

RF Exposure Report

No. 25B01N000968-001-MPE

For

Xiaomi Communications Co., Ltd.

Tablet Computer

Model Name: 25079RPDCG

With

Hardware Version: 1351P2402

Software Version: Xiaomi HyperOS 2.0

FCC ID: 2AFZZRPDCG

Issued Date: 2025-06-05

Designation Number: CN1210

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

SAICT, Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518000.

Tel:+86(0)755-33322000, Fax:+86(0)755-33322001

Email: yewu@caict.ac.cn. www.saict.ac.cn

REPORT HISTORY

Report Number	Revision	Description	Issue Date
25B01N000968-001-MPE	Rev.0	1st edition	2025-06-05

CONTENTS

1. Summary of Test Report	4
1.1. Test Items	4
1.2. Test Standards	4
1.3. Test Result	4
1.4. Testing Location	4
1.5. Project Data	4
1.6. Signature	4
2. Client Information	5
2.1. Applicant Information	5
2.2. Manufacturer Information	5
3. Equipment under Test (EUT) and Ancillary Equipment (AE)	6
3.1. About EUT	6
3.2. Internal Identification of EUT used during the test	6
3.3. Internal Identification of AE used during the test	6
4. Test Methodology	7
5. RF Exposure Limit	8
6. System Description and Setup	g
6.1. Compliance Evaluation	11
6.2. Simulation Results	12
7. System Validation	13
8. RF Exposure Results	14
8.1. Testing Environment	14
8.2. Maximum Permissible Exposure Evaluation	
8.3. Peak Spatial-Average SAR Evaluation	16
9. Measurement Uncertainty	17
9.1. Uncertainty Budget for Peak Incident H-field	17
9.2. Uncertainty Budget for Peak Incident E-field	17
9.3. DASY8 Uncertainty Budget for psSAR1g according to IEC/IEEE 63184	18
10. Main Test Instruments	19
ANNEX A: Graph Results	20
ANNEX B: System Validation Results	23
ANNEX C: Probe Calibration Certificate	24
ANNEX D: Validation Source Calibration Certificate	50

1. Summary of Test Report

1.1. Test Items

Description: Tablet Computer Model Name: 25079RPDCG

Applicant's Name: Xiaomi Communications Co., Ltd. Manufacturer's Name: Xiaomi Communications Co., Ltd.

1.2. Test Standards

ANSI C95.1:1992

1.3. Test Result

Pass. Please refer to "8. RF Exposure Results"

1.4. Testing Location

Address: Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China

1.5. Project Data

Testing Start Date: 2025-05-21 Testing End Date: 2025-05-21

1.6. Signature

孝明台

Li Yongfu

(Prepared this test report)

引建

Liu Jian

(Reviewed this test report)

Cao Junfei

(Approved this test report)

2. Client Information

2.1. Applicant Information

Company Name:	Xiaomi Communications Co., Ltd.
Address	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing,
Address:	China, 100085
Contact:	Zeng Qingyao
Email:	mi-compliance@xiaomi.com
Telephone:	010-6060666-8088

2.2. Manufacturer Information

Company Name:	Xiaomi Communications Co., Ltd.
Address:	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing,
Address.	China, 100085
Contact:	Zeng Qingyao
Email:	mi-compliance@xiaomi.com
Telephone:	010-6060666-8088

3. Equipment under Test (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description:	Tablet Computer
Model Name:	25079RPDCG
Brand Name:	Xiaomi
Condition of EUT as received:	No obvious damage in appearance
Frequency Bands:	Wireless Charging
Tested Tx Frequency:	110.5-148.0KHz (Wireless Charging)

^{*}Since the information of samples in this report is provided by the client, the laboratory is not responsible for the authenticity of sample information.

3.2. Internal Identification of EUT used during the test

EUT ID*	SN	HW Version	SW Version	Receipt Date	
UT01aa	88P22/F5RT00068	1351P2402	Xiaomi HyperOS 2.0	2025-05-16	

^{*}EUT ID: is used to identify the test sample in the lab internally.

Note: It is performed to test SAR with the UT01aa.

3.3. Internal Identification of AE used during the test

AE ID*	Description	Model	Manufacturer
AE1	Tablet pen	23089MP43C	Xiaomi Communications Co., Ltd.

^{*}AE ID: is used to identify the test sample in the lab internally.

4. Test Methodology

ANSI C95.1:1992 IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

KDB 447498 D04 Interim General RF Exposure Guidance v01

KDB 680106 D01 Wireless Power Transfer v04

5. RF Exposure Limit

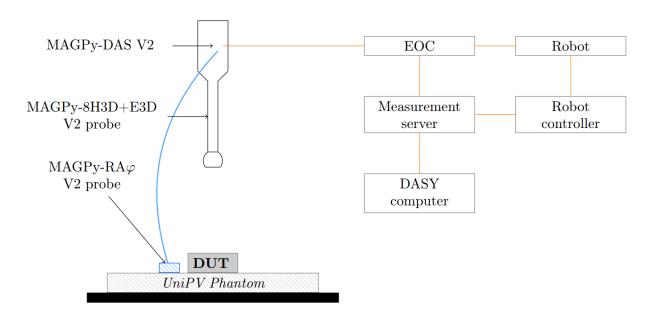
<Limits for Maximum Permissible Exposure>

§ 1.1310 The criteria listed in table 1 shall be used to evaluate the environmental impact of human exposure to radio frequency (RF) radiation as specified in § 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of § 2.1093 of this chapter.

Frequency range (MHz)	Electric field strength (V/m)	(V/m) (A/m) (mW/cm ²)							
	(i) Limits for Oc	cupational/Controlled Expos	ure						
0.3-3.0 614 1.63 *(100)									
3.0-30	1842/f	4.89/f	*(900/f ²)	<6					
30-300	61.4 0.163 1		1.0	<6					
300-1,500			f/300	<6					
1,500-100,000			5	<6					
	(ii) Limits for Genera	al Population/Uncontrolled Ex	posure						
0.3-1.34	614	1.63	*(100)	<30					
1.34-30	824/f	2.19/f	*(180/f ²)	<30					
30-300	27.5	0.073	0.2	<30					
300-1,500			f/1500	<30					
1,500-100,000			1.0	<30					

Table 1 to § 1.1310 - Limits for Maximum Permissible Exposure (MPE)

- (1) Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.
- (2) General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.


<Limit for peak spatial-average SAR>

The SAR limits for general population/uncontrolled exposure are 0.08 W/kg, as averaged over the whole body, and a peak spatial-average SAR of 1.6 W/kg, averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the parts of the human body treated as extremities, such as hands, wrists, feet, ankles, and pinnae, where the peak spatial-average SAR limit is 4 W/kg, averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). Exposure may be averaged over a time period not to exceed 30 minutes to determine compliance with general population/uncontrolled SAR limits.

f = frequency in MHz. * = Plane-wave equivalent power density.

6. System Description and Setup

General Note:

- 1. DASY8 Module WPT v2.6+ is a special solution for high precision evaluations in the laboratory. The precision is achieved by combining the MAGPy system with the DASY robotics system and Sim4Life simulation platform. It is the fist and only fully automated system for demonstrating compliance of WPT devices.
- 2. The setup figure shows a typical setup for the measurements with DASY8 Module WPT. The MAGPy-8H3D+E3D V2 probe with MAGPy-DAS V2 is mounted on a TX-90 or TX2-90 robot allowing to scan volumes as large as 2000 × 1000 ×1500 mm with a precision of ±0.2 mm. The H-fild distributions can be analyzed directly and the values are compared to the reference level, or they are converted into Maxwell fild and used as excitations for determining the basic restriction quantities for further dosimetric analysis with the Magneto Quasi-Static (MQS) solver. This specifi solution is optimized for evaluation of H-field sources (3kHz-10MHz) and demonstration of compliance (3KHz-4 MHz)
- 3. Sicne the DASY8 Module WPT system alternatively, curve-tting techniques may be used to estimate the eld value(s) at dsep based on measurements taken at larger distances. The test equipment permits the estimation of fields at 0mm separation distance based on measurements near the surface; Maxwell total field reconstruction is employed.
- 4. The DASY8 Module WPT with MAGPy-8H3D+E3D V2 Probe is capable of measuring the H-fild in frequency and time-domain in the frequency band from 3 kHz to 10 MHz, covering a dynamic range from 0.1 to >3100 A/m.
- 5.The DASY8 Module WPT provides the relation between an externally applied H-field to each of the three sensors and the corresponding ADC reading over the frequency range from 3 kHz to 10 MHz. The frequency-dependent adjustment factors are used to determine the incident measured H-fild from an ADC reading. For the frequency range from 1 to 10 MHz, the adjustment factors are applied ©Copyright. All rights reserved by SAICT Page 9 of 54

with fiite impulse response (FIR) fiters directly inside the MAGPy-8H3D+E3D V2 in time-domain and frequencies <1 MHz in the frequency domain in the PC-based post-processing software.

6. In summary, this system of DASY8 Module WPT with MAGPy-8H3D+E3D V2 Probe fully meets the requirements of SPR002 Issue2 table A2.

Probe Spec

The MAGPy-8H3D+E3D V2 probe consists of eight isotropic H-field sensors and one isotropic E-field sensor:

Probe design:

• Probe length: 335 mm

Probe tip diameter: 60 mm

• 8H3D: eight isotropic 1 cm3-H-field sensors, arranged at the corners of a 22 mm cube

• First isotropic H-field sensor plane: 7.5 mm from the tip

E3D: one isotropic E-field sensor (dipole / monopole)

Sensor specifications:

• Frequency range: 3 kHz-10 MHz

• H-field dynamic range: 0.1 A/m – 3200 A/m (0.12 μT – 4 mT)

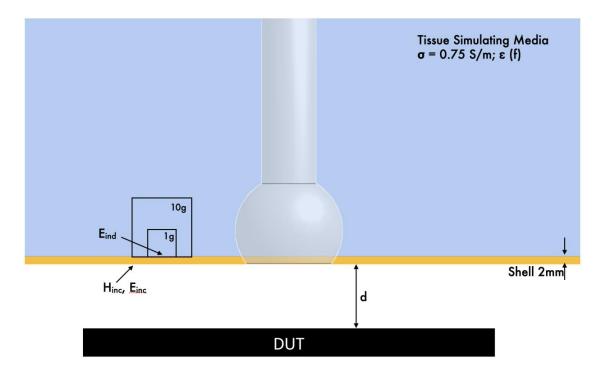
H-field extrapolation uncertainty: 0.6 dB (k= 2)

E-field dynamic range: 0.08 V/m-2000 V/m

6.1. Compliance Evaluation

DASY8 Module WPT SW version v2.6+ offers compliance evaluation with respect to:

- Reference levels on the basis of the incident H-and E-fields measured from the volume scan
- Basic restrictions on the basis of the peak induced E-field, peak induced current density, and
- peak spatial-average SAR calculated from the Sim4Life simulation.


Since SPEAG release a DASY8 Module WPT system (SW Module WPT V2.6+) for E and H-Field measurement, and also the system support Sim4Life plug-in includes the components to import the 3D H-field scan data (Hx, Hy, Hz values in the measurement volume) to the Sim4Life simulation platform. And a magneto quasi-static (MQS) simulation is automatically setup to solve for a lossy half-space Phantom setup. The lossy half-space has muscle tissue dielectric properties (σ =0.75 S/m, ρ = 1000 kg/m³,), The induced electric (E-) fields and **specific absorption rate (SAR)** are assessed with Sim4Life's Quasi-Static EM Solver (P-EM-QS) using only the measured data.

The post-processing engine determines the maximum induced E-field, current density, and SAR values in a homogeneous half-space of muscle tissue equivalent media (half-space muscle phantom) positioned at the compliance distance. In general, the compliance distance corresponds to the closest point (with respect to the exposure source) the human body (e.g., a part of the hand) can reach during the operation of the source.

The relative dielectric constant, conductivity, and mass density of the homogeneous phantom used in the simulations were 55, 0.75 S/m, and 1000 kg/m3 respectively, which correspond to the phantom.

6.2. Simulation Results

The Distance used in the test raw data for simulation and compliance evaluation results is defined as the spacing between the top surface of the DUT and the bottom surface of the fictive phantom shell (with a thickness of 2mm). In this case, the evaluation is made at distance d. Typically d = 0, i.e., at the DUT surface. The evaluation locations of the incident fields (i.e., Hinc and Einc) as well as the induced fields (e.g., Eind, psSAR1g, and psSAR10g) are also illustrated.

7. System Validation

SPEAG developed the evaluation system DASY8 Module WPT for small-to-large size wireless power transfer (WPT) devices that combines subsystems of DASY8, MAGPy, and Sim4Life. The IT'IS Foundation was mandated to develop the system check and validation sources for WPT evaluations. Below table shows the target value and measured value and comparing to the Target value provided by SPEAG calibration, the verification data should be within its specification of 1.33dB.

Table 7.1: System Validation Results

Test Date Calibrated Parameters (kHz)	Parameters	Distance (relative to source surface) (mm)		Peak H-field (A/m)	Induce	d peak E-field	i (V/m)	Induced peak current density 1cm^2 area avg.(A/m^2)	peak spatial SAR (mW/kg)	
	(KHZ)				cube avg.	Local	line avg.		1g avg.	10g avg.
		Target	0	213	3.42	3.46	3.46	2.40	6.71	4.95
		Raw Measurement	0	215	3.82	3.87	3.87	2.67	8.26	6.28
		Deviation (dB)	0	0.08	0.96	0.97	0.97	0.93	0.90	1.03
2025/5/21	85									
		Target	2	194	3.21	3.25	3.25	2.26	5.98	4.48
		Raw Measurement	2	193	3.65	3.69	3.70	2.55	7.59	5.78
		Deviation (dB)	2	-0.04	1.12	1.10	1.13	1.05	1.04	1.11

8. RF Exposure Results

According to the client's decision rule in the test registration form, which is "based on the measurement results as the basis of the conformity statement", the test conclusion of this report meets the limit requirements.

Note:

- 1. For WPT evaluation was performed with client with > 80% battery state, equal 50% and < 10% battery state will verify worst configuration found from > 80% state.
- 2. Consider the clinet device in charging and user is using tablet, for RF exposure was performed at 0mm separation distance.
- 3. The simultaneous transmission analysis for the device reversed charging and with other transmitters active need to be considered, however, considering that the largest applicable simulation SAR is less than 0.001 W/kg, therefore the contribution of the reverse charging to the total TER can be neglected.

8.1. Testing Environment

Temperature:	18°C~25°C
Relative humidity:	30%~70%
Ambient noise & Reflection:	< 0.012 W/kg

8.2. Maximum Permissible Exposure Evaluation

Magnetic field Strength Result

Mode/Band	Frequency (kHz)	Coil/Antenna	Client Battery State	Test Position	Test Distance (mm)	Figure No.	Measured H-filed (A/m)	MPE(H-filed) Limit(A/m)	Result
WPT	110.5-148.0	1	>80%	Front	0	1	194	1.63	Exceed ⁽¹⁾
WPT	110.5-148.0	1	>80%	Rear	0	1	22.6	1.63	Exceed ⁽¹⁾
WPT	110.5-148.0	/	>80%	Left	0	1	0.477	1.63	Pass
WPT	110.5-148.0	/	>80%	Right	0	1	20	1.63	Exceed ⁽¹⁾
WPT	110.5-148.0	1	>80%	Тор	0	1	2.38	1.63	Exceed ⁽¹⁾
WPT	110.5-148.0	1	>80%	Bottom	0	/	1.1	1.63	Pass
WPT	110.5-148.0	1	<10%	Front	0	1	238	1.63	Exceed ⁽¹⁾
WPT	110.5-148.0	1	=50%	Front	0	1	184	1.63	Exceed ⁽¹⁾

Note1: An assessment against the Limit for peak spatial-average SAR shall be performed for the EUT when the Limits for Maximum Permissible Exposure are exceeded.

