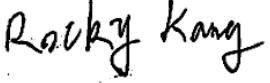
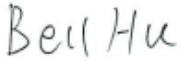




## FCC PART 15B, CLASS B



### TEST REPORT

For

**Baicells Technologies Co., Ltd.**

3F, Hui Yuan Development Building, No.1 Shangdi Information Industry Base, Haidian Dist.,  
Beijing, China

**FCC ID: 2AG32CN6671**

|                                                                                                                                                                                                                                                                                                                 |                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| <b>Report Type:</b><br>Original Report                                                                                                                                                                                                                                                                          | <b>Product Type:</b><br>LTE Indoor CPE |
| <b>Test Engineer:</b> <u>Rocky Kang</u>                                                                                                                                                                                     |                                        |
| <b>Report Number:</b> <u>RSZ160525009-00A</u>                                                                                                                                                                                                                                                                   |                                        |
| <b>Report Date:</b> <u>2016-06-16</u>                                                                                                                                                                                                                                                                           |                                        |
| <b>Reviewed By:</b> <u>RF Engineer</u>                                                                                                                                                                                      |                                        |
| <b>Prepared By:</b> Bay Area Compliance Laboratories Corp. (Shenzhen)<br>6/F, the 3rd Phase of WanLi Industrial Building<br>ShiHua Road, FuTian Free Trade Zone<br>Shenzhen, Guangdong, China<br>Tel: +86-755-33320018<br>Fax: +86-755-33320008<br><a href="http://www.baclcorp.com.cn">www.baclcorp.com.cn</a> |                                        |

**Note:** This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

## **TABLE OF CONTENTS**

|                                                         |           |
|---------------------------------------------------------|-----------|
| <b>GENERAL INFORMATION.....</b>                         | <b>3</b>  |
| PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)..... | 3         |
| OBJECTIVE .....                                         | 3         |
| RELATED SUBMITTAL(S)/GRANT(S).....                      | 3         |
| TEST METHODOLOGY .....                                  | 3         |
| TEST FACILITY .....                                     | 4         |
| <b>SYSTEM TEST CONFIGURATION.....</b>                   | <b>5</b>  |
| DESCRIPTION OF TEST CONFIGURATION .....                 | 5         |
| EUT EXERCISE SOFTWARE .....                             | 5         |
| SPECIAL ACCESSORIES.....                                | 5         |
| EQUIPMENT MODIFICATIONS .....                           | 5         |
| SUPPORT EQUIPMENT LIST AND DETAILS .....                | 5         |
| EXTERNAL I/O CABLE.....                                 | 6         |
| BLOCK DIAGRAM OF TEST SETUP .....                       | 6         |
| <b>SUMMARY OF TEST RESULTS.....</b>                     | <b>7</b>  |
| <b>FCC §15.107 – AC LINE CONDUCTED EMISSIONS.....</b>   | <b>8</b>  |
| APPLICABLE STANDARD .....                               | 8         |
| MEASUREMENT UNCERTAINTY.....                            | 8         |
| EUT SETUP .....                                         | 8         |
| EMI TEST RECEIVER SETUP.....                            | 9         |
| TEST PROCEDURE .....                                    | 9         |
| TEST EQUIPMENT LIST AND DETAILS.....                    | 9         |
| CORRECTED FACTOR & MARGIN CALCULATION .....             | 9         |
| TEST RESULTS SUMMARY .....                              | 10        |
| TEST DATA .....                                         | 10        |
| <b>FCC §15.109 - RADIATED EMISSIONS .....</b>           | <b>13</b> |
| APPLICABLE STANDARD .....                               | 13        |
| MEASUREMENT UNCERTAINTY.....                            | 13        |
| EUT SETUP .....                                         | 13        |
| EMI TEST RECEIVER SETUP.....                            | 14        |
| TEST PROCEDURE .....                                    | 14        |
| TEST EQUIPMENT LIST AND DETAILS.....                    | 15        |
| CORRECTED AMPLITUDE & MARGIN CALCULATION .....          | 15        |
| TEST RESULTS SUMMARY .....                              | 16        |
| TEST DATA .....                                         | 16        |

## GENERAL INFORMATION

### Product Description for Equipment under Test (EUT)

The *Baicells Technologies Co., Ltd.*'s product, model number: *CN6671*(FCC ID: *2AG32CN6671*) or the "EUT" in this report was a *LTE Indoor CPE*, which was measured approximately: 188 mm (L) x 168 mm (W) x 75 mm (H), rated with input voltage: DC 12 V from adapter. The highest operation frequency is 3700 MHz.

