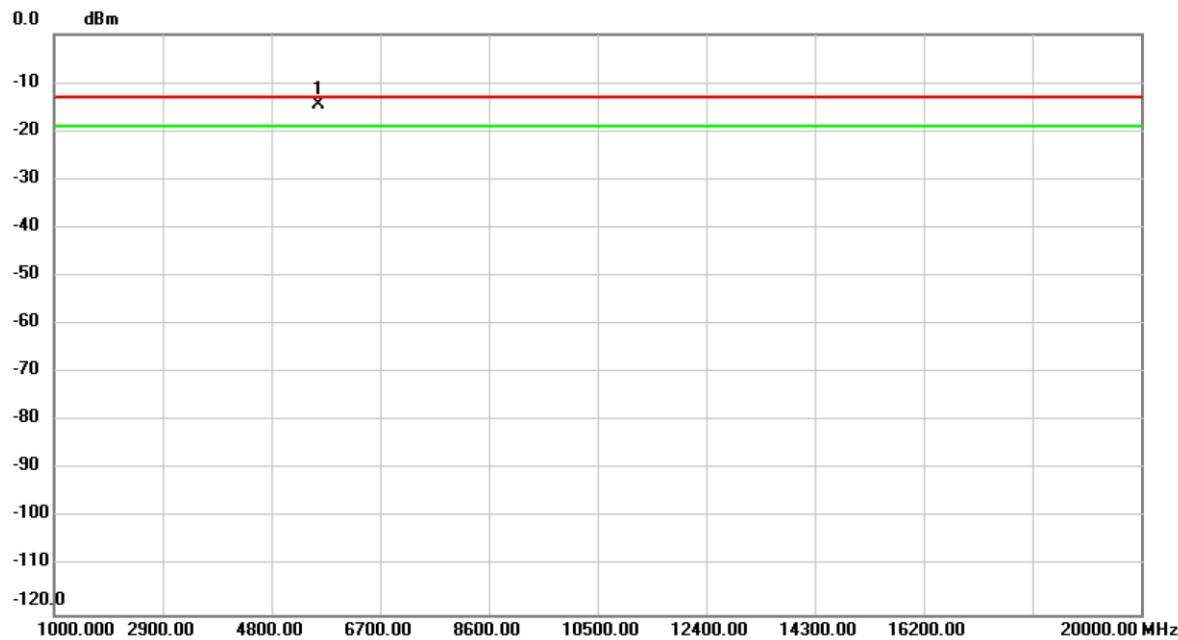

| No. | Mk. | Freq.    | Reading | Correct | Measure- | Limit  | Over   |          |         |
|-----|-----|----------|---------|---------|----------|--------|--------|----------|---------|
|     |     |          | Level   | Factor  | ment     |        | dB     | Detector | Comment |
|     |     |          | MHz     | dBm     | dB       | dBm    | dB     |          |         |
| 1   |     | 149.3100 | -68.78  | 3.10    | -65.68   | -13.00 | -52.68 | peak     |         |
| 2   |     | 324.8800 | -72.29  | 7.13    | -65.16   | -13.00 | -52.16 | peak     |         |
| 3   | *   | 533.4300 | -67.37  | 8.36    | -59.01   | -13.00 | -46.01 | peak     |         |
| 4   |     | 651.7700 | -74.23  | 12.70   | -61.53   | -13.00 | -48.53 | peak     |         |
| 5   |     | 711.9100 | -72.24  | 12.40   | -59.84   | -13.00 | -46.84 | peak     |         |
| 6   |     | 841.8900 | -73.91  | 9.69    | -64.22   | -13.00 | -51.22 | peak     |         |

## REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.

|           |                   |              |            |
|-----------|-------------------|--------------|------------|
| Test Mode | LTE Cat-M1 Band 2 | Test Date    | 2020/7/24  |
| -         | -                 | Polarization | Horizontal |



