

Ref: ACR.287.1.14.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%

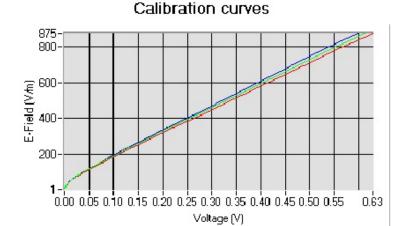
Page: 5/9

Ref: ACR.287.1.14.SATU.A

Combined standard uncertainty			5.831%
Expanded uncertainty 95 % confidence level k = 2			12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters	
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

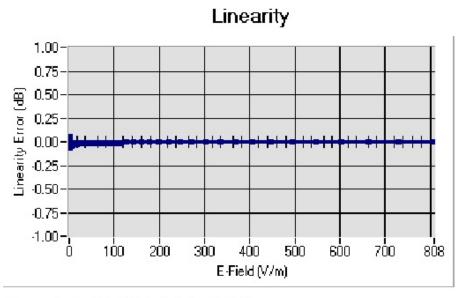

5.1 SENSITIVITY IN AIR

	Normy dipole $2 (\mu V/(V/m)^2)$	
6.02	5.52	5.72

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
99	98	99

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$


Dipole 1 Dipole 2 Dipole 3

Page: 6/9

Ref: ACR.287.1.14.SATU.A

5.2 LINEARITY

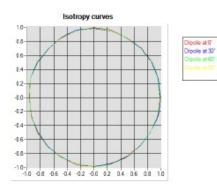
Linearity:II+/-1.47% (+/-0.06dB)

5.3 SENSITIVITY IN LIQUID

Liquid	Frequency	Permittivity	Epsilon (S/m)	ConvF
	(MHz +/-	2/97	797	
	100MHz)			
HL750	750	42.06	0.89	4.58
BL750	750	56.57	0.99	4.71
HL850	835	42.81	0.89	4.86
BL850	835	53.46	0.96	5.04
HL900	900	42.47	0.96	4.74
BL900	900	56.69	1.08	4.92
HL1800	1800	41.31	1.38	4.16
BL1800	1800	53.27	1.51	4.29
HL2000	2000	39.72	1.43	4.19
BL2000	2000	53.91	1.53	4.28
HL2450	2450	39.05	1.77	3.94
BL2450	2450	52.97	1.93	4.05

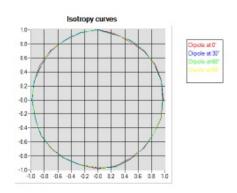
LOWER DETECTION LIMIT: 7mW/kg

Page: 7/9



Ref: ACR.287.1.14.SATU.A

5.4 ISOTROPY


HL900 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB

HL1800 MHz

- Axial isotropy: 0.06 dB - Hemispherical isotropy: 0.08 dB

Page: 8/9

Ref: ACR.287.1.14.SATU.A

6 LIST OF EQUIPMENT

	Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Reference Probe	Satimo	EP 94 SN 37/08	10/2015	10/2016	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.	
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.	
Temperature / Humidity Sensor	Control Company	11-661-9	8/2013	8/2016	

Page: 9/9

No.: LCS1512211978E

5.2 Probe-EP221 Calibration Certificate

COMOSAR E-Field Probe Calibration Report

Ref: ACR.262.1.14.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1/F, INGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD

BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 17/14 EP221

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

09/01/2015

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions.

Ref: ACR.262.1.14.SATU.A

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	9/19/2015	JE
Checked by:	Jérôme LUC	Product Manager	9/19/2015	JES
Approved by:	Kim RUTKOWSKI	Quality Manager	9/19/2015	tum Puthowski

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications	
A	9/19/2015	Initial release	

Page: 2/9

Ref: ACR.262.1.14.SATU.A

TABLE OF CONTENTS

1	Dev	ice Under Test	
2	Proc	luct Description4	
	2.1	General Information	4
3	Mea	surement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty5	
5	Cali	bration Measurement Results6	
	5.1	Sensitivity in air	6
	5.2	Linearity	
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	List	of Equipment9	