#### Adapter Information:

Model: RD1201000-C55-HMG  
Input: 100-240V, 50/60Hz, 0.6A Max  
Output: 12V-1A

*\* All measurement and test data in this report was gathered from production sample serial number: 1203000001156TP0069 (Assigned by Applicant). The EUT supplied by the applicant was received on 2016-05-25.*

### Objective

This test report is prepared on behalf of *Baicells Technologies Co., Ltd.* in accordance with Part 2-Subpart J, Part 15-Subparts A and B of the Federal Communication Commissions rules.

The objective of the manufacturer is to determine the compliance of the EUT with FCC Part 15 B.

### Related Submittal(s)/Grant(s)

FCC Part 90 TNB and FCC Part 15.247 DTS submissions with FCC ID: *2AG32CN6671*.

### Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2014, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.81 dB for 30MHz-1GHz, and 4.88 dB for above 1GHz, 1.95dB for conducted measurement.

## Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on October 31, 2013. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

## SYSTEM TEST CONFIGURATION

### Description of Test Configuration

The system was configured for testing in a manufacturer testing fashion.

EUT operation mode: working (data transfer+talking)

### EUT Exercise Software

No exercise software was used.

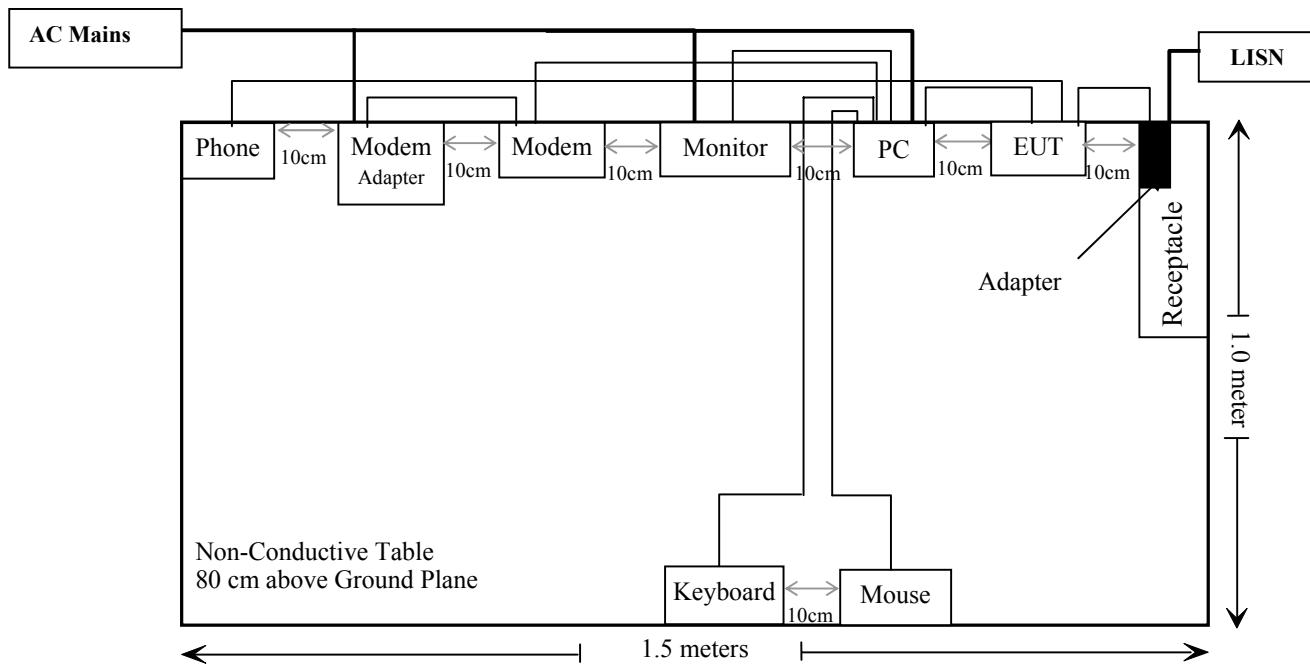
### Special Accessories

No special accessory.