Electric field Strength Result

Mode/Band	Frequency (kHz)	Coil/Antenna	Client Battery State	Test Position	Test Distance (mm)	Figure No.	Measured E-filed (V/m)	MPE(E-filed) Limit(V/m)	Result
WPT	110.5-148.0	/	>80%	Front	0	1	9.02	614	Pass
WPT	110.5-148.0	/	>80%	Rear	0	1	3.33	614	Pass
WPT	110.5-148.0	/	>80%	Left	0	1	1.19	614	Pass
WPT	110.5-148.0	/	>80%	Right	0	/	12.3	614	Pass
WPT	110.5-148.0	/	>80%	Тор	0	1	0.687	614	Pass
WPT	110.5-148.0	/	>80%	Bottom	0	1	0.788	614	Pass
WPT	110.5-148.0	/	<10%	Right	0	2	20.2	614	Pass
WPT	110.5-148.0	/	=50%	Right	0	1	12.6	614	Pass

8.3. Peak Spatial-Average SAR Evaluation

Peak spatial-average SAR Result

Mode/Band	Frequency (kHz)	Coil/Antenna	Client Battery State	Test Position	Test Distance (mm)	Figure No.	Measured 1g avg. SAR(W/kg)	1g SAR Limit (W/kg)	Result
WPT	110.5-148.0	1	>80%	Front	0	/	0.000261	1.6	Pass
WPT	110.5-148.0	/	>80%	Rear	0	1	0.00000165	1.6	Pass
WPT	110.5-148.0	1	>80%	Left	0	1	0.000000138	1.6	Pass
WPT	110.5-148.0	1	>80%	Right	0	1	0.0000141	1.6	Pass
WPT	110.5-148.0	1	>80%	Тор	0	1	0.000000113	1.6	Pass
WPT	110.5-148.0	1	>80%	Bottom	0	1	0.000000164	1.6	Pass
WPT	110.5-148.0	1	<10%	Front	0	3	0.000562	1.6	Pass
WPT	110.5-148.0	1	=50%	Front	0	1	0.000381	1.6	Pass

Conclusion:

Based on SPEAG DASY8 Module WPT-MAGPY system, a magneto quasi-static (MQS) simulation is automatically setup to solve for a lossy half-space Phantom setup. The lossy half-space has muscle tissue dielectric properties (σ =0.75 S/m, ρ = 1000 kg/m³,), The induced electric (E-) fields and specific absorption rate (SAR) are assessed with Sim4Life's Quasi-Static EM Solver (P-EM-QS) that the product is compliance with Peak spatial-average SAR Result < 1.6W/kg.

9. Measurement Uncertainty

9.1. Uncertainty Budget for Peak Incident H-field

	Fran Description	Uncertainty		Divisor	(Ci)	Standard
Item	Error Description	Value (±dB)	Probability	וטפועום	(Ci)	Uncertainty (±dB)
		Measuremen	t system			
1	Amplitude calibration uncertainty	0.35	N	1	1	0.35
2	Probe anisotropy	0.60	R	√3	1	0.35
3	Probe dynamic linearity	0.20	R	√3	1	0.12
4	Probe frequency domain response	0.30	R	√3	1	0.17
5	Probe frequency linear interp. fit	0.15	R	√3	1	0.09
6	Spatial averaging	0.10	R	√3	1	0.06
7	Parasitic E-field sensitivity	0.10	R	√3	1	0.06
8	Detection limit	0.15	R	√3	1	0.09
9	Readout electronics	0.00	N	1	1	0.00
10	Probe positioning	0.19	N	1	1	0.19
11	Repeatability	0.10	N	1	1	0.10
12	Surface field reconstruction	0.30	N	1	1	0.30
	Combined	uncertainty (k=1)			0.67
	Combined	uncertainty (k=2)			1.33

9.2. Uncertainty Budget for Peak Incident E-field

Item	Error Description	Uncertainty	Probability	Divisor	(Ci)	Standard
пеш	Error Description	Value (±dB)	Frobability	DIVISOI	(5)	Uncertainty (±dB)
		Measuremen	t system			
1	Amplitude calibration uncertainty	0.53	N	1	1	0.53
2	Probe anisotropy	0.80	R	√3	1	0.46
3	Probe dynamic linearity	1.00	R	√3	1	0.58
4	Probe frequency domain response	0.30	R	√3	1	0.17
5	Probe frequency linear interp. fit	0.15	R	√3	1	0.09
6	Parasitic H-field sensitivity	0.20	R	√3	1	0.12
7	Detection limit	0.15	R	√3	1	0.09
8	Readout electronics	0.00	N	1	1	0.00
9	Repeatability	0.10	N	1	1	0.10
	Combined	uncertainty (k=1)			0.95
	Combined	uncertainty (k=2)			1.89

9.3. DASY8 Uncertainty Budget for psSAR1g according to IEC/IEEE 63184

	DAS 16 Unicertainty Budget	Uncertainty				Standard
Item	Error Description	Value (±dB)	Probability	Divisor	(Ci)	Uncertainty (±dB)
		Measuremen	t system		l .	1
1	Amplitude calibration uncertainty	0.35	N	1	1	0.35
2	Probe anisotropy	0.60	R	√3	1	0.35
3	Probe dynamic linearity	0.20	R	√3	1	0.12
4	Probe frequency domain response	0.30	R	√3	1	0.17
5	Probe frequency linear interp. fit	0.15	R	√3	1	0.09
6	Spatial averaging	0.10	R	√3	1	0.06
7	Parasitic E-field sensitivity	0.10	R	√3	1	0.06
8	Detection limit	0.15	R	$\sqrt{3}$	1	0.09
9	Readout electronics	0.00	N	1	1	0.00
10	Probe positioning	0.19	N	1	1	0.19
11	Repeatability	0.10	N	1	1	0.10
12	Surface field reconstruction	0.20	N	1	1	0.20
		Numerical sin	nulations			
13	Grid resolution	0.02	R	√3	1	0.01
14	Tissue parameters	0.00	R	√3	1	0.00
15	Exposure position	0.00	R	$\sqrt{3}$	1	0.00
16	Source representation	0.09	N	1	1	0.09
17	Convergence and power budget	0.00	R	√3	1	0.00
18	Boundary conditions	0.10	R	√3	1	0.06
19	Phantom loading/backscattering	0.10	R	√3	1	0.06
	Combined	uncertainty (k=1)			0.63
	Combined	uncertainty (k=2)			1.27

10. Main Test Instruments

Table 10.1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Near-field Electric and	MAGPy-	3117	2024-08-23	Throo years
0 i	Megnetic Field Sensor System	8H3D+E3DV2	3117	2024-06-23	Three years
02	Near-field Electric and	MAGPy-DASV2	3108	2024-08-23	Three years
02	Megnetic Field Sensor System	WAGPY-DASV2	3106	2024-06-23	Three years
03	Calibration Procedure for	V-Coil350/85V2	1032	2024-08-27	Three years
US.	MAGPy Validation Source	v-C011330/63V2	1032	2024-00-27	Three years
04	Software	DASY8	1	1	/

ANNEX A: Graph Results

Highest Magnetic field strength Plots

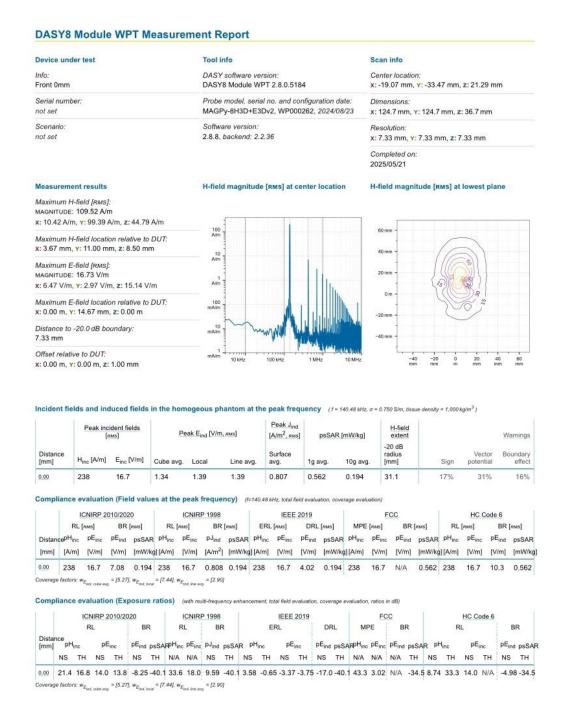


Fig.1

Highest Electric field strength Plots

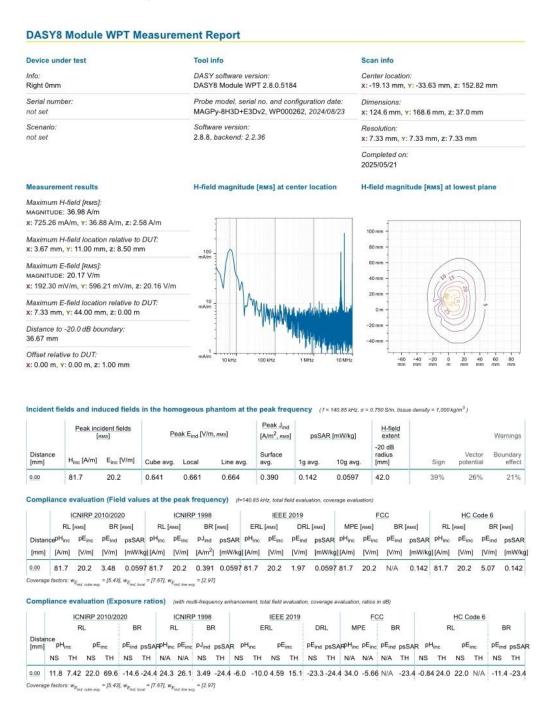
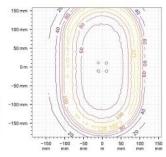


Fig.2

Highest Peak spatial-average SAR Plots



Fig.3



ANNEX B: System Validation Results

DASY8 Module WPT Measurement Report

Device under test	Tool info	Scan info				
Info: 85k	DASY software version: DASY8 Module WPT 2.8.0.5184	Center location: x: 490.00 µm, Y: -47.43 mm, z: 47.80 mm				
Serial number: 1032	Probe model, serial no. and configuration date: MAGPy-8H3D+E3Dv2, WP000262, 2024/08/23	Dimensions: x: 257.0 mm, y: 344.0 mm, z: 36.7 mm				
Scenario: not set	Software version: 2.8.8, backend: 2.2.36	Resolution: x: 7.33 mm, y: 7.33 mm, z: 7.33 mm				
		Completed on: 2025/05/21				
Measurement results	H-field magnitude [RMS] at center location	H-field magnitude [RMS] at lowest plane				
Maximum H-field [RMS]: MAGNITUDE: 131.66 A/m x: 53.41 A/m, y: 96.20 A/m, z: 72.30 A/m	100					
Maximum H-field location relative to DUT: x: 40.33 mm, y: 150.33 mm, z: 8.50 mm	A/m	150 mm - 9				
Maximum E-field [RMS]: MAGNITUDE: 120.46 V/m x: 1.62 V/m, y: 1.09 V/m, z: 120.44 V/m	A/m	50 mm				

x: 40.33 mm, y: 150.33 mm, z: 8.50 mm Maximum E-field [RMS]: MAGNITUDE: 120.46 V/m x: 1.62 V/m, y: 1.09 V/m, z: 120.44 V/m Maximum E-field location relative to DUT: x: 95.33 mm, y: -88.00 mm, z: 0.00 m Distance to -20.0 dB boundary: 176.00 mm Offset relative to DUT: x: 0.00 m, y: 0.00 m, z: 1.00 mm

Incident fields and induced fields in the homogeous phantom at the peak frequency $(f = 85.00 \text{ kHz}, \sigma = 0.750 \text{ S/m}, tissue density} = 1,000 \text{ kg/m}^2)$

		dent fields	Pe	ak E _{ind} [V/	m, aws]	Peak J _{ind} [A/m ² , RMS]	psSA	R [mW/kg]	H-field extent			Warnings
Distance [mm]	H _{inc} [A/m]	E _{inc} [V/m]	Cube avg.	Local	Line avg.	Surface avg.	1g avg.	10g avg.	-20 dB radius [mm]	Sign	Vector potential	Boundary effect
0.00	215 193	120 110	3.82 3.65	3.87 3.69	3.87 3.70	2.67 2.55	8.26 7.59	6.28 5.78	164 165	1% 1%	77% 77%	100% 100%

Compliance evaluation (Field values at the peak frequency) (f=85.00 kHz, total field evaluation, coverage evaluation)

	10	CNIRP 2	010/202	.0		ICNIR	P 1998			IEEE	2019			F	CC			HC C	ode 6	
	RL	RMS]	BR	[RMS]	RL	RMS]	BR	RMS]	ERL	[RMS]	DRL	[RMS]	MPE	[RMS]	BR	[RMS]	RL[RMS]	BR	[RMS]
Distano	epH _{inc}	pEinc	pE_{ind}	psSAR	pH_{inc}	pEinc	pJ_{ind}	psSAR	pH _{inc}	pEinc	pE_{ind}	psSAR	pH _{inc}	pEinc	pE_{ind}	psSAR	pH _{inc}	pE_{inc}	pE _{ind}	psSAR
[mm]	[A/m]	[V/m]	[V/m]	[mW/kg][A/m]	[V/m]	[A/m ²]	[mW/kg][A/m]	[V/m]	[V/m]	[mW/kg] [A/m]	[V/m]	[V/m]	[mW/kg][A/m]	[V/m]	[V/m]	[mW/kg
0.00	215	120	27.7	6.28	215	120	2.67	6.28	215	120	14.5	6.28	215	120	N/A	8.26	215	120	39.7	8.26
2.00	193	110	26.5	5.78	193	110	2.56	5.78	193	110	13.9	5.78	193	110	N/A	7.59	193	110	37.9	7.59

Compliance evaluation (Exposure ratios) (with multi-frequency enhancement, total field evaluation, coverage evaluation, ratios in dB)

		ICI	VIRP 2	010/20	020			CNIR	1998				IEEE .	2019				FC	C				HC C	ode 6		
		R	L		В	R	R	L	В	R		E	RL		DF	RL	ME	PE :	В	R		R	L		В	R
Distar [mm]	nce pH	inc	pΕ	inc	pE _{ind}	psSA	FPH _{inc}	pE _{inc}	pJ _{ind}	psSA	R pH	inc	pEi	nc	pE _{ind}	psSA	ρH _{inc}	pEinc	pE _{ind}	psSAF	R pH	inc	рE	inc	pE _{ind}	psSA
	NS	TH	NS	TH	NS	TH	N/A	N/A	NS	TH	NS	TH	NS	ТН	NS	TH	N/A	N/A	N/A	TH	NS	TH	NS	TH	NS	TH
.00	20.2	N/A	16.5	N/A	7.67	N/A	32.7	15.5	23.9	N/A	2.41	N/A	-0.85	N/A	-1.74	N/A	7.57	8.47	N/A	N/A	7.57	N/A	16.5	N/A	10.8	N/A
.00	19.3	N/A	15.7	N/A	7.28	N/A	31.7	14.7	23.6	N/A	1.48	N/A	-1.64	N/A	-2.13	N/A	6.64	7.67	N/A	N/A	6.64	N/A	15.7	N/A	10.4	N/A

ANNEX C: Probe Calibration Certificate

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

SAICT Shenzhen Certificate No.