Page: 3/9

Ref: ACR 262 L 14 SATU A

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	Satimo		
Model	SSE5		
Serial Number	SN 17/14 EP221		
Product Condition (new / used)	New		
Frequency Range of Probe	0.4 GHz- 6 GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.179 MΩ		
	Dipole 2: R2=0.167 MΩ		
	Dipole 3: R3=0.178 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 - Satimo COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

Ref: ACR.262.1.14.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%

Page: 5/9

Ref: ACR.262.1.14.SATU.A

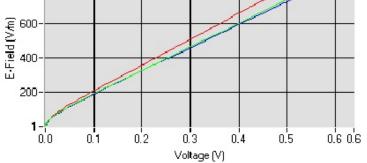
Combined standard uncertainty			5.831%
Expanded uncertainty 95 % confidence level k = 2			12.0%

CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

5.1 SENSITIVITY IN AIR

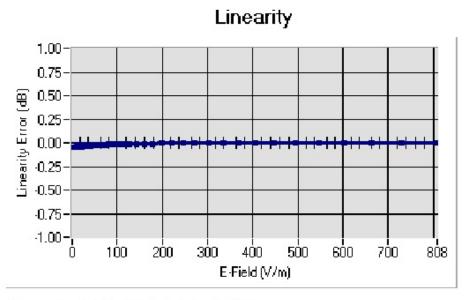
Normx dipole	Normy dipole	Normz dipole
$1 (\mu V/(V/m)^2)$	$2 (\mu V/(V/m)^2)$	$3 (\mu V/(V/m)^2)$
4.81	6.15	6.02


DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
95	100	90

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$

Calibration curves


Dipole 1 Dipole 2 Dipole 3

Page: 6/9

Ref: ACR.262.1.14.SATU.A

5.2 LINEARITY

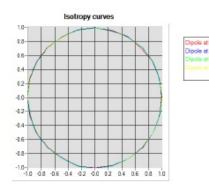
<u>Linearity:II+/-1.16% (+/-0.05dB)</u>

5.3 SENSITIVITY IN LIQUID

Liquid	Frequency	Permittivity	Epsilon (S/m)	ConvF
0.0000000000000000000000000000000000000	(MHz +/-		100000000000000000000000000000000000000	0.000.000.000000
	100MHz)			
HL450	450	43.90	0.87	4.84
BL450	450	58.63	0.98	4.98
HL750	750	42.06	0.89	4.53
BL750	750	56.57	0.99	4.70
HL850	835	42.81	0.89	4.83
BL850	835	53.46	0.96	5.02
HL900	900	42.47	0.96	4.74
BL900	900	56.69	1.08	4.89
HL1800	1800	41.31	1.38	4.25
BL1800	1800	53.27	1.51	4.34
HL1900	1900	41.09	1.42	4.71
BL1900	1900	54.20	1.54	4.85
HL2000	2000	39.72	1.43	4.27
BL2000	2000	53.91	1.53	4.44
HL2450	2450	39.05	1.77	4.11
BL2450	2450	52.97	1.93	4.25
HL2600	2600	38.35	1.92	4.20
BL2600	2600	51.81	2.19	4.32

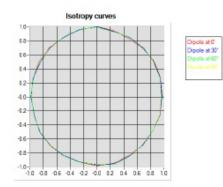
LOWER DETECTION LIMIT: 7mW/kg

Page: 7/9



Ref: ACR.262.1.14.SATU.A

5.4 ISOTROPY


HL900 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB

HL1800 MHz

- Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.08 dB

Page: 8/9

Ref: ACR.262.1.14.SATU.A

6 LIST OF EQUIPMENT

	Equipment Summary Sheet							
Equipment Description	· · I HAPTITICATION NO.		Next Calibration Date					
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.				
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.				
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016				
Reference Probe	Satimo	EP 94 SN 37/08	10/2015	10/2016				
Multimeter	Keithley 2000	1188656	12/2013	12/2016				
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016				
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Power Meter	HP E4418A	US38261498	12/2013	12/2016				
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016				
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.				
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.				
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.				
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.				
Temperature / Humidity Sensor	Control Company	11-661-9	8/2013	8/2016				

Page: 9/9

No.: LCS1512211978E

5.3 Probe-EPG214 Calibration Certificate

COMOSAR E-Field Probe Calibration Report

Ref: ACR.262.2.14.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD

BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 17/14 EPG214

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

10/01/2015

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions.

