

中国认可
国际互认
检测
TESTING
CNAS L5313

SAR Test Report

Product Name : Wireless Adapter

Model No. : WRJDG01FM

FCC ID : 2AG53WRJDG01FM

IC : 21054-WRJDG01FM

Applicant : BEIJING FIMI TECHNOLOGY LIMITED

Address : No.348,Floor3,1#Complex Building,Yongtaiyuan
Jia,Qinghe,Haidian District,Beijing,China

Date of Receipt : Feb. 13, 2017

Test Date : Feb. 13, 2017~ Feb. 23, 2017

Issued Date : Mar. 02, 2017

Report No. : 1722043R-HP-US-P03V01

Report Version : V1.1

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by CNAS,TAF any agency of the government.

The test report shall not be reproduced without the written approval of DEKRA Testing and Certification (Suzhou) Co., Ltd. Corporation.

Test Report Certification

Issued Date: Mar. 02, 2017

Report No:1722043R-HP-US-P03V01

Product Name	:	Wireless Adapter
Applicant	:	BEIJING FIMI TECHNOLOGY LIMITED
Address	:	No.348,Floor3,1#Complex Building,Yongtaiyuan Jia,Qinghe,Haidian District,Beijing,China
Manufacturer	:	BEIJING FIMI TECHNOLOGY LIMITED
Address	:	No.348,Floor3,1#Complex Building,Yongtaiyuan Jia,Qinghe,Haidian District,Beijing,China
FCC ID	:	2AG53WRJDG01FM
IC	:	21054-WRJDG01FM
Model No.	:	WRJDG01FM
EUT Voltage	:	DC 5V
Applicable Standard	:	FCC KDB Publication 248227 D01v02r02 FCC KDB Publication 447498D01v06 FCC KDB Publication 447498D02v02r01 FCC KDB Publication 865664 D01v01r04 IEEE Std. 1528-2013 FCC 47CFR §2.1093 ANSI C95.1-2005 RSS - 102 Issue 5: 2015 IEC 62209-2: 2010
Test Result	:	Max. SAR Measurement (1g) 802.11g: 0.463 W/kg
Performed Location	:	DEKRA Testing and Certification (Suzhou) Co., Ltd. No.99 Hongye Rd., Suzhou Industrial Park, Suzhou,215006, Jiangsu,China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098 FCC Registration Number: 800392 IC Lab Code: 4075B
Documented By	:	 (Adm. Specialist: KittyLi)
Reviewed By	:	 (Senior Engineer: FrankHe)
Approved By	:	 (Engineering Manager: Harry Zhao)

TABLE OF CONTENTS

Description	Page
1. General Information	6
1.1. EUT Description	6
1.2. Test Environment.....	9
1.3. Power Reduction for SAR.....	9
1.4. Guidance Documents	9
2. SAR Measurement System	11
2.1. DASY5 System Description.....	11
2.1.1. Applications	12
2.1.2. Area Scans	12
2.1.3. Zoom Scan (Cube Scan Averaging)	12
2.1.4. Uncertainty of Inter-/Extrapolation and Averaging	12
2.2. DASY5 E-Field Probe.....	13
2.2.1. Isotropic E-Field Probe Specification	13
2.3. Boundary Detection Unit and Probe Mounting Device	14
2.4. DATA Acquisition Electronics (DAE) and Measurement Server.....	14
2.5. Robot.....	15
2.6. Light Beam Unit.....	15
2.7. Device Holder.....	16
2.8. SAM Twin Phantom.....	16
3. Tissue Simulating Liquid	17
3.1. The composition of the tissue simulating liquid	17
3.2. Tissue Calibration Result.....	18
3.3. issue Dielectric Parameters for Head and Body Phantoms	20
4. SAR Measurement Procedure	21
4.1. SAR System Validation.....	21
4.1.1. Validation Dipoles	21
4.1.2. ValidationResult	21
4.2. SAR Measurement Procedure.....	22
4.3. SAR Measurement Conditions for 802.11 Device	23
4.3.1. Duty Factor Control.....	23
4.3.2. Initial Test Position SAR Test Reduction Procedure	23
5. SAR Exposure Limits	24

6. Test Equipment List.....	25
7. Measurement Uncertainty.....	26
8. Conducted Power Measurement	29
9. Test Procedures.....	30
9.1. SAR Test Results Summary	30
9.2. Test position and configuration	32
Appendix A. SAR System Validation Data	33
Appendix B. SAR measurement Data	34
Appendix C. Probe Calibration Data	41
Appendix D. Dipole Calibration Data	52
Appendix E. DAE Calibration Data.....	60

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
1722043R-HP-CA-P03V01	V1.0	Initial Issued Report	Feb. 28, 2017
1722043R-HP-CA-P03V01	V1.1	Modified some typo on page 25	Mar. 02, 2017

1. General Information

1.1. EUT Description

Product Name	Wireless Adapter
Model No.	WRJDG01FM
EUT Voltage	DC 5V
Frequency Range	For 2.4GHz Band 802.11b/g/n(20MHz): 2412~2462MHz 802.11n(40MHz): 2422~2452MHz
Channel Number	For 2.4GHz Band 802.11b/g/n(20MHz): 11 802.11n(40MHz): 7
Type of Modulation	802.11b: DSSS 802.11g: OFDM
Data Rate	802.11g: 6/9/12/18/24/36/48/54 Mbps 802.11b: 1/2/5.5/11 Mbps 802.11n: up to 150 Mbps
Channel Control	Auto

For 2.4GHz Band

802.11b/g/n(20MHz)Working Frequency of Each Channel:							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	02	2417 MHz	03	2422 MHz	04	2427 MHz
05	2432 MHz	06	2437 MHz	07	2442 MHz	08	2447 MHz
09	2452 MHz	10	2457 MHz	11	2462 MHz	N/A	N/A

802.11n(40MHz)Working Frequency of Each Channel:							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
03	2422 MHz	04	2427 MHz	05	2432 MHz	06	2437 MHz
07	2442 MHz	08	2447 MHz	09	2452 MHz	N/A	N/A

Antenna List

For 2.4GHz Band:

Model No.	N/A					
Antenna manufacturer	N/A					
Antenna Delivery	<input checked="" type="checkbox"/>	1*TX+1*RX	<input type="checkbox"/>	2*TX+2*RX	<input type="checkbox"/>	3*TX+3*RX
Antenna technology	<input checked="" type="checkbox"/>	SISO				
	<input type="checkbox"/>	MIMO	<input type="checkbox"/>	Basic		
	<input type="checkbox"/>		<input type="checkbox"/>	CDD		
	<input type="checkbox"/>		<input type="checkbox"/>	Beam-forming		
Antenna Type	<input type="checkbox"/>	External	<input type="checkbox"/>	Dipole		
	<input checked="" type="checkbox"/>	Internal	<input type="checkbox"/>	PIFA		
	<input type="checkbox"/>		<input type="checkbox"/>	PCB		
	<input checked="" type="checkbox"/>		<input type="checkbox"/>	Chip Antenna		
	<input type="checkbox"/>		<input type="checkbox"/>	Metal plate type F antenna		
Antenna Gain	0.5dBi					

Power Parameter Value of the test software

Modulation Mode	Test Frequency	Power setting
802.11b	2412	12.5
	2437	11.5
	2462	12
802.11g	2412	14.5
	2437	21
	2462	13.5
802.11n(20MHz)	2412	13
	2437	21
	2462	10.5
802.11n(40MHz)	2422	10
	2437	15.5
	2452	11

The test mode of the test software can support.

For 2.4GHz

Test Mode	Ant 1
802.11b	
802.11g	
802.11n(20MHz)	
802.11n(40MHz)	

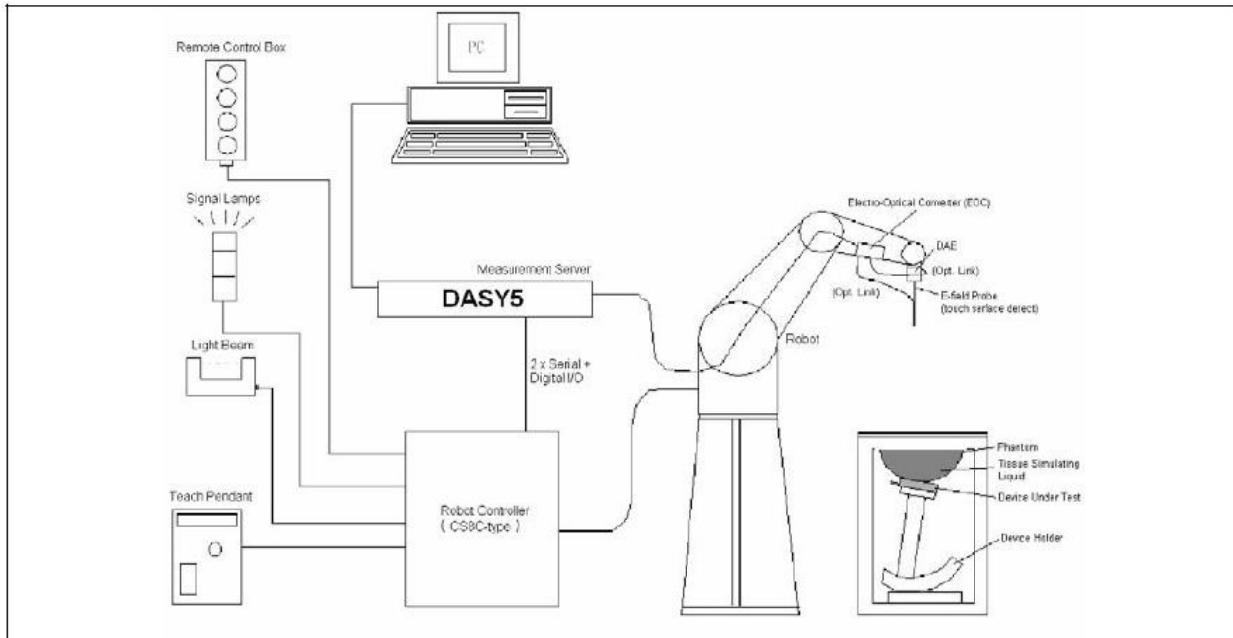
1.2. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21.5± 2
Humidity (%RH)	30-70	52

1.3. Power Reduction for SAR

There is no power reduction used for any band mode implemented in this device for SAR purposes.