MAGPy-8H3D-3117_Aug24

CALIBRATION CERTIFICATE

Object

MAGPy-8H3D+E3DV2 SN:3117

MAGPy-DASV2 SN:3108

Calibration procedure(s)

QA CAL-46.v1

Calibration Procedure for MAGPy-8H3D+E3D

Near-field Electric and Magnetic Field Sensor System

Calibration date

August 23, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}C$ and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Oscilloscope	SN: 112135	25-Sep-23 (No. 17A1162175)	Sep-24
Reference 20 dB Attenuator	SN: CC2552 (20x)	26-Mar-24 (No. 217-04046)	Mar-25
Type-N mismatch	SN: 310982 / 06327	26-Mar-24 (No. 217-04047)	Mar-25

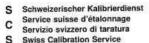
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Network Analyzer E5061B	SN: MY49810822	In house check: Nov-23	In house check: Nov-24
TEM Cell	SN: S6029i	In house check: Nov-23	In house check: Nov-24
Plate Capacitor	SN: 6028i	In house check: Nov-23	In house check: Nov-24
Resonator (160kHz)	SN: 6030)	In house check. Nov-23	In house check: Nov-24

	Name	Function	Signature
Calibrated by	Aidonia Georgiadou	Laboratory Engineer	1951
Approved by	Sven Kühn	Technical Manager	Sia
			Issued: August 23, 2024

Certificate No: MAGPy-8H3D-3117_Aug24

Page 1 of 26

No. 25B01N000968-001-MPE


Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

MAGPy-8H3D-E3D Magnetic Amplitude and Gradient Probe – Eight H-field Sensors, Single E-field sensor Magnetic Amplitude and Gradient Data Acquisition System

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1309-2013, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", November 2013

Methods Applied and Interpretation of Parameters

- · Calibration has been performed after the adjustment of the device.
- Linearity: Calibration of the linearity of the field reading over the specified dynamic range at 161.75 kHz. Influence of offset voltage is included in this measurement.
- · Frequency response: Calibration of the field reading over the specified frequency range from 3.0kHz to 10.0MHz.
- Receiving Pattern: Assessed for H-field polarizations θ, and φ = 0°...360°; θ = 90°, and φ = 0°...360°; for the XYZ sensors (in TEM-Cell at 4 kHz, 40 kHz, 40 kHz and 4 MHz).
- Receiving Pattern: Assessed for E-field polarizations θ, and φ = 0°...360°; θ = 90°, and φ = 0°...360°; for the XYZ sensor (in parallel plate capacitor at 4 kHz, 40 kHz, 400 kHz and 4 MHz).

Calibration Uncertainty

The calibration uncertainty is 0.7dB for the H-field readings and 1.06dB for the E-field readings. The calibration uncertainty is specified over the frequency range from 3.0kHz to 10.0MHz and a dynamic range from 0.1A/m to 3200A/m and from 0.08V/m to 2000V/m respectively.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: MAGPy-8H3D-3117_Aug24 Page 2 of 26

August 23, 2024

Measurement Conditions

Unit Type	MAGPy-8H3D+E3DV2 (SP MGY 303 AA)	3117
	MAGPy-DASV2 (SE UMS 303 AF)	3108
	MAGPy FPGA Board	WP000262
Adjustment Date	Last MAGPy Adjustment	August 23, 2024
Firmware SW Version	MAGPy Firmware	Ver. 1.00
Backend SW Version	MAGPy Backend	Ver. 1.0.2
Calibration SW Version	MAGACAP	Ver. 1.0
	MAGACAP	Ver. 1,0

Dynamic Range

Dynamic Range, H-field, Channel 0

H-fie	Id/(A/m) Ap	plied	H-fie	id/(A/m) Rea	iding	Diff	erence/(d	iB)	car-participantes
×	y	z	×	у	Z	x	у	Z	Tolerance/(dB)
0.390	0.380	0.360	0.410	0.390	0.390	0.43	0.23	0.70	±1.00
0.530	0.510	0.500	0.550	0.510	0.530	0.32	0.00	0.51	±1.00
0.730	0.700	0.680	0.720	0.710	0.720	-0.12	0.12	0.50	±1.00
0.950	0.910	0.890	0.940	0.940	0.910	-0.09	0.28	0.19	±1,00
1.28	1.24	1.20	1.29	1.25	1.22	0.07	0.07	0.14	±1.00
1.76	1.70	1.65	1.77	1.72	1.67	0.05	0.10	0.10	±1,00
2.35	2.26	2.19	2.35	2.28	2.22	0.00	80.0	0.12	±0,20
3.14	3.03	2.93	3.14	3.04	2.95	0.00	0.03	0.06	±0.20
4.26	4.11	3.99	4.26	4.14	3,99	0.00	0.06	0.00	±0.20
5.77	5.57	5.39	5.76	5,59	5.39	-0.02	0.03	0.00	±0,20
7.77	7.50	7.26	7.75	7.51	7.26	-0.02	0.01	0.00	±0.20
10.4	10.0	9.69	10.3	10.0	9.70	-0.08	0.00	0.01	±0.20
14.0	13.5	13,1	14.0	13.6	13.1	0.00	0.06	0.00	±0.20
18.9	18.2	17.7	18.9	18.2	17,7	0.00	0.00	0.00	±0.20
25.5	24.6	23.8	25.4	24.6	23.8	-0.03	0.00	0.00	±0.20
34.0	32.8	31.8	34.1	33.0	32.0	0.03	0.05	0.05	±0.20
45.9	44.3	42.9	46.1	44.6	43.2	0.04	0.06	0.06	±0.20
62.1	60.0	58.1	62.6	60.4	58.5	0.07	0.06	0.06	±0.20
85.5	82.6	80.1	85,2	82.3	79.7	-0.03	-0.03	-0.04	±0.20
112	108	105	111	108	104	-0.08	0.00	-0.08	±0.20
154	148	144	153	148	143	-0.06	0.00	-0.06	±0.20
213	206	200	213	205	199	0.00	-0.04	-0.04	±0.20
295	285	276	296	280	278	0.03	-0.15	0.06	±0.20
435	420	407	426	415	400	-0.18	-0.10	-0.15	±0.20
599	579	562	591	577	556	-0.12	-0.03	-0.09	±0.20
893	864	838	891	870	838	-0.02	0.06	0.00	±0.20
1350	1310	1270	1370	1330	1280	0.13	0.13	0.07	±0.30
1840	1780	1730	1880	1840	1770	0.19	0.29	0.20	±0.30
3010	2910	2830	3110	3040	2930	0.28	0.38	0,30	±0.50
3650	3530	3430	3790	3700	3570	0.33	0.41	0.35	±0.50

SPEAG H-field linearity tolerance criteria¹: ±1.0dB for applied H-fields < 2.0 A/m ±0.2dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m ±0.3dB for applied H-fields ≥ 1000 A/m and < 2000 A/m ±0.4dB for applied H-fields ≥ 2000 A/m and < 3000 A/m ±0.5dB for applied H-fields ≥ 3000 A/m

Certificate No: MAGPy-8H3D-3117_Aug24

Page 3 of 26

¹ Calibration uncertainty not taken into account (shared risk 50%).

August 23, 2024

Dynamic Range, H-field, Channel 1

H-fie	Id/(A/m) App	plied	H-fie	d/(A/m) Rea	ading	Diff	erence/(dB)	
x	У	z	x	У	Z	x	у	Z	Tolerance/(dB)
0.390	0.380	0.380	0.410	0.400	0.390	0.43	0.45	0.23	±1,00
0.530	0.520	0.510	0.550	0.540	0.520	0.32	0.33	0.17	±1.00
0.730	0.710	0.700	0.720	0.710	0,700	-0.12	0.00	0.00	±1.00
0.950	0.920	0.920	0.940	0.920	0.920	-0.09	0.00	0.00	±1.00
1.29	1.25	1.24	1.29	1.27	1.26	0.00	0.14	0.14	±1.00
1.77	1.71	1.71	1.79	1.74	1.71	0.10	0.15	0.00	±1.00
2.36	2.28	2.27	2.37	2.31	2.28	0.04	0.11	0.04	±0.20
3.16	3.06	3.04	3.17	3.07	3.05	0.03	0.03	0.03	±0.20
4.28	4.15	4.12	4,30	4.16	4.12	0.04	0.02	0.00	±0.20
5.80	5.62	5.58	5.80	5.63	5.57	0.00	0.02	-0.02	±0.20
7.81	7.57	7.51	7.81	7.57	7.51	0.00	0.00	0.00	±0.20
10.4	10.1	10.0	10,4	10.1	10.1	0.00	0.00	0.09	±0.20
14.1	13.6	13.5	14.1	13.7	13,6	0.00	0.06	0.06	±0.20
19.0	18.4	18.3	19.0	18.4	18.3	0.00	0.00	0.00	±0.20
25.6	24.8	24.6	25.6	24.8	24.7	0.00	0.00	0.04	±0.20
34.1	33.1	32.9	34.4	33.3	33.1	0.08	0.05	0.05	±0.20
46.1	44.8	44.4	46.4	45.0	44.7	0.06	0.04	0.06	±0.20
62.5	60.6	60.1	62.9	61.0	60.5	0.06	0.06	0.06	±0.20
86.0	83.3	82.8	85.6	83.0	82.4	-0.04	-0.03	-0.04	±0.20
112	109	108	112	109	108	0.00	0.00	0.00	±0.20
155	150	149	154	149	148	-0.06	-0.06	-0.06	±0.20
214	208	207	214	207	206	0.00	-0.04	-0.04	±0.20
296	287	286	298	282	287	0.06	-0.15	0.03	±0.20
437	424	422	428	419	414	-0.18	-0.10	-0.17	±0.20
603	585	581	594	581	575	-0.13	-0.06	-0.09	±0.20
898	872	867	896	877	867	-0.02	0.05	0.00	±0.20
1360	1320	1310	1370	1340	1330	0.06	0.13	0.13	±0.30
1850	1800	1790	1890	1850	1830	0.19	0.24	0.19	±0.30
3030	2940	2930	3130	3060	3030	0.28	0.35	0.29	±0.50
3670	3560	3550	3810	3730	3690	0.33	0.41	0.34	±0.50

- SPEAG H-field linearity tolerance criteria¹:
 ±1.0dB for applied H-fields < 2.0 A/m
 ±0.2dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m
 ±0.3dB for applied H-fields ≥ 1000 A/m and < 2000 A/m
 ±0.4dB for applied H-fields ≥ 2000 A/m and < 3000 A/m
 ±0.5dB for applied H-fields ≥ 3000 A/m

¹Calibration uncertainty not taken into account (shared risk 50%).

August 23, 2024

Dynamic Range, H-field, Channel 2

H-fie	Id/(A/m) Ap	plied	H-fie	Id/(A/m) Rea	iding	Diff	erence/(dB)	
x	y	z	×	У	Z	×	У	Z	Tolerance/(dB)
0.380	0.380	0.380	0.420	0.400	0.400	0.87	0.45	0.45	±1.00
0.520	0.520	0.520	0.550	0.540	0.530	0.49	0.33	0.17	±1,00
0.720	0.710	0.710	0.730	0.710	0,700	0.12	0.00	-0.12	±1,00
0.930	0.920	0.920	0.950	0.920	0.920	0.18	0.00	0.00	±1.00
1.26	1.25	1.25	1.30	1.26	1.26	0.27	0.07	0.07	±1.00
1.73	1.72	1.71	1.76	1.74	1.70	0.15	0.10	-0.05	±1.00
2.31	2.29	2.28	2.35	2.29	2.29	0.15	0.00	0.04	±0.20
3.09	3.06	3.05	3.11	3.06	3.06	0.06	0.00	0.03	±0.20
4,19	4.16	4.14	4.22	4.16	4.15	0.06	0.00	0.02	±0,20
5.67	5.63	5.60	5.71	5.63	5.60	0.06	0.00	0.00	±0.20
7.64	7.58	7,54	7.65	7.57	7.54	0.01	-0.01	0.00	±0.20
10.2	10.1	10.1	10.2	10.1	10,1	0.00	0.00	0.00	±0.20
13.8	13.7	13.6	13.8	13.7	13.6	0.00	0.00	0,00	±0.20
18.6	18.4	18,3	18.6	18.4	18.4	0.00	0.00	0.05	±0.20
25.1	24.9	24.7	25.1	24.9	24.8	0.00	0.00	0.04	±0.20
33.4	33.2	33.0	33.6	33.4	33.2	0.05	0.05	0.05	±0.20
45.2	44.8	44.6	45.4	45.1	44.8	0.04	0.06	0.04	±0.20
61.1	60.7	60.4	61.5	61.0	60.7	0.06	0.04	0.04	±0.20
84.1	83.5	83.1	83.8	83.1	82.8	-0.03	-0.04	-0.03	±0.20
110	109	109	110	109	108	0.00	0.00	-0.08	±0.20
151	150	150	151	150	149	0.00	0.00	-0.06	±0.20
210	208	207	209	207	207	-0.04	-0.04	0.00	±0.20
290	288	287	291	283	288	0.03	-0.15	0.03	±0.20
428	425	423	419	419	418	-0.18	-0.12	-0.14	±0.20
590	586	583	582	582	577	-0.12	-0.06	-0.09	±0.20
879	873	870	877	879	870	-0.02	0.06	0.00	±0.20
1330	1320	1320	1340	1350	1330	0.07	0.20	0.07	±0.30
1810	1800	1790	1850	1850	1840	0.19	0.24	0.24	±0.30
2970	2950	2940	3060	3070	3040	0.26	0.35	0,29	±0.40
3600	3570	3560	3730	3740	3710	0.31	0.40	0.36	±0.50

SPEAG H-field linearity tolerance criteria1:

- ±1.0dB for applied H-fields < 2.0A/m ±0.2dB for applied H-fields ≥ 2.0A/m and < 1000A/m
- ±0.3dB for applied H-fields ≥ 1000 A/m and < 2000 A/m ±0.4dB for applied H-fields ≥ 2000 A/m and < 3000 A/m
- ±0.5dB for applied H-fields ≥ 3000 A/m

¹Calibration uncertainty not taken into account (shared risk 50%).

August 23, 2024

Dynamic Range, H-field, Channel 3

H-fie	Id/(A/m) Ap	plied	H-fie	ld/(A/m) Rea	ding	Diff	erence/(dB)	11.000
×	y	Z	x	y	z	x	У	Z	Tolerance/(dB
0.380	0.380	0.370	0.410	0.400	0.400	0.66	0.45	0.68	±1.00
0.520	0.510	0.500	0.550	0.510	0.530	0.49	0.00	0.51	±1.00
0.710	0.710	0.690	0.730	0.700	0.700	0.24	-0.12	0.12	±1.00
0.930	0.920	0.900	0.930	0.920	0.910	0.00	0.00	0.10	±1.00
1,26	1.25	1.22	1,27	1.27	1.24	0.07	0.14	0.14	±1.00
1.73	1.71	1.67	1.75	1.73	1,70	0.10	0.10	0,15	±1,00
2.30	2.28	2.22	2.32	2.31	2,25	80.0	0.11	0.12	±0.20
3.08	3.05	2.97	3.10	3.06	2.99	0.06	0.03	0.06	±0,20
4.18	4.15	4.04	4.19	4.16	4,05	0.02	0.02	0.02	±0.20
5.66	5.61	5.46	5.68	5.63	5.47	0.03	0.03	0.02	±0,20
7.63	7.56	7.36	7.63	7.57	7.35	0.00	0.01	-0.01	±0.20
10.2	10.1	9.82	10.2	10,1	9.83	0.00	0.00	0.01	±0.20
13.7	13,6	13.3	13.7	13.6	13.3	0.00	0.00	0.00	±0.20
18.5	18.4	17.9	18.5	18.4	17.9	0.00	0.00	0.00	±0,20
25.0	24.8	24.1	25.0	24.8	24.2	0.00	0.00	0.04	±0.20
33.4	33.1	32.2	33.5	33.2	32.4	0.03	0.03	0.05	±0.20
45.1	44.7	43.5	45.3	44.9	43.7	0.04	0.04	0.04	±0,20
61.0	60.5	58.9	61.4	60.8	59.3	0.06	0.04	0.06	±0.20
83.9	83.2	81.1	83.6	82.9	80.8	-0.03	-0.03	-0.03	±0.20
110	109	106	109	108	106	-0.08	-0.08	0,00	±0.20
151	150	146	150	149	145	-0.06	-0.06	-0.06	±0.20
209	207	202	209	207	202	0.00	0.00	0.00	±0.20
289	287	280	291	282	281	0.06	-0.15	0.03	±0.20
427	423	413	418	418	406	-0.19	-0.10	-0.15	±0.20
588	584	569	581	581	563	-0.10	-0.04	-0.09	±0.20
877	870	849	876	875	849	-0.01	0.05	0.00	±0.20
1330	1320	1280	1340	1340	1300	0.07	0.13	0.13	±0.30
1810	1790	1750	1850	1840	1790	0.19	0.24	0,20	±0.30
2960	2940	2870	3060	3040	2970	0.29	0.29	0.30	±0.40
3590	3560	3480	3730	3690	3620	0.33	0.31	0.34	±0.50

Certificate No: MAGPy-8H3D-3117_Aug24

Page 6 of 26

SPEAG H-field linearity tolerance criteria¹:
±1.0dB for applied H-fields < 2.0 A/m
±0.2dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m
±0.3dB for applied H-fields ≥ 1000 A/m and < 2000 A/m
±0.4dB for applied H-fields ≥ 2000 A/m and < 3000 A/m
±0.5dB for applied H-fields ≥ 3000 A/m

¹Calibration uncertainty not taken into account (shared risk 50%).