### Equipment Modifications

No modification was made to the EUT tested.

### Support Equipment List and Details


| Manufacturer | Description | Model       | Serial Number            |
|--------------|-------------|-------------|--------------------------|
| DELL         | PC          | VOSTRO 220S | 127BP2X                  |
| DELL         | LCD Monitor | E178WFPC    | CN-OWY564-64180-7C4-2SQH |
| DELL         | Keyboard    | L100        | CNORH656658907BL05DC     |
| DELL         | Mouse       | MOC5UO      | G1900NKD                 |
| SAST         | Modem       | AEM-2100    | 0293                     |
| BULL         | Receptacle  | N/A         | N/A                      |
| Kinhao       | Phone       | N/A         | N/A                      |

## External I/O Cable

| Cable Description                   | Length (m) | From/Port | To              |
|-------------------------------------|------------|-----------|-----------------|
| Un-shielding Detachable Mouse Cable | 1.5        | Host PC   | Mouse           |
| Shielding Detachable Serial Cable   | 1.2        | Host PC   | Modem           |
| Shielding Detachable K/B Cable      | 1.5        | Host PC   | Keyboard        |
| Shielding Detachable VGA Cable      | 1.5        | Host PC   | LCD Monitor     |
| Un-shielding Detachable RJ45 Cable  | 1.0        | EUT       | PC              |
| Un-shielding Detachable RJ11 Cable  | 1.5        | EUT       | Phone           |
| Un-shielding Detachable DC Cable    | 1.0        | Modem     | Adater of Modem |
| Un-shielding Detachable DC Cable    | 1.5        | EUT       | Adater          |

## Block Diagram of Test Setup

For conducted emission:



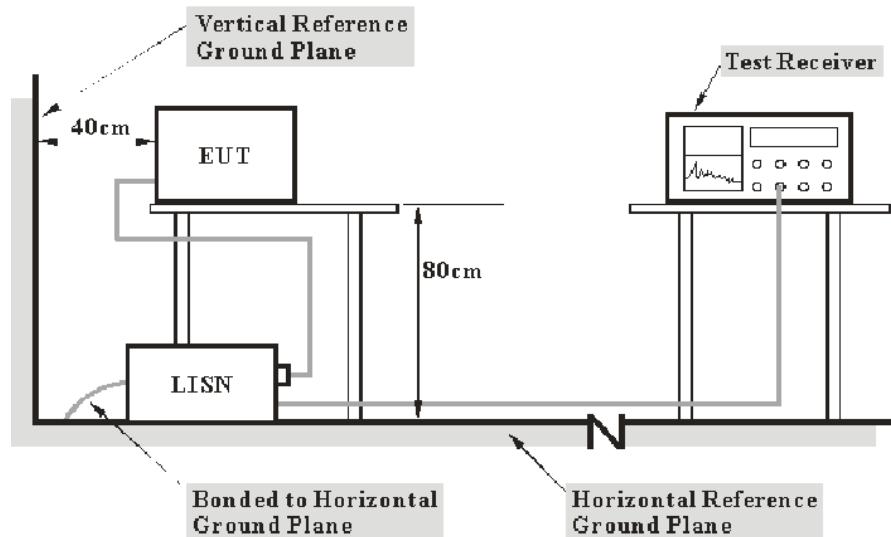
## **SUMMARY OF TEST RESULTS**

| FCC Rules | Description of Test         | Results    |
|-----------|-----------------------------|------------|
| §15.107   | AC Line Conducted Emissions | Compliance |
| §15.109   | Radiated Emissions          | Compliance |

