

Test report No: 2560639R.707

FCC TEST REPORT

Product Name	Tablet Computer
Trademark	Xiaomi
Model and /or type reference	25097RP43G
FCC ID	2AFZZRP43G
Applicant's name / address	Xiaomi Communications Co., Ltd. #019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085
Test method requested, standard	47 CFR FCC Part 2 (Section 2.1093)
	IEEE Std 1528-2013
	EN IEC/IEEE 62209-1528:2021
	ANSI C95.1-2005
Verdict Summary	IN COMPLIANCE
Documented by (name / position & signature)	Tim Cao/ Project Manager
Approved by (name / position & signature)	Frank He/ Technical Manager
	Rock Se
Date of issue	2025-08-13
Report Version	V1.0
Report template No	Template_FCC SAR-RF-V1.0

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

INDEX

			page
Gen	eral co	nditions	4
Envi	ronme	ntal conditions	4
Pos	sible te	st case verdicts	5
Abb	reviatio	ns	5
Doc	ument	History	6
Rem	narks a	nd Comments	6
Stat	ement	of Compliance	7
Use	d Equip	oment	8
Unc	ertainty	⁷	9
Test	Facilit	y	13
1	Gene	ral Information	14
	1.1	DUT Antenna Locations	16
	1.2	Power reduction specification	17
	1.3	Proximity Sensor Triggering Test	19
	1.4	Test Specification	21
	1.5	RF exposure limits	22
2	SAR	Measurements System Configuration	23
	2.1	DASY6 SAR System Description	24
	2.2	DASY6 Power Density System Description	25
	2.3	Applications	26
	2.4	Area & Zoom Scan Procedures	26
	2.5	Uncertainty of Inter-/Extrapolation and Averaging	28
	2.6	DASY6 E-Field Probe & EUmmWV Probe	29
	2.7	Boundary Detection Unit and Probe Mounting Device	31
	2.8	DATA Acquisition Electronics (DAE) and Measurement Server	31
	2.9	Robot	32
	2.10	Light Beam Unit	32
	2.11	Device Holder	33
	2.12	SAM Phantom	34
3	tissue	e Simulating Liquid	35
	3.1	The composition of the tissue simulating liquid	35
	3.2	Measurement for Tissue Simulate Liquid	36
4	Syste	em Check	37
	4.1	Justification for Extended Dipole Calibrations	38

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

	4.2	Measurement for System Check	39
5	test (Configuration	40
	5.1	SAR Test Reduction Procedure	40
		5.1.1. Wi-Fi Test Configuration	40
6	Desc	ription of Test Position	45
	6.1	SAR Test Reduction Procedure	45
		6.1.1. Head Test Position Conditions	45
		6.1.2. Body-worn Test Position Conditions	48
		6.1.3. Hotspot Mode Test Position Conditions	49
	6.2	Product Specific 10g Exposure Consideration	50
	6.3	Measurement Process Diagram	50
7	Test	Result	51
	7.1	Measurement of RF conducted Power	51
	7.2	Measurement of SAR and Power Density Test Results	67
		7.2.1. Measurement of SAR Test Data	67
		7.2.2. Measurement of Power Density Test Data	70
		7.2.3. SAR Measurement Variability	71
	7.3	Multiple Transmitter Evaluation	72
		7.3.1. Simultaneous SAR SAR test evaluation	72
		7.3.2. Simultaneous Transmission SAR Summation Scenario	72
8	SAR	And Power Density Validation Data	73
9	SAR	And Power Density Test Data	79
10	Calib	ration certificate	90
11	test s	setup photo and EUT Photo	91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

COMPETENCES AND GUARANTEES

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

<u>IMPORTANT:</u> No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

GENERAL CONDITIONS

Test Location	No. 99, Hongye Road, Suzhou Industrial Park Suzhou, 215006, P.R. China
Date(receive sample)	Jul. 17, 2025
Date (start test)	Jul. 18, 2025
Date (finish test)	Jul. 25, 2025

- 1. This report is only referred to the item that has undergone the test.
- This report does not constitute or imply on its own an approval of the product by the Certification Bodies or Competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA.
- This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA.

ENVIRONMENTAL CONDITIONS

The climatic conditions during the tests are within the limits specified by the manufacturer for the operation of the EUT and the test equipment. The climatic conditions during the tests were within the following limits:

Ambient temperature	18 °C – 25 °C
Relative Humidity air	30% - 60%

If explicitly required in the basic standard or applied product / product family standard the climatic values are recorded and documented separately in this test report.

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

POSSIBLE TEST CASE VERDICTS

Test case does not apply to test object	N/A
Test object does meet requirement	P (Pass) / PASS
Test object does not meet requirement	F (Fail) / FAIL
Not measured	N/M

ABBREVIATIONS

For the purposes of the present document, the following abbreviations apply:

EUT : Equipment Under Test

QP : Quasi-Peak
CAV : CISPR Average

AV : Average

CDN : Coupling Decoupling NetworkSAC : Semi-Anechoic Chamber

OATS : Open Area Test Site

BW: Bandwidth

AM : Amplitude Modulation PM : Pulse Modulation

HCP : Horizontal Coupling PlaneVCP : Vertical Coupling Plane

U_N : Nominal voltageTx : TransmitterRx : Receiver

N/A : Not Applicable N/M : Not Measured

Report no.: 2560639R.707 Page 5 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

DOCUMENT HISTORY

Report No.	Version	Description	Issued Date
2560639R.707	V1.0	Initial issue of report.	2025-08-13

REMARKS AND COMMENTS

- 1. The equipment under test (EUT) does meet the essential requirements of the stated standard(s)/test(s).
- 2. These test results on a sample of the device are for the purpose of demonstrating Compliance with FCC 47CFR §2.1093, IEEE Std. 1528-2013, EN IEC/IEEE 62209-1528:2021, ANSI C95.1-2005.
- 3. The measurement result is considered in conformance with the requirement if it is within the prescribed limit, It is not necessary to account the uncertainty associated with the measurement result.
- 4. The test results presented in this report relate only to the object tested.
- The test report shall not be reproduced without the written approval of DEKRA Testing and Certification (Suzhou)Co., Ltd.
- 6. This report will not be used for social proof function in China market.
- 7. DEKRA declines any responsibility with the following test data provided by customer that may affect the validity of result:
 - Chapter 1 General Information.

