

FCC PART 15 B TEST REPORT

For

CLC HONG KONG LIMITED

1011A, 10/F., Harbour Centre Tower 1, No. 1 Hok Cheung St., Hung Hom, Kowloon, Hong Kong

FCC ID: 2AG4WE500

Report Type: Original Report		Product Name Ram 5	:		
Test Engineer:	Lorin Biar	1	Lorin Dian		
Report Number:	RDG160927001B				
Report Date:	2016-11-03				
Reviewed By:	Henry Dir		Henry Ding		
Test Laboratory:	5040, Hui JinNiu Dis	LongWan Plaza, N strict, ChengDu, Ch 55523123, Fax: 028			

Note: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Chengdu). Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. This report was valid only with a valid digital signature.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) OBJECTIVE	3 3
SYSTEM TEST CONFIGURATION	5
DESCRIPTION OF TEST CONFIGURATION EUT EXERCISE SOFTWARE EQUIPMENT MODIFICATIONS LOCAL SUPPORT EQUIPMENT LIST AND DETAILS SUPPORT CABLE LIST AND DETAILS CONFIGURATION OF TEST SETUP	
SUMMARY OF TEST RESULTS	7
FCC§15.107 - CONDUCTED EMISSIONS	8
MEASUREMENT UNCERTAINTY EUT SETUP EMI TEST RECEIVER SETUP TEST EQUIPMENT LIST AND DETAILS TEST PROCEDURE CORRECTED AMPLITUDE & MARGIN CALCULATION TEST DATA	
FCC §15.109 - RADIATED SPURIOUS EMISSIONS	13
MEASUREMENT UNCERTAINTY EUT SETUP EMI TEST RECEIVER SETUP TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS CORRECTED AMPLITUDE & MARGIN CALCULATION TEST DATA	

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *CLC HONG KONG LIMITED*'s product, model number: *E500 (FCC ID: 2AG4WE500)* (the "EUT") in this report was a *Ram 5*, which was measured approximately: $14.6 \text{ cm (L)} \times 6.3 \text{ cm (W)} \times 2 \text{ cm (H)}$, rated input voltage: DC3.7V rechargeable Li-ion battery or DC5V from adapter. The highest operation frequency is 2480 MHz.

Adapter information: Model: PMC43

Input: 100-240V~50/60Hz Output: DC 5.0V, 1000mA

*All measurement and test data in this report was gathered from final production sample, serial number: 160927001 (assigned by the BACL, Chengdu). It may have deviation from any other sample. The EUT supplied by the applicant was received on 2016-09-27, and EUT conformed to test requirement.

Objective

This test report is prepared on behalf of *CLC HONG KONG LIMITED* in accordance with Part 2, Subpart J, and Part 15-Subparts A and B of the Federal Communications Commission's rules.

The objective of the manufacturer is to determine the compliance of EUT with FCC Part 15 B Class B.

Related Submittal(s)/Grant(s)

FCC Part 15C DSS submissions with FCC ID: 2AG4WE500. FCC Part 22H, 24E PCE submissions with FCC ID: 2AG4WE500.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Chengdu). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

The uncertainty of any RF tests which use conducted method measurement is ±3.17 dB, the uncertainty of any radiation on emissions measurement is:

30M~200MHz: ±4.7 dB; 200M~1GHz: ±6.0 dB; 1G-6GHz:: ±5.13dB; 6G~25GHz: ±5.47dB;

And the uncertainty will not be taken into consideration for all test data recorded in the report.

Report No.: RDG160927001B Page 3 of 17

Test Facility

The test site used by BACL to collect test data is located in the 5040, HuiLongWan Plaza, No. 1, ShaWan Road, JinNiu District, ChengDu, China

Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on April 24, 2015. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 560332. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Report No.: RDG160927001B Page 4 of 17

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in a typical fashion (as normally used by a typical user).

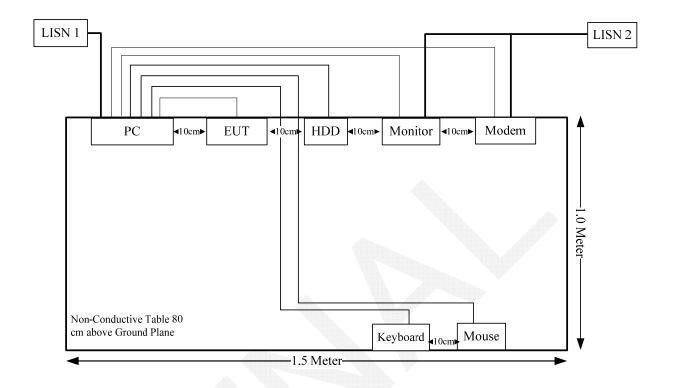
EUT Exercise Software

The software "winthrax.exe" was used during test.