No. 25B01N000968-001-MPE

MAGPy-8H3D+E3DV2 SN:3117 MAGPy-DASV2 SN:3108

August 23, 2024

Dynamic Range, H-field, Channel 4

H-fie	Id/(A/m) Ap	plied	H-fie	ld/(A/m) Rea	iding	Diff	erence/(dB)	
x	У	z	×	У	2	x	У	Z	Tolerance/(dB)
0.390	0.390	0.380	0.410	0,400	0.400	0.43	0.22	0.45	±1.00
0.520	0.530	0.520	0.550	0.540	0.530	0.49	0.16	0.17	±1.00
0.720	0.730	0.710	0.730	0.730	0.720	0.12	0.00	0.12	±1.00
0.940	0.950	0.920	0.930	0.950	0.930	-0.09	0.00	0.09	±1.00
1.27	1.28	1.25	1.28	1.29	1.26	0.07	0.07	0.07	±1.00
1.74	1.76	1.71	1.74	1.76	1.71	0.00	0.00	0.00	±1.00
2.32	2.34	2.28	2.32	2.35	2.29	0.00	0.04	0,04	±0.20
3.11	3.13	3.05	3.11	3.14	3.05	0.00	0.03	0.00	±0.20
4.21	4.26	4.14	4.22	4.27	4.14	0.02	0.02	0.00	±0.20
5.70	5.76	5.60	5,72	5.77	5.61	0.03	0.02	0.02	±0.20
7.68	7.76	7.54	7.68	7.76	7.55	0.00	0.00	0.01	±0.20
10.2	10.3	10.1	10,2	10.4	10.1	0.00	0.08	0.00	±0.20
13.8	14.0	13.6	13.9	14.1	13.7	0.06	0.06	0.06	±0.20
18.6	18.9	18.4	18.7	18.9	18.4	0.05	0.00	0.00	±0.20
25.2	25.4	24.8	25.2	25.5	24.8	0.00	0.03	0.00	±0.20
33.6	33.9	33.0	33.8	34.1	33.2	0.05	0.05	0.05	±0.20
45.4	45.9	44.6	45.6	46.1	44.8	0.04	0.04	0.04	±0.20
61.4	62.1	60.4	61.8	62.5	60.8	0.06	0.06	0.06	±0.20
84.5	85.4	83.2	84.2	85.0	82.8	-0.03	-0.04	-0.04	±0.20
111	112	109	110	111	108	-0.08	-0.08	-0.08	±0.20
152	154	150	152	153	149	0.00	-0.06	-0.06	±0.20
211	213	208	210	212	207	-0.04	-0.04	-0.04	±0.20
291	294	287	293	289	289	0.06	-0.15	0.06	±0.20
430	435	423	421	429	416	-0.18	-0.12	-0.14	±0.20
593	599	584	585	596	578	-0.12	-0.04	-0.09	±0.20
883	893	870	882	899	871	-0.01	0.06	0.01	±0.20
1340	1350	1320	1350	1380	1340	0.06	0.19	0.13	±0.30
1820	1840	1800	1860	1900	1840	0.19	0.28	0.19	±0.30
2980	3010	2940	3080	3140	3050	0.29	0.37	0.32	±0.50
3610	3650	3570	3760	3820	3710	0.35	0.40	0.33	±0.50

SPEAG H-field linearity tolerance criteria¹:
±1.0dB for applied H-fields < 2.0A/m
±0.2dB for applied H-fields ≥ 2.0A/m and < 1000A/m
±0.3dB for applied H-fields ≥ 1000A/m and < 2000A/m
±0.4dB for applied H-fields ≥ 2000A/m and < 3000A/m
±0.5dB for applied H-fields ≥ 3000A/m

¹ Calibration uncertainty not taken into account (shared risk 50%).

No. 25B01N000968-001-MPE

MAGPy-8H3D+E3DV2 SN:3117 MAGPy-DASV2 SN:3108

August 23, 2024

Dynamic Range, H-field, Channel 5

H-fie	Id/(A/m) Ap	plied	H-fie	Id/(A/m) Rea	ding	Diff	erence/(dB)	5000
x	y	z	x	У	z	x	У	Z	Tolerance/(dB)
0.390	0.390	0.390	0.410	0.420	0.420	0.43	0.64	0.64	±1.00
0.520	0.530	0.530	0.550	0.570	0.550	0.49	0.63	0.32	±1.00
0.720	0.730	0.720	0.730	0.730	0,730	0.12	0.00	0.12	±1.00
0.940	0.950	0.940	0.950	0.960	0.960	0.09	0.09	0.18	±1.00
1.27	1.28	1.28	1.27	1.31	1,31	0.00	0.20	0.20	±1.00
1.74	1.76	1.75	1.75	1.77	1.77	0.05	0.05	0.10	±1.00
2.32	2.35	2.33	2.33	2.37	2.37	0.04	0.07	0.15	±0.20
3.11	3.14	3.12	3.11	3.16	3,14	0.00	0.06	0.06	±0.20
4.22	4.27	4.24	4.23	4.28	4.26	0.02	0.02	0.04	±0.20
5.71	5.77	5.73	5.73	5.77	5.75	0.03	0.00	0.03	±0.20
7.69	7.78	7.72	7.71	7.78	7.73	0.02	0.00	0.01	±0.20
10.3	10.4	10,3	10.3	10.4	10.3	0.00	0.00	0.00	±0.20
13.8	14.0	13.9	13.9	14.0	13.9	0.06	0.00	0.00	±0.20
18.7	18.9	18.8	18.7	18.9	18.8	0.00	0.00	0.00	±0.20
25.2	25.5	25.3	25.2	25.5	25.4	0.00	0.00	0.03	±0.20
33.6	34.0	33.8	33.8	34.2	34.0	0.05	0.05	0.05	±0.20
45.5	46.0	45.7	45.7	46.2	45.9	0.04	0.04	0.04	±0.20
61.5	62.2	61.8	61.9	62.6	62.2	0.06	0.06	0.06	±0.20
84.7	85.6	85.2	84.3	85.3	84.8	-0.04	-0.03	-0.04	±0.20
111	112	111	110	112	111	-0.08	0.00	0.00	±0.20
152	154	153	152	153	153	0.00	-0.06	0.00	±0.20
211	213	212	210	213	212	-0.04	0.00	0.00	±0.20
292	295	294	293	290	295	0.03	-0.15	0.03	±0.20
430	436	433	422	431	426	-0.16	-0.10	-0.14	±0,20
594	601	598	585	598	592	-0.13	-0.04	-0.09	±0.20
884	896	891	882	902	892	-0.02	0.06	0.01	±0.20
1340	1350	1350	1350	1380	1370	0.06	0.19	0.13	±0.30
1820	1850	1840	1860	1900	1890	0.19	0.23	0.23	±0.30
2980	3020	3010	3090	3150	3120	0.31	0.37	0.31	±0.50
3620	3660	3650	3760	3830	3800	0.33	0.39	0.35	±0.50

SPEAG H-field linearity tolerance criteria¹:
±1.0dB for applied H-fields < 2.0 A/m
±0.2dB for applied H-fields ≥ 2.0 A/m and < 1000 A/m
±0.3dB for applied H-fields ≥ 1000 A/m and < 2000 A/m
±0.4dB for applied H-fields ≥ 2000 A/m and < 3000 A/m
±0.5dB for applied H-fields ≥ 3000 A/m

Certificate No: MAGPy-8H3D-3117_Aug24

Page 8 of 26

¹Calibration uncertainty not taken into account (shared risk 50%)-

August 23, 2024

Dynamic Range, H-field, Channel 6

H-fie	Id/(A/m) Ap	plied	H-fle	d/(A/m) Rea	ding	Diff	erence/(dB)	10000
x	y	z	x	У	Z	x	У	Z	Tolerance/(dB
0.390	0.390	0.380	0.430	0.410	0.410	0.85	0.43	0.66	±1.00
0.530	0.530	0.520	0,570	0.530	0.540	0.63	0.00	0.33	±1.00
0.730	0.730	0.710	0.760	0.720	0,730	0.35	-0.12	0.24	±1.00
0.950	0.950	0.930	0.970	0.950	0.940	0.18	0.00	0.09	±1.00
1.29	1.28	1.26	1.31	1.29	1.28	0.13	0.07	0.14	±1.00
1.77	1.76	1.73	1.80	1.77	1.73	0.15	0.05	0.00	±1.00
2.36	2.35	2.30	2.38	2.37	2.33	0.07	0.07	0.11	±0.20
3.15	3.14	3.08	3.18	3.15	3.09	0.08	0.03	0.03	±0,20
4.28	4.27	4.18	4.30	4,28	4,17	0.04	0.02	-0.02	±0.20
5.79	5.77	5,66	5.80	5.79	5.62	0.01	0.03	-0.06	±0.20
7.80	7.77	7.62	7.80	7,79	7.57	0.00	0.02	-0.06	±0.20
10.4	10.4	10.2	10.4	10.4	10,1	0.00	0.00	-0.09	±0.20
14.0	14.0	13.7	14,1	14.0	13.7	0.06	0.00	0.00	±0.20
18.9	18.9	18.5	19.0	18.9	18.5	0.05	0.00	0.00	±0.20
25.6	25.5	25.0	25.6	25.6	25.0	0.00	0.03	0.00	±0.20
34.1	34.0	33.4	34.3	34.2	33.5	0.05	0.05	0.03	±0.20
46.1	46.0	45.1	46.3	46.2	45.3	0.04	0.04	0.04	±0.20
62.4	62.2	61.0	62.8	62.6	61.4	0.06	0.06	0.06	±0.20
85.9	85.6	84.0	85.5	85.2	83.7	-0.04	-0.04	-0.03	±0.20
112	112	110	112	112	110	0.00	0.00	0.00	±0.20
154	154	151	154	153	151	0.00	-0.06	0.00	±0.20
214	213	210	213	213	209	-0.04	0.00	-0.04	±0.20
296	295	290	297	290	292	0.03	-0.15	0.06	±0.20
436	436	428	428	430	420	-0.16	-0.12	-0.16	±0.20
602	601	590	594	598	583	-0.12	-0.04	-0.10	±0.20
897	895	879	896	902	880	-0.01	0.07	0.01	±0.20
1360	1350	1330	1370	1380	1350	0.06	0.19	0.13	±0.30
1850	1850	1810	1890	1900	1860	0.19	0.23	0.24	±0.30
3030	3020	2970	3130	3150	3080	0.28	0.37	0.32	±0.50
3670	3660	3600	3810	3830	3750	0.33	0.39	0.35	±0.50

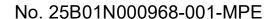
- SPEAG H-field linearity tolerance criteria 1 : $\pm 1.0 \, \text{dB}$ for applied H-fields $< 2.0 \, \text{A/m}$ $\pm 0.2 \, \text{dB}$ for applied H-fields $\geq 2.0 \, \text{A/m}$ and $< 1000 \, \text{A/m}$
 - ± 0.3 dB for applied H-fields ≥ 1000 A/m and < 2000 A/m ± 0.4 dB for applied H-fields ≥ 2000 A/m and < 3000 A/m ± 0.5 dB for applied H-fields ≥ 3000 A/m

¹Calibration uncertainty not taken into account (shared risk 50%).

No. 25B01N000968-001-MPE

MAGPy-8H3D+E3DV2 SN:3117 MAGPy-DASV2 SN:3108

August 23, 2024


Dynamic Range, H-field, Channel 7

H-fie	Id/(A/m) Ap	plied	H-fie	ld/(A/m) Rea	iding	Diff	erence/(d	iB)	12 Y 10020
x	y	z	×	у	Z	x	У	Z	Tolerance/(dB)
0.390	0.390	0.370	0.410	0.370	0.380	0.43	-0.46	0.23	±1.00
0.530	0.530	0.510	0.550	0.520	0.520	0.32	-0.17	0.17	±1.00
0.730	0.720	0.700	0.730	0.730	0.680	0.00	0.12	-0.25	±1.00
0.950	0.940	0.910	0.940	0.960	0.910	-0.09	0.18	0.00	±1.00
1.28	1.28	1.23	1.29	1.29	1.24	0.07	0.07	0.07	±1.00
1.76	1.76	1.68	1.79	1.75	1.69	0.15	-0.05	0.05	±1.00
2.35	2.34	2.24	2.36	2.35	2.24	0.04	0.04	0.00	±0.20
3.14	3.13	3.00	3.16	3.12	3.00	0.06	-0.03	0.00	±0,20
4.27	4.25	4.07	4.30	4.25	4.07	0.06	0.00	0,00	±0,20
5.77	5.75	5.50	5.79	5.76	5,50	0.03	0.02	0.00	±0.20
7.77	7.75	7.41	7.78	7.74	7.41	0.01	-0.01	0.00	±0.20
10.4	10.3	9.90	10.4	10.3	9.92	0.00	0.00	0.02	±0.20
14.0	14.0	13.4	14.1	14.0	13.4	0.06	0.00	0.00	±0.20
18.9	18.8	18.0	18.9	18.8	18.1	0.00	0.00	0.05	±0.20
25.5	25.4	24.3	25.5	25.5	24.4	0.00	0.03	0.04	±0.20
34.0	33.9	32.5	34.2	34.1	32.7	0.05	0.05	0.05	±0.20
45.9	45.8	43.9	46.1	46.1	44.1	0.04	0.06	0.04	±0.20
62.2	62.0	59.4	62.6	62.4	59.8	0.06	0.06	0.06	±0.20
85.6	85.3	81.8	85.2	85.0	81.4	-0.04	-0.03	-0.04	±0.20
112	112	107	111	111	107	-0.08	-0.08	0.00	±0.20
154	153	147	153	153	146	-0.06	0.00	-0.06	±0.20
213	212	204	213	212	203	0.00	0.00	-0.04	±0.20
295	294	282	296	289	283	0.03	-0.15	0.03	±0.20
435	434	416	426	429	409	-0.18	-0.10	-0.15	±0.20
600	599	574	592	595	567	-0.12	-0.06	-0.11	±0.20
894	892	855	892	898	855	-0.02	0.06	0.00	±0.20
1350	1350	1290	1370	1380	1310	0.13	0.19	0.13	±0.30
1840	1840	1760	1880	1900	1810	0.19	0.28	0.24	±0.30
3020	3010	2890	3120	3140	2990	0.28	0.37	0.30	±0.50
3660	3650	3500	3800	3820	3640	0.33	0.40	0.34	±0.50

SPEAG H-field linearity tolerance criteria1:

- ±1.0dB for applied H-fields < 2.0A/m ±0.2dB for applied H-fields ≥ 2.0A/m and < 1000A/m ±0.3dB for applied H-fields ≥ 1000A/m and < 2000A/m ±0.4dB for applied H-fields ≥ 2000A/m and < 3000A/m
- ±0.5dB for applied H-fields ≥ 3000 A/m

Calibration uncertainty not taken into account (shared risk 50%).