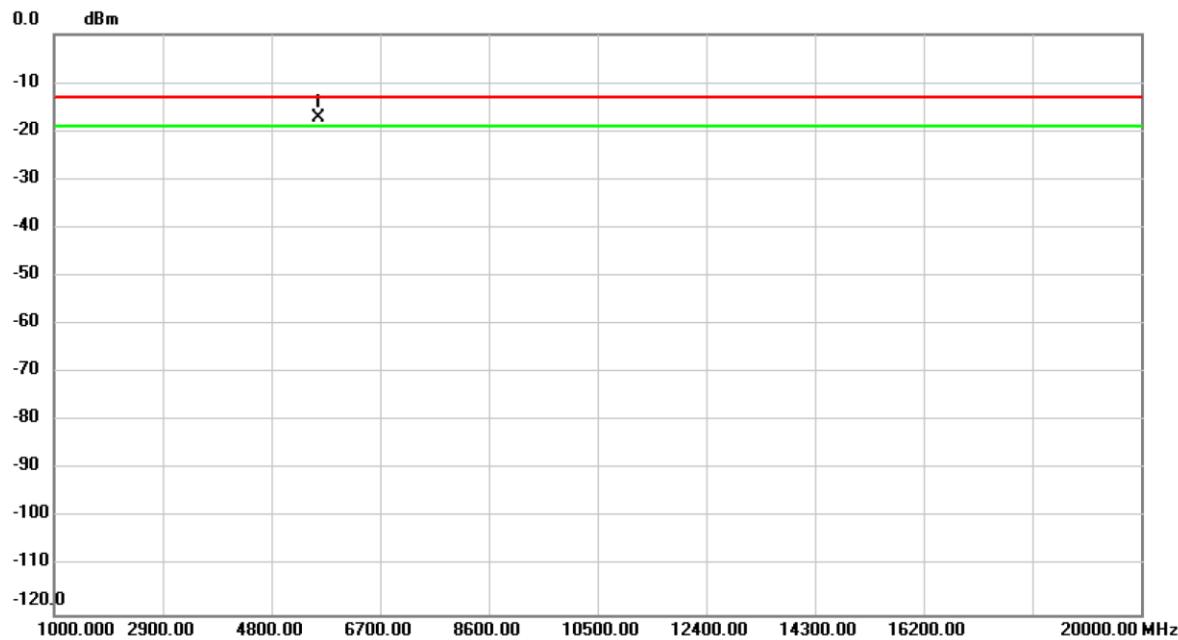

| No. | Mk. | Freq.    | Reading | Correct | Measure- | Limit  | Over   |     |          |
|-----|-----|----------|---------|---------|----------|--------|--------|-----|----------|
|     |     |          | Level   | Factor  | ment     |        | dB     | dBm | Detector |
|     |     | MHz      | dBm     | dB      | dBm      | dBm    | dB     |     |          |
| 1   |     | 149.3100 | -68.22  | 2.89    | -65.33   | -13.00 | -52.33 |     | peak     |
| 2   |     | 265.7100 | -61.64  | -0.21   | -61.85   | -13.00 | -48.85 |     | peak     |
| 3   |     | 450.9800 | -76.27  | 15.29   | -60.98   | -13.00 | -47.98 |     | peak     |
| 4   |     | 531.4900 | -71.90  | 10.09   | -61.81   | -13.00 | -48.81 |     | peak     |
| 5   |     | 812.7900 | -76.50  | 15.50   | -61.00   | -13.00 | -48.00 |     | peak     |
| 6   | *   | 888.4500 | -73.65  | 15.88   | -57.77   | -13.00 | -44.77 |     | peak     |

## REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.

**APPENDIX E - RADIATED SPURIOUS EMISSIONS (ABOVE 1000MHZ)**

|           |                   |              |          |
|-----------|-------------------|--------------|----------|
| Test Mode | LTE Cat-M1 Band 2 | Test Date    | 2020/7/9 |
| -         | -                 | Polarization | Vertical |




| No. | Mk. | Freq.    | Reading | Correct | Measure- | Limit  | Over  | Detector | Comment |
|-----|-----|----------|---------|---------|----------|--------|-------|----------|---------|
|     |     |          | Level   | Factor  | ment     |        |       |          |         |
| 1   | *   | 5615.855 | -15.14  | 0.70    | -14.44   | -13.00 | -1.44 | peak     |         |

**REMARKS:**

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.

|           |                   |              |            |
|-----------|-------------------|--------------|------------|
| Test Mode | LTE Cat-M1 Band 2 | Test Date    | 2020/7/9   |
| -         | -                 | Polarization | Horizontal |



| No. | Mk. | Freq.    | Reading | Correct | Measure- | Limit  | Over  | Detector | Comment |
|-----|-----|----------|---------|---------|----------|--------|-------|----------|---------|
|     |     |          | Level   | Factor  | ment     |        |       |          |         |
| 1   | *   | 5615.325 | -18.43  | 1.05    | -17.38   | -13.00 | -4.38 | peak     |         |

**REMARKS:**

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.