Report no.: 2560639R.707 Page 6 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

STATEMENT OF COMPLIANCE

The maximum results of Specific Absorption Rate (SAR) and Power Density found during testing for Tablet Computer,25097RP43G, are as follows.

Frequency Band	Maximum Reported SAR 1g(W/kg) Body(0mm)
Bluetooth	0.45
WLAN 2.4G	0.92
WLAN 5.2&5.3G	0.95
WLAN 5.6G	1.02
WLAN 5.8G	0.98
WLAN 6G	1.09
SAR Limited(W/kg)	1.60

Frequency Band	Total psPD(W/m^2)	
	Body(2mm)	
WLAN 6G	4.89	
PD Limited(W/m^2)	10	

Maximum Simultaneous Transmission SAR 1g(W/kg)			
Scenario Body (0mm)			
Sum SAR	1.54		

Report no.: 2560639R.707 Page 7 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

USED EQUIPMENT

SAR Test and Power Density Test / TR6

Instrument	Manufacturer	Model No.	Serial No.	Next Cal. Date
Stäubli Robot TX60L	Stäubli	TX60L	F10/5C90A1/A/01	N/A
Controller	Stäubli	SP1	S-0034	N/A
Dipole Validation Kits	Speag	D2450V2	839	2028.03.17
Dipole Validation Kits	Speag	D5GHzV2	1078	2028.03.13
Dipole Validation Kits	Speag	D6.5GHzV2	1084	2025.09.11
Dipole Validation Kits	Speag	5G Verification Source 10GHz	1055	2027.09.13
ELI Phantom	Speag	ELI	TP-2106	N/A
Device Holder	Speag	SD 000 H01 HA	N/A	N/A
Data Acquisition Electronic	Speag	DAE4	1220	2026.03.13
E-Field Probe Speag		EX3DV4	7761	2025.09.18
E-Field Probe Speag		EUmmWV4	9681	2025.09.15
SAR Software	Speag	DASY6	V5.2 Build 162	N/A
Power Amplifier	MVE	MPC1018.50	C30002D	2026.05.16
Dual Directional Coupler	woken	0110A05A82Z-20	CMLC66W1A1	2026.05.16
Tissue fluid test probe	SPEAG	DAK 3.5	1204	N/A
Vector Network	Agilent	E5071C	MY46103316	2025.08.14
Signal Generator	R&S	SMBV100A	263697	2026.05.09
Power Meter	Keysight	N1912A	MY60300004	2026.05.16
Temperature/Humidity Meter	Rites	RTS-8S	RF06	2026.06.16
Temperaturer	LKM	DTM3000	3777	2026.05.18

SAR Test and Power Density Test / TR6

Instrument	Manufacturer	Model No.	Serial No.	Firmware Versiom	Software Version
SAR Software	Speag	DASY6	V5.2 Build 162	N/A	V16.2.4.2448
Power Amplifier	MVE	MPC1018.50	C30002D	A.14.03	N/A
Vector Network	Agilent	E5071C	MY46103316	A.11.31	N/A
Signal Generator	R&S	SMBV100A	263697	V4.15.125.49	N/A
Power Meter	Keysight	N1912A	MY60300004	A2.06.01	N/A

Report no.: 2560639R.707 Page 8 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

UNCERTAINTY

Uncertainties have been calculated according to the DEKRA internal document. The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Measurement uncertainty for 3	00 MHz to 3 (GHz averag	ed over 1 (gram / 10 gra	am.			
Error Description	Uncert.	Prob.	Div.	(ci)	(ci)	Std. Unc.	Std. Unc.	(vi)
	value	Dist.		1g	10g	(1g)	(10g)	veff
Measurement System		•	1		1	-	•	
Probe Calibration	±5.5%	N	1	1	1	±5.5%	±5.5%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√ <u>3</u>	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√ <u>3</u>	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Test Sample Related								•
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup		•		•	•	'	·	
Phantom Uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Liquid Conductivity (meas.)	±2.5%	N	1	0.78	0.71	±2.0%	±1.8%	∞
Liquid Permittivity (meas.)	±2.5%	N	1	0.26	0.26	±0.6%	±0.7%	∞
Combined Std. Uncertainty		<u> </u>		1	<u> </u>	±10.6%	±10.5%	361
Expanded STD Uncertainty						±21.2%	±21.1%	1

Report no.: 2560639R.707 Page 9 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

				ncertainty				
Measurement uncertainty for 3			over 1 gra					
Error Description	Uncert.	Prob.	Div.	(ci)	(ci)	Std. Unc.	Std. Unc.	(vi)
	value	Dist.		1g	10g	(1g)	(10g)	veff
Measurement System								
Probe Calibration	±6.65%	N	1	1	1	±6.65%	±6.65%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±2.0%	R	√3	1	1	±1.2%	±1.2%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Probe Positioning	±6.7%	R	$\sqrt{3}$	1	1	±3.9%	±3.9%	∞
Max. SAR Eval.	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Phantom and Setup					ı	·		
Phantom Uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Liquid Conductivity (meas.)	±2.5%	N	1	0.78	0.71	±2.0%	±1.8%	∞
Liquid Permittivity (meas.)	±2.5%	N	1	0.26	0.26	±0.6%	±0.7%	∞
Combined Std. Uncertainty					I	±12.0%	±12.0%	784
Expanded STD Uncertainty						±24.0%	±23.9%	

Report no.: 2560639R.707 Page 10 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