August 23, 2024

Dynamic Range, E-field, Channel 0

E-fie	Id/(V/m) App	lied	E-fie	id/(V/m) Rea	ding	Diff	erence/(dB)	Tolerance/(dB)			
x	y	z	×	у	z	x	У	Z	x	У	Z	
0.330	0.200	0.070	0.340	0.200	0.070	0.26	0.00	0.00	±5.00	±5.00	±5.00	
0.450	0.270	0.100	0.450	0.270	0.110	0.00	0.00	0.83	±5.00	±5.00	±5.00	
0.620	0.370	0.140	0.620	0.380	0.130	0.00	0.23	-0.64	±5.00	±5.00	±5.00	
0.810	0.490	0.180	0.830	0.490	0.160	0.21	0.00	-1.02	±5.00	±5.00	±5.00	
1.09	0.660	0.240	1.10	0.660	0.230	0.08	0.00	-0.37	±5.00	±5.00	±5.00	
1.50	0.900	0.330	1.52	0.900	0.300	0.12	0.00	-0.83	±5.00	±5.00	±5.00	
2.00	1.20	0.440	2.03	1.20	0.420	0.13	0.00	-0.40	±1.00	±5.00	±5.00	
2.68	1,61	0.590	2.70	1.61	0.570	0.06	0.00	-0.30	±1.00	±5.00	±5.00	
3.64	2.19	0.800	3.66	2.18	0.780	0.05	-0.04	-0.22	±1.00	±1.00	±5,0	
4.92	2.96	1.09	4.95	2.95	1.05	0.05	-0.03	-0.32	±1,00	±1.00	±5.0	
6.63	3.99	1.46	6.66	3.97	1.42	0.04	-0.04	-0.24	±1.00	±1.00	±5.0	
8.84	5.33	1.95	8.88	5.32	1.89	0.04	-0.02	-0.27	±1.00	±1.00	±5.0	
11.9	7.20	2.63	12.0	7.17	2.54	0.07	-0.04	-0.30	±1.00	±1.00	±1.0	
16.1	9.71	3.55	16.1	9.67	3.46	0.00	-0.04	-0.22	±1.00	±1.00	±1.0	
21.7	13.1	4.79	21.8	13.0	4.63	0.04	-0.07	-0.30	±1.00	±1.00	±1.0	
29.0	17.5	6.40	29.3	17.5	6.22	0.09	0.00	-0.25	±1.00	±1.00	±1.0	
39.2	23.6	8.64	39.5	23.6	8.41	0.07	0.00	-0.23	±1.00	±1.00	±1.0	
53.0	32.0	11.7	53.5	32.0	11.4	0.08	0.00	-0.23	±1.00	±1.00	±1.0	
73.0	44.0	16.1	72.8	43.5	15.5	-0.02	-0.10	-0.33	±1.00	±1.00	±1.0	
95.5	57.5	21.1	95.4	57.0	20.3	-0.01	-0.08	-0.34	±1.00	±1.00	±1.0	
131	79.0	29.0	131	78.4	28.0	0.00	-0.07	-0.30	±1.00	±1.00	±1,0	
182	110	40.1	182	109	38,8	0.00	-0.08	-0.29	±1,00	±1.00	±1.0	
252	152	55.5	254	152	54.1	0.07	0.00	-0.22	±1.00	±1.00	±1.0	
371	224	81,8	359	214	80,3	-0.29	-0.40	-0.16	±1.00	±1,00	±1.0	
512	309	113	499	297	111	-0.22	-0.34	-0.16	±1.00	±1.00	±1.0	
763	460	168	754	449	168	-0.10	-0.21	0.00	±1.00	±1.00	±1.0	
1150	696	254	1160	689	258	0.08	-0.09	0.14	±1.00	±1.00	±1.0	
1570	948	347	1590	949	356	0.11	0.01	0.22	±1.00	±1.00	±1.0	
2580	1550	568	2640	1570	560	0.20	0.11	-0.12	±1.00	±1.00	±1.0	
3120	1880	688	3220	1920	683	0.27	0.18	-0.06	±1.00	±1.00	±1.0	

SPEAG E-field linearity tolerance criteria¹: ±5.0dB for applied E-field < 2V/m ±1.0dB for applied E-field ≥ 2V/m

¹ Calibration uncertainty not taken into account (shared risk 50%).

August 23, 2024

Frequency Response

Frequency Response, H-field, Channel 0

	H-field	/(A/m) Ap	olied	H-field	/(A/m) Rea	Diff	erence/(29 (1020		
f/(Hz)	x	y	z	x	у	z	x	у	Z	Tolerance/(dB)
3000	1.54	1.54	1.54	1.54	1.54	1.54	0.00	0.00	0.00	±0.3
3200	1.54	1.54	1.54	1.54	1,55	1.53	0.00	0.06	-0.06	±0.3
4000	1.53	1.53	1.53	1.53	1.53	1,53	0.00	0.00	0.00	±0.3
5200	1.52	1.52	1.52	1.52	1.52	1.53	0.00	0.00	0.06	±0.3
6600	1.51	1.51	1.51	1.51	1.50	1.50	0.00	-0.06	-0.06	±0.3
8200	1.50	1.50	1.50	1.50	1.50	1.50	0.00	0.00	0.00	±0.3
9000	1,49	1.49	1.49	1.49	1.49	1.49	0.00	0.00	0.00	±0.3
10600	4.32	4.30	4.29	4.34	4.31	4.29	0.04	0.02	0.00	±0.3
13400	4.34	4.31	4.30	4.34	4.32	4.30	0.00	0.02	0.00	±0.3
17000	4.34	4.31	4.30	4.35	4.31	4.31	0.02	0.00	0.02	±0.3
21400	4.36	4.33	4.32	4.36	4.32	4.31	0.00	-0.02	-0.02	±0.3
27200	4.36	4.32	4,31	4.36	4.33	4.32	0.00	0.02	0.02	±0.3
34400	4.36	4.33	4.32	4.35	4.33	4.32	-0.02	0.00	0.00	±0.3
40000	4.35	4.33	4.32	4,36	4.33	4.32	0.02	0.00	0.00	±0.3
43600	4.34	4.32	4.31	4.34	4.31	4.30	0.00	-0.02	-0.02	±0.3
55400	4.33	4.31	4.30	4.33	4.31	4.30	0.00	0.00	0.00	±0.3
70000	4.32	4.30	4.29	4.32	4.30	4.29	0.00	0.00	0.00	±0.3
88800	4.30	4.28	4.27	4.31	4,29	4.27	0.02	0.02	0.00	±0.3
112400	4.29	4.27	4.26	4.30	4.28	4.26	0.02	0.02	0.00	±0.3
142400	4.27	4.25	4.24	4.28	4.26	4.24	0.02	0.02	0.00	±0.3
161750	4,25	4.24	4.22	4.26	4.24	4.23	0.02	0.00	0.02	±0.3
180400	4.24	4.23	4.21	4.25	4.23	4.22	0.02	0.00	0.02	±0.3
228400	4.21	4.19	4.17	4.23	4.20	4.18	0.04	0.02	0.02	±0.3
289400	4.17	4.16	4.14	4.18	4.16	4.14	0.02	0.00	0.00	±0.3
366400	4.13	4.12	4.11	4,14	4.13	4.11	0.02	0.02	0.00	±0.3
400000	4.12	4.10	4.09	4.12	4.11	4.10	0.00	0.02	0.02	±0.3
464000	4.09	4.07	4.06	4.09	4.08	4.07	0.00	0.02	0.02	±0.3
587800	4.05	4.03	4.02	4.05	4.04	4.03	0.00	0.02	0.02	±0.3
744200	4.00	3.98	3.98	4.00	3.99	3.98	0.00	0.02	0.00	±0.3
942600	3.98	3.98	3.97	3.99	3.98	3.97	0.02	0.00	0.00	±0.3
1193600	3.96	3.95	3.94	3.97	3.95	3.95	0.02	0.00	0.02	±0.3
1511600	3.96	3.94	3.94	3.96	3,95	3.94	0.00	0.02	0.00	±0.3
1914400	3.94	3.92	3.92	3.95	3.94	3.92	0.02	0.04	0.00	±0.3
2424400	3.92	3.91	3.90	3.93	3.91	3.91	0.02	0.00	0.02	±0.3
3070200	3.90	3.88	3.87	3.90	3.88	3.87	0.00	0.00	0.00	±0.3
3888000	3.84	3.82	3.81	3.85	3.83	3.81	0.02	0.02	0.00	±0.3
4000000	3.83	3.82	3.81	3.84	3.82	3.81	0.02	0.00	0.00	±0.3
4923800	3.77	3.75	3.74	3.77	3.75	3.74	0.00	0.00	0.00	±0.3
6235400	3.66	3.65	3.64	3.66	3.65	3.65	0.00	0.00	0.02	±0.3
7896400	3.51	3.50	3.50	3.52	3.50	3.49	0.02	0.00	-0.02	±0.3
0000000	3.37	3.36	3.36	3.37	3.38	3,36	0.00	0.05	0.00	±0.3

SPEAG H-field frequency response tolerance criteria¹: ±0.3dB for applied H-fields at calibration points from 3kHz to 10MHz

Certificate No: MAGPy-8H3D-3117_Aug24

Page 12 of 26

¹Calibration uncertainty not taken into account (shared risk 50%).

August 23, 2024

Frequency Response, H-field, Channel 1

	H-field	H-field/(A/m) Applied			/(A/m) Rea	ding	10005	erence/(
1/(Hz)	×	y	z	x	y	Z	x	У	2	Tolerance/(dB
3000	1.54	1.54	1.54	1,55	1.54	1,54	0.06	0.00	0.00	±0.3
3200	1.54	1.54	1.54	1.54	1.54	1.53	0.00	0.00	-0.06	±0.3
4000	1,53	1.53	1.53	1.52	1.53	1.53	-0.06	0.00	0.00	±0.3
5200	1.52	1.52	1.52	1.52	1.51	1.53	0.00	-0.06	0.06	±0.3
6600	1.51	1.51	1.51	1.51	1.50	1.50	0.00	-0.06	-0.06	±0.3
8200	1.50	1.50	1.50	1.50	1.49	1.50	0.00	-0.06	0.00	±0.3
9000	1.49	1.49	1.49	1.49	1.49	1.49	0.00	0.00	0.00	±0.3
10600	4.32	4.30	4.29	4.30	4.30	4.32	-0.04	0.00	0.06	±0.3
13400	4.34	4.31	4.30	4.34	4.30	4.31	0.00	-0.02	0.02	±0.3
17000	4.34	4,31	4,30	4,33	4.30	4.29	-0.02	-0.02	-0.02	±0.3
21400	4.36	4.33	4.32	4,35	4.32	4.30	-0.02	-0.02	-0.04	±0.3
27200	4.36	4.32	4,31	4.36	4.31	4.32	0.00	-0.02	0.02	±0.3
34.400	4,36	4.33	4.32	4.35	4.32	4.33	-0.02	-0.02	0.02	±0,3
40000	4.35	4.33	4.32	4.35	4.32	4.32	0.00	-0.02	0.00	±0.3
43600	4.34	4.32	4.31	4.34	4.31	4.32	0.00	-0.02	0.02	±0.3
55400	4.33	4.31	4.30	4.33	4.30	4.29	0.00	-0.02	-0.02	±0.3
70000	4.32	4.30	4.29	4.32	4,30	4.28	0.00	0.00	-0.02	±0.3
88800	4.30	4.28	4,27	4.30	4.28	4.27	0.00	0.00	0.00	±0,3
112400	4.29	4.27	4.26	4.29	4.27	4.27	0.00	0.00	0.02	±0.3
142400	4.27	4.25	4.24	4.28	4.25	4.25	0.02	0.00	0.02	±0.3
161750	4.25	4.24	4.22	4.26	4.23	4.23	0.02	-0.02	0.02	±0.3
180 400	4.24	4.23	4.21	4.25	4.22	4,21	0.02	-0.02	0.00	±0.3
228400	4.21	4.19	4.17	4.22	4.18	4.19	0.02	+0.02	0.04	±0.3
289 400	4.17	4.16	4.14	4.18	4,15	4.15	0.02	-0.02	0.02	±0.3
366400	4.13	4.12	4.11	4.14	4.11	4.12	0.02	-0.02	0.02	±0.3
400 000	4.12	4.10	4.09	4.12	4.11	4.10	0.00	0.02	0.02	±0.3
464000	4.09	4.07	4.06	4.10	4.08	4.07	0.02	0.02	0.02	±0.3
587800	4.05	4.03	4.02	4.05	4.02	4.03	0.00	-0.02	0.02	±0.3
744200	4.00	3.98	3.98	4.00	3.98	3.98	0.00	0.00	0.00	±0.3
942600	3.98	3.98	3.97	3.99	3.98	3.97	0.02	0.00	0.00	±0.3
1193600	3.96	3.95	3.94	3.97	3.95	3.95	0.02	0.00	0.02	±0.3
1511600	3.96	3.94	3,94	3,96	3.94	3,94	0.00	0.00	0.00	±0.3
1914400	3.94	3.92	3.92	3.94	3.93	3.92	0.00	0.02	0.00	±0.3
2424400	3.92	3.91	3.90	3.93	3.92	3.91	0.02	0.02	0.02	±0.3
3070200	3.90	3.88	3.87	3.90	3.88	3.88	0.00	0.00	0.02	±0.3
3888000	3.84	3.82	3.81	3.85	3.83	3.81	0.02	0.02	0.00	±0.3
4000000	3.83	3.82	3.81	3.84	3.82	3.81	0.02	0.00	0.00	±0.3
4923800	3.77	3.75	3.74	3.77	3.75	3.75	0.00	0.00	0.02	±0.3
6235400	3.66	3.65	3.64	3.66	3.65	3.64	0.00	0.00	0.00	±0.3
7896400	3.51	3.50	3.50	3.52	3.50	3.50	0.02	0.00	0.00	±0.3
10000000	3.37	3.36	3.36	3.38	3.35	3.34	0.03	-0.03	-0.05	±0.3

SPEAG H-field frequency response tolerance criteria¹:
±0.3dB for applied H-fields at calibration points from 3kHz to 10MHz

¹Calibration uncertainty not taken into account (shared risk 50%).