## FCC §15.107 – AC LINE CONDUCTED EMISSIONS

### Applicable Standard

According to FCC §15.107


### Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between LISN/ISN and receiver, LISN/ISN voltage division factor, LISN/ISN VDF frequency interpolation and receiver related input quantities, etc.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of conducted disturbance test at Bay Area Compliance Laboratories Corp. (Shenzhen) is shown as below. And the uncertainty will not be taken into consideration for the test data recorded in the report

| Port     | Measurement uncertainty                |
|----------|----------------------------------------|
| AC Mains | 3.34 dB (k=2, 95% level of confidence) |
| CAT 3    | 3.72 dB (k=2, 95% level of confidence) |
| CAT 5    | 3.74 dB (k=2, 95% level of confidence) |
| CAT 6    | 4.54 dB (k=2, 95% level of confidence) |

### EUT Setup



**Note:**

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with per ANSI C63.4-2014. The related limit was specified in FCC Part 15.107 Class B.

The spacing between the peripherals was 10 cm.

## EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

| Frequency Range  | IF B/W |
|------------------|--------|
| 150 kHz – 30 MHz | 9 kHz  |

## Test Procedure

During the conducted emission test, the Adater was connected to the first LISN and the other relevant equipments were connected to the second LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

## Test Equipment List and Details

| Manufacturer          | Description              | Model  | Serial Number          | Calibration Date | Calibration Due Date |
|-----------------------|--------------------------|--------|------------------------|------------------|----------------------|
| Rohde & Schwarz       | EMI Test Receiver        | ESCS30 | 100176                 | 2016-06-01       | 2017-05-31           |
| Rohde & Schwarz       | LISN 1                   | ENV216 | 3560.6650.12-101613-Yb | 2015-12-15       | 2016-12-14           |
| COM-POWER             | LISN 2                   | LI-200 | 12208                  | 2015-12-15       | 2016-12-14           |
| Rohde & Schwarz       | Transient Limiter        | ESH3Z2 | DE25985                | 2016-05-14       | 2017-05-14           |
| Rohde & Schwarz       | CE Test software         | EMC 32 | V8.53                  | NCR              | NCR                  |
| Ducommun technologies | Conducted Emission Cable | RG-214 | CB031                  | 2015-06-15       | 2016-06-15           |

\* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

## Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

$$\text{Correction Factor} = \text{LISN VDF} + \text{Cable Loss} + \text{Transient Limiter Attenuation}$$

The “**Margin**” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

## Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.107, the worst margin as below:

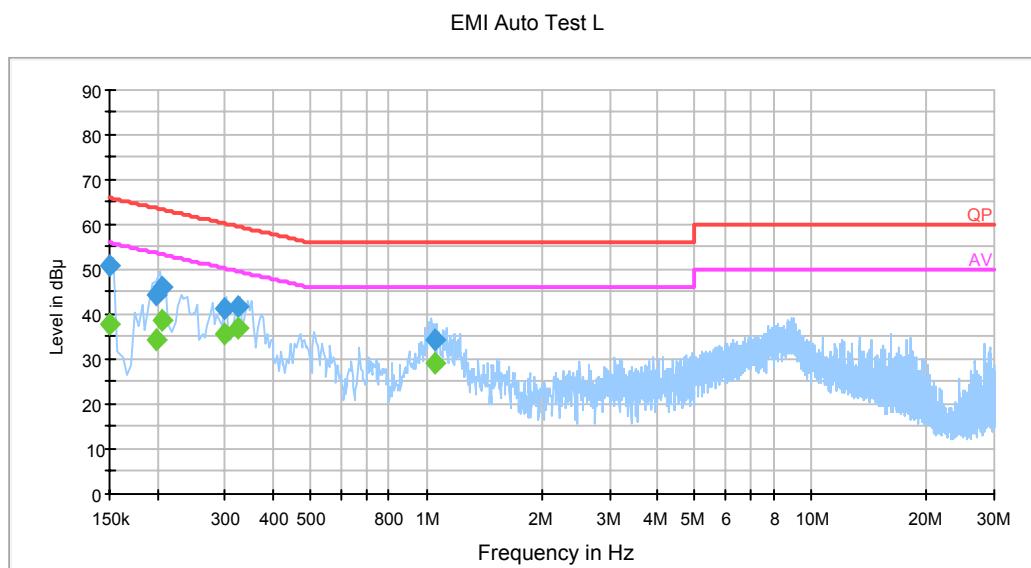
**12.7 dB at 0.325110 MHz in the Line conducted mode**

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

$$L_m + U_{(Lm)} \leq L_{\lim} + U_{\text{cisp}}$$

In BACL.,  $U_{(Lm)}$  is less than  $U_{\text{cisp}}$ , if  $L_m$  is less than  $L_{\lim}$ , it implies that the EUT complies with the limit.