1.4. Guidance Documents

- 1) FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- 2) FCCKDB Publication 447498 D02v02r01 (SAR Measurement Procedures for USB Dongle Transmitters)
- 3) FCC KDB Publication 865664 D01v01r04(SAR measurement 100 MHz to 6 GHz)
- 4) FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- 5) RSS 102 Issue5 Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
- 6) IEEE Std. 1528-2013(IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques)
- 7) IEC 62209-2: 2010(Human exposure to radiofrequency fields from hand-held and bodymounted wireless communication devices — Human models, instrumentation, and procedures)
- 8) FCC 47CFR §2.1093 Radiofrequency radiation exposure evaluation: portable devices

- 9) ANSI C95.1-2005 - IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz

2. SAR Measurement System

2.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a userdefined variable spacing between each measurement point (integral) allowing lowuncertainty measurements to be conducted. Scans defined for FCC applicationsutilize a 10mm²step integral, with 1mm interpolation used to locate the peak SARarea used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found inthe scanned area, within a range of the global maximum. The range (in dB) is specified in thestandards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed inaccordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans areused to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³is used torepresent the head and body tissue density and not the phantom liquid density, inorder to be consistent with the definition of the liquid dielectric properties, i.e. theside length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

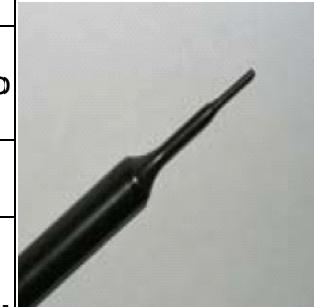
The zoom scan integer steps can be user defined so as to reduce uncertainty, butnormal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculationalgorithms of the Postprocessor, DASY5 allows the generation of measurement grids which areartificially predefined by analytically based test functions. Therefore, the grids of area scans andzoom scans can be filled with uncertainty test data, according to the SAR benchmark functionsof IEEE 1528.The three analytical functions shown in equations as below are used to describe the possiblerange of the expected SAR distributions for the tested handsets. The field gradients are coveredby the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for HI-fieldcancellation on the phantom/tissue surface.

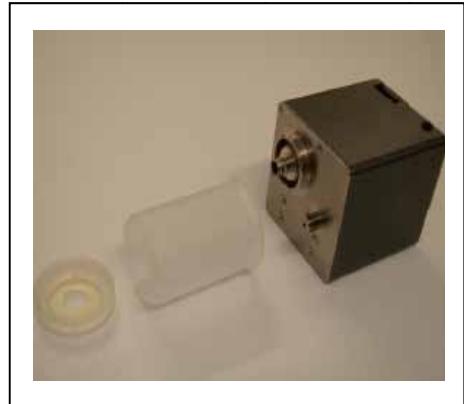
$$f_1(x, y, z) = Ae^{-\frac{z}{2a}} \cos^2 \left(\frac{\pi}{2} \frac{\sqrt{x'^2 + y'^2}}{5a} \right)$$

$$f_2(x, y, z) = Ae^{-\frac{z}{a}} \frac{a^2}{a^2 + x'^2} \left(3 - e^{-\frac{2z}{a}} \right) \cos^2 \left(\frac{\pi}{2} \frac{y'}{3a} \right)$$


$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a + 2z)^2} \right)$$

2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probemanufactured by SPEAG. The probe isspecially designed and calibrated for use in liquid with high permittivity. The dosimetricprobe has specialcalibration in liquid at different frequency. SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are inAppendix D.


2.2.1. Isotropic E-Field Probe Specification

Model	EX3DV4
Construction	Symmetrical design with triangular core Built-in shielding against static chargesPEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μ W/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

2.3. Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.

2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA(France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actualposition of the probe tip with respect to the robot arm is measured, as well as the probe lengthand the horizontal probe offset. The software then corrects all movements, such that the robotcoordinates are valid for the probe tip.

The repeatability of this process is better than0.1 mm. If a position has been taught with analigned probe, the same position will be reachedwith another aligned probe within 0.1 mm, even ifthe other probe has different dimensions. Duringprobe rotations, the probe tip will keep its actualposition.

2.7. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has twoscales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point(EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectricparameters: relative permittivity $\epsilon_r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material hasbeen reduced in the closest vicinity of the device, since measurements have suggested that the influenceof the clamp on the test results could thus be lowered.

2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear regionwhere shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions areadjusted to the standard measurement positions in the three sections. A white cover is provided to tap thephantom during off-periods to prevent water evaporation and changes in the liquid parameters. On thephantom tip, three reference markers are provided to identify the phantom position with respect to therobot.

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

INGREDIENT (% Weight)	2450MHz Body
Water	73.2
Salt	0.04
Sugar	0.00
HEC	0.00
Preventol	0.00
DGBE	26.7
Triton X-100	0.00

3.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

For FCC:

Body Tissue Simulant Measurement				
Frequency [MHz]	Description	Dielectric Parameters		Tissue Temp. [°C]
		ϵ_r	σ [s/m]	
2450MHz	Reference result ± 5% window	52.7 50.06 to 55.34	1.95 1.85 to 2.05	N/A
	02-27-2017	52.25	1.95	21.0

For IC:

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

Body Tissue Simulant Measurement (Test Data: 02-27-2017)							
Frequency [MHz]	Channel	Dielectric Parameters					
		Permittivity ϵ_r	Conductivity σ	Permittivity Target ϵ_r	Conductivity Target σ	Delta (ϵ_r) %	Delta (σ) %
2412	Low CH	52.35	1.91	52.75	1.92	-0.76	-0.52
2437	Mid CH	52.29	1.94	52.72	1.94	-0.82	0.00
2450	Mid CH	52.25	1.95	52.70	1.95	-0.85	0.00
2462	High CH	52.18	1.98	52.68	1.96	-0.95	1.02

Note:

1. The delta (ϵ_r) and (σ) are within ±5%, delta SAR value was not calculated in this report.
2. As per IEC 62209-2 Annex F, the SAR correction factor is given by:

$$\Delta\text{SAR} = c_{\epsilon} \Delta\epsilon_r + c_{\sigma} \Delta\sigma$$

For the 1g average SAR C_{ϵ} and C_{σ} are given by:

$$C_{\epsilon} = -7.854 \times 10^{-4} f^3 + 9.402 \times 10^{-3} f^2 - 2.742 \times 10^{-2} f - 0.2026$$

$$C_{\sigma} = 9.804 \times 10^{-3} f^3 - 8.661 \times 10^{-2} f^2 + 2.981 \times 10^{-2} f + 0.7829$$

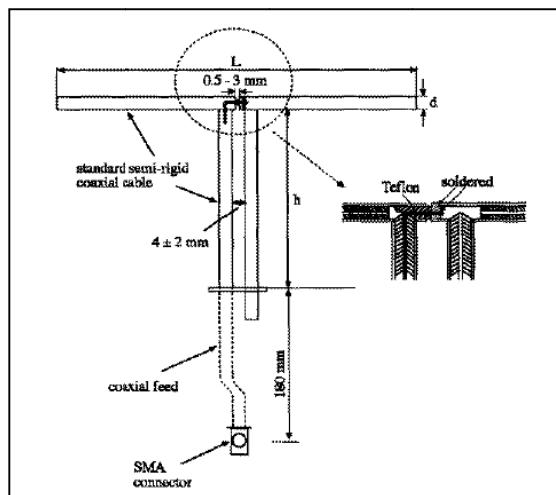
Where f is the frequency in GHz.

Body Tissue Simulant Measurement (Test Data: 02-27-2017)							
Frequency [MHz]	Channel	Dielectric Parameters					Tissue Temp. [°C]
		Delta (ϵ_r) %	Delta (σ) %	C_{ϵ}	C_{σ}	Delta SAR%	
2412	Low CH	-0.76	-0.52	-0.23	-0.02	0.18	21.0
2437	Mid CH	-0.82	0.00	-0.22	-0.03	0.18	21.0
2450	Mid CH	-0.85	0.00	-0.22	-0.03	0.19	21.0
2462	High CH	-0.95	1.02	-0.22	-0.03	0.18	21.0

Note: The Δ SAR refers to the percent change in SAR relative to the percent change in dielectric properties versus the target values. A negative Δ SAR would translate to a lower measured SAR value than what would be measured if using dielectric properties equal to the target values. A positive Δ SAR would translate to a higher measured SAR value than what would be measured if using dielectric properties equal to the target values. SAR correction shall not be made when the Δ SAR has a positive sign to provide a conservative SAR value. The SAR is only corrected when Δ SAR has a negative sign.

3.3. Issue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.


Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and $\rho = 1000$ kg/m³)

4. SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	53.5	30.4	3.6

4.1.2. Validation Result

System Performance Check at 2450MHz for Body				
Validation Dipole: D2450V2, SN: 839				
2450 MHz	Reference result ± 10% window	49.8 44.82 to 54.78	23.3 20.97 to 25.63	N/A
	02-27-2017	47.2	22.08	21.0
Note: All SAR values are normalized to 1W forward power.				