Equipment Modifications

No modification was made to the EUT tested.

Local Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
IBM	PC	8176	99Y7315
DELL	DELL Display		060229-11
ANTER	Modem	EGW802	0508350054-1B
Lenovo	keyboard	KB-US19EB	IMHYX011071016460
SANSUNG	HDD	160G	1
Lenovo	Mouse	MO-5013U	IMJS011041409259

Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
Serial Cable	yes	No	lo 1.2 Serial Port of PC		Modem
Keyboard Cable	yes	No	1.8	USB Port of PC	Keyboard
USB Cable	yes	No	1.2	USB Port of PC	EUT
Earphone Cable	No	No	1.6	EUT	N/A
USB Cable	yes	No	0.8	USB Port of PC	HDD
VGA Cable	Yes	Yes	1.5	PC	Monitor

Report No.: RDG160927001B Page 5 of 17

Configuration of Test Setup

Report No.: RDG160927001B Page 6 of 17

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Results
§15.107	Conducted Emissions	Compliance
§15.109	Radiated Emissions	Compliance

Report No.: RDG160927001B Page 7 of 17

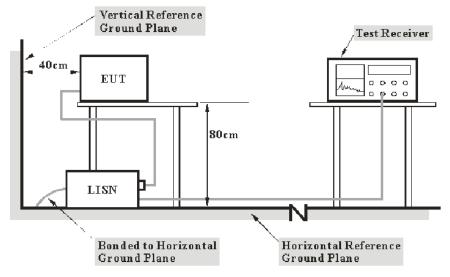
FCC§15.107 - CONDUCTED EMISSIONS

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are Receiver, cable loss, and LISN.

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:


- -compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- -non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit. If U_{lab} is greater than U_{cispr} of Table 1, then:
- –compliance is deemed to occur if no measured disturbance level, increased by $(U_{lab} U_{cispr})$, exceeds the disturbance limit;
- -non compliance is deemed to occur if any measured disturbance level, increased by ($U_{lab} U_{cispr}$), exceeds the disturbance limit.

Based on CISPR 16-4-2:2011, measurement uncertainty of conducted disturbance at mains port using AMN at Bay Area Compliance Laboratories Corp. (Chengdu) is ±3.17 dB (150 kHz to 30 MHz).

Table 1 – Values of U_{cispr}

Measurement	U_{cispr}
Conducted disturbance at mains port using AMN (150 kHz to 30 MHz)	3.4 dB

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Report No.: RDG160927001B Page 8 of 17

The setup of EUT is according with per ANSI C63.4-2014 measurement procedure. The specification used was with the FCC Part 15 B Class B limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The adapter was connected to a 120V/60Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Equipment List and Details

		CONTRACTOR OF THE PROPERTY OF	VIIIA AND		
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS 30	836858/0016	2015-12-02	2016-12-01
Rohde & Schwarz	L.I.S.N.	ENV216	3560.6550.06	2015-12-02	2016-12-01
N/A	Conducted Cable	NO.5	N/A	2015-11-10	2016-11-09

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

During the conducted emission test, the adapter of laptop was connected to the outlet of the first LISN and the other support equipments were connected to the outlet of the second LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

Report No.: RDG160927001B Page 9 of 17

Bay Area Compliance Laboratories Corp. (Chengdu)

Herein,

V_C: corrected voltage amplitude

V_R: reading voltage amplitude

A_c: attenuation caused by cable loss

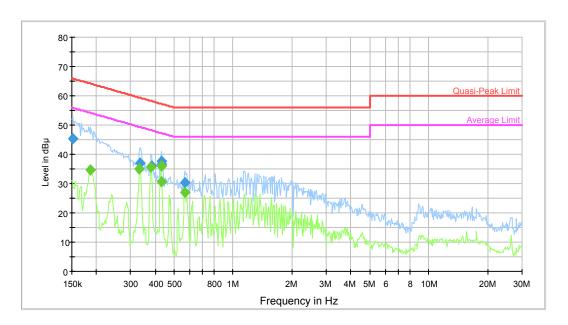
VDF: voltage division factor of AMN or ISN

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data

Environmental Conditions

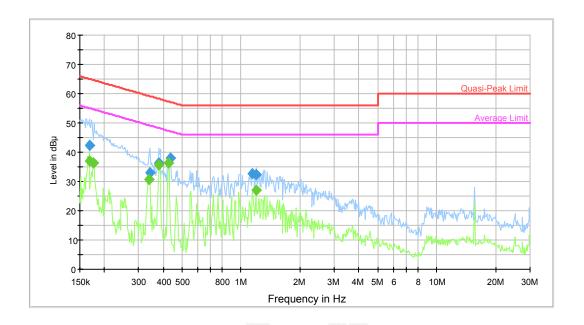

Temperature:	30 °C		
Relative Humidity:	54 %		
ATM Pressure:	101 kPa		

The testing was performed by Lorin Bian on 2016-10-25.