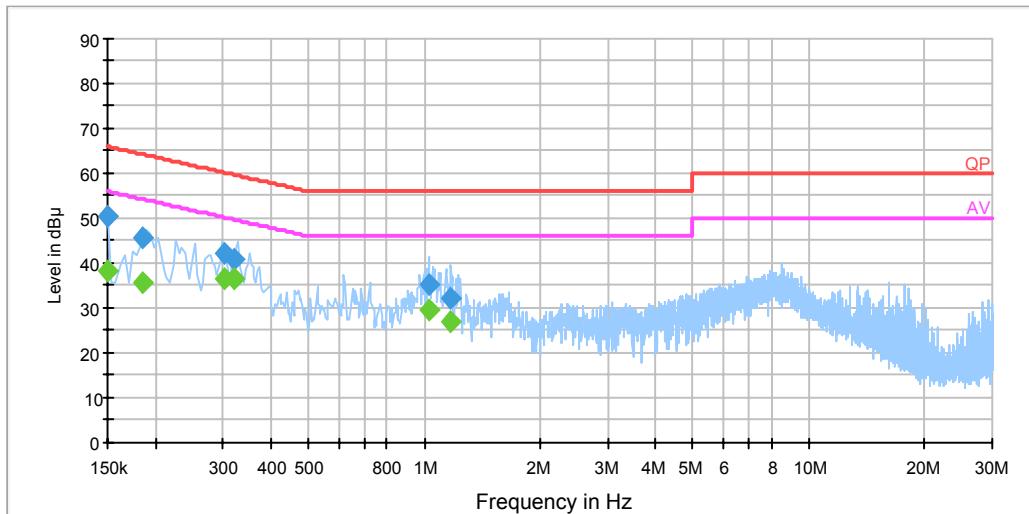
## Test Data


### Environmental Conditions

|                           |           |
|---------------------------|-----------|
| <b>Temperature:</b>       | 25°C      |
| <b>Relative Humidity:</b> | 53%       |
| <b>ATM Pressure:</b>      | 101.0 kPa |

*The testing was performed by Rocky Kang on 2016-06-03.*

*EUT Operation Mode: working (data transfer+talking)*


**AC 120V/60 Hz, Line:**



| Frequency (MHz) | Corrected Amplitude (dB $\mu$ V) | Correction Factor (dB) | Limit (dB $\mu$ V) | Margin (dB) | Detector (PK/Ave./QP) |
|-----------------|----------------------------------|------------------------|--------------------|-------------|-----------------------|
| 0.150000        | 50.7                             | 20.0                   | 66.0               | 15.3        | QP                    |
| 0.150000        | 37.7                             | 20.0                   | 56.0               | 18.3        | Ave.                  |
| 0.197500        | 44.4                             | 20.0                   | 63.7               | 19.3        | QP                    |
| 0.197500        | 34.5                             | 20.0                   | 53.7               | 19.2        | Ave.                  |
| 0.205500        | 45.9                             | 20.0                   | 63.4               | 17.5        | QP                    |
| 0.205500        | 38.8                             | 20.0                   | 53.4               | 14.6        | Ave.                  |
| 0.297470        | 41.2                             | 19.9                   | 60.3               | 19.1        | QP                    |
| 0.297470        | 35.7                             | 19.9                   | 50.3               | 14.6        | Ave.                  |
| 0.325110        | 41.5                             | 19.9                   | 59.6               | 18.1        | QP                    |
| 0.325110        | 36.8                             | 19.9                   | 49.5               | <b>12.7</b> | Ave.                  |
| 1.049510        | 34.2                             | 20.0                   | 56.0               | 21.8        | QP                    |
| 1.049510        | 28.9                             | 20.0                   | 46.0               | 17.1        | Ave.                  |