4.2. SAR Measurement Procedure

The DASY 5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

σ : represents the simulated tissue conductivity

ρ : represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

4.3. SAR Measurement Conditions for 802.11 Device

4.3.1. Duty Factor Control

Unless it is permitted by specific KDB procedures or continuous transmission is specifically restricted by the device, the reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

4.3.2. Initial Test Position SAR Test Reduction Procedure

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.¹⁶ The initial test position procedure is described in the following:

When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).

a) When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.

b) For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCCSupplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments"limits. These limits apply to a location which is deemed as "UncontrolledEnvironment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Cali. Due Date
Stäubli Robot TX60L	Stäubli	TX60L	F10/5C90A1/A/01	N/A
Controller	Stäubli	SP1	S-0034	N/A
Dipole Validation Kits	Speag	D2450V2	839	2018.02.09
SAM Twin Phantom	Speag	SAM	TP-1561/1562	N/A
Device Holder	Speag	SD 000 H01 HA	N/A	N/A
Data Acquisition Electronic	Speag	DAE4	915	2017.06.21
E-Field Probe	Speag	EX3DV4	3753	2017.03.10
SAR Software	Speag	DASY5	V5.2 Build 162	N/A
Power Amplifier	Mini-Circuit	ZVA-183-S+	N657400950	N/A
Directional Coupler	Agilent	778D	20160	N/A
Universal Radio Communication Tester	R&S	CMU 200	117088	2017.03.10
Vector Network	Agilent	E5071C	MY48367267	2017.03.10
Signal Generator	Agilent	E4438C	MY49070163	2017.03.10
Power Meter	Anritsu	ML2495A	0905006	2017.10.29
Wide Bandwidth Sensor	Anritsu	MA2411B	0846014	2017.10.29

7. Measurement Uncertainty

DASY5 Uncertainty according to IEEE std. 1528-2013								
Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram / 10 gram.								
Error Description	Uncert. value	Prob. Dist.	Div.	(ci) 1g	(ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(vi) Veff
Measurement System								
Probe Calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Liquid Conductivity (target)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity (meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid Permittivity (target)	±5.0%	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity (meas.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
Combined Std. Uncertainty						±11.0%	±10.8%	387
Expanded STD Uncertainty						±22.0%	±21.5%	

DASY5 Uncertainty according to IEEE std. 1528-2013

Measurement uncertainty for 3 GHz to 6 GHz averaged over 1 gram / 10 gram.

Error Description	Uncert. value	Prob. Dist.	Div.	(ci) 1g	(ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(vi) veff
Measurement System								
Probe Calibration	±6.55%	N	1	1	1	±6.55%	±6.55%	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±2.0%	R	$\sqrt{3}$	1	1	±1.2%	±1.2%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Probe Positioning	±9.9%	R	$\sqrt{3}$	1	1	±5.7%	±5.7%	∞
Max. SAR Eval.	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Liquid Conductivity (target)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity (meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid Permittivity (target)	±5.0%	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity (meas.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
Combined Std. Uncertainty						±12.8%	±12.6%	330
Expanded STD Uncertainty						±25.6%	±25.2%	

DASY5 Uncertainty according to IEC 62209-2/2010

Measurement uncertainty for 30 MHz to 6 GHz averaged over 1 gram / 10 gram.

Error Description	Uncert. Value	Prob. Dist.	Div.	(c _i) 1g	(c _i) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(v _i) V _{eff}
Measurement System								
Probe Calibration	±6.5%	N	1	1	1	±6.5%	±6.5%	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±2.0%	R	$\sqrt{3}$	1	1	±1.2%	±1.2%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
Modulation Response	±2.4%	R	$\sqrt{3}$	1	1	±1.4%	±1.4%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Probe Positioning	±6.7%	R	$\sqrt{3}$	1	1	±3.9%	±3.9%	∞
Post-processing	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Test Sample Related								
Test Sample Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±0.0%	R	$\sqrt{3}$	1	1	±0.0%	±0.0%	∞
Power Scaling	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom Uncertainty	±7.9%	R	$\sqrt{3}$	1	1	±4.6%	±4.6%	∞
SAR correction	±1.9%	R	$\sqrt{3}$	1	1	±1.1%	±0.9%	∞
Liquid Conductivity (meas.)	±2.5%	N	1	0.78	0.71	±2.0%	±1.8%	∞
Liquid Permittivity (meas.)	±2.5%	N	1	0.26	0.26	±0.6%	±0.7%	∞
Temp. unc. - Conductivity	±5.2%	R	$\sqrt{3}$	0.78	0.71	±2.3%	±2.1%	∞
Temp. unc. - Permittivity	±0.8%	R	$\sqrt{3}$	0.23	0.26	±0.1%	±0.1%	∞
Combined Std. Uncertainty							±12.8%	±12.7%
Expanded STD Uncertainty							±25.6%	±25.4%

8. Conducted Power Measurement

For 2.4GHz:

Test Mode	Frequency(MHz)	Avg. Burst Power (dBm)	Max. Power (dBm)	Scaling Factor
802.11b	2412	15.08	15.5	1.102
	2437	13.93	14.0	1.016
	2462	14.68	15.0	1.076
802.11g	2412	22.45	23.0	1.135
	2437	23.62	24.0	1.091
	2462	21.29	22.0	1.178
802.11n(20MHz)	2412	21.87	22.0	1.030
	2437	23.58	24.0	1.102
	2462	19.72	20.0	1.067
802.11n(40MHz)	2422	19.03	20.0	1.250
	2437	22.41	23.0	1.146
	2452	19.61	20.0	1.094

9. Test Procedures

9.1. SAR Test Results Summary

SAR MEASUREMENT														
Ambient Temperature (°C) : 21.5±2					Relative Humidity (%): 52									
Liquid Temperature (°C) : 21.0±2					Depth of Liquid (cm):>15									
Product: AC1900 High Gain Wireless Dual Band USB Adapter														
Frequency: 2412 ~ 2462 MHz														
Test Mode: 802.11b														
Test Position Body (5mm gap)	Antenna Position	Frequency (MHz)	Frame Power (dBm)	Power Drift (± 0.2)	SAR 1g (W/kg)	Scaling Factor	Duty factor	Scaled SAR 1g (W/kg)	Limit (W/kg)					
Horizontal Up	Fixed	2437	13.93	0.16	0.053	1.016	1.004	0.054	1.6					
Horizontal Down	Fixed	2437	13.93	-0.07	0.077	1.016	1.004	0.079	1.6					
Vertical Back	Fixed	2437	13.93	-0.12	0.035	1.016	1.004	0.036	1.6					
Vertical Front	Fixed	2437	13.93	-0.04	0.046	1.016	1.004	0.047	1.6					
Tip	Fixed	2437	13.93	0.16	0.00314	1.016	1.004	0.003	1.6					
Horizontal Up	Fixed	2412	15.08	-0.09	0.087	1.102	1.004	0.096	1.6					

Note1: * - repeated at the highest measured SAR according to the FCC KDB 865664

2: When the reported SAR of the initial test position is > 0.4 W/kg, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.

3: For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

4: Reported SAR were scaled to the maximum duty factor to demonstrate compliance per FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02.

SAR MEASUREMENT														
Ambient Temperature (°C) : 21.5±2					Relative Humidity (%): 52									
Liquid Temperature (°C) : 21.0±2					Depth of Liquid (cm):>15									
Product: AC1900 High Gain Wireless Dual Band USB Adapter														
Frequency: 2412 ~ 2462 MHz														
Test Mode: 802.11g														
Test Position Body (5mm gap)	Antenna Position	Frequency (MHz)	Frame Power (dBm)	Power Drift ($<\pm 0.2$)	SAR 1g (W/kg)	Scaling Factor	Duty factor	Scaled SAR 1g (W/kg)	Limit (W/kg)					
Horizontal Down	Fixed	2437	23.62	-0.12	0.412	1.091	1.029	0.463	1.6					

Note1: * - repeated at the highest measured SAR according to the FCC KDB 865664

2: When the reported SAR of the initial test position is > 0.4 W/kg, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.

3: For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

4: Reported SAR were scaled to the maximum duty factor to demonstrate compliance per FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02.

5: The scaled SAR for 802.11n is lower than 1.2W/kg, maintain the SAR reduction requirement.

9.2. Test position and configuration

1. Liquid tissue depth was at least 15.0 cm for all frequencies.
2. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
3. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
4. Reported SAR were scaled to the maximum duty factor to demonstrate compliance per FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02.
5. SAR was performed with the device configured in the positions according to KDB 447498 D02 SAR Procedures for orientations (A: Bottom Antenna Horizontal, B: Bottom Antenna Vertical, C: Left side Antenna Horizontal, D: Right side Antenna Horizontal, and E: Top Antenna Horizontal) were evaluated. Please check the SAR test photos.