August 23, 2024

Frequency Response, H-field, Channel 2

	H-field	/(A/m) App	olled	H-field	/(A/m) Rea		1000000	erence/(2017		
1/(Hz)	×	y	2	x	У	Z	x	У	Z	Tolerance/(dB)	
3000	1,54	1.54	1.54	1.54	1.54	1.57	0.00	0.00	0.17	±0.3	
3200	1.54	1.54	1.54	1.55	1.55	1.54	0.06	0.06	0.00	±0.3	
4000	1.53	1.53	1.53	1.53	1.53	1,55	0.00	0.00	0.11	±0.3	
5200	1.52	1.52	1.52	1.51	1.52	1.54	-0.06	0.00	0.11	±0.3	
6600	1.51	1,51	1.51	1.51	1.50	1.52	0.00	-0.06	0.06	±0.3	
8200	1.50	1,50	1.50	1.49	1.49	1.51	-0.06	-0.06	0.06	±0.3	
9000	1.49	1.49	1.49	1.49	1.49	1.50	0.00	0.00	0.06	±0.3	
10600	4.32	4.30	4.29	4,34	4.32	4.27	0.04	0.04	-0.04	±0.3	
13400	4.34	4.31	4.30	4.34	4.31	4.31	0.00	0.00	0.02	±0.3	
17000	4.34	4.31	4,30	4.34	4.29	4.31	0.00	-0.04	0.02	±0,3	
21400	4.36	4.33	4.32	4.37	4.33	4.31	0.02	0.00	-0.02	±0.3	
27200	4.36	4,32	4.31	4.35	4.33	4.32	-0.02	0.02	0.02	±0.3	
34400	4.36	4.33	4.32	4.37	4.33	4.32	0.02	0.00	0.00	±0.3	
40000	4.35	4.33	4.32	4.35	4.34	4.32	0.00	0.02	0.00	±0.3	
43600	4.34	4.32	4.31	4.35	4.32	4.30	0.02	0.00	-0.02	±0.3	
55400	4.33	4.31	4.30	4.33	4.31	4.30	0.00	0.00	0.00	±0.3	
70000	4.32	4.30	4.29	4.32	4.30	4,30	0.00	0.00	0.02	±0.3	
88800	4.30	4.28	4.27	4.31	4.28	4.28	0.02	0.00	0.02	±0.3	
112400	4.29	4.27	4.26	4.29	4.27	4,27	0.00	0.00	0.02	±0.3	
142400	4.27	4.25	4.24	4.28	4.26	4,25	0.02	0.02	0.02	±0.3	
161750	4.25	4.24	4.22	4.25	4.24	4.23	0,00	0.00	0.02	±0.3	
180400	4.24	4.23	4.21	4.25	4.23	4.22	0.02	0.00	0.02	±0.3	
228400	4.21	4.19	4.17	4.22	4,19	4.18	0.02	0.00	0.02	±0.3	
289400	4.17	4.16	4.14	4.18	4.15	4.15	0.02	-0.02	0.02	±0.3	
366400	4.13	4.12	4.11	4.15	4.13	4.12	0.04	0.02	0.02	±0.3	
400 000	4.12	4.10	4.09	4.13	4.10	4.10	0.02	0.00	0.02	±0,3	
464000	4.09	4.07	4.06	4.10	4.08	4.06	0.02	0.02	0.00	±0.3	
587800	4.05	4.03	4.02	4.05	4.04	4.03	0.00	0.02	0.02	±0.3	
744200	4.00	3.98	3.98	4.00	3.99	3.98	0.00	0.02	0.00	±0.3	
942600	3.98	3,98	3.97	3.99	3.98	3.97	0.02	0.00	0.00	±0.3	
1193600	3.96	3.95	3.94	3.97	3.95	3.95	0.02	0.00	0.02	±0.3	
1511600	3.96	3.94	3.94	3.96	3,94	3.94	0.00	0.00	0.00	±0.3	
1914400	3,94	3,92	3.92	3.94	3.93	3.92	0.00	0.02	0.00	±0.3	
2424400	3.92	3.91	3.90	3.93	3,91	3.91	0.02	0:00	0.02	±0.3	
3070200	3.90	3.88	3.87	3.90	3.89	3.88	0.00	0.02	0.02	±0.3	
3888000	3.84	3.82	3.81	3.85	3.82	3.82	0.02	0.00	0.02	±0.3	
4000000	3.83	3.82	3.81	3.84	3.82	3.81	0.02	0.00	0.00	±0.3	
4923800	3.77	3.75	3.74	3.77	3.75	3.75	0.00	0.00	0.02	±0.3	
6235400	3.66	3.65	3.64	3.65	3.65	3.64	-0.02	0.00	0.00	±0.3	
7896400	3.51	3.50	3.50	3.52	3.50	3.51	0.02	0.00	0.02	±0.3	
0000000	3.37	3.36	3.36	3.37	3,35	3.36	0.00	-0.03	0.00	±0.3	

SPEAG H-field frequency response tolerance criteria¹:
±0.3dB for applied H-fields at calibration points from 3kHz to 10MHz

Certificate No: MAGPy-8H3D-3117_Aug24

Page 14 of 26

¹ Calibration uncertainty not taken into account (shared risk 50%).

August 23, 2024

Frequency Response, H-field, Channel 3

	H-field	1/(A/m) App	olied	H-field	/(A/m) Rea	ding	Diff	erence/(d		2000 MANAGE	
1/(Hz)	x I	y	z	x	у	Z	x	У	Z	Tolerance/(dB	
3000	1.54	1.54	1.54	1,54	1.54	1.54	0.00	0.00	0.00	±0.3	
3200	1.54	1,54	1.54	1.54	1.55	1.53	0.00	0.06	-0.06	±0.3	
4000	1.53	1.53	1.53	1.52	1.53	1.53	-0.06	0.00	0.00	±0.3	
5200	1.52	1.52	1.52	1.52	1.52	1.53	0.00	0.00	0.06	±0.3	
6600	1.51	1.51	1.51	1.50	1.50	1.51	-0.06	-0.06	0.00	±0,3	
8200	1.50	1.50	1.50	1.50	1.50	1.50	0.00	0.00	0.00	±0.3	
9000	1.49	1,49	1.49	1,49	1,49	1,49	0.00	0.00	0.00	±0.3	
10600	4.32	4.30	4.29	4.33	4.29	4.26	0.02	-0.02	-0.06	±0.3	
13400	4.34	4.31	4.30	4.34	4.31	4.31	0.00	0.00	0.02	±0.3	
17000	4.34	4,31	4.30	4.33	4.31	4.30	~0.02	0.00	0.00	±0.3	
21400	4.36	4.33	4.32	4,35	4.33	4.33	-0.02	0.00	0.02	±0.3	
27200	4.36	4.32	4,31	4.35	4.33	4.33	-0.02	0.02	0.04	±0.3	
34400	4.36	4.33	4.32	4.35	4.33	4,32	-0.02	0.00	0.00	±0.3	
40000	4.35	4.33	4.32	4.34	4.33	4.31	-0.02	0.00	-0.02	±0.3	
43600	4.34	4.32	4.31	4.33	4.31	4.31	-0.02	-0.02	0.00	±0.3	
55400	4.33	4.31	4.30	4.33	4.31	4.30	0.00	0.00	0.00	±0,3	
70000	4.32	4.30	4.29	4.32	4.30	4.29	0.00	0.00	0.00	±0.3	
88800	4.30	4.28	4.27	4.30	4.28	4.27	0.00	0.00	0.00	±0.3	
112400	4.29	4.27	4.26	4.29	4.28	4.26	0.00	0.02	0.00	±0.3	
142400	4.27	4.25	4.24	4.28	4.26	4.24	0.02	0.02	0.00	±0.3	
161750	4.25	4.24	4.22	4.26	4.24	4.22	0.02	0.00	0.00	±0,3	
180400	4.24	4.23	4.21	4.25	4.23	4.21	0.02	0.00	0.00	±0,3	
228400	4.21	4.19	4.17	4.22	4.19	4.18	0.02	0.00	0.02	±0.3	
289400	4.17	4.16	4.14	4.17	4.16	4.15	0.00	0.00	0.02	±0.3	
366400	4.13	4.12	4.11	4.14	4.13	4.11	0.02	0.02	0.00	±0.3	
400000	4.12	4.10	4.09	4.12	4.11	4.09	0.00	0.02	0.00	±0.3	
464000	4.09	4.07	4.06	4.09	4.08	4.06	0.00	0.02	0.00	±0.3	
587800	4.05	4.03	4.02	4.05	4.04	4.02	0.00	0.02	0.00	±0.3	
744200	4,00	3.98	3.98	4.00	3.99	3.97	0.00	0.02	-0.02	±0.3	
942600	3.98	3.98	3.97	3.99	3.98	3.96	0.02	0.00	-0.02	±0.3	
1193600	3.96	3,95	3.94	3.97	3.96	3,95	0.02	0.02	0.02	±0.3	
1511600	3.96	3.94	3.94	3.96	3.95	3.94	0.00	0.02	0.00	±0.3	
1914400	3.94	3.92	3.92	3.94	3.93	3.92	0.00	0.02	0.00	±0.3	
2424400	3.92	3.91	3.90	3.93	3.92	3.91	0.02	0.02	0.02	±0.3	
3070200	3.90	3.88	3.87	3.90	3.89	3.88	0.00	0.02	0.02	±0.3	
3888000	3.84	3.82	3.81	3.85	3.82	3.81	0.02	0.00	0.00	±0.3	
4000000	3.83	3.82	3.81	3.84	3.82	3.81	0.02	0.00	0.00	±0.3	
4923800	3.77	3.75	3.74	3.77	3.75	3.75	0.00	0.00	0.02	±0.3	
6235400	3.66	3.65	3.64	3.66	3.65	3.64	0.00	0.00	0.00	±0.3	
7896400	3.51	3.50	3.50	3,52	3.51	3.50	0.02	0.02	0.00	±0.3	
0000000	3.37	3,36	3.36	3.39	3.33	3.36	0.05	-0.08	0.00	±0.3	

SPEAG H-field frequency response tolerance criteria¹: ±0.3dB for applied H-fields at calibration points from 3kHz to 10MHz

Certificate No: MAGPy-8H3D-3117_Aug24

Page 15 of 26

Calibration uncertainty not taken into account (shared risk 50%)-

August 23, 2024

Frequency Response, H-field, Channel 4

	H-field	I/(A/m) App	olied	H-field	I/(A/m) Rea	ding	Chronos	erence/(0.0056		
f/(Hz)	x	y	z	x	у	z	X	У	Z	Tolerance/(dB	
3000	1.54	1.54	1,54	1.55	1.54	1.56	0.06	0.00	0.11	±0,3	
3200	1.54	1.54	1,54	1.54	1.53	1.52	0,00	-0.06	-0.11	±0.3	
4000	1.53	1.53	1.53	1.53	1.53	1.54	0.00	0.00	0.06	±0.3	
5200	1.52	1.52	1.52	1.52	1.51	1.53	0.00	-0.06	0.06	±0.3	
6600	1.51	1.51	1.51	1.51	1.49	1.49	0.00	-0.12	-0.12	±0.3	
8200	1.50	1.50	1.50	1.49	1.49	1.50	-0.06	-0.06	0.00	±0.3	
9000	1.49	1.49	1.49	1.49	1,49	1.49	0.00	0.00	0.00	±0.3	
10600	4.32	4.30	4.29	4.32	4.27	4.33	0.00	-0.06	0.08	±0.3	
13400	4.34	4.31	4.30	4.35	4.31	4.32	0.02	0.00	0.04	±0.3	
17000	4,34	4,31	4.30	4.34	4.32	4.29	0.00	0.02	-0.02	±0.3	
21400	4,36	4.33	4.32	4.37	4.34	4,31	0.02	0.02	-0.02	±0.3	
27200	4,36	4.32	4.31	4.37	4.33	4.32	0.02	0.02	0.02	±0.3	
34400	4.36	4.33	4.32	4.36	4.34	4.33	0.00	0.02	0.02	±0.3	
40000	4.35	4.33	4.32	4.35	4.34	4.32	0.00	0.02	0.00	±0.3	
43600	4.34	4.32	4.31	4.34	4.33	4.30	0.00	0.02	-0.02	±0.3	
55400	4.33	4.31	4.30	4.33	4.31	4.30	0.00	0.00	0.00	±0.3	
70000	4,32	4.30	4.29	4.32	4.31	4.29	0.00	0.02	0.00	±0.3	
88800	4.30	4.28	4.27	4.31	4.29	4.27	0.02	0.02	0.00	±0.3	
112400	4.29	4.27	4.26	4.30	4.28	4.26	0.02	0.02	0.00	±0.3	
142400	4.27	4.25	4.24	4.28	4.26	4.24	0.02	0.02	0.00	±0,3	
161750	4.25	4.24	4.22	4.26	4.25	4.23	0.02	0.02	0.02	±0.3	
180400	4.24	4.23	4,21	4.26	4.23	4,22	0,04	0.00	0.02	±0.3	
228400	4.21	4.19	4.17	4.22	4.20	4.18	0.02	0.02	0.02	±0.3	
289400	4.17	4.16	4,14	4.18	4.17	4.15	0.02	0.02	0.02	±0.3	
366400	4.13	4.12	4.11	4.14	4.13	4.11	0.02	0.02	0.00	±0.3	
400000	4.12	4.10	4.09	4.13	4.11	4,09	0.02	0.02	0.00	±0.3	
464000	4.09	4.07	4.08	4.10	4.08	4.06	0.02	0.02	0.00	±0.3	
587800	4.05	4.03	4.02	4.05	4.05	4.02	0.00	0.04	0.00	±0.3	
744200	4.00	3.98	3.98	4.01	3.99	3.97	0.02	0.02	-0.02	±0.3	
942600	3.98	3.98	3.97	3.99	3.99	3.97	0.02	0.02	0.00	±0.3	
1193600	3.96	3.95	3.94	3.97	3.96	3.95	0.02	0.02	0.02	±0.3	
1511600	3.96	3.94	3.94	3.96	3.95	3.94	0.00	0.02	0.00	±0.3	
1914400	3.94	3.92	3.92	3.94	3,93	3.92	0.00	0.02	0.00	±0.3	
2424400	3.92	3.91	3.90	3.93	3.91	3.91	0.02	0.00	0.02	±0.3	
3070200	3.90	3.88	3.87	3.90	3.89	3.88	0.00	0.02	0.02	±0.3	
3888000	3.84	3.82	3.81	3.85	3.83	3.80	0.02	0.02	-0.02	±0.3	
4000000	3.83	3.82	3.81	3.84	3.82	3.81	0.02	0.00	0.00	±0.3	
4923800	3.77	3.75	3.74	3.78	3.76	3.75	0.02	0.02	0.02	±0.3	
6235400	3.66	3.65	3.64	3.65	3.65	3.64	-0.02	0.00	0.00	±0.3	
7896400	3.51	3.50	3.50	3.51	3.51	3.51	0.00	0.02	0.02	±0.3	
0000000	3.37	3,36	3.36	3.37	3.35	3.35	0.00	-0.03	-0.03	±0.3	

SPEAG H-field frequency response tolerance criteria¹: ±0.3dB for applied H-fields at calibration points from 3kHz to 10MHz

Certificate No: MAGPy-8H3D-3117_Aug24

Page 16 of 26

¹Calibration uncertainty not taken into account (shared risk 50%).