	DASY6 SAR Uncertainty (Frequency band: 6 GHz–10 GHz range)							
Symbol	Error Description	Uncert.	Prob.	Div.	(ci)	(ci)	Std. Unc.	Std. Unc.
Cymbol	Life Becompact	value	Dist.	Div.	(1 g)	(10 g)	(1 g)	(10 g)
Measurem	ent System Errors		•		•		•	1
CF	Probe Calibration	±18.6%	N	2	1	1	±9.3%	±9.3%
CFdrif t	Probe Calibration Drift	±1.7%	R	√3	1	1	±1.0%	±1.0%
LIN	Probe Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%
BBS	Broadband Signal	±2.8%	R	√3	1	1	±1.6%	±1.6%
ISO	Probe Isotropy	±7.6%	R	√3	1	1	±4.4%	±4.4%
DAE	Other Probe+Electronic	±2.4%	N	1	1	1	±2.4%	±2.4%
AMB	RF Ambient	±1.8%	N	1	1	1	±1.8%	±1.8%
Δ sys	Probe Positioning	±0.005 mm	N	1	0.5	0.5	±0.25%	±0.25%
DAT	Data Processing	±3.5%	N	1	1	1	±3.5%	±3.5%
Phantom a	and Device Errors							
LIQ(σ)	Conductivity (meas.)DAK	±2.5%	N	1	0.78	0.71	±2.0%	±1.8%
LIQ(Tσ)	Conductivity (temp.)BB	±2.4%	R	√3	0.78	0.71	±1.1%	±1.0%
EPS	Phantom Permittivity	±14.0%	R	√3	0.5	0.5	±4.0%	±4.0%
DIS	Distance DUT – TSL	±2.0%	N	1	2	2	±4.0%	±4.0%
D	Device Positioning	±1.0%	N	1	1	1	±1.0%	±1.0%
Н	Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%
MOD	DUT Modulationm	±2.4%	R	√3	1	1	±1.4%	±1.4%
TAS	Time-average SAR	±1.7%	R	√3	1	1	±1.0%	±1.0%
RF <i>drif t</i>	DUT drift	±2.5%	N	1	1	1	±2.5%	±2.5%
VAL	Val Antenna Unc.val	±0.0%	N	1	1	1	±0%	±0%
RFin	Unc. Input Powerval	±0.0%	N	1	1	1	±0%	±0%
Correction	to the SAR results							
C(ε, σ)	Deviation to Target	±1.9%	N	1	1	0.84	±1.9%	±1.6%
C(R)	SAR scalingp	±0%	R	√3	1	1	±0%	±0%
u	Random uncertainty	±0.6% for 1g and	N	1	1	1	±0.6%	±0.5%
u(∆SAR)	Combined Uncertainty		•				±14.2%	±13.9%
U	Expanded Uncertainty						±28.4%	±28.3%

Report no.: 2560639R.707 Page 11 / 91

	cDASY6 Mo c	lule mmWave Uncer	tainty Budget				
	Evaluation Distances to the Antennas > $\lambda/2\pi$						
	In Com	pliance with IEC/IEE	E 63195				
		Uncertainty				Standard	
Symbol	Error Description	Value	Probability	Divisor	(Ci)	Uncertainty	
		(±dB)				(±dB)	
Uncertainty	terms dep indent on the measuremen	t system					
CAL	Probe Calibration	0.49	N	1	1	0.49	
COR	Probe correction	0.00	R	1.732	1	0.00	
FRS	Frequency response	0.20	R	1.732	1	0.12	
SCC	Sensor cross coupling	0.00	R	1.732	1	0.00	
ISO	Isotropy	0.50	R	1.732	1	0.29	
LIN	Linearity	0.20	R	1.732	1	0.12	
PSC	Probe scattering	0.00	R	1.732	1	0.00	
PPO	Probe positioning offset	0.30	R	1.732	1	0.17	
PPR	Probe positioning repeatability	0.04	R	1.732	1	0.02	
SMO	Sensor mechanical offset	0.00	R	1.732	1	0.00	
PSR	Probe spatial resolution	0.00	R	1.732	1	0.00	
FLD	Field impedance dependance	0.00	R	1.732	1	0.00	
APD	Amplitude and phase drift	0.00	R	1.732	1	0.00	
APN	Amplitude and phase noise	0.04	R	1.732	1	0.02	
TR	Measurement area truncation	0.00	R	1.732	1	0.00	
DAQ	Data acquisition	0.03	N	1	1	0.03	
SMP	Sampling	0.00	R	1.732	1	0.00	
REC	Field reconstruction	2.00	R	1.732	1	1.15	
TRA	Forward transformation	0.00	R	1.732	1	0.00	
SCA	Power density scaling	0.00	R	1.732	1	0.00	
SAV	Spatial averaging	0.10	R	1.732	1	0.06	
SDL	System detection limit	0.04	R	1.732	1	0.02	
Uncertainty	terms dep indent on the DUT and envi	ironmental factors	1	I	·	<u>'</u>	
PC	Probe coupling with DUT	0.00	R	1.732	1	0.00	
MOD	Modulation response	0.40	R	1.732	1	0.23	
IT	Integration time	0.00	R	1.732	1	0.00	
RT	Response time	0.00	R	1.732	1	0.00	
DH	Device holder influence	0.10	R	1.732	1	0.06	
DA	DUT alignment	0.00	R	1.732	1	0.00	
AC	RF ambient conditions	0.04	R	1.732	1	0.02	
AR	Ambient reflections	0.04	R	1.732	1	0.02	
MSI	Immunity / secondary reception	0.00	R	1.732	1	0.00	
DRI	Drift of the DUT	0.00	R	1.732	1	0.00	
u	Random uncertainty	0.00	N	1	1	0.00	
u(P D)	Combined Std. Uncertainty		1	1	1	1.34	
U	Expanded STD Uncertainty (95%)					2.68	

Report no.: 2560639R.707 Page 12 / 91

 $No.99\ Hongye\ Rd.,\ Suzhou\ Industrial\ Park,\ Suzhou,\ 215006,\ Jiangsu,\ China$

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

TEST FACILITY

Tset Location : FCC Designation Number: CN1199

Report no.: 2560639R.707 Page 13 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