Appendix A. SAR System Validation Data

Date/Time: 02-27-2017

Test Laboratory: DEKRA Lab

System Check Body 2450MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2

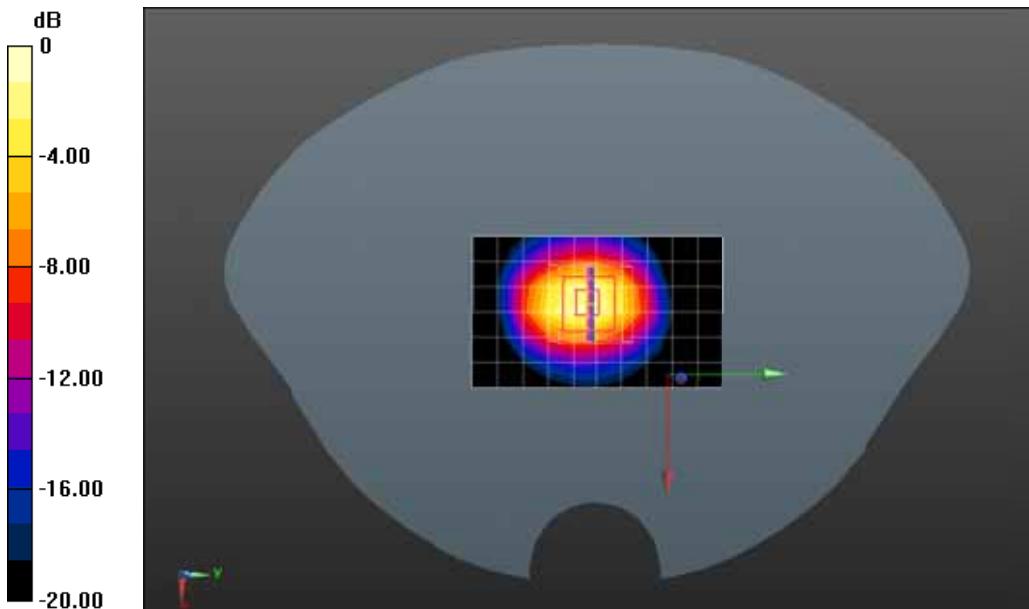
Communication System: UID 0, CW; Communication System Band: D2450(2450MHz); Duty Cycle: 1:1;

Frequency: 2450 MHz; Medium parameters used: $f = 2450$ MHz; $\sigma = 1.95$ S/m; $\epsilon_r = 52.25$; $\rho = 1000$ kg/m³ ;

Phantom section: Flat Section ; Input Power=250mW

Ambient temperature () : 21.5, Liquid temperature () : 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3753; ConvF(7.28, 7.28, 7.28); Calibrated: 11/05/2016;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 22/06/2016
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/System Check Body 2450MHz/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 5.01 W/kg

Configuration/System Check Body 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 47.66 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 11.8 W/kg

SAR(1 g) = 11.8 W/kg; SAR(10 g) = 5.52 W/kg Maximum value of SAR (measured) = 14.41 W/kg

Appendix B. SAR measurement Data

Date/Time: 02-27-2017

Test Laboratory: DEKRA Lab

802.11b 2437MHz Horizontal-Up

DUT: Wireless Adapter; Type: WRJDG01FM

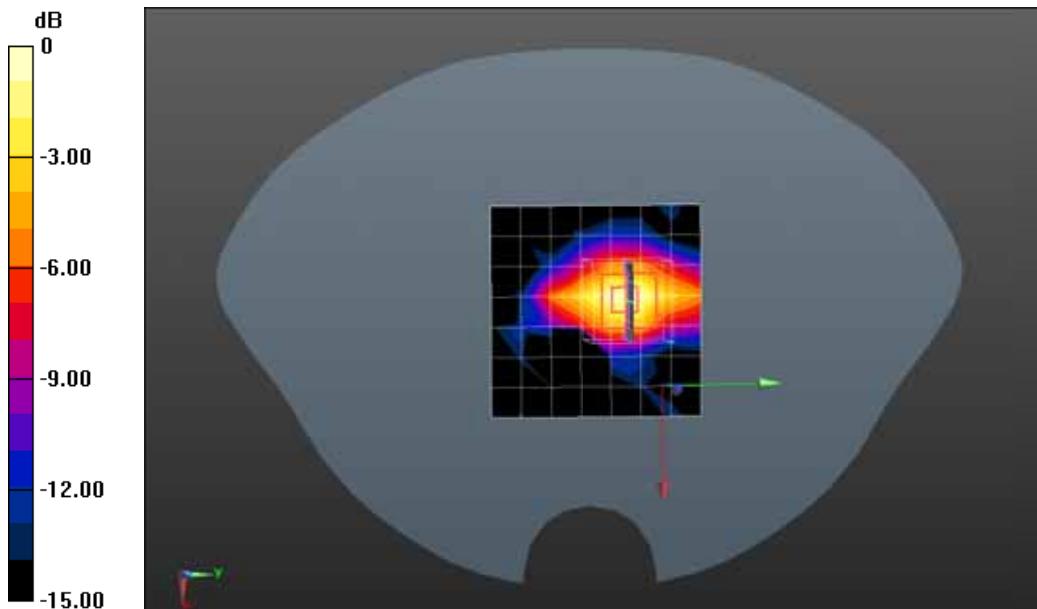
Communication System: UID 0, Wi-Fi (0); Communication System Band: 802.11b; Duty Cycle: 1:1.0;

Frequency: 2437 MHz; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.94$ S/m; $\epsilon_r = 52.29$; $\rho = 1000$ kg/m³ ;

Phantom section: Flat Section

Ambient temperature (): 21.5, Liquid temperature (): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3753; ConvF(7.28, 7.28, 7.28); Calibrated: 11/05/2016;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 22/06/2016
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/802.11b 2437MHz Horizontal-Up/Area Scan (8x8x1): Measurement grid: dx=12mm, dy=12mm, Maximum value of SAR (measured) = 0.0568 W/kg

Configuration/802.11b 2437MHz Horizontal-Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 3.774 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.108 W/kg

SAR(1 g) = 0.053 W/kg; SAR(10 g) = 0.024 W/kg Maximum value of SAR (measured) = 0.0612 W/kg

Date/Time: 02-27-2017

Test Laboratory: DEKRA Lab

802.11b 2437MHz Horizontal-Down

DUT: Wireless Adapter; Type: WRJDG01FM

Communication System: UID 0, Wi-Fi (0); Communication System Band: 802.11b; Duty Cycle: 1:1.0;

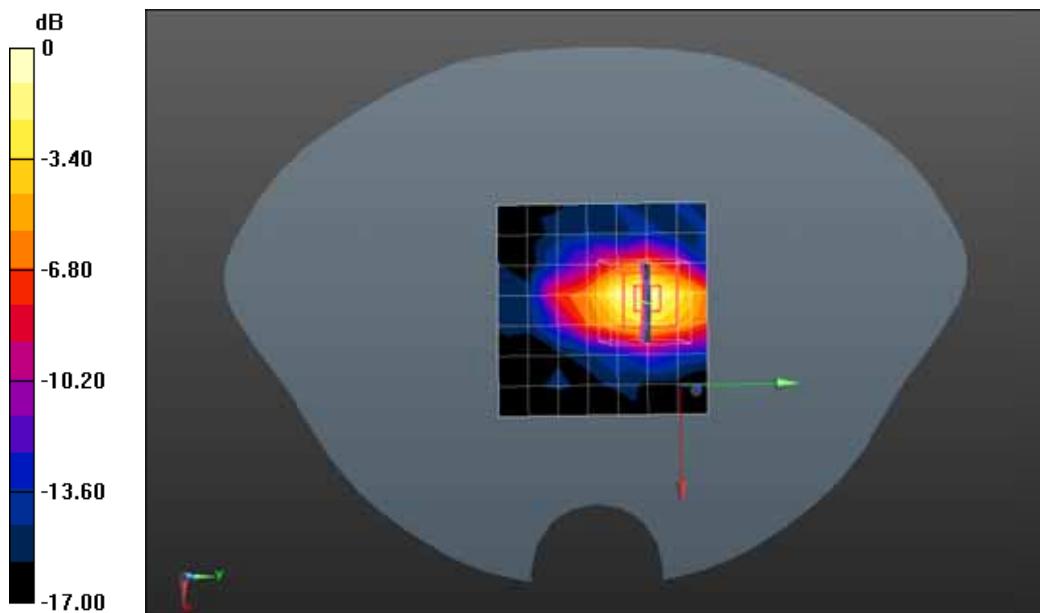
Frequency: 2437 MHz; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.94$ S/m; $\epsilon_r = 52.29$; $\rho = 1000$ kg/m³ ;

Phantom section: Flat Section

Ambient temperature (): 21.5, Liquid temperature (): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3753; ConvF(7.28, 7.28, 7.28); Calibrated: 11/05/2016;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 22/06/2016
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11b 2437MHz Horizontal-Down/Area Scan (8x8x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0829 W/kg

Configuration/802.11b 2437MHz Horizontal-Down/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.378 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.151 W/kg

SAR(1 g) = 0.077 W/kg; SAR(10 g) = 0.035 W/kg Maximum value of SAR (measured) = 0.0921 W/kg

0 dB = 0.0921 W/kg = -10.36 dBW/kg

Date/Time: 02-27-2017

Test Laboratory: DEKRA Lab

802.11b 2437MHz Vertical-Back

DUT: Wireless Adapter; Type: WRJDG01FM

Communication System: UID 0, Wi-Fi (0); Communication System Band: 802.11b; Duty Cycle: 1:1.0;