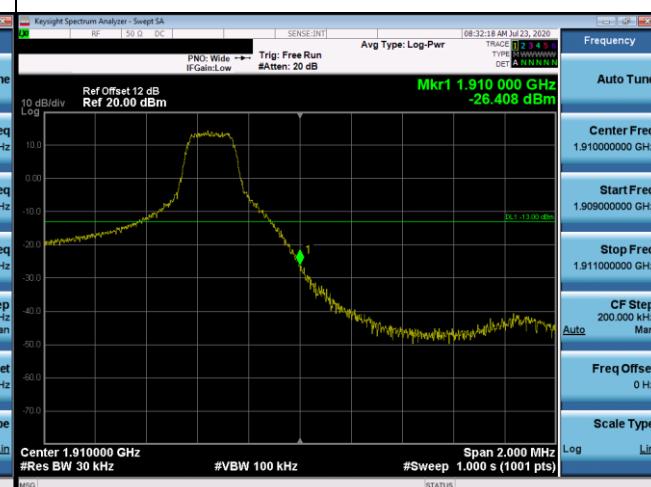
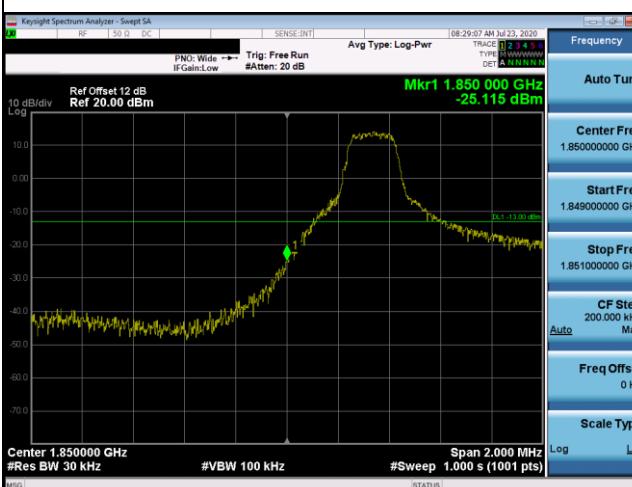
## **APPENDIX F - BAND EDGE**

Test Mode | LTE Cat-M1 Band 2

Test Date | 2020/7/24

### LTE Cat-M1 Band 2\_5M Spectrum Plot

1RB#0



1RB#5

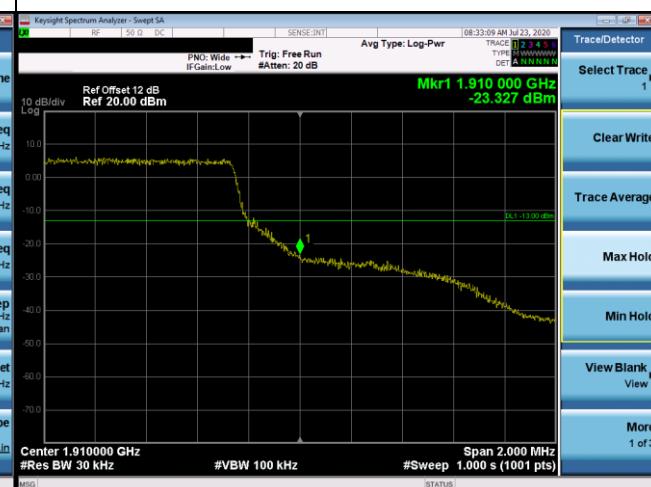
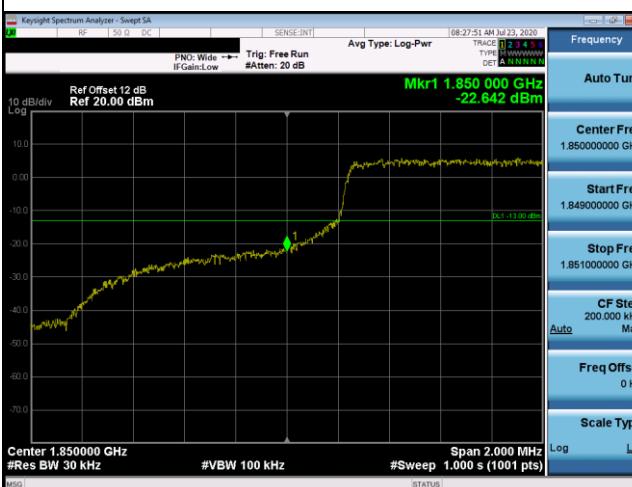
Channel