1 GENERAL INFORMATION

Product Name:	Tablet Computer					
Trademark:	Xiaomi					
Model No:	25097RP43G					
FCC ID:	2AFZZRP43G					
Power Supply::	Battery: 3.91 V, 9000mAh					
Manufacturer	Xiaomi Communications Co., Ltd.					
Manufacturer address:	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085					
LOT NO:	Radiation Sample 21792					
Wireless specification:	802.11b / g / n / ax / be					
Operating frequency range(s):	2412~2462MHz					
Type of Modulation:	802.11b:DSSS 802.11g / n / ax / be: OFDM 802.11ax / be: OFDMA					
Channel Spacing:	802.11b / g / n / ax / be:20MHz 802.11n / ac / ax / be:40MHz					
Smart System:	SISOMIMO-CDD					
Wireless specification:	802.11a / n / ac / ax / be					
Frequency Range:	U-NII-1: 5150 MHz to 5250 MHz					
	U-NII-2A: 5250 MHz to 5350 MHz					
	U-NII-2C: 5470 MHz to 5725 MHz					
	U-NII-3: 5725 MHz to 5850 MHz					
Channel Bandwidth:	802.11a 20 MHz 802.11n 20 MHz, 40 MHz 802.11ac 20 MHz, 40 MHz, 80 MHz, 160 MHz 802.11ax 20 MHz, 40 MHz, 80 MHz, 160 MHz 802.11be 20 MHz, 40 MHz, 80 MHz, 160 MHz					
Modulation technology:	OFDM / OFDMA					
3,	⊠ siso					
Smart System:						
Wireless specification:	802.11ax / be					
Frequency Range:	U-NII-5: 5925 MHz to 6425 MHz					
	U-NII-6: 6425 MHz to 6525 MHz					
	U-NII-7: 6525 MHz to 6875 MHz					
	U-NII-8: 6875 MHz to 7125 MHz					
	802.11a 20 MHz					
Channel Bandwidth:	802.11ax 20 MHz, 40 MHz, 80 MHz, 160 MHz 802.11be 20 MHz, 40 MHz, 80 MHz, 160 MHz, 320 MHz					
Modulation technology:	OFDM / OFDMA					
Smort System						
Smart System:						
Wireless specification:	Bluetooth BR/EDR					
Operating frequency range(s):	2402~2480MHz					
= ::						

Report no.: 2560639R.707 Page 14 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

Type of Modulation:	GFS	SK					
PHYs:		GFSK	\boxtimes	Pi/4 DQPSK	\boxtimes	8DPSK	
Data Rate:		1Mbit/s	\boxtimes	2Mbit/s	\boxtimes	3Mbit/s	
Number of channels:	79	79					
Wireless specification:	Bluetooth BLE						
Operating frequency range(s):	240	2~2480MHz					
Type of Modulation:	GFS	SK					
PHYs:	\boxtimes	LE 1M	\boxtimes	LE 2M	\boxtimes	LE Coded S=2/8	
Data Rate:		1Mbit/s	\boxtimes	2Mbit/s	\boxtimes	500/125 Kbit/s	
Number of channels:	40						

Report no.: 2560639R.707 Page 15 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

1.1 DUT Antenna Locations

Note: The DUT Antenna Locations please see appendix.

ANTO

WIFI chain0:2.4G+5G+6E

Bluetooth

ANT1

WIFI chain1:5G+6E

ANT2

WIFI chain1:2.4G

Bluetooth

Note:

1) The test device is a Tablet Computer. The overall dimensions of this equipment are 251*173mm in length and width. Per KDB 616217 D04, because the diagonal distance of this device is ≥200mm, Therefore, tests should be conducted at intervals of 0mm.

According to the distance between Wi-Fi antennas and the sides of the EUT we can draw the conclusion that:

	EUT Sides for SAR Testing							
Mode	Exposure Condition	Back	Left Side	Right Side	Top Side	Bottom Side		
Ant0	Product specific 1g SAR	Yes	Yes	Yes	Yes	Yes		
Ant1	Product specific 1g SAR	Yes	Yes	Yes	Yes	Yes		
Ant2	Product specific 1g SAR	Yes	Yes	Yes	Yes	Yes		

Note:

1) When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.

Report no.: 2560639R.707 Page 16 / 91

1.2 Power reduction specification

This device uses a single fixed level of power reduction through static table look-up for SAR compliance and it is triggered by a single event or operation

- 1) A fixed level power reduction is applied for some frequency bands when hotspot mode becomes active. When the hotspot is disabled, the power value will be recovered.
- 2) A fixed level power reduction is applied for some frequency bands when simultaneously transmitting with the other antennas in certain simultaneous transmission conditions. The standalone SAR compliance still uses the standalone SAR results tested at the maximum output power level without any power reduction
- 3) A fixed level power reduction is applied for some frequency bands when handset operate "held to the ear" condition, the power reduction triggered by audio receiver detection. The audio receiver detection is used to determine head or body scenario.
- 4) The proximity sensor is used to indicate when the device is held close to a user's body exposure condition. It utilizes the proximity sensor to reduce the output power in specific wireless and operating modes of main antenna to ensure SAR compliance(Refer to section 5.4 for detailed proximity Sensor information and validation data per KDB 616217).

The following tables summarize the key power reduction information. The detailed full power which is the Max. power the state can use and reduced tune-up specifications and conducted power measurement results are provided in Section 8 of this report.

	Bluetooth				
Antenna	Sensor off	Sensor on			
	DSI 0	DSI 1			
Ant 2 (Chain1)	16.0	Note			
Ant 0 (Chain2)	16.0	12.0			

	WLAN 2.4G			
Antenna	Sensor off	Sensor on		
	DSI 0	DSI 1		
Ant 2 (Chain1)	18.0	Note		
Ant 0 (Chain2)	18.0	15.0		

	WLAN 5.2&3G			
Antenna	Sensor off	Sensor on		
	DSI 0	DSI 1		
Ant 1 (Chain1)	15.0	Note		
Ant 0 (Chain2)	17.0	8.0		

	WLAN 5.6G				
Antenna	Sensor off	Sensor on			
	DSI 0	DSI 1			
Ant 1 (Chain1)	15.0	Note			
Ant 0 (Chain2)	15.0	3.5			

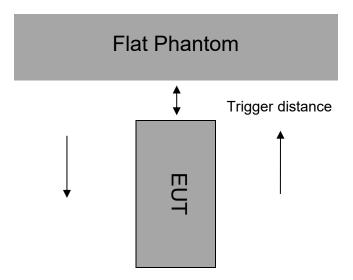
Report no.: 2560639R.707 Page 17 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

	WLAN 5.8G			
Antenna	Sensor off	Sensor on		
	DSI 0	DSI 1		
Ant 1 (Chain1)	15.0	Note		
Ant 0 (Chain2)	17.0	6.0		

Antenna	WLAN 6G(UNII-5/6/7/8)				
	Sensor off	Sensor on			
	DSI 0	DSI 1			
Ant 1 (Chain1)	15.0	Note			
Ant 0 (Chain2)	15.0	4.5			

Note: There are 3 antennas embedded in the Tablet. It has embedded a capacitive proximity sensor for the power reduction of antenna in order to comply with SAR requirement. The antenna (Ant 0) is used as the sensor pad.