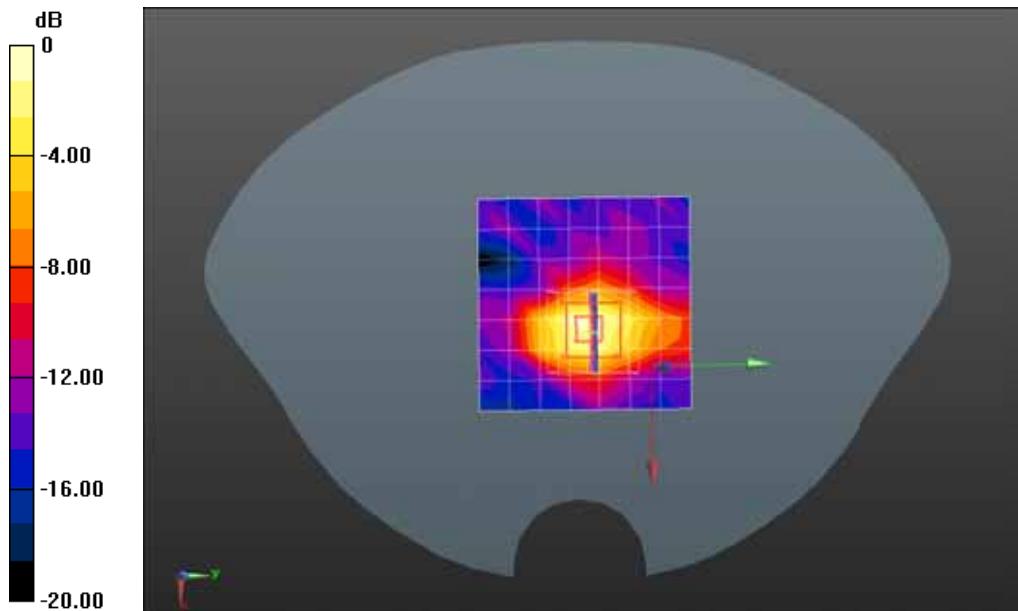
Frequency: 2437 MHz; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.94$ S/m; $\epsilon_r = 52.29$; $\rho = 1000$ kg/m³ ;

Phantom section: Flat Section

Ambient temperature (): 21.5, Liquid temperature (): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3753; ConvF(7.28, 7.28, 7.28); Calibrated: 11/05/2016;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 22/06/2016
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11b 2437MHz Vertical-Back/Area Scan (8x8x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0465 W/kg

Configuration/802.11b 2437MHz Vertical-Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.244 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.0850 W/kg

SAR(1 g) = 0.046 W/kg; SAR(10 g) = 0.022 W/kg Maximum value of SAR (measured) = 0.0554 W/kg

0 dB = 0.0554 W/kg = -12.56 dBW/kg

Date/Time: 02-27-2017

Test Laboratory: DEKRA Lab

802.11b 2437MHz Vertical-Front

DUT: Wireless Adapter; Type: WRJDG01FM

Communication System: UID 0, Wi-Fi (0); Communication System Band: 802.11b; Duty Cycle: 1:1.0;

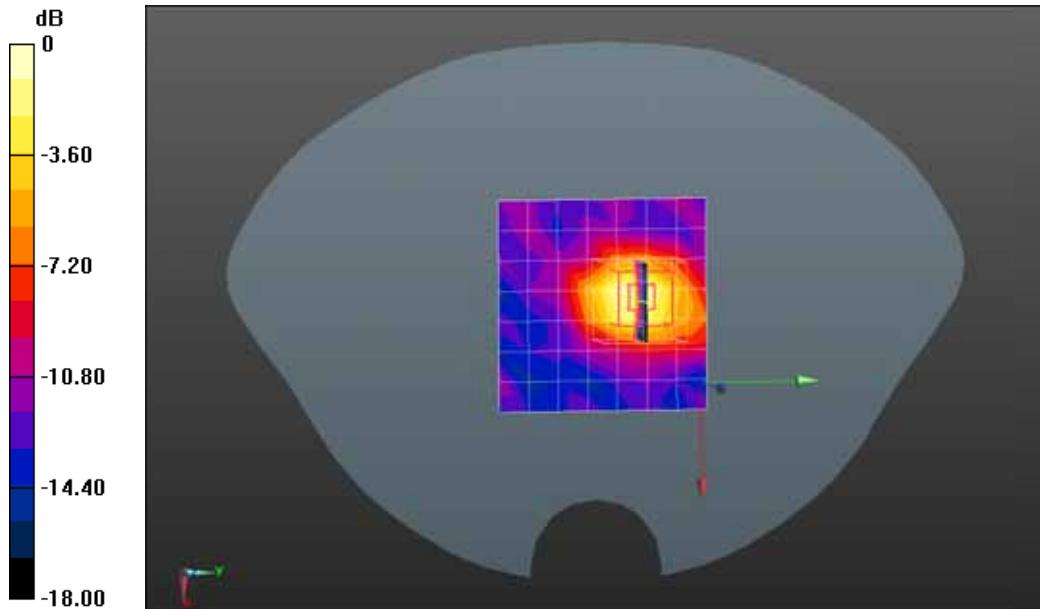
Frequency: 2437 MHz; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.94$ S/m; $\epsilon_r = 52.29$; $\rho = 1000$ kg/m³ ;

Phantom section: Flat Section

Ambient temperature (): 21.5, Liquid temperature (): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3753; ConvF(7.28, 7.28, 7.28); Calibrated: 11/05/2016;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 22/06/2016
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11b 2437MHz Vertical-Front/Area Scan (8x8x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0352 W/kg

Configuration/802.11b 2437MHz Vertical-Front/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.114 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.110 W/kg

SAR(1 g) = 0.035 W/kg; SAR(10 g) = 0.016 W/kg Maximum value of SAR (measured) = 0.0411 W/kg

0 dB = 0.0411 W/kg = -13.86 dBW/kg

Date/Time: 02-27-2017

Test Laboratory: DEKRA Lab

802.11b 2437MHz Tip

DUT: Wireless Adapter; Type: WRJDG01FM

Communication System: UID 0, Wi-Fi (0); Communication System Band: 802.11b; Duty Cycle: 1:1.0;

Frequency: 2437 MHz; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.94$ S/m; $\epsilon_r = 52.29$; $\rho = 1000$ kg/m³ ;

Phantom section: Flat Section

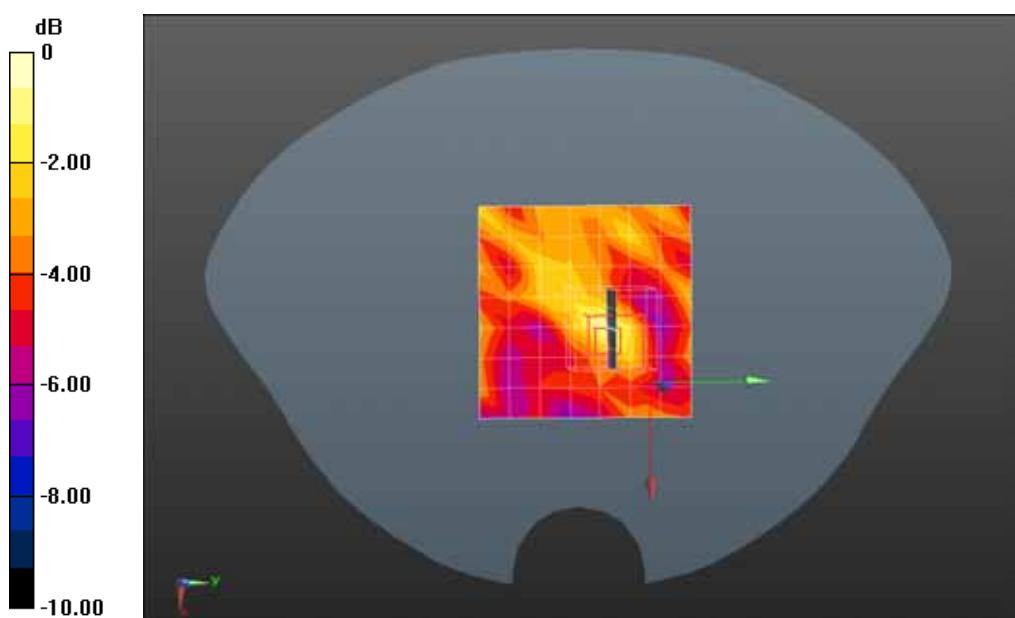
Ambient temperature (): 21.5, Liquid temperature (): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3753; ConvF(7.28, 7.28, 7.28); Calibrated: 11/05/2016;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 22/06/2016
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/802.11b 2437MHz Tip/Area Scan (8x8x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.00481 W/kg


Configuration/802.11b 2437MHz Tip/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.478 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.0110 W/kg

SAR(1 g) = 0.00314 W/kg; SAR(10 g) = 0.000941 W/kg Maximum value of SAR (measured) = 0.00552

W/kg

0 dB = 0.00552 W/kg = -22.58 dBW/kg

Date/Time: 02-27-2017

Test Laboratory: DEKRA Lab

802.11b 2412MHz Horizontal-Down

DUT: Wireless Adapter; Type: WRJDG01FM

Communication System: UID 0, Wi-Fi (0); Communication System Band: 802.11b; Duty Cycle: 1:1.0;

Frequency: 2412 MHz; Medium parameters used: $f = 2412$ MHz; $\sigma = 1.91$ S/m; $\epsilon_r = 52.35$; $\rho = 1000$ kg/m³ ;

Phantom section: Flat Section

Ambient temperature (): 21.5, Liquid temperature (): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3753; ConvF(7.28, 7.28, 7.28); Calibrated: 11/05/2016;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 22/06/2016
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/802.11b 2412MHz Horizontal-Down/Area Scan (8x8x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.0828 W/kg

Configuration/802.11b 2412MHz Horizontal-Down/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.150 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.177 W/kg

SAR(1 g) = 0.087 W/kg; SAR(10 g) = 0.040 W/kg Maximum value of SAR (measured) = 0.0954 W/kg

0 dB = 0.0954 W/kg = -10.20 dBW/kg

Date/Time: 02-27-2017

Test Laboratory: DEKRA Lab

802.11g 2437MHz Horizontal-Down

DUT: Wireless Adapter; Type: WRJDG01FM

Communication System: UID 0, Wi-Fi (0); Communication System Band: 802.11g; Duty Cycle: 1:1.0;