Ref: ACR.262.2.14.SATU.A

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	10/14/2015	Jes
Checked by:	Jérôme LUC	Product Manager	10/14/2015	JES
Approved by:	Kim RUTKOWSKI	Quality Manager	10/14/2015	them Puthowski

	Customer Name
Distribution:	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications
A	10/14/2015	Initial release

Page: 2/9

Ref: ACR.261.2.14.SATU.A

TABLE OF CONTENTS

1	Devi	ce Under Test4	
2	Prod	uct Description	
	2.1	General Information	4
3	Mea	surement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty5	
5	Cali	bration Measurement Results6	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	
	5.4	Isotropy	8
6	List	of Equipment	

Page: 3/10

Ref: ACR.261.2.14.SATU.A

1 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	Satimo	
Model	SSE2	
Serial Number	SN 17/14 EPG214	
Product Condition (new / used)	New	
Frequency Range of Probe	0.4 GHz- 6 GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.212 MΩ	
	Dipole 2: R2=0.205 MΩ	
	Dipole 3: R3=0.227 MΩ	

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – Satimo COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/10

Ref: ACR.261.2.14.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%

Page: 5/10

Ref: ACR.261.2.14.SATU.A

Combined standard uncertainty			5.831%
Expanded uncertainty 95 % confidence level k = 2			12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters		
Liquid Temperature 21 °C		
Lab Temperature	21 °C	
Lab Humidity	45 %	

5.1 SENSITIVITY IN AIR

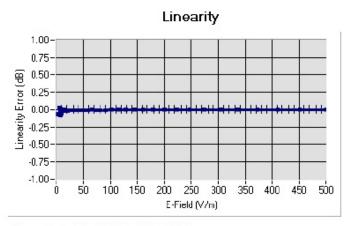
		Normz dipole $3 (\mu V/(V/m)^2)$
0.75	 0.57	0.62

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
90	91	90

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$

Calibration curves 10088004002000.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.19 Voltage (V)



Page: 6/10

Ref: ACR.261.2.14.SATU.A

5.2 LINEARITY

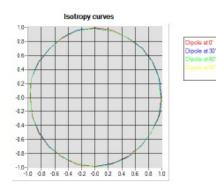
Linearity: II+/-1.92% (+/-0.08dB)

5.3 SENSITIVITY IN LIQUID

<u>Liquid</u>	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL450	450	43.90	0.87	23.53
BL450	450	58.63	0.98	24.12
HL750	750	42.06	0.89	17.62
BL750	750	56.57	0.99	18.20
HL850	835	42.81	0.89	18.79
BL850	835	53.46	0.96	19.33
HL900	900	42.47	0.96	18.13
BL900	900	56.69	1.08	18.85
HL1800	1800	41.31	1.38	18.52
BL1800	1800	53.27	1.51	18.89
HL1900	1900	41.09	1.42	20.93
BL1900	1900	54.20	1.54	21.73
HL2000	2000	39.72	1.43	19.85
BL2000	2000	53.91	1.53	20.55
HL2450	2450	39.05	1.77	20.46
BL2450	2450	52.97	1.93	21.07
HL2600	2600	38.35	1.92	21.01
BL2600	2600	51.81	2.19	21.47
HL5200	5200	36.62	4.93	16.88
BL5200	5200	50.69	4.98	17.36
HL5400	5400	35.95	5.18	19.08
BL5400	5400	48.45	5.82	19.83
HL5600	5600	36.08	5.60	18.13
BL5600	5600	50.57	6.37	18.56
HL5800	5800	34.73	5.74	16.24
BL5800	5800	48.19	6.45	16.79