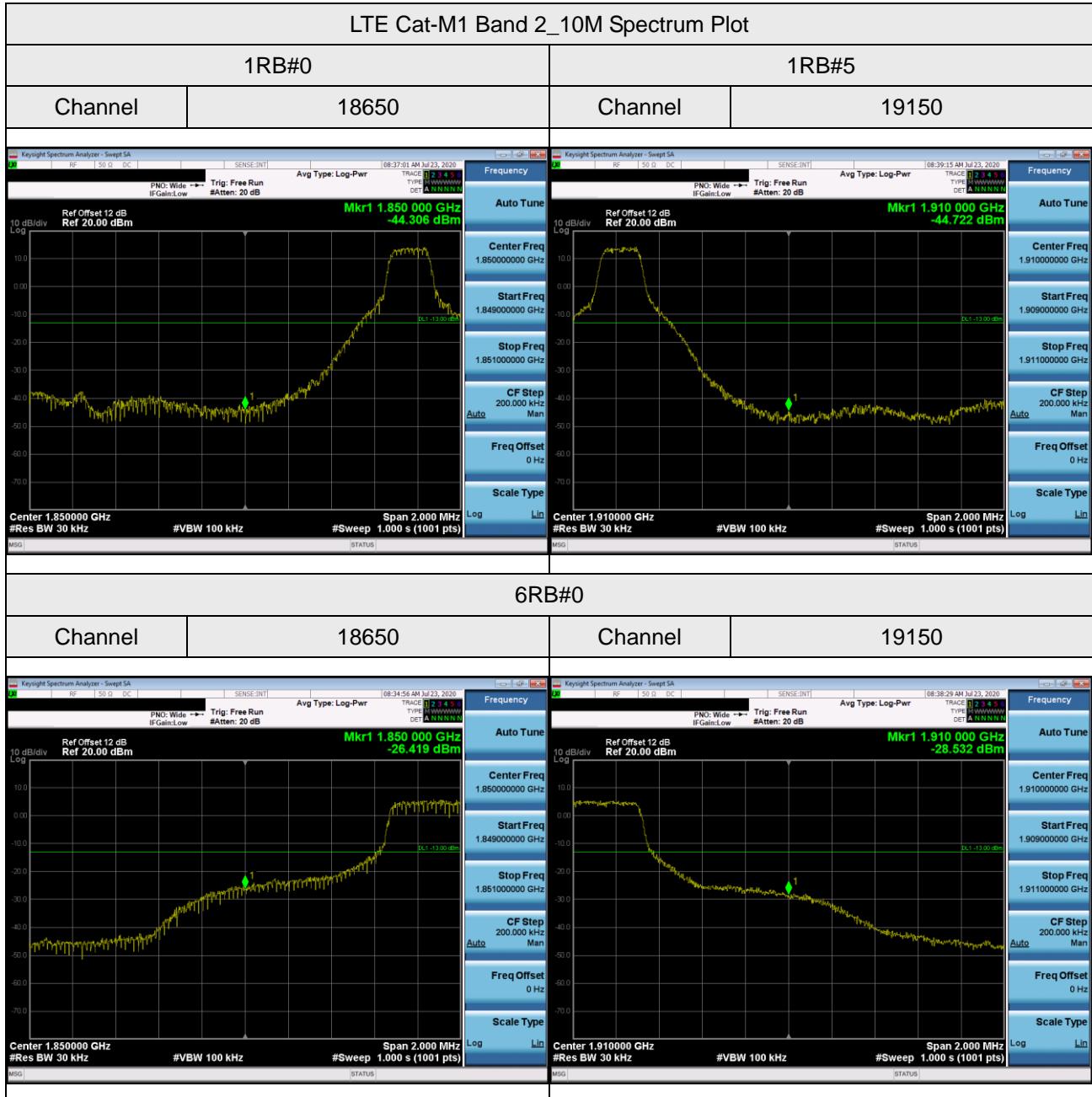
18625

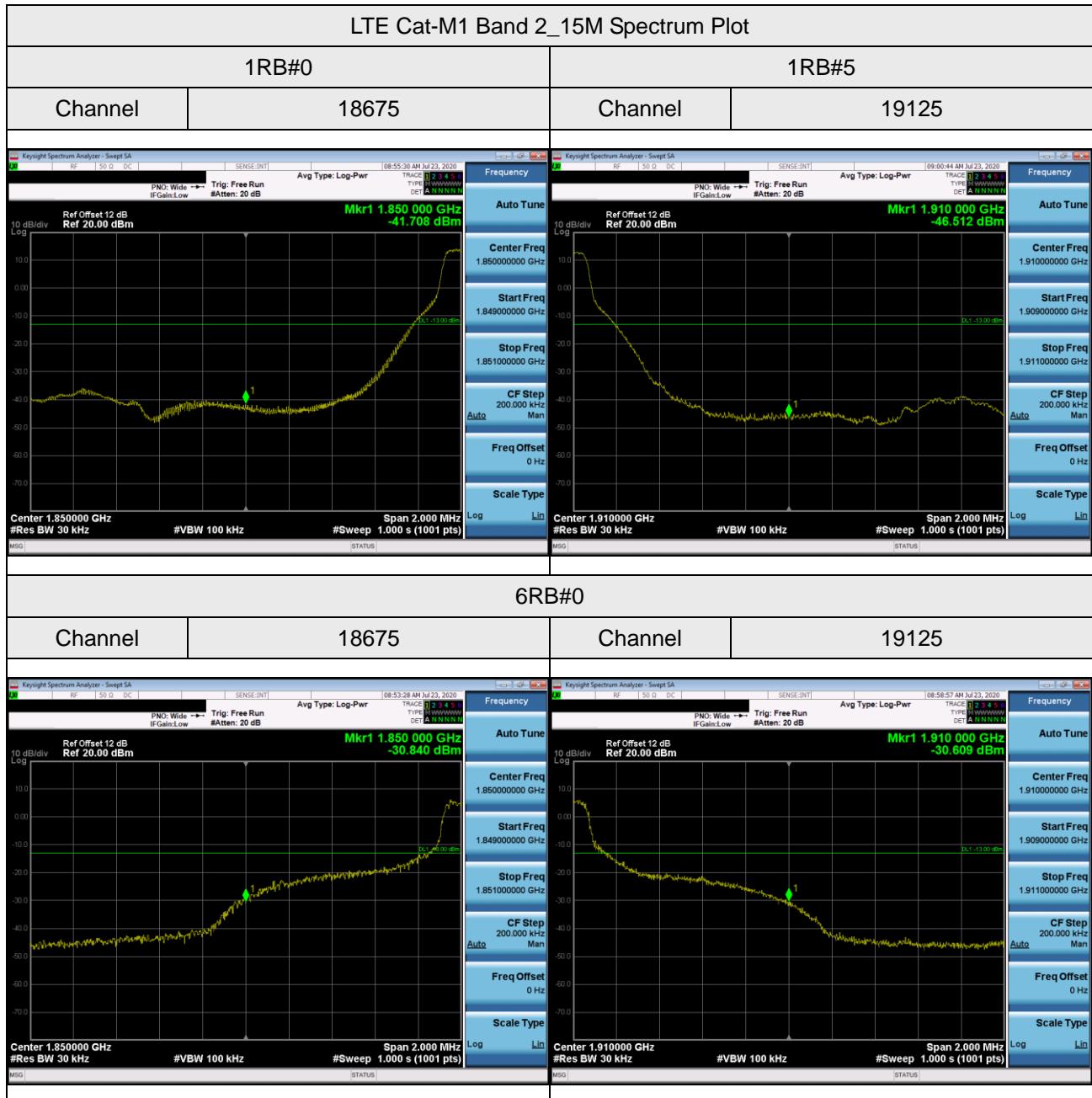