Report no.: 2560639R.707 Page 18 / 91

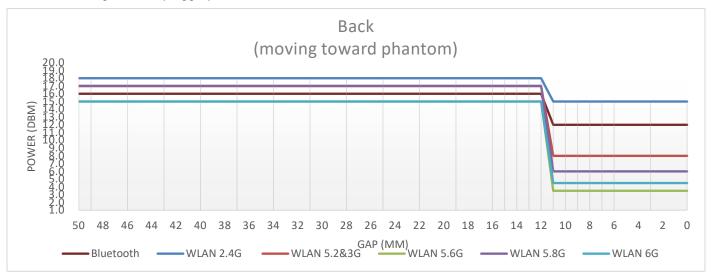
1.3 Proximity Sensor Triggering Test

Proximity sensor triggering distances:

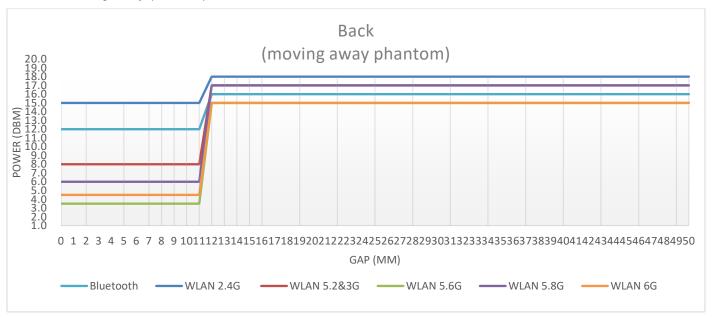
The Proximity sensor triggering was applied to Wi-Fi (Ant 0). Proximity sensor triggering distance testing was performed according to the procedures outlined in KDB 616217 D04 section 6.2, and EUT moving further away from the flat phantom and EUT moving toward the flat phantom were both assessed.

Target Power reduction applied for each wireless mode and orientation

ranget i enter reduction applica for each unrelece interestand entertation								
Exposure Position / wireless mode	Back							
Bluetooth Ant 0	4.0 dB							
WLAN 2.4G Ant 0	3.0 dB							
WLAN 5.2&3G Ant 0	9.0 dB							
WLAN 5.6G Ant 0	11.5 dB							
WLAN 5.8G Ant 0	11.0 dB							
WLAN 6G(UNII-5/6/7/8) Ant 0	10.5 dB							


Note:

- 1. Reduced maximum limit applied by activation of proximity sensor.
- 2. Power reduction triggered via proximity sensor is implemented for SAR compliance when users approach the device. The power reduction level is a single fixed level for each frequency band.
- 3. Power reduction is enabled solely upon a proximity sensor trigger event, at the user-EUT distance equal or smaller than the trigger distance. The power reduction is of the highest priority of this device, and will not be overridden by the request of the base station (ex: poor RSSI, etc.), and will be overridden by any other event (ex: low battery, AC-plugged, etc.) or any user intervention. There is no software setting or any 3rd party software can disable the mechanism.


Report no.: 2560639R.707 Page 19 / 91

DUT Moving Toward (Trigger) the Phantom

DUT Moving Away (Release) from the Phantom

Proximity sensor coverage

If a sensor is spatially offset from the antenna(s), it is necessary to verify sensor triggering for conditions where the antenna is next to the user but the sensor is laterally further away to ensure sensor coverage is sufficient for reducing the power to maintain compliance. For p-sensor coverage testing, the device is moved and "along the direction of maximum antenna and sensor offset".

The proximity sensor and main antenna use same metallic electrode, so there is no spatial offset.

Remark:

As above information is provided and confirmed by the applicant. DEKRA is not liable to the accuracy, suitability, reliability or/and integrity of the information.

Report no.: 2560639R.707 Page 20 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

1.4 Test Specification

Identity	Document Title
FCC 47CFR §2.1093	Radio frequency Radiation Exposure Evaluation: Portable Devices
IEC TR 63170	Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz
IEC/IEEE 63195-1	Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz) – Part 1: Measurement procedure
IEC/IEEE 63195-2	Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz) – Part 2: Computational procedure
ANSI/IEEE C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
EN IEC/IEEE 62209-1528	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz) (IEC/IEEE 62209-1528)
KDB 941225 D05	SAR for LTE Devices v02r05
KDB 941225 D05A	LTE Rel.10 KDB Inquiry Sheet v01r02
KDB 941225 D06	Hotspot Mode SAR v02r01
KDB 248227 D01	SAR Guidance for IEEE 802 11 Wi-Fi SAR v02r02
KDB 648474 D04	Handset SAR v01r03
KDB447498 D01	General RF Exposure Guidance v06
KDB 865664 D01	SAR Measurement 100 MHz to 6 GHz v01r04
KDB 865664 D02	RF Exposure Reporting v01r02
KDB 690783 D01	SAR Listings on Grants v01r03
KDB 616217 D04	SAR for laptop and tablets v01r02

Report no.: 2560639R.707 Page 21 / 91

1.5 RF exposure limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimetres of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

	SAR Exposure Limit								
	General Population / Uncontrolled Exposure ¹ (W/kg)	Occupational / Controlled Exposure ² (W/kg)							
Spatial Peak SAR ³ (head or Body)	1.60	8.00							
Spatial Peak SAR ⁴ (Whole Body)	0.08	0.40							
Spatial Peak SAR ⁵ (Hands / Feet / Ankle / Wrist)	4.00	20.00							
Pov	ver Density Exposure Limit (1,500 - 100,000 MHz)								
	General Population / Uncontrolled Exposure (mW/cm²) ⁶	Occupational / Controlled Exposure (mW/cm²)							
Power Density (S)	1.0	5.0							

Notes:

- 1. **General Population / Uncontrolled Environments** are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.
- 2. **Occupational / Controlled Environments** are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).
- 3. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 4. The Spatial Average value of the SAR averaged over the whole body.
- 5. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- 6. $1 \text{ mW/cm}^2 = 10 \text{ W/m}^2$,

Report no.: 2560639R.707 Page 22 / 91

2 SAR MEASUREMENTS SYSTEM CONFIGURATION

SAR Definition

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dw) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where:

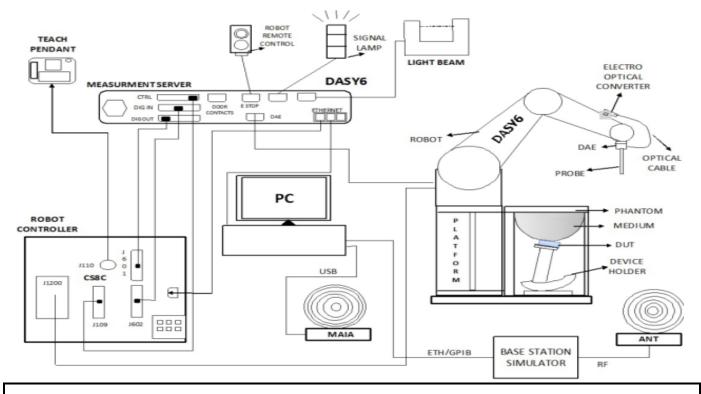
σ= conductivity of the tissue (S/m) p= mass density of the tissue (kg/m3) E = RMS electric field strength (V/m) SAR is expressed in units of Watts per kilogram (W/kg).

Power Tensity Definition

The power density for an electromagnetic field represents the rate of energy transfer per unit area. The local power density (i.e. Poynting vector) at a given spatial point is deduced from electromagnetic fields by the following formula:

$$S = \frac{1}{2} \operatorname{Re} \{ E \times H^* \} \cdot \vec{n}$$

Where: E is the complex electric field peak phasor and H is the complex conjugate magnetic field peak phasor.

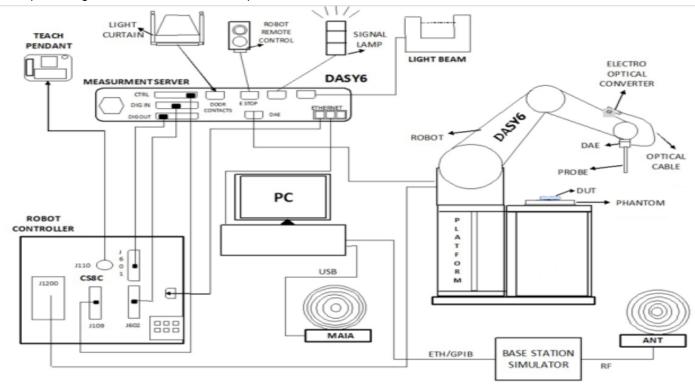

The spatial-average power density distribution on the evaluation surface is determined per the IEC TR 63170. The spatial area, Ais specified by the applicable exposure limit or regulatory requirements. The circular shape was used.

$$S_{av} = \frac{1}{2A} \Re \left(\int E \times H^* \cdot \hat{n} dA \right)$$

Report no.: 2560639R.707 Page 23 / 91

2.1 DASY6 SAR System Description

The DASY6 system for performing compliance tests consists of the following items:


- 1. A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- 2. A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 3. The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- 4. The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- 5. A computer running Windows 11 and the DASY6 software.
- 6. Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- 7. The phantom, the device holder and other accessories according to the targeted measurement.

Report no.: 2560639R.707 Page 24 / 91

2.2 DASY6 Power Density System Description

Power density measurements for mmWave frequencies were performed using SPEAG DASY6 with cDASY6 5G module. The DASY6 included a high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the 5G phantom cover.

EUmmWVx probe:

The EUmmWVx probe is based on the pseudo-vector probe design, which not only measures the field magnitude but also derives its polarization ellipse. The design entails two small0.8mm dipole sensors mechanically protected by high-density foam, printed on both sides of a0.9mm wide and 0.12mm thick glass substrate. The body of the probe is specifically constructed to minimize distortion by the scattered fields. The probe consist of two sensors with different angles (1 and 2) arranged in the same plane in the probe axis. Three or more measurements of the two sensors are taken for different probe rotational angles to derive the amplitude and polarization information. The probe design allows measurements at distances as small as 2mm from the sensors to the surface of the device under test (DuT). The typical sensor to probe tip distance is 1.5 mm. The exact distance is calibrated.2. A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted.

Report no.: 2560639R.707 Page 25 / 91

2.3 Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEC/IEEE 62209-1528 others.

2.4 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures points and step size follow as below. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution. The measure settings are referred in IEEE Std 1528-2013.

			≤3GHz	>3GHz	
Maximum distance from (geometric center of pro- surface		•	5±1 mm	½·δ·ln(2)±0.5 mm	
Maximum probe angle surface normal at the r	-	•	30°±1°	20°±1°	
Maximum area scan sp	natial resolu	ıtion: ∆x Area ∆v	\leq 2 GHz: \leq 15 mm 3-4 GHz: \leq 12 mm 2 - 3 GHz: \leq 12 mm 4 - 6 GHz: \leq 10 mm When the x or y dimension of the test device, in the		
Area	odudi 1000k	мот. Долиоси, ду	measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		
Maximum zoom scan s Zoom	spatial reso	lution: Δx Zoom , Δy	≤ 2 GHz: ≤ 8 mm 2 –3 GHz: ≤ 5 mm*	3–4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
	uniforn	n grid: Δz Zoom (n)	≤ 5 mm	3–4 GHz: ≤ 4 mm 4–5 GHz: ≤ 3 mm 5–6 GHz: ≤ 2 mm	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz Zoom (1): between 1st two points closest to	≤ 4 mm	3–4 GHz: ≤ 3 mm 4–5 GHz: ≤ 2.5 mm 5–6 GHz: ≤ 2 mm	
Surface	grid	phantom surface Δz Zoom (n>1): between subsequent points	≤ 1.5·Δz 2	Zoom (n-1)	
Minimum zoom scan volume	x, y, z		≥30 mm	3–4 GHz: ≥ 28 mm 4–5 GHz: ≥ 25 mm 5–6 GHz: ≥ 22 mm	