**AC 120V/60 Hz, Neutral:**

EMI Auto Test N



| Frequency (MHz) | Corrected Amplitude (dB $\mu$ V) | Correction Factor (dB) | Limit (dB $\mu$ V) | Margin (dB) | Detector (PK/Ave./QP) |
|-----------------|----------------------------------|------------------------|--------------------|-------------|-----------------------|
| 0.150000        | 50.3                             | 20.0                   | 66.0               | 15.7        | QP                    |
| 0.150000        | 38.4                             | 20.0                   | 56.0               | 17.6        | Ave.                  |
| 0.185500        | 45.6                             | 20.0                   | 64.2               | 18.6        | QP                    |
| 0.185500        | 35.6                             | 20.0                   | 54.2               | 18.6        | Ave.                  |
| 0.301500        | 42.1                             | 19.9                   | 60.2               | 18.1        | QP                    |
| 0.301500        | 36.7                             | 19.9                   | 50.2               | 13.5        | Ave.                  |
| 0.321110        | 40.9                             | 19.9                   | 59.7               | 18.8        | QP                    |
| 0.321110        | 36.4                             | 19.9                   | 49.7               | 13.3        | Ave.                  |
| 1.034550        | 35.3                             | 20.0                   | 56.0               | 20.7        | QP                    |
| 1.034550        | 29.6                             | 20.0                   | 46.0               | 16.4        | Ave.                  |
| 1.176390        | 32.1                             | 20.0                   | 56.0               | 23.9        | QP                    |
| 1.176390        | 26.9                             | 20.0                   | 46.0               | 19.1        | Ave.                  |

**Note:**

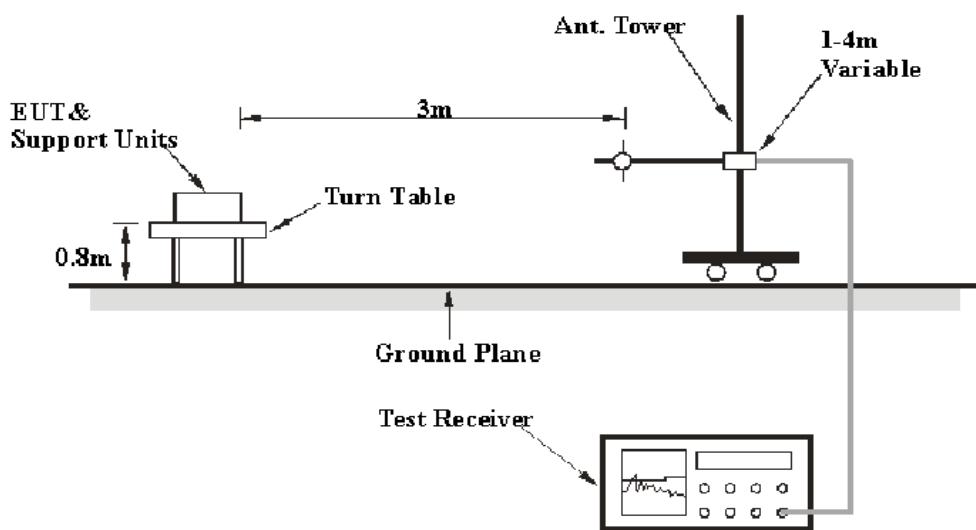
- 1) Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation
- 2) Corrected Amplitude = Reading + Correction Factor
- 3) Margin = Limit – Corrected Amplitude