Channel

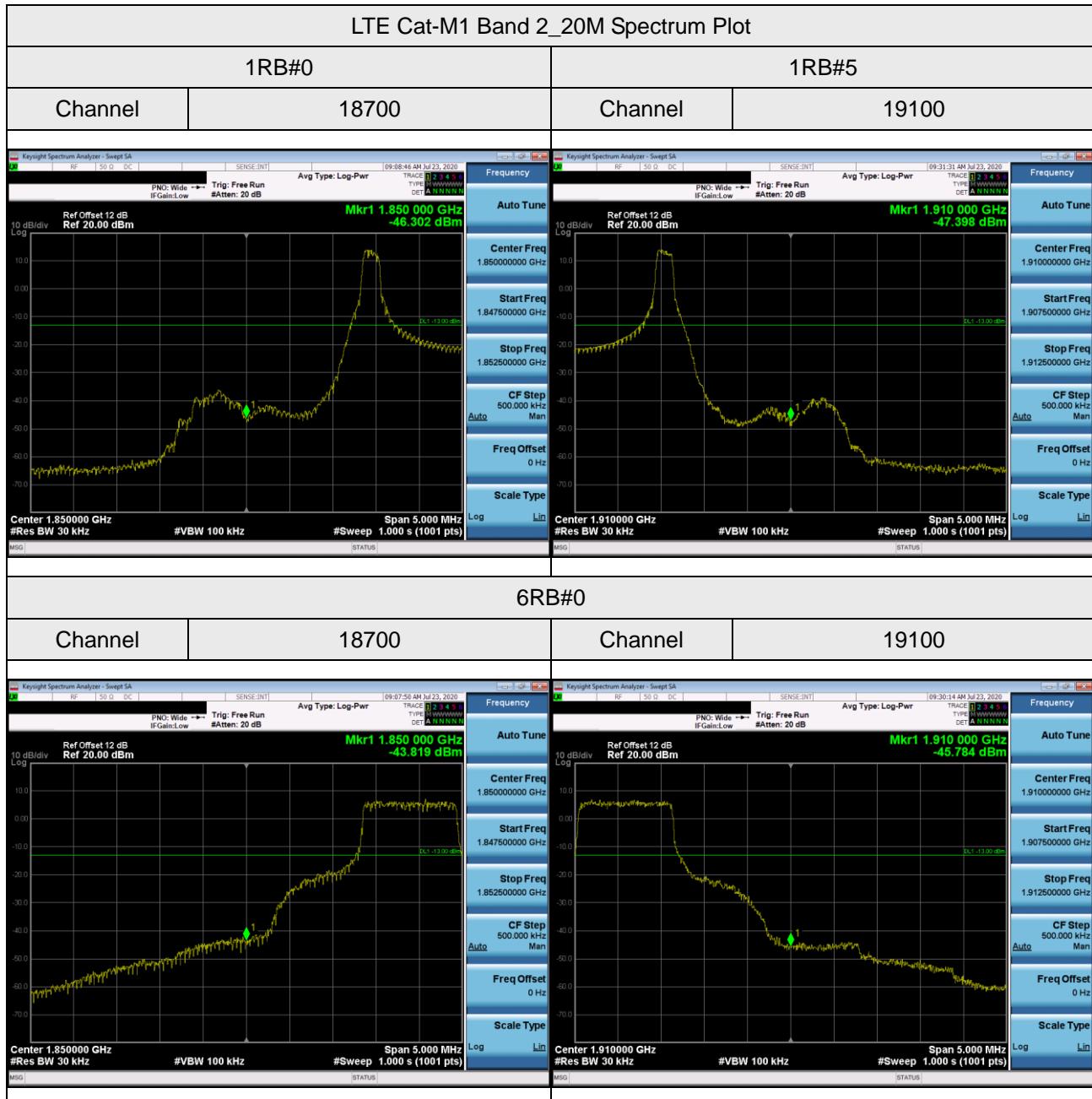
19175





6RB#0


Channel


18625


Channel

19175









## **APPENDIX G - PEAK TO AVERAGE RATIO**