Report No.: RDG160927001B Page 10 of 17

Test Mode: Downloading

AC120V, 60Hz, Line:



Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth	Line	Corr. (dB)	Margin	Limit (dBµV)	Comment
. ,	400100100100	(kHz)			(dB)	· · · ·	
0.152410	45.2	9.000	L1	9.7	20.7	65.9	Compliance
0.335433	37.0	9.000	L1	9.6	22.3	59.3	Compliance
0.384091	36.0	9.000	L1	9.7	22.2	58.2	Compliance
0.429420	37.6	9.000	L1	9.7	19.7	57.3	Compliance
0.432855	36.6	9.000	L1	9.7	20.6	57.2	Compliance
0.567545	30.5	9.000	L1	9.7	25.5	56.0	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.187494	34.7	9.000	L1	9.7	19.4	54.1	Compliance
0.332770	35.1	9.000	L1	9.6	14.3	49.4	Compliance
0.381043	35.8	9.000	L1	9.7	12.5	48.3	Compliance
0.429420	35.9	9.000	L1	9.7	11.4	47.3	Compliance
0.432855	30.6	9.000	L1	9.7	16.6	47.2	Compliance
0.567545	27.1	9.000	L1	9.7	18.9	46.0	Compliance

Report No.: RDG160927001B Page 11 of 17

AC120V, 60Hz, Neutral:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.167702	42.5	9.000	N	9.6	22.6	65.1	Compliance
0.340821	33.1	9.000	N	9.6	26.1	59.2	Compliance
0.381043	36.4	9.000	N	9.6	21.9	58.3	Compliance
0.436318	37.9	9.000	N	9.6	19.2	57.1	Compliance
1.144267	32.6	9.000	N	9.7	23.4	56.0	Compliance
1.190776	32.3	9.000	N	9.7	23.7	56.0	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.167702	37.2	9.000	N	9.6	17.9	55.1	Compliance
0.175915	36.5	9.000	N	9.6	18.2	54.7	Compliance
0.338116	30.6	9.000	N	9.6	18.6	49.2	Compliance
0.381043	35.7	9.000	N	9.6	12.6	48.3	Compliance
0.426011	36.2	9.000	N	9.6	11.1	47.3	Compliance
1.190776	26.8	9.000	N	9.7	19.2	46.0	Compliance

Report No.: RDG160927001B Page 12 of 17

FCC §15.109 - RADIATED SPURIOUS EMISSIONS

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:

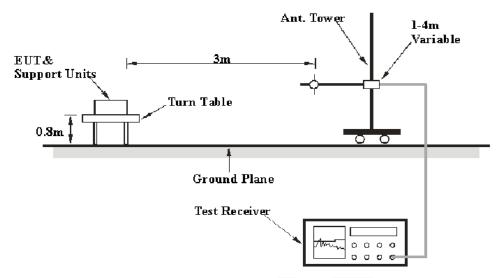
- -compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- -non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

If U_{lab} is greater than U_{cispr} of Table 1, then:

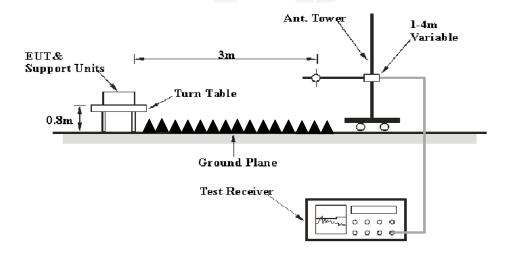
- -compliance is deemed to occur if no measured disturbance level, increased by $(U_{lab} U_{cispr})$, exceeds the disturbance limit;
- -non compliance is deemed to occur if any measured disturbance level, increased by ($U_{lab} U_{cisor}$), exceeds the disturbance limit.