Report no.: 2560639R.707 Page 26 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

Note:

- δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.
- * When zoom scan is required and the reported SAR from the area scan based 1 g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report no.: 2560639R.707 Page 27 / 91

2.5 Uncertainty of Inter-/Extrapolation and Averaging

To evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY6 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEC/IEEE 62209-1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

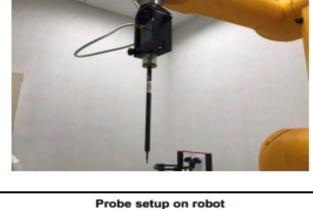
$$f_1(x,y,z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$

$$f_2(x,y,z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$

$$f_3(x,y,z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

Report no.: 2560639R.707 Page 28 / 91

2.6 DASY6 E-Field Probe & EUmmWV Probe


The SAR measurement is conducted with the diametric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The diametric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEC/IEEE 62209-1528, etc.) under ISO 17025. The calibration data are in Appendix D.

Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)					
4 MHz to 10 GHz Linearity: ± 0.2 dB (30 MHz to 10 GHz)					
±0.1 dB in TSL (rotation around probe axis) ±0.3 dB in TSL (rotation normal to probe axis)					
Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm					
ISO/IEC 17025 calibration service available					
-					

EX3DV4 E-Field Probe

Page 29 / 91

Report no.: 2560639R.707

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

The EUmmWV3 probe is based on the pseudo-vector probe design, which not only measures the field magnitude but also derives its polarization ellipse. This probe concept also has the advantage that the sensor angle errors or distortions of the field by the substrate can be largely nullified by calibration. This is particularly important as, at these very high frequencies, field distortions by the substrate are dependent on the wavelength. It has two dipoles optimally arranged to obtain pseudo-vector information. It has minimum 3 measurements/point, 120° rotated around probe axis. Sensors (0.8 mm length) printed on glass substrate protected by high density foam. Low perturbation of the measured field. Requires positioner which can do accurate probe rotation.

Frequency Range	750 MHz - 110 GHz	750 MHz - 110 GHz						
Dynamic Range	< 20 V/m - 10'000 V/m with	< 20 V/m - 10'000 V/m with PRE-10 (min < 50 V/m - 3000 V/m)						
Position Precision	< 0.2 mm	< 0.2 mm						
Dimensions	Tip diameter: encapsulation Distance from probe tip to o	Overall length: 337 mm (Tip: 20 mm) Tip diameter: encapsulation 8 mm (internal sensor < 1mm) Distance from probe tip to dipole centers: < 2 mm Sensor displacement to probe's calibration point: < 0.3 mm						
Applications	operating above 10 GHz in Power density, magnetic fie	Electric field measurements of 5G devices and other mm-wave transmitters operating above 10 GHz in <2 mm distance from device (free-space) Power density, magnetic field, and far-field analysis using total field reconstruction (cDASY6 5G or ICEy-mmW module required)						
compatibility	cDASY6 + 5G-Module SW	cDASY6 + 5G-Module SW1.0 and higher						
		1,5mm calibrated device						
E-Field	mm-Wave Probe	Sensor to DUT Surface						

Report no.: 2560639R.707 Page 30 / 91

2.7 Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.

2.8 DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY6 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY6 I/O board, which is directly connected to the PC/104 bus of the CPU board

Report no.: 2560639R.707 Page 31 / 91

2.9 Robot

The DASY6 system uses the high precision robots TX60 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY6 system, the CS8C robot controller version from Stäubli is used. The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

2.10 Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

Report no.: 2560639R.707 Page 32 / 91

2.11 Device Holder

The DASY6 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles. The DASY6 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

The DASY6 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Report no.: 2560639R.707 Page 33 / 91

2.12 SAM Phantom

SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

ELI Phantom

The SAM phantom is a fiberglass shell phantom with 2mm shell thickness. It has one measurement areas:

ELI phantom

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

Report no.: 2560639R.707 Page 34 / 91

3 TISSUE SIMULATING LIQUID

3.1 The composition of the tissue simulating liquid

Simulate 600MHz~10000MHz liquid, manufactured by SPEAG

Table F.1 – Suggested recipes for achieving target dielectric properties, 30 MHz to 900 MHz

Frequency (MHz)	30	5	50 144		4	50	835	90	10			
Recipe source number	3	3	2	2	3	2	4	2	2	4		
Ingredients (% by weight)												
De-ionized water	48,30	48,30	53,53	55,12	48,30	48,53	56	50,36	50,31	56		
Tween 20			44,70	43,31		49,51		48,39	48,34			
Oxidized mineral oil							44			44		
Diethylenglycol monohexylether												
Triton X-100												
Diacetin	50,00	50,00			50,00							
DGBE												
NaCl	1,60	1,60	1,77	1,57	1,60	1,96		1,25	1,35			
Additives and salt	0,10	0,10			0,10							
Measured tempera	Measured temperature dependence											
Temp. (°C)			21	21		21	20	21	21	20		
$\varepsilon_{ m liquid\ temp.\ unc.}$ (%)	8,0	0,1			0,1	0,1		0,04	0,04			
σ _{liquid temp. unc.} (%)	2,8	2,8			2,6	4,2		1,6	1,6			

Table F.2 – Suggested recipes for achieving target dielectric properties, 1 800 MHz to 10 000 MHz

Frequency (MHz)	1 8	00	2 450	4 000	5 000	5 200	5 800	6 000	8 000	10 000	
Recipe source number	2	4	4	4	4	1	1	4	5	5	
Ingredients (% by weight)											
De-ionized water	54,23	56	56	56	56	65,53	65,53	56	67,8	66,0	
Tween	45,27								31,1	33,0	
Oxidized mineral oil		44	44	44	44			44			
Diethylenglycol monohexylether						17,24	17,24				
Triton X-100						17,24	17,24				
Diacetin											
DGBE											
NaCl	0,50										
Additives and salt											
Measured temperature de	pendend	e									
Temp. (°C)	21	20	20	20	20	22	22	20	20	20	
ε _{liquid temp. unc.} (%)	0,4					1,7	1,8				
σ _{liquid temp. unc.} (%)	2,3					2,7	2,6				

NOTE 1 Multiple columns under a single frequency indicate optional recipes.