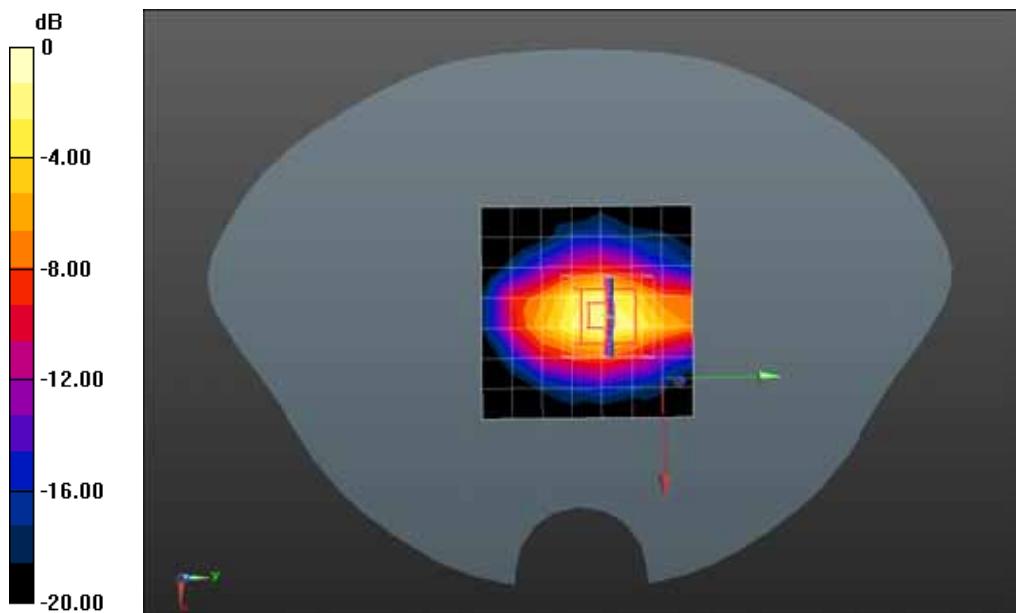
Frequency: 2437 MHz; Medium parameters used: $f = 2437$ MHz; $\sigma = 1.94$ S/m; $\epsilon_r = 52.29$; $\rho = 1000$ kg/m³ ;

Phantom section: Flat Section

Ambient temperature (): 21.5, Liquid temperature (): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3753; ConvF(7.28, 7.28, 7.28); Calibrated: 11/05/2016;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 22/06/2016
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11g 2437MHz Horizontal-Down/Area Scan (8x8x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.367 W/kg

Configuration/802.11g 2437MHz Horizontal-Down/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.68 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.856 W/kg

SAR(1 g) = 0.412 W/kg; SAR(10 g) = 0.190 W/kg Maximum value of SAR (measured) = 0.472 W/kg

0 dB = 0.472 W/kg = -3.26 dBW/kg

Appendix C. Probe Calibration Data

In Collaboration with
s p e a g
 CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
 Email: cttl@chinattl.com Http://www.chinattl.com

中国认可
 国际互认
 校准
 CALIBRATION
 CNAS L0570

Client

Auden

Certificate No: Z16-97056

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3753

Calibration Procedure(s) FD-Z11-2-004-01
 Calibration Procedures for Dosimetric E-field Probes

Calibration date: May 11, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°c and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Power sensor NRP-Z91	101547	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Power sensor NRP-Z91	101548	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Reference10dBAttenuator	18N50W-10dB	13-Mar-16(CTTL, No.J16X01547)	Mar-16
Reference20dBAttenuator	18N50W-20dB	13-Mar-16(CTTL, No.J16X01548)	Mar-16
Reference Probe EX3DV4	SN 3617	26-Aug-15(SPEAG, No.EX3-3617_Aug15)	Aug-16
DAE4	SN 1331	21-Jan-16(SPEAG, No.DAE4-1331_Jan16)	Jan -17
Secondary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	01-Jul-15 (CTTL, No.J15X04255)	Jun-16
Network Analyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan -17

	Name	Function	Signature
Calibrated by:	Yu Zongying	SAR Test Engineer	
Reviewed by:	Qi Dianyuan	SAR Project Leader	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	

Issued: May 13, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
 E-mail: cti@chinatl.com <http://www.chinatl.cn>

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta=0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}: Assessed for E-field polarization $\theta=0$ (f \leq 900MHz in TEM-cell; f $>$ 1800MHz: waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM_{f(x,y,z)} = NORM_{x,y,z}*frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; VR_{x,y,z}; A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f \leq 800MHz) and inside waveguide using analytical field distributions based on power measurements for f $>$ 800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM_{x,y,z}* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy): In a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORM_x (no uncertainty required).

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com <http://www.chinattl.com>

Probe EX3DV4

SN: 3753

Calibrated: May 11, 2016

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
 E-mail: cmtl@chinatl.com <http://www.chinatl.cn>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3753

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(μ V/(V/m) ²) ^A	0.46	0.29	0.45	\pm 10.8%
DCP(mV) ^B	101.4	107.2	104.6	

Modulation Calibration Parameters

UID	Communication System Name	A dB	B dB· μ V	C	D dB	VR mV	Unc ^E (k=2)
0	CW	X 0.0	0.0	1.0	0.00	187.2	\pm 2.4%
		Y 0.0	0.0	1.0		143.5	
		Z 0.0	0.0	1.0		181.3	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
 E-mail: cttl@chinattl.com <http://www.chinattl.cn>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3753

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.49	9.49	9.49	0.40	0.80	±12%
835	41.5	0.90	9.01	9.01	9.01	0.11	1.66	±12%
900	41.5	0.97	8.96	8.96	8.96	0.17	1.33	±12%
1750	40.1	1.37	8.11	8.11	8.11	0.17	1.52	±12%
1900	40.0	1.40	7.83	7.83	7.83	0.18	1.53	±12%
2000	40.0	1.40	7.78	7.78	7.78	0.18	1.55	±12%
2450	39.2	1.80	7.14	7.14	7.14	0.41	0.88	±12%
2600	39.0	1.96	7.09	7.09	7.09	0.51	0.82	±12%
3500	37.9	2.91	6.94	6.94	6.94	0.38	1.22	±13%
5200	36.0	4.86	5.40	5.40	5.40	0.50	1.33	±13%
5300	35.9	4.76	5.24	5.24	5.24	0.45	1.30	±13%
5500	35.8	4.96	5.02	5.02	5.02	0.45	1.20	±13%
5600	35.5	5.07	4.81	4.81	4.81	0.45	1.28	±13%
5800	35.3	5.27	4.82	4.82	4.82	0.50	1.30	±13%

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

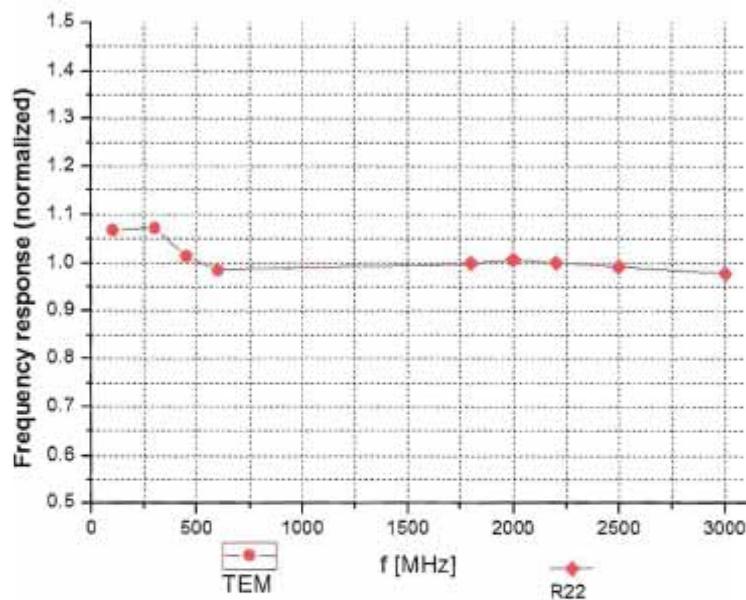
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
 E-mail: ttl@chinattl.com <http://www.chinattl.com>

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3753

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	9.42	9.42	9.42	0.40	0.85	± 12%
835	55.2	0.97	9.27	9.27	9.27	0.15	1.56	± 12%
900	55.0	1.05	9.08	9.08	9.08	0.16	1.50	± 12%
1750	53.4	1.49	7.85	7.85	7.85	0.18	1.64	± 12%
1900	53.3	1.52	7.59	7.59	7.59	0.18	1.74	± 12%
2000	53.3	1.52	7.68	7.68	7.68	0.19	1.71	± 12%
2450	52.7	1.95	7.28	7.28	7.28	0.38	1.06	± 12%
2600	52.5	2.16	6.99	6.99	6.99	0.41	0.98	± 12%
3500	51.3	3.31	6.38	6.38	6.38	0.53	1.06	± 13%
5200	49.0	5.30	4.84	4.84	4.84	0.50	1.45	± 13%
5300	48.9	5.42	4.69	4.69	4.69	0.50	1.56	± 13%
5500	48.6	5.65	4.33	4.33	4.33	0.55	1.52	± 13%
5600	48.5	5.77	4.26	4.26	4.26	0.55	1.55	± 13%
5800	48.2	6.00	4.36	4.36	4.36	0.55	1.58	± 13%

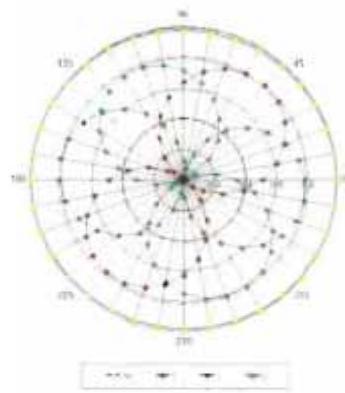
^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