August 23, 2024

Frequency Response, H-field, Channel 5

SAMORE	H-field	d/(A/m) App	plied		/(A/m) Rea		100000000000000000000000000000000000000	erence/(Second CITY	
f/(Hz)	x	У	Z	x	У	Z	X	У	Z	Tolerance/(dB)
3000	1.54	1.54	1.54	1.54	1.55	1.54	0,00	0.06	0.00	±0.3
3200	1.54	1,54	1.54	1.55	1.55	1.53	0.06	0.06	-0.06	±0.3
4000	1.53	1.53	1.53	1.53	1,53	1.53	0.00	0.00	0.00	±0.3
5200	1.52	1.52	1.52	1.51	1.52	1.53	-0.06	0.00	0.06	±0.3
6600	1.51	1.51	1.51	1.51	1.51	1.50	0.00	0.00	-0.06	±0.3
8200	1.50	1.50	1.50	1.50	1.50	1.50	0.00	0.00	0.00	±0.3
9000	1.49	1.49	1.49	1.49	1.49	1.49	0.00	0.00	0.00	±0.3
10600	4.32	4.30	4.29	4.32	4.32	4.28	0.00	0.04	-0.02	±0.3
13400	4.34	4.31	4,30	4.35	4.33	4.31	0.02	0.04	0.02	±0.3
17000	4.34	4.31	4.30	4,33	4.31	4.30	-0.02	0.00	0.00	±0,3
21400	4.36	4,33	4.32	4,37	4.32	4.33	0.02	-0.02	0.02	±0.3
27200	4.36	4,32	4.31	4.35	4.32	4.31	-0.02	0.00	0.00	±0.3
34400	4.36	4.33	4.32	4.36	4.33	4.33	0.00	0.00	0.02	±0.3
40000	4.35	4.33	4.32	4.35	4.33	4,32	0.00	0.00	0.00	±0.3
43600	4.34	4.32	4.31	4.34	4.32	4.31	0.00	0.00	0.00	±0.3
55400	4.33	4.31	4.30	4.32	4.31	4.30	-0.02	0.00	0.00	±0.3
70000	4.32	4.30	4.29	4.32	4.29	4.29	0.00	-0.02	0.00	±0.3
88800	4.30	4.28	4.27	4.30	4.28	4.27	0.00	0.00	0.00	±0.3
112400	4.29	4.27	4.26	4.29	4.28	4.26	0.00	0.02	0.00	±0.3
142400	4.27	4.25	4.24	4.28	4.25	4.25	0.02	0.00	0.02	±0.3
161750	4.25	4.24	4.22	4.25	4.24	4.22	0.00	0.00	0.00	±0.3
180400	4.24	4.23	4.21	4.24	4.23	4.21	0.00	0.00	0.00	±0.3
228400	4.21	4.19	4.17	4.22	4.19	4.19	0.02	0.00	0.04	±0.3
289400	4.17	4.16	4.14	4.18	4.16	4.15	0.02	0.00	0.02	±0.3
366400	4,13	4.12	4.11	4.14	4.12	4.12	0.02	0.00	0.02	±0.3
400000	4.12	4.10	4.09	4.12	4.11	4.09	0.00	0.02	0.00	±0.3
464000	4.09	4.07	4.06	4.09	4.08	4.07	0.00	0.02	0.02	±0.3
587800	4.05	4.03	4.02	4.05	4.03	4.03	0.00	0.00	0.02	±0.3
744200	4.00	3.98	3.98	4.01	3.99	3.98	0.02	0.02	0.00	±0.3
942600	3.98	3.98	3.97	3.99	3.98	3.97	0.02	0.00	0.00	±0.3
1193600	3,96	3.95	3.94	3.97	3.95	3.95	0.02	0.00	0.02	±0.3
1511600	3.96	3.94	3.94	3,96	3,94	3,94	0.00	0.00	0.00	±0.3
1914400	3.94	3.92	3.92	3.94	3.93	3.92	0.00	0.02	0.00	±0.3
2424400	3.92	3.91	3,90	3.94	3.91	3.91	0.04	0.00	0.02	±0.3
3070200	3.90	3.88	3.87	3.91	3.88	3.88	0.02	0.00	0.02	±0.3
3888000	3.84	3.82	3.81	3.83	3.83	3.81	-0.02	0.02	0.00	±0.3
4000000	3.83	3.82	3.81	3.82	3.82	3,81	-0.02	0.00	0.00	±0.3
4923800	3.77	3.75	3.74	3.77	3.75	3.76	0.00	0.00	0.05	±0.3
6235400	3.66	3.65	3.64	3.66	3.65	3.64	0.00	0.00	0.00	±0,3
7896400	3.51	3.50	3.50	3.52	3.49	3.51	0.02	-0.02	0.02	±0.3
0000000	3.37	3.36	3,36	3.38	3.36	3.35	0.03	0.00	-0.03	±0.3

SPEAG H-field frequency response tolerance criteria¹: ±0.3dB for applied H-fields at calibration points from 3kHz to 10MHz

Certificate No: MAGPy-8H3D-3117_Aug24

Page 17 of 26

¹Calibration uncertainty not taken into account (shared risk 50%).

August 23, 2024

Frequency Response, H-field, Channel 6

	H-field	/(A/m) Ap	olied	THE SAME	I/(A/m) Rea		1,722,53	erence/(16.4700	To love wee //dD)	
1/(Hz)	×	y	2	x	у	z	x	У	2	Tolerance/(dB	
3000	1,54	1,54	1.54	1.54	1.54	1.54	0.00	0.00	0.00	±0.3	
3200	1.54	1.54	1.54	1.55	1,53	1.53	0.06	-0.06	-0.06	±0,3	
4000	1.53	1.53	1.53	1.54	1.53	1.54	0.06	0.00	0.06	±0.3	
5200	1.52	1.52	1.52	1.52	1.52	1,53	0.00	0.00	0.06	±0.3	
6600	1.51	1,51	1.51	1,51	1.50	1.50	0.00	-0.06	-0.06	±0.3	
8200	1.50	1,50	1.50	1.50	1.49	1.50	0.00	-0.06	0.00	±0.3	
9000	1.49	1.49	1.49	1.49	1.49	1.49	0.00	0.00	0.00	±0.3	
10600	4.32	4,30	4.29	4.33	4.27	4.32	0.02	-0.06	0.06	±0.3	
13400	4.34	4.31	4.30	4.35	4.30	4,31	0.02	-0.02	0.02	±0.3	
17000	4.34	4.31	4.30	4.34	4.31	4.30	0.00	0.00	0.00	±0.3	
21 400	4.36	4.33	4.32	4.34	4.34	4.32	-0.04	0.02	0.00	±0,3	
27200	4.36	4.32	4.31	4.36	4.33	4.30	0.00	0.02	-0.02	±0.3	
34400	4.36	4.33	4.32	4.36	4.33	4.32	0.00	0.00	0.00	±0.3	
40 000	4.35	4.33	4.32	4.34	4.32	4,32	-0.02	-0.02	0.00	±0.3	
43600	4.34	4.32	4.31	4.34	4.31	4.29	0.00	-0.02	-0.04	±0.3	
55400	4.33	4.31	4.30	4.33	4.31	4.28	0.00	0.00	-0.04	±0.3	
70,000	4.32	4.30	4.29	4.32	4.29	4.29	0.00	-0.02	0.00	±0.3	
88800	4.30	4.28	4.27	4.31	4.28	4.27	0.02	0.00	0.00	±0.3	
112400	4.29	4.27	4,26	4.29	4.27	4.26	0.00	0.00	0.00	±0.3	
142400	4.27	4.25	4.24	4.28	4.25	4.25	0.02	0.00	0.02	±0.3	
161 750	4.25	4.24	4.22	4.25	4.24	4.22	0.00	0.00	0.00	±0.3	
180400	4.24	4.23	4.21	4.25	4.23	4.22	0.02	0.00	0.02	±0.3	
228 400	4,21	4.19	4.17	4.22	4.19	4.18	0.02	0.00	0.02	±0.3	
289400	4.17	4.16	4.14	4.18	4,16	4.15	0.02	0.00	0.02	±0.3	
366 400	4.13	4.12	4.11	4.14	4.12	4.11	0.02	0.00	0.00	±0.3	
400 000	4.12	4.10	4.09	4.12	4.10	4,09	0.00	0.00	0.00	±0.3	
464 000	4.09	4.07	4.06	4.10	4.08	4.07	0.02	0.02	0.02	±0.3	
587800	4.05	4.03	4.02	4.05	4.03	4.03	0.00	0.00	0.02	±0.3	
744200	4.00	3.98	3,98	4.00	3.98	3.98	0.00	0.00	0.00	±0.3	
942600	3.98	3.98	3.97	3.99	3.98	3.98	0.02	0.00	0.02	±0.3	
1193600	3.96	3.95	3,94	3.96	3.95	3.95	0.00	0.00	0.02	±0.3	
1511600	3.96	3.94	3.94	3.96	3.94	3.94	0.00	0.00	0.00	±0.3	
1914400	3.94	3.92	3,92	3,93	3.93	3.92	-0.02	0.02	0.00	±0.3	
2424400	3,92	3.91	3.90	3.94	3.92	3.90	0.04	0.02	0.00	±0.3	
3070200	3.90	3.88	3.87	3.91	3.88	3.88	0.02	0.00	0.02	±0.3	
3888000	3.84	3.82	3.81	3.82	3.83	3.82	-0.05	0.02	0.02	±0.3	
4000000	3.83	3.82	3.81	3.81	3.82	3.81	-0.05	0.00	0.00	±0.3	
4923800	3.77	3.75	3.74	3.76	3.75	3.74	-0.02	0.00	0.00	±0.3	
6235400	3.66	3.65	3.64	3.66	3.65	3.64	0.00	0.00	0.00	±0.3	
7896400	3.51	3,50	3.50	3.53	3.49	3.49	0.05	-0.02	-0.02	±0.3	
10000000	3.37	3.36	3.36	3.39	3,34	3.32	0.05	-0.05	-0.10	±0.3	

SPEAG H-field frequency response tolerance criteria¹: ±0.3dB for applied H-fields at calibration points from 3kHz to 10MHz

Certificate No: MAGPy-8H3D-3117_Aug24

Page 18 of 26

[†]Calibration uncertainty not taken into account (shared risk 50%).

August 23, 2024

Frequency Response, H-field, Channel 7

	H-field	1/(A/m) App	plied	H-field	/(A/m) Rea	ding	Diffe	erence/(d		
f/(Hz)	x	y	Z	× 1	у	z	×	y	Z	Tolerance/(dB)
3000	1.54	1.54	1.54	1.54	1.54	1.54	0.00	0.00	0.00	±0.3
3200	1.54	1,54	1.54	1,55	1.55	1.54	0.06	0.06	0.00	±0.3
4000	1.53	1.53	1.53	1.53	1.53	1.53	0.00	0.00	0.00	±0.3
5200	1.52	1.52	1.52	1.51	1.52	1.53	-0.06	0.00	0.06	±0.3
6600	1.51	1.51	1.51	1.51	1.51	1.50	0.00	0.00	-0.06	±0.3
8200	1.50	1.50	1.50	1.50	1.50	1.50	0.00	0.00	0.00	±0.3
9000	1.49	1.49	1.49	1.49	1.49	1.49	0.00	0.00	0.00	±0.3
10600	4.32	4.30	4.29	4.31	4.29	4.30	-0.02	-0.02	0.02	±0.3
13400	4.34	4.31	4.30	4.35	4.32	4.32	0.02	0.02	0.04	±0.3
17000	4.34	4,31	4,30	4.34	4.31	4.30	0.00	0.00	0,00	±0.3
21400	4,36	4.33	4.32	4,37	4.33	4.32	0.02	0.00	0.00	±0.3
27200	4.36	4.32	4.31	4.35	4.32	4.31	-0.02	0.00	0.00	±0.3
34400	4.36	4.33	4.32	4,35	4.33	4.33	-0.02	0.00	0.02	±0.3
40000	4.35	4.33	4.32	4.35	4.33	4.32	0.00	0.00	0.00	±0.3
43600	4.34	4.32	4.31	4.34	4.33	4.31	0.00	0.02	0.00	±0.3
55400	4.33	4.31	4.30	4.33	4.31	4.30	0.00	0.00	0.00	±0.3
70000	4.32	4.30	4.29	4.32	4.30	4.29	0.00	0.00	0.00	±0.3
88800	4.30	4.28	4.27	4.31	4.29	4.28	0.02	0.02	0.02	±0.3
112400	4.29	4.27	4.26	4.29	4.28	4.26	0.00	0.02	0.00	±0.3
142400	4.27	4.25	4.24	4.28	4.25	4.25	0.02	0.00	0.02	±0.3
161750	4.25	4.24	4.22	4.25	4.24	4.23	0.00	0.00	0.02	±0.3
180400	4.24	4.23	4.21	4.25	4.23	4.22	0.02	0.00	0.02	±0,3
228400	4.21	4.19	4.17	4.22	4.20	4.18	0.02	0.02	0.02	±0.3
289 400	4.17	4.16	4,14	4.18	4.16	4.15	0.02	0.00	0.02	±0.3
366400	4.13	4.12	4.11	4.14	4.12	4.12	0.02	0.00	0.02	±0.3
400000	4.12	4.10	4.09	4,12	4.10	4.10	0.00	0.00	0.02	±0.3
464000	4.09	4.07	4.06	4.10	4.08	4.07	0.02	0.02	0.02	±0.3
587800	4.05	4.03	4.02	4.05	4.03	4.03	0.00	0.00	0.02	±0.3
744200	4.00	3.98	3.98	4.00	3,99	3.98	0.00	0.02	0.00	±0.3
942600	3.98	3.98	3.97	3.99	3.98	3.98	0.02	0.00	0.02	±0.3
1193600	3.96	3.95	3.94	3.97	3.95	3,95	0.02	0.00	0.02	±0.3
1511600	3.96	3.94	3.94	3,96	3.95	3.94	0.00	0.02	0.00	±0.3
1914400	3.94	3.92	3.92	3.94	3.94	3,92	0,00	0.04	0.00	±0.3
2424400	3.92	3.91	3.90	3.94	3.92	3.91	0.04	0.02	0.02	±0.3
3070200	3.90	3.88	3.87	3.90	3.89	3.88	0.00	0.02	0.02	±0,3
3888000	3.84	3.82	3.81	3.84	3.83	3.81	0.00	0.02	0.00	±0.3
4000000	3.83	3.82	3.81	3.83	3.82	3.81	0.00	0.00	0.00	±0.3
4923800	3.77	3.75	3.74	3.76	3.76	3.75	-0.02	0.02	0.02	±0.3
6235400	3.66	3.65	3.64	3.66	3.65	3.64	0.00	0.00	0.00	±0.3
7896400	3.51	3.50	3.50	3.52	3.50	3.50	0.02	0.00	0.00	±0.3
0000000	3.37	3.36	3.36	3.38	3.36	3.37	0.03	0.00	0.03	±0,3

SPEAG H-field frequency response tolerance criteria 1 : $\pm 0.3 \, \text{dB}$ for applied H-fields at calibration points from 3kHz to 10MHz

Certificate No: MAGPy-8H3D-3117_Aug24

¹Calibration uncertainty not taken into account (shared risk 50%).