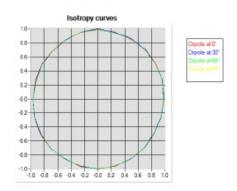
LOWER DETECTION LIMIT: 9mW/kg

Page: 7/10



Ref: ACR.261.2.14.SATU.A

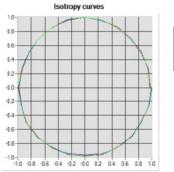
5.4 ISOTROPY


HL900 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB

HL1800 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB


Page: 8/10

Ref: ACR.261.2.14.SATU.A

HL5600 MHz

- Axial isotropy: 0.06 dB - Hemispherical isotropy: 0.09 dB

Dipole at 30° Dipole at 90° Ospole at 90°

Page: 9/10

Ref: ACR.261.2.14.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Reference Probe	Satimo	EP 94 SN 37/08	10/2015	10/2016
Multimeter	Keithley 2000	1188656	12/2013	12/2016
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Control Company	11-661-9	8/2013	8/2016

Page: 10/10

No.: LCS1512211978E

5.4 SID750 Dipole Calibration Ceriticate

SAR Reference Dipole Calibration Report

Ref: ACR.287.3.14.SATU.A

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

1F., XINGYUAN INDUSTRIAL PARK, TONGDA ROAD, BAO'AN BLVD

BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 750 MHZ

SERIAL NO.: SN 07/14 DIP 0G750-302

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

10/01/2015

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR.287.3.14.SATU.A

191	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	10/14/2015	Jes
Checked by:	Jérôme LUC	Product Manager	10/14/2015	JES
Approved by:	Kim RUTKOWSKI	Quality Manager	10/14/2015	tum Puthowski

	Customer Name
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.

Issue	Date	Modifications
A	10/14/2015	Initial release

Page: 2/11

Ref: ACR.287.3.14.SATU.A

TABLE OF CONTENTS

1	Introduction4			
2	Device Under Test			
3	Prod	uct Description4		
	3.1	General Information	4	
4	Mea	surement Method5		
	4.1	Return Loss Requirements	5	
	4.2	Mechanical Requirements		
5	Mea	surement Uncertainty5		
	5.1	Return Loss	5	
	5.2	Dimension Measurement	5	
	5.3	Validation Measurement		
6	Cali	bration Measurement Results6		
	6.1	Return Loss and Impedance	6	
	6.2	Mechanical Dimensions	6	
7	Validation measurement			
	7.1	Head Liquid Measurement	7	
	7.2	SAR Measurement Result With Head Liquid		
	7.3	Body Liquid Measurement	9	
	7.4	SAR Measurement Result With Body Liquid	9	
8	List	of Equipment11		

Page: 3/11

Ref: ACR 287 3 14 SATU A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

De	Device Under Test			
Device Type	COMOSAR 750 MHz REFERENCE DIPOLE			
Manufacturer	Satimo			
Model	SID750			
Serial Number	SN 07/14 DIP 0G750-302			
Product Condition (new / used)	New			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/11

Ref: ACR 287 3 14 SATU A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

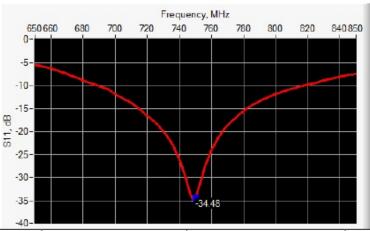
The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty		
1 g	20.3 %		
10 g	20.1 %		


Page: 5/11

Ref: ACR.287.3.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
750	-34.48	-20	$51.2 \Omega + 1.4 j\Omega$

6.2 MECHANICAL DIMENSIONS

Frequency MHz	L mm		h mm		d mm	
	required	measured	required	measured	required	measure
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.	PASS	100.0 ±1 %.	PASS	6.35 ±1 %.	PASS
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.	1	25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

Page: 6/11