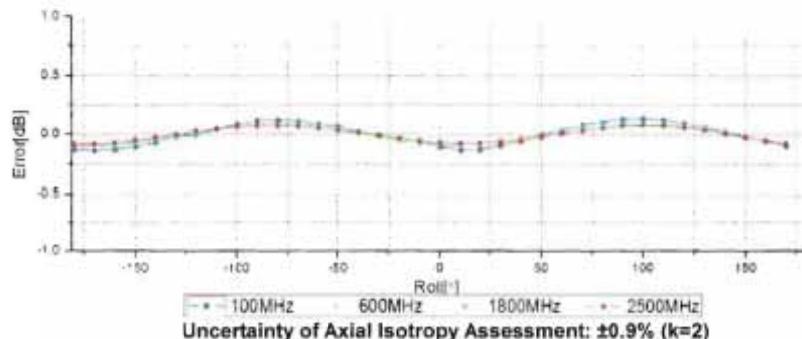
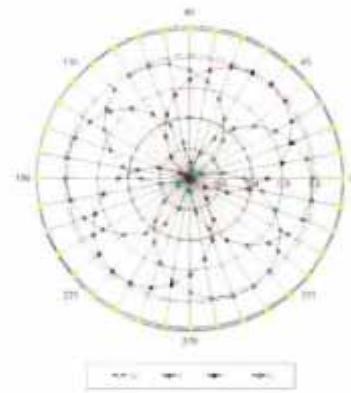

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

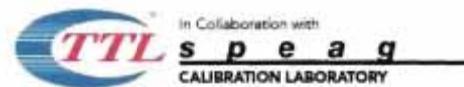
^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Address: No.31 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

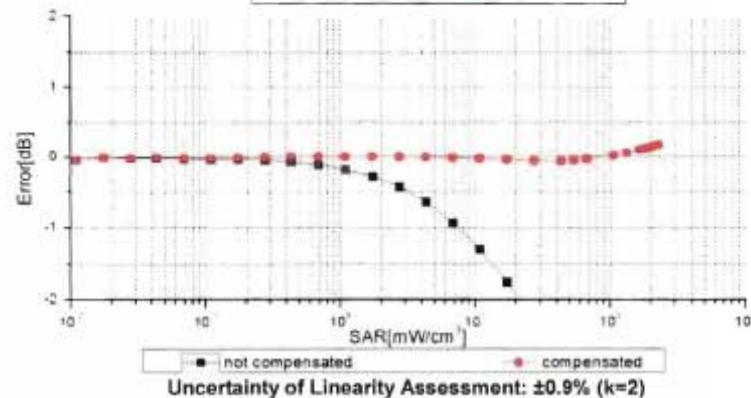
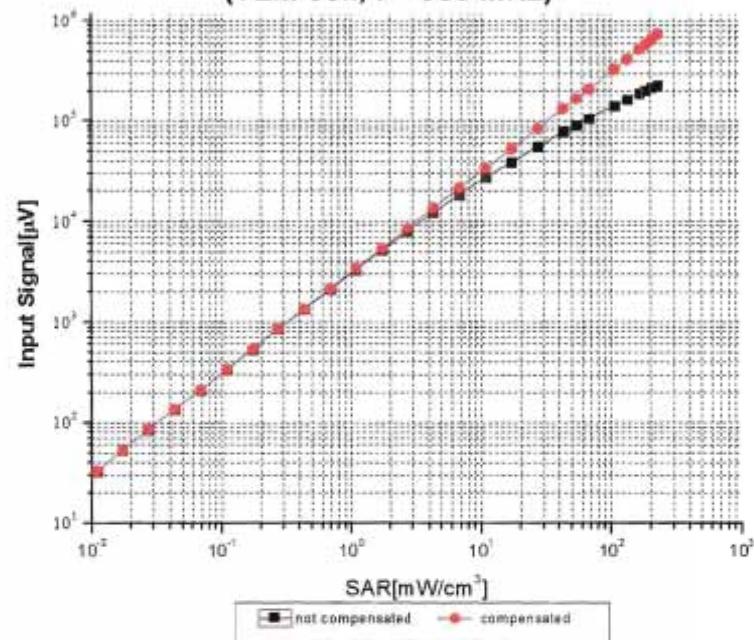
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: $\pm 7.5\%$ ($k=2$)



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: ctcl@chinatcl.com <http://www.chinatcl.com>


Receiving Pattern (Φ), $\theta=0^\circ$

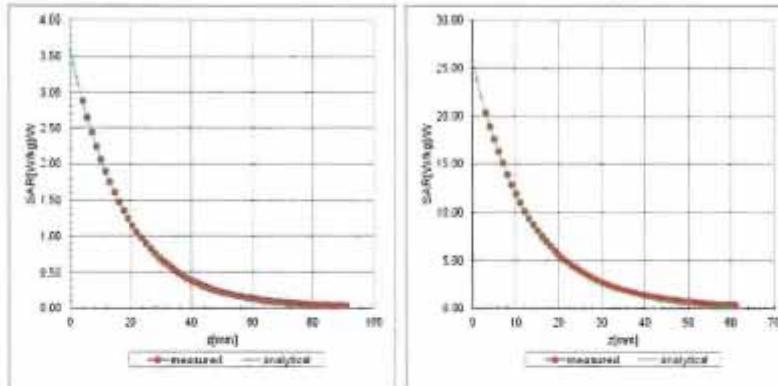
f=600 MHz, TEM

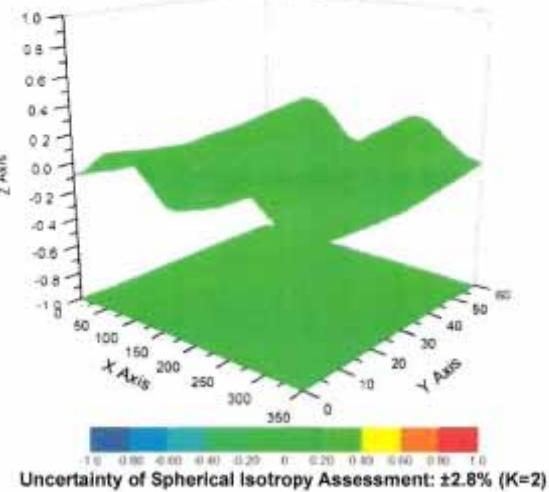


f=1800 MHz, R22

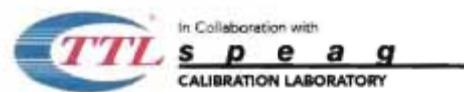
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Certificate No: Z16-97056


Page 9 of 11


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com <http://www.chinattl.cn>


Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF) f=1750 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209
E-mail: cttl@chinattl.com [Http://www.chinattl.cn](http://www.chinattl.cn)

DASY/EASY – Parameters of Probe: EX3DV4 – SN: 3753

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	36.1
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Appendix D. Dipole Calibration Data

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **QTK-CN (Auden)**

Certificate No: **D2450V2-839_Feb16**

CALIBRATION CERTIFICATE

Object **D2450V2 - SN: 839**

Calibration procedure(s) **QA CAL-05.v9**
 Calibration procedure for dipole validation kits above 700 MHz

Calibration date: **February 09, 2016**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	US37292783	07-Oct-15 (No. 217-02222)	Oct-16
Power sensor HP 8481A	MY41092317	07-Oct-15 (No. 217-02223)	Oct-16
Reference 20 dB Attenuator	SN: 5058 (20k)	01-Apr-15 (No. 217-02131)	Mar-16
Type-N mismatch combination	SN: 5047.2 / 06327	01-Apr-15 (No. 217-02134)	Mar-16
Reference Probe EX3DV4	SN: 7349	31-Dec-15 (No. EX3-7349_Dec15)	Dec-16
DAE4	SN: 601	30-Dec-15 (No. DAE4-601_Dec15)	Dec-16
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100972	15-Jun-15 (in house check Jun-15)	In house check: Jun-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-15)	In house check: Oct-16

Calibrated by: **Michael Weber** Function: **Laboratory Technician**

Signature

Approved by: **Katja Pokovic** Function: **Technical Manager**

Signature

Issued: February 10, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.7 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.03 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.9 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.9 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.6 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.87 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.3 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	55.4 Ω + 2.0 $j\Omega$
Return Loss	- 25.2 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.2 Ω + 6.4 $j\Omega$
Return Loss	- 23.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.143 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 20, 2009

DASY5 Validation Report for Head TSL

Date: 08.02.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 839

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.84$ S/m; $\epsilon_r = 38.7$; $\rho = 1000$ kg/m³

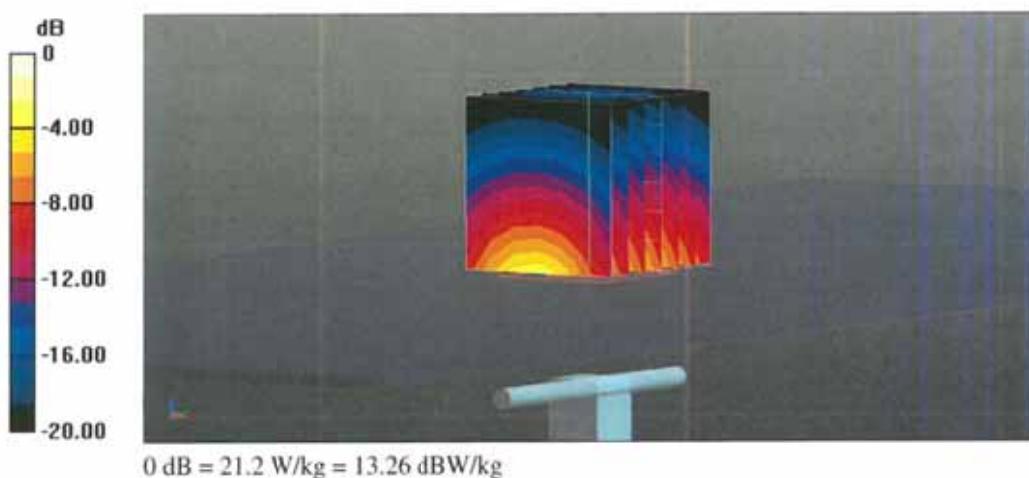
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