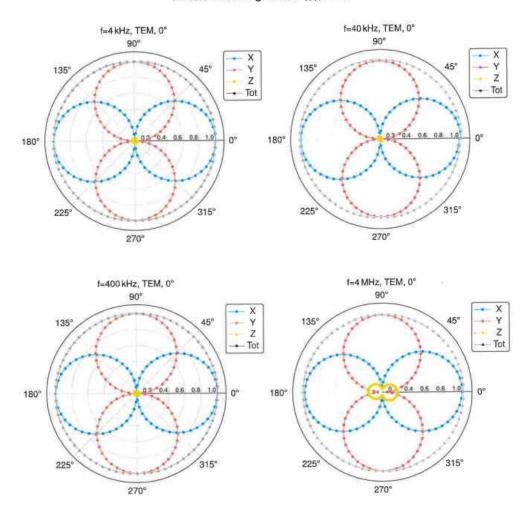
August 23, 2024

Frequency Response, E-field, Channel 0

- 12.5	E-fi	eld/(V/m) A	Applied	E-fi	eld/(V/m) F		100	erence/(THE STATE OF THE STATE OF	
1/(Hz)	x	y	Z	×	У	z	X	У	z	Tolerance/(dB	
3000	169	169	172	169	169	172	0.00	0.00	0.00	±0.3	
3200	167	167	162	166	170	162	-0.05	0.15	0.00	±0.3	
4000	175	175	170	175	175	170	0.00	0.00	0.00	±0.3	
5200	165	165	163	165	166	162	0.00	0.05	-0.05	±0.3	
6600	163	163	160	163	163	160	0,00	0.00	0.00	±0.3	
8200	162	162	159	162	163	158	0.00	0.05	-0.05	±0.3	
9000	163	163	164	163	163	164	0.00	0.00	0.00	±0.3	
10600	166	166	159	167	167	159	0.05	0.05	0.00	±0.3	
13400	163	163	162	163	163	162	0.00	0.00	0.00	±0.3	
17000	161	161	163	161	161	163	0.00	0.00	0.00	±0.3	
21400	157	157	158	157	158	158	0.00	0.06	0.00	±0.3	
27200	158	158	157	158	158	157	0.00	0.00	0.00	±0,3	
34400	162	162	159	162	162	159	0.00	0.00	0.00	±0.3	
40 000	161	161	161	161	161	161	0.00	0.00	0.00	±0.3	
43600	162	162	160	162	162	160	0.00	0.00	0.00	±0,3	
55400	161	161	159	161	161	159	0.00	0.00	0.00	±0.3	
70000	162	162	160	162	162	160	0.00	0.00	0.00	±0.3	
88800	161	161	160	161	161	160	0.00	0.00	0.00	±0.3	
112400	161	161	160	161	161	160	0.00	0.00	0.00	±0.3	
142400	162	162	160	162	162	160	0.00	0.00	0.00	±0.3	
161750	163	163	162	163	163	162	0.00	0.00	0.00	±0.3	
180400	164	164	162	164	164	162	0.00	0.00	0.00	±0,3	
228400	165	165	163	165	165	163	0.00	0.00	0.00	±0,3	
289400	166	166	164	166	166	164	0.00	0.00	0.00	±0.3	
366400	166	166	165	166	166	165	0.00	0.00	0.00	±0.3	
400,000	167	167	165	167	167	165	0.00	0.00	0.00	±0.3	
464 000	168	168	166	168	168	166	0.00	0.00	0.00	±0.3	
587800	169	169	167	169	169	167	0.00	0.00	0.00	±0.3	
744200	169	169	167	169	170	167	0.00	0.05	0.00	±0.3	
942600	170	170	168	170	170	168	0.00	0.00	0.00	±0.3	
1193600	171	171	169	171	171	169	0.00	0.00	0.00	±0,3	
1511600	170	170	169	170	170	169	0.00	0.00	0.00	±0.3	
1914400	170	170	168	170	170	168	0.00	0,00	0.00	±0.3	
2424400	170	170	168	170	170	168	0.00	0.00	0.00	±0.3	
3070200	171	171	169	171	171	169	0.00	0.00	0.00	±0.3	
3888000	171	171	169	171	171	169	0.00	0.00	0.00	±0.3	
4000000	171	171	169	171	171	170	0.00	0.00	0.05	±0.3	
4923800	172	172	170	172	172	170	0.00	0.00	0.00	±0.3	
6235400	174	174	172	174	174	172	0.00	0.00	0.00	±0.3	
7896400	180	180	179	180	180	179	0.00	0.00	0.00	±0.3	
10000000	201	201	199	201	201	199	0.00	0.00	0.00	±0.3	

SPEAG E-field frequency response tolerance criteria¹: ±0.3dB for applied E-fields at calibration points from 3kHz to 10MHz

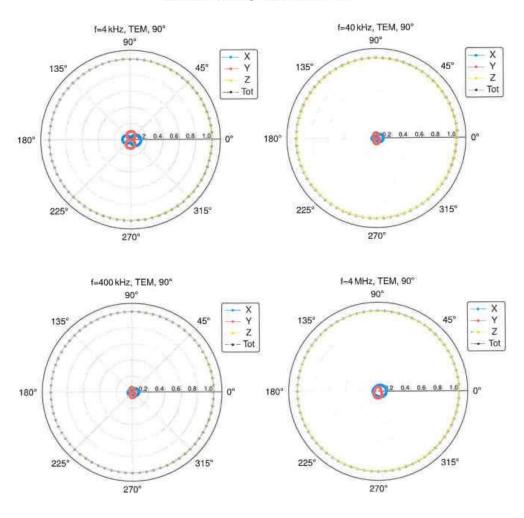
Certificate No: MAGPy-8H3D-3117_Aug24


¹Calibration uncertainty not taken into account (shared risk 50%).

August 23, 2024

Isotropy H-Field

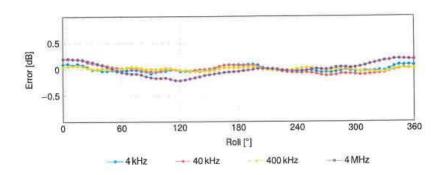
H-Field Receiving Pattern (ϕ), $\theta = 0^{\circ}$


Certificate No: MAGPy-8H3D-3117_Aug24

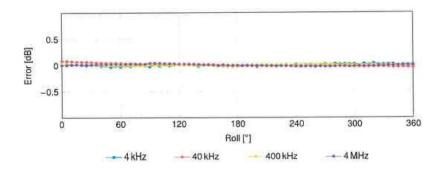
Page 21 of 26

August 23, 2024

H-Field Receiving Pattern (ϕ), $\vartheta = 90^{\circ}$


Certificate No: MAGPy-8H3D-3117_Aug24

Page 22 of 26



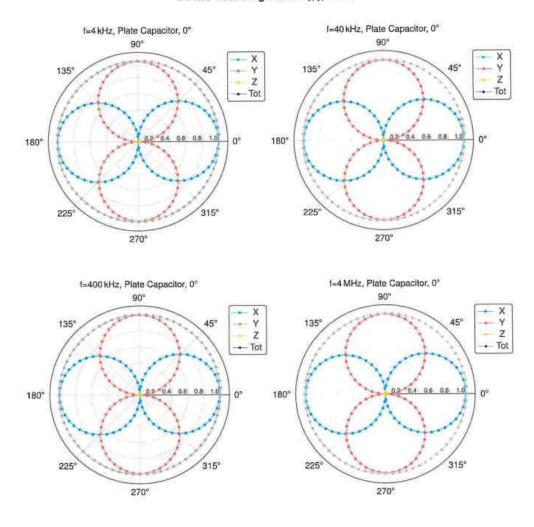
August 23, 2024

H-Field Receiving Pattern (ϕ), $\theta = 0^{\circ}$

H-Field Receiving Pattern (ϕ), $\theta = 90^{\circ}$

SPEAG axial deviation from the ideal response tolerance for H-field: ±0.6dB

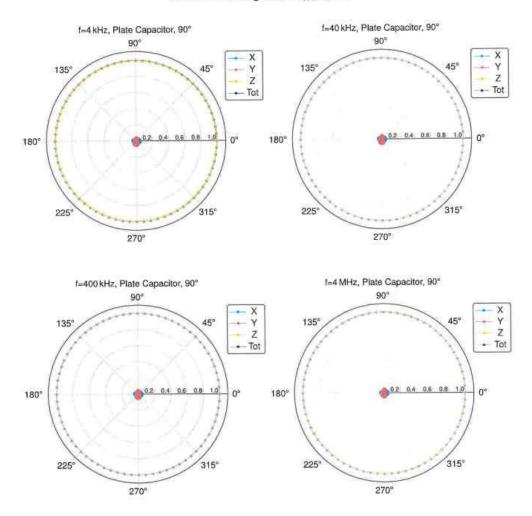
Certificate No: MAGPy-8H3D-3117_Aug24


Page 23 of 26

August 23, 2024

Isotropy E-Field

E-Field Receiving Pattern (ϕ), $\theta = 0^{\circ}$


Certificate No: MAGPy-8H3D-3117_Aug24

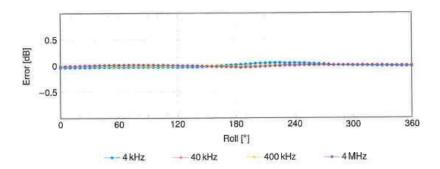
Page 24 of 26

August 23, 2024

E-Field Receiving Pattern (ϕ), $\theta = 90^{\circ}$


Certificate No: MAGPy-8H3D-3117_Aug24

Page 25 of 26



August 23, 2024

E-Field Receiving Pattern (ϕ), $\theta = 0^{\circ}$

E-Field Receiving Pattern (ϕ), $\theta = 90^{\circ}$

SPEAG axial deviation from the ideal response tolerance for E-field: $\pm 0.8\,\text{dB}$

Certificate No: MAGPy-8H3D-3117_Aug24

Page 26 of 26

ANNEX D: Validation Source Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No:V-Coil350/85-1032_Aug24 Client SAICT Shenzhen CALIBRATION CERTIFICATE V-Coil350/85V2 - SN: 1032 Object QA CAL-47.v13 Calibration procedure(s) Calibration Procedure for WPT Verification & Validation Sources August 27, 2024 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 75%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Primary Standards 1D# Cal Date (Certificate No.) 22-Aug-24 (MAGPy-8H3D-3090_Aug24) MAGPy-8H3D+E3D/DAS SN: 3090/3078 Aug-25 Scheduled Check Check Date (in house) ID# Secondary Standards Function Name Jingtian Xi Project Leader Calibrated by: Technical Manager Approved by: Sven Kühn Issued: October 8, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: V-Coil350/85-1032_Aug24

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

WPT wireless power transfer V&V verification & validation

Calibration is Performed According to the Following Standards:

- Internal procedure QA CAL-47 Calibration procedure for WPT verification & validation sources from 3 kHz to 10 MHz
- IEC/IEEE 63164, "Assessment methods of the human exposure to electric and magnetic fields from wireless power transfer systems – Models, instrumentation, measurement and computational methods and procedures (Frequency range 3 kHz to 30 MHz)", draft standard, 2023

Additional Documentation:

a) cDASY6/DASY8 Module WPT Manual

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: The V&V source is switched on for at least 30 minutes.
- Source Positioning: The V&V source is placed in the center of the UniPV1 phantom such
 that the source surface is parallel to phantom surface. The probe location used for DUT
 teaching is the top center of the coil (marked on the source casing). The probe distance is
 verified using mechanical gauges placed on the source surface.
- H-field distribution: H-field is measured in the volume above the V&V source in a rectilinear grid with a uniform grid step of 7.33 mm.

Calibrated Quantity

 Spatial peak of H-field (RMS value) at d mm from the DUT surface (extrapolated from measurements)

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: V-Coil350/85-1032 Aug24

Measurement Conditions

	cDASY6 Module WPT	2.6.0.5002
Software version	Notebook GUI	2.6.0.9
Continue version	Sim4Life	8.0.1
	Grid dimensions	x: 477 mm, y: 389 mm, z: 36.7 mm
Scan setup	Grid resolutions	dx, dy, dz: 7.33 mm
Nominal frequency	85 kHz	

Calibrated Quantities

Distance (relative to source surface) (mm)	Peak H-field (A/m)	Uncertainty (k=2) (dB)
0	213	1.13
2	194	1.13

Appendix (Additional assessments outside the scope of SCS 0108)

Peak values of induced fields1

Distance (relative to	Induced peak current	Induced	peak E-fie	peak spatial SAR (mW/kg)			
source surface) (mm)	density, 1cm ² area avg. (A/m ²)	2mm cube avg.	Local	5mm line avg.	1g avg.	10g avg.	
0	2.40	3.42	3.46	3.46	6.71	4.95	
2	2.26	3.21	3.25	3.25	5.98	4.48	

Voltage measurement

Total voltage (V)	Voltages at harmonics (dBc)
0.411	Highest harmonic: -46.7

 $^{^1}$ determined for a virtual half-space phantom with tissue properties $\epsilon_{\rm r}$ = 55, σ = 0.75 S/m, ρ =1000 kg/m³ and a 2 mm thick phantom shell

Measurement report

cDASY6 Module WPT Measurement Report

Device under test

V-Cail350/85

Serial number:

source calibration

DASY software version: cDASY6 Module WPT 2.6.0.5002

Probe model, serial no. and configuration date: MAGPy-8H3D+E3Dv2, WP600236, 2024/08/23

Software version: 2.0.63, backend: 2.2.22

Scan Info

Center location: x:-48.08 mm, v:-119.85 mm, z: 36.43 mm

x: 477.0 mm, v: 388.8 mm, z: 36.7 mm

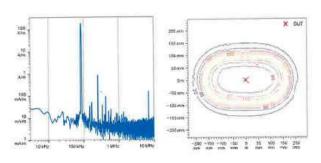
x: 7.33 mm, v: 7.33 mm, z: 7.33 mm

Completed on:

2024/08/27 22:05:26

Measurement results

Maximum H-field (RMS): MAGNITUDE: 138.28 A/m


x: 120.37 A/m, v: 31.59 A/m, z: 60.30 A/m

Maximum H-field location relative to DUT: x: 157.67 mm, v: 25.67 mm, z: 8.50 mm

Distance to -20.0 dB boundary:

Offset relative to DUT: x: 0.00 m, Y: 0.00 m, z: 1.00 mm

H-field magnitude [RMS] at maximum location H-field magnitude [RMS] at lowest plane

Incident fields and induced fields in the homogeous phantom at the peak frequency (1 = 85.00 kHz, n = 0,750 k/m; nasue negaty = 1,000 kg/m²)

	Posts incident fields [sys]		Pack E _{ind} [V/m, eva]		Pank Just (A/m², mod)	(Alm ² , med) paSAR (mV		H-field extent			Warnings
Distance [mm]	H _{erc} [A/m]	Cube avg.	Local	Lins avg.	Surface avg.	19 avg.	10g avg.	caction (mm)	Sign	Vector potential	Boundary effect
0.00	213	3.42	3.46	3,46	2.40	6,71	4.95	181	1%	98%	36%
2,00	194	3.21	3.25	3.25	2.26	5.98	4.48	183	1%	96%	38%

Compliance evaluation (Field values at the peak frequency) #-asonwe /

Distance [mm]	ICNIRP 2010/2020 RL Invel BR (next)			ICN/RP 1998 Rt. [mat] BR [mm]			ERL [ww] DRL [sen]			MPE [nvn] BR [nvn]			HC Code 6 RL (ava) BR (ms)		
	Diffing [A/m]	pE _{lad}	poSAR [mW/kg]	Rt. [ma] pH _{ind} [Am]	pJ _{ind} [A/m ²]	psSAR [mW/kg]	pH _{nc} [A/m]	pE _{int} (V/m)	psSAR [mW/kg]	pH _{He}	p∈ _{aid} [V/m]	ps8AR [mWkg]	pH _{ine} (A/m)	pE _{ind}	psSAR (nW/kg)
0.00 2.00	213 194	3.42	4.95 4.45	213 194	2,40	4,95 4.48	213 194	3.46 3.25	4.95 4.48	213 194	N/A N/A	6.71 5.98	213 194	3.46	6.71 5.98

Compliance evaluation (Exposure ratios) (Pales in dE)

	ICNIRP 2010/2020				ICNIRP_1998			IEEE 2019				ECC			HC Code 6			
Distance [mm]	RL pH _{inc}		BR pE _{ind} ps5AR		PL pH _{ino}	BR		ERI.		DRL		MPE	8R		RL		BR	
						p.J _{ind}	psSAR	pH _{int}		pE _{md} pasan		pH _{inc}	pEini	DESAR	AR pH _{ine}		p€ind	psSAR
	NS	NS TH	NS	TH	N/A	NS	TH	NS	TH	NS	TH	N/A	N/A	TH	NS	TH	NS	TH
0.00	20.1	N/A	-10.5	N/A	32.6	23.0	N/A	2.32	N/A	-14.2	N/A	7,48	N/A	N/A	7.48	N/A	-10.4	N/A
2,00	19.3	N/A	-11.1	N/A	31.8	22.5	N/A	1.51	N/A	-14.8	N/A	6.67	N/A	N/A	6.67	N/A	+11.0	N/A

Document generated at 2024/08/28 09:23:18, simulation performed at 2024/08/27 22:51:51 using Sin/4Life version 8:0.1.15446

Certificate No: V-Coil350/85-1032_Aug24

Page 5 of 5