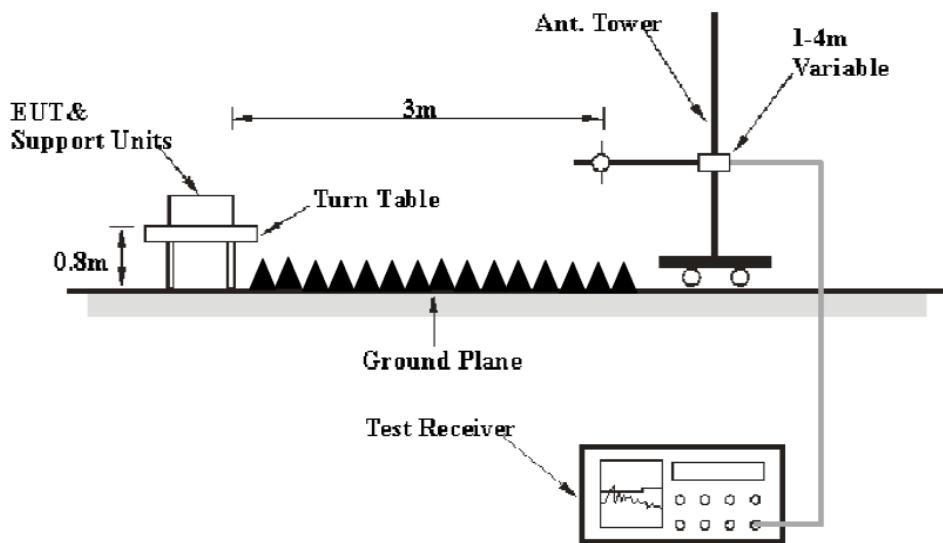
## FCC §15.109 - RADIATED EMISSIONS

### Applicable Standard

According to FCC§15.109

### Measurement Uncertainty


All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.


Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of radiation emissions at Bay Area Compliance Laboratories Corp. (Shenzhen) is 5.81 dB for 30MHz-1GHz and 4.88 dB for above 1GHz, 1.95dB for conducted measurement at antenna port. And the uncertainty will not be taken into consideration for the test data recorded in the report.

| Frequency      | Polarity            | Measurement uncertainty                |
|----------------|---------------------|----------------------------------------|
| 30 MHz~200 MHz | Horizontal          | 4.04 dB (k=2, 95% level of confidence) |
|                | Vertical            | 4.52 dB (k=2, 95% level of confidence) |
| 200 MHz~1 GHz  | Horizontal          | 4.72 dB (k=2, 95% level of confidence) |
|                | Vertical            | 5.81 dB (k=2, 95% level of confidence) |
| 1 GHz~6 GHz    | Horizontal/Vertical | 4.64 dB (k=2, 95% level of confidence) |
| Above 6 GHz    | Horizontal/Vertical | 4.88 dB (k=2, 95% level of confidence) |

### EUT Setup

Below 1GHz:



**Above 1GHz:**

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.4-2014. The specification used was the FCC Part 15.109 Class B limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

**EMI Test Receiver Setup**

According to FCC 15.33 requirements, the EUT system was measured from 30 MHz to 18.5 GHz.

During the radiated emission test, the EMI test receiver Setup was set with the following configurations:

| Frequency Range   | RBW     | Video B/W | IF B/W  | Detector |
|-------------------|---------|-----------|---------|----------|
| 30 MHz – 1000 MHz | 100 kHz | 300 kHz   | 120 kHz | QP       |
| Above 1 GHz       | 1MHz    | 3 MHz     | /       | PK       |
|                   | 1MHz    | 10 Hz     | /       | Ave.     |

**Test Procedure**

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

## Test Equipment List and Details

| Manufacturer          | Description        | Model                 | Serial Number       | Calibration Date | Calibration Due Date |
|-----------------------|--------------------|-----------------------|---------------------|------------------|----------------------|
| HP                    | Amplifier          | HP8447E               | 1937A01046          | 2016-05-06       | 2017-05-06           |
| Rohde & Schwarz       | EMI Test Receiver  | ESCI                  | 101120              | 2015-12-15       | 2016-12-14           |
| Sunol Sciences        | Bi-log Antenna     | JB1                   | A040904-2           | 2014-12-07       | 2017-12-06           |
| Mini                  | Amplifier          | ZVA-183-S+            | 5969001149          | 2016-04-23       | 2017-04-23           |
| A.H. System           | Horn Antenna       | SAS-200/571           | 135                 | 2015-08-18       | 2018-08-17           |
| Sunol Sciences        | Horn Antenna       | DRH-118               | A052304             | 2015-12-01       | 2016-11-30           |
| Rohde & Schwarz       | Signal Analyzer    | FSIQ26                | 8386001028          | 2015-12-11       | 2016-12-11           |
| TDK                   | Chamber            | Chamber A             | 2#                  | 2013-10-15       | 2016-10-15           |
| TDK                   | Chamber            | Chamber B             | 1#                  | 2015-07-23       | 2016-07-22           |
| R&S                   | Auto test Software | EMC32                 | V9.10               | NCR              | NCR                  |
| Ducommun technologies | RF Cable           | UFA210A-1-4724-30050U | MFR64369 223410-001 | 2015-06-15       | 2016-06-15           |
| Ducommun technologies | RF Cable           | 104PEA                | 218124002           | 2015-06-15       | 2016-06-15           |
| Ducommun technologies | RF Cable           | RG-214                | 1                   | 2015-06-15       | 2016-06-15           |
| Ducommun technologies | RF Cable           | RG-214                | 2                   | 2015-06-15       | 2016-06-15           |

\* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

## Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Corrected Amplitude} = \text{Meter Reading} + \text{Antenna Factor} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

## Test Results Summary

According to the recorded data in following table, the worst margin reading as below:

**8.24 dB at 600.01 MHz in the Vertical polarization**

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_m + U_{(Lm)} \leq L_{\lim} + U_{\text{cisp}}$$

In BACL.,  $U_{(Lm)}$  is less than  $U_{\text{cisp}}$ , if  $L_m$  is less than  $L_{\lim}$ , it implies that the EUT complies with the limit.

## Test Data

### Environmental Conditions

|                           |           |
|---------------------------|-----------|
| <b>Temperature:</b>       | 25 °C     |
| <b>Relative Humidity:</b> | 53%       |
| <b>ATM Pressure:</b>      | 101.0 kPa |

*The testing was performed by Rocky Kang on 2016-06-06.*

*Operating Mode: Working (data transfer + talking)*

### 30 MHz to 18.5 GHz

| Frequency<br>(MHz) | Receiver                |                          | Turntable<br>Degree | Rx Antenna    |                | Corrected<br>Factor<br>(dB/m) | Corrected<br>Amplitude<br>(dB $\mu$ V/m) | FCC Part 15B            |                |
|--------------------|-------------------------|--------------------------|---------------------|---------------|----------------|-------------------------------|------------------------------------------|-------------------------|----------------|
|                    | Reading<br>(dB $\mu$ V) | Detector<br>(PK/QP/Ave.) |                     | Height<br>(m) | Polar<br>(H/V) |                               |                                          | Limit<br>(dB $\mu$ V/m) | Margin<br>(dB) |
| 30.65              | 31.06                   | QP                       | 33                  | 1.2           | V              | -0.5                          | 30.56                                    | 40                      | 9.44           |
| 38.97              | 36.03                   | QP                       | 33                  | 1.1           | V              | -6.7                          | 29.33                                    | 40                      | 10.67          |
| 58.70              | 39.02                   | QP                       | 311                 | 1.2           | V              | -13.9                         | 25.12                                    | 40                      | 14.88          |
| 104.73             | 36.73                   | QP                       | 120                 | 1.0           | V              | -9.4                          | 27.33                                    | 43.5                    | 16.17          |
| 149.99             | 37.75                   | QP                       | 264                 | 1.0           | V              | -7.8                          | 29.95                                    | 43.5                    | 13.55          |
| 600.01             | 40.16                   | QP                       | 250                 | 2.1           | V              | -2.4                          | 37.76                                    | 46                      | <b>8.24</b>    |
| 1532.7             | 43.14                   | PK                       | 227                 | 1.4           | H              | -10.41                        | 32.73                                    | 74                      | 41.27          |
| 1532.7             | 30.35                   | Ave.                     | 227                 | 1.4           | H              | -10.41                        | 19.94                                    | 54                      | 34.06          |

### Note:

- 1) Corrected Amplitude = Meter Reading + Correction Factor
- 2) Correction Factor = Antenna Factor + Cable Loss - Amplifier Gain
- 3) Margin = Limit – Corrected Amplitude
- 4) The data below 20dB to the limit was not recorded.

**\*\*\*\*\* END OF REPORT \*\*\*\*\***