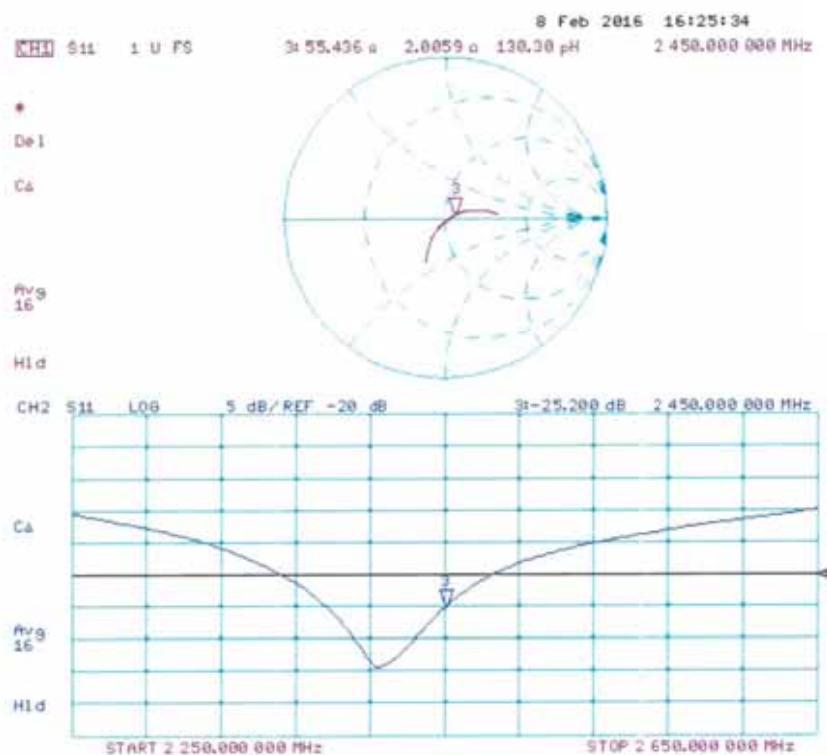
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.76, 7.76, 7.76); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 113.0 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 26.2 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.03 W/kg

Maximum value of SAR (measured) = 21.2 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 09.02.2016

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 839

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 2$ S/m; $\epsilon_r = 52.9$; $\rho = 1000$ kg/m³

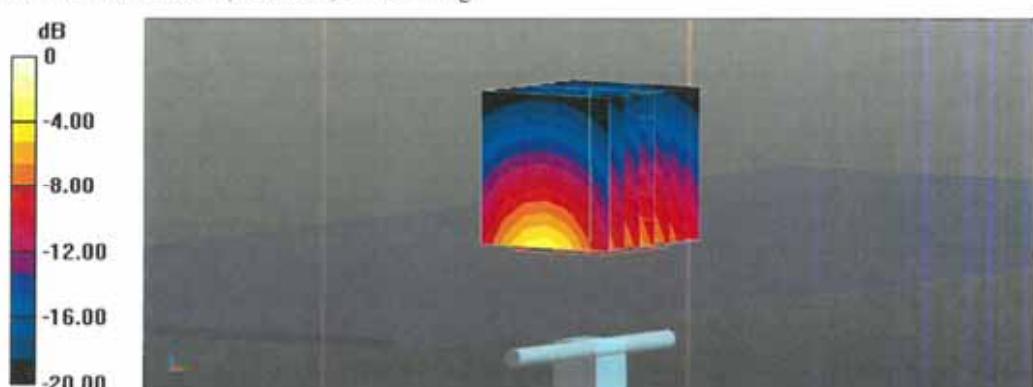
Phantom section: Flat Section

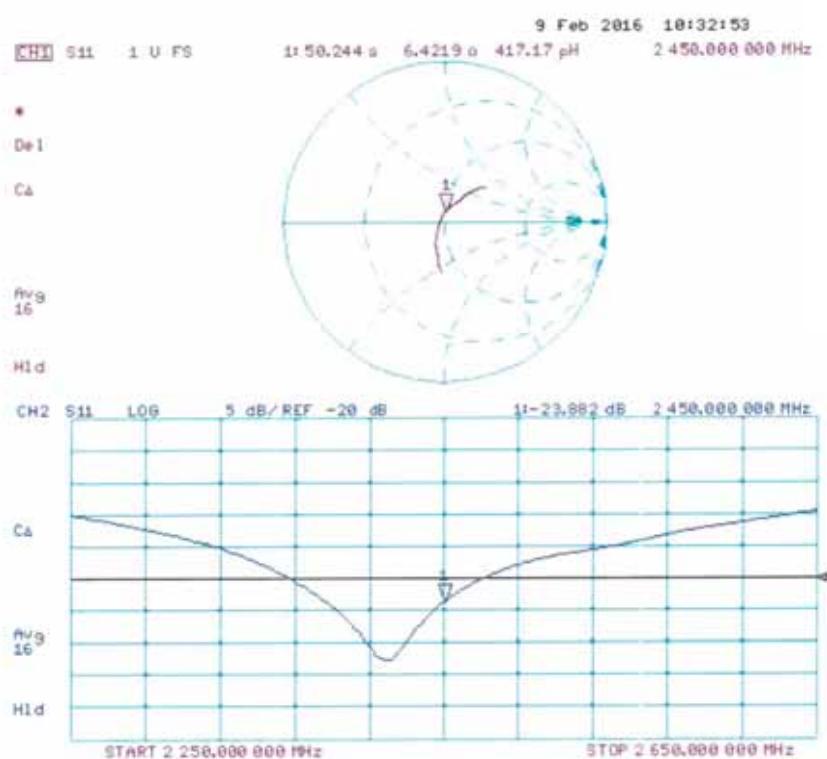
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 31.12.2015;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.12.2015
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 105.1 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 25.0 W/kg

SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.87 W/kg

Maximum value of SAR (measured) = 20.4 W/kg

Impedance Measurement Plot for Body TSL

Appendix E. DAE Calibration Data

Calibration Laboratory of
 Schmid & Partner
 Engineering AG
 Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **Auden**

Certificate No: **DAE4-915_Jun16**

CALIBRATION CERTIFICATE

Object **DAE4 - SD 000 D04 BK - SN: 915**

Calibration procedure(s) **QA CAL-06.v29**
 Calibration procedure for the data acquisition electronics (DAE)

Calibration date: **June 22, 2016**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	09-Sep-15 (No:17153)	Sep-16
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	05-Jan-16 (in house check)	In house check: Jan-17
Calibrator Box V2.1	SE UMS 006 AA 1002	05-Jan-16 (in house check)	In house check: Jan-17

Calibrated by: Name **Dominique Steffen** Function **Technician**

Approved by: Name **Fin Bomholt** Function **Deputy Technical Manager**

Issued: June 22, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - *DC Voltage Measurement Linearity*: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - *AD Converter Values with inputs shorted*: Values on the internal AD converter corresponding to zero input voltage
 - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current*: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance*: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption*: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1µV, full range = -100...+300 mV

Low Range: 1LSB = 61nV, full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$404.308 \pm 0.02\% \text{ (k=2)}$	$404.426 \pm 0.02\% \text{ (k=2)}$	$404.774 \pm 0.02\% \text{ (k=2)}$
Low Range	$3.97934 \pm 1.50\% \text{ (k=2)}$	$3.99489 \pm 1.50\% \text{ (k=2)}$	$3.98860 \pm 1.50\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$115.0^\circ \pm 1^\circ$
---	---------------------------

Appendix (Additional assessments outside the scope of SCS0108)
1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	199997.28	2.63	0.00
Channel X	+ Input	20001.62	0.61	0.00
Channel X	- Input	-19999.90	1.13	-0.01
Channel Y	+ Input	199996.67	2.01	0.00
Channel Y	+ Input	20001.55	0.46	0.00
Channel Y	- Input	-20000.02	0.95	-0.00
Channel Z	+ Input	199994.48	-0.20	-0.00
Channel Z	+ Input	19999.69	-1.34	-0.01
Channel Z	- Input	-20000.19	0.92	-0.00

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	2000.55	-0.24	-0.01
Channel X	+ Input	201.51	0.15	0.08
Channel X	- Input	-198.17	0.42	-0.21
Channel Y	+ Input	2000.45	-0.42	-0.02
Channel Y	+ Input	200.34	-1.08	-0.54
Channel Y	- Input	-199.05	-0.45	0.23
Channel Z	+ Input	2001.12	0.26	0.01
Channel Z	+ Input	200.77	-0.56	-0.28
Channel Z	- Input	-199.58	-0.93	0.47

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	-15.47	-17.16
	-200	17.86	16.67
Channel Y	200	-5.83	-5.83
	-200	5.10	4.55
Channel Z	200	-1.03	-1.11
	-200	-0.60	-0.75

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	3.80	-3.70
Channel Y	200	7.72	-	4.67
Channel Z	200	9.17	6.43	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16113	17618
Channel Y	15977	16908
Channel Z	15892	16752

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec
Input $10M\Omega$

	Average (μ V)	min. Offset (μ V)	max. Offset (μ V)	Std. Deviation (μ V)
Channel X	0.26	-0.94	1.39	0.42
Channel Y	-1.21	-1.80	-0.32	0.32
Channel Z	-1.23	-2.12	0.21	0.36

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9