Based on CISPR 16-4-2-2011, measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Chengdu) is:

30M~200MHz: ±4.7 dB; 200M~1GHz: ±6.0 dB; 1G-6GHz: ±5.13dB; 6G~25GHz: ±5.47 dB;


Table 1 – Values of U_{cispr}

Measurement		U cispr
Radiated disturbance (electric field strength at an OATS or in a SAC)	(30 MHz to 1000 MHz)	6.3 dB
Radiated disturbance (electric field strength in a FAR)	(1 GHz to 6 GHz)	5.2 dB
Radiated disturbance (electric field strength in a FAR)	(6 GHz to 18 GHz)	5.5 dB


Report No.: RDG160927001B Page 13 of 17

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission tests were performed at the 3 meters distance in chamber, using the setup accordance with the ANSI C63.4-2014. The specification used was the FCC Part 15.109 Class B limits.

Report No.: RDG160927001B Page 14 of 17

EMI Test Receiver Setup

The system was investigated from 30 MHz to 13.0 GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector	
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP	
Above 1 GHz	1 MHz	3 MHz	1	Peak	
Above i Gnz	1 MHz	10 Hz	/	AVG	

Test Procedure

During the radiated emissions, the adapter of laptop was connected to the first AC floor outlet and the other support equipments were connected to the second AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

The data was recorded in the Quasi-peak detection mode for below 1 GHz, peak and average detection mode above 1 GHz.

Report No.: RDG160927001B Page 15 of 17

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Agilent	Amplifier	8447D	2944A10442	2015-12-02	2016-12-01	
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2015-12-02	2016-12-01	
Sunol Sciences	Broadband Antenna	JB3	A101808	2016-04-10	2019-04-09	
Rohde & Schwarz	Spectrum Analyzer	FSEM30 100018		2015-12-02	2016-12-01	
EM TEST	Horn Antenna	3115	003-6076	2015-12-02	2016-12-01	
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726-011302 4	2014-06-16	2017-06-15	
Mini-circuits	Amplifier	ZVA-213-S+	771001215	2016-05-20	2017-05-19	
EMCT	Semi-Anechoic Chamber	966	N/A 2015-04-24		2018-04-23	
N/A	RF Cable (below 1GHz)	NO.1 N/A		2015-11-10	2016-11-09	
N/A	RF Cable (below 1GHz)	NO.4	N/A	2015-11-10	2016-11-09	
N/A	N/A RF Cable (above 1GHz)		N/A	2015-11-10	2016-11-09	
WEINSCHEL ENGINEERING	I Aftenuator		AA4135	2015-11-10	2016-11-09	

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Loss + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Report No.: RDG160927001B Page 16 of 17

Test Data

Environmental Conditions

Temperature:	26.4 °C
Relative Humidity:	41 %
ATM Pressure:	101 kPa

^{*} The testing was performed by Lorin Bian on 2016-10-26.

Test Result: Compliance

Test Mode: Downloading

30MHz-13GHz:

3UMHZ-13GHZ:									
Frequency	ncy Receiver		Rx Antenna		Cable Amplifier		Corrected	Limit	Manain
(MHz)	Reading (dBµV)	Detector	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	(dBµV/m)	Margin (dB)
44.55	52.27	QP	Н	11.82	0.34	28.51	35.92	40.00	4.08
213.33	57.59	QP	Н	11.40	0.95	27.72	42.22	43.50	1.28
285.11	52.42	QP	Н	13.95	1.16	27.52	40.01	46.00	5.99
346.22	50.17	QP	Н	15.08	1.25	27.78	38.72	46.00	7.28
34.85	46.24	QP	V	19.50	0.37	28.55	37.56	40.00	2.44
42.61	54.4	QP	V	13.17	0.32	28.52	39.37	40.00	0.63
68.8	55.9	QP	V	7.70	0.54	28.41	35.73	40.00	4.27
1270	44.43	peak	Н	23.50	2.35	26.55	43.73	74.00	30.27
1270	32.22	AVG	Н	23.50	2.35	26.55	31.52	54.00	22.48
2074	42.13	peak	Н	24.65	3.04	26.83	42.99	74.00	31.01
2074	29.63	AVG	Н	24.65	3.04	26.83	30.49	54.00	23.51
2968	34.2	peak	Н	24.14	3.40	26.44	35.30	74.00	38.70
2968	21.94	AVG	Н	24.14	3.40	26.44	23.04	54.00	30.96
1540	46.85	peak	V	24.16	2.70	26.37	47.34	74.00	26.66
1540	34.42	AVG	V	24.16	2.70	26.37	34.91	54.00	19.09
2128	42.96	peak	V	24.46	3.03	26.84	43.61	74.00	30.39
2128	30.41	AVG	V	24.46	3.03	26.84	31.06	54.00	22.94
3046	36.96	peak	V	24.46	3.50	26.43	38.49	74.00	35.51
3046	24.59	AVG	V	24.46	3.50	26.43	26.12	54.00	27.88

**** END OF REPORT ****

Report No.: RDG160927001B Page 17 of 17