NOTE 2 Recipe source numbers: 1 verified by different labs, 2 Reference [59], 3 developed by IT'IS Foundation, 4 developed by IT'IS Foundation, 5 Reference [60].

NOTE 3 The values of $\varepsilon_{\text{liquid temp. unc.}}$ and $\sigma_{\text{liquid temp. unc.}}$ are liquid temperature uncertainties described in O.9.6, based on measurements of the applicable liquid recipes given above. These are not part of the original publications but have been subsequently developed by the project team.

NOTE 4 The recipes at 8 000 MHz and 10 000 MHz are sufficiently broadband that they cover the frequency range of 6 000 MHz to 10 000 MHz within a tolerance of ±10 % for permittivity and conductivity.

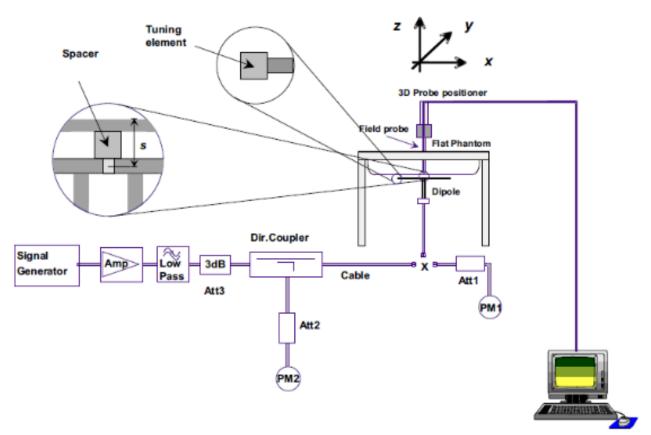
Report no.: 2560639R.707 Page 35 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

3.2 Measurement for Tissue Simulate Liquid

The dielectric properties for this Tissue Simulate Liquids were measured by using the Agilent E5071C Network Analyzer (600 KHz-10000 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in bellow table. For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was 22 ± 2 °C.


	Measured	Target Tis	sue (±5%)	Measure	d Tissue	Liquid	Measured Date	
Tissue Type	Tissue Type Frequency (MHz)	ε _r	σ(S/m)	٤r	σ(S/m)	Temp.(°C)		
2450 Head	2450	39.20 (37.24~41.16)	1.80 (1.71~1.89)	38.54	1.86	22.50	2025.07.21	
5250 Head	5250	35.9 (34.11~37.70)	4.71 (4.47~4.95)	36.38	4.60	22.50	2025.07.22	
5600 Head	5600	35.5 (33.73~37.28)	5.07 (4.82~5.32)	35.80	4.99	22.50	2025.07.23	
5750 Head	5750	35.4 (33.63~37.17)	5.22 (4.96~5.48)	35.55	5.17	22.50	2025.07.24	
6500 Head	6500	34.5 (32.78~36.23)	6.07 (5.77~6.37)	34.30	6.09	22.50	2025.07.25	

Report no.: 2560639R.707 Page 36 / 91

4 SYSTEM CHECK

The microwave circuit arrangement for system Check is sketched in F-12. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the following table (A power level of 250mW (below 3GHz) or 100mW (3-6GHz) was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15±0.5 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

F-1. the microwave circuit arrangement used for SAR system check

Report no.: 2560639R.707 Page 37 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

4.1 Justification for Extended Dipole Calibrations

- 1) Referring to KDB865664 D01 requirements for dipole calibration, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 10% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.
- 2) Network analyser probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

Report no.: 2560639R.707 Page 38 / 91

4.2 Measurement for System Check

Validation Kit		Measured SAR Me 250mW			ed SAR W	Normalized to	1W Target (±10%)	Liquid	Measured Date
		1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	Temp.(°C)	
D2450V2	Head	13.00	6.10	52.00	24.40	52.80 (47.52~58.08)	24.60 (22.14~27.06)	22.50	2025.07.21
Validation Kit		Measur 100	ed SAR mW	Measured SAR 1W		Normalized to 1W Target (±10%)		Liquid	Measured Date
			10g (W/kg)	1g (W/kg)			10g (W/kg)	Temp.(°C)	
D5GHzV2 5.25GHz	Head	7.96	2.32	79.60	23.20	77.60 21.60 (69.84~85.36) (19.44~23.76)		22.50	2025.07.22
D5GHzV2 5.6GHz	Head	8.22	2.37	82.20	23.70	81.30 (73.17~89.43)	22.60 (20.34~24.86)	22.50	2025.07.23
D5GHzV2 5.75GHz	Head	7.55	2.18	75.50	21.80	77.40 (69.66~85.14)	21.30 (19.17~23.43)	22.50	2025.07.24
D6500V2	Head	24.30	5.40	243.00	54.00	293.0 (263.7~322.3)	54.10 (48.69~59.51)	22.50	2025.07.25

Validation Kit	Measured Power Density 93.3 mW 1cm² Total PD	Measured Power Density 93.3 mW 4cm² Total PD	Max E-field (V/m)	Target Power Density 1cm² Total PD	Target Power Density 4cm² Total PD	Measured Date
	(W/m ²)	(W/m ²)	(*,)	(W/m ²)	(W/m ²)	
5G Verification Source 10 GHz	57.2	55.4	152 (136.8~167.2)	60.4 (54.36~66.44)	56.1 (50.49~61.71)	2025.07.26

Report no.: 2560639R.707 Page 39 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

5 TEST CONFIGURATION

5.1 SAR Test Reduction Procedure

5.1.1. Wi-Fi Test Configuration

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures. The initial test position procedure is described in the following:

- 1) . When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- 2) . When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- 3) . For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. a) Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required. SAR test reduction for subsequent highest output test channels is determined according to *reported* SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the *reported* SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until *reported* SAR is ≤ 1.2 W/kg or all required channels are tested.

Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test

Report no.: 2560639R.707 Page 40 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- 1) . When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- 2) . When the highest *reported* SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- 3) . The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.
 - SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.
 - b) SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the *reported* SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. i) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.
- 4) . SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by recursively applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
 - a) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
 - b) replace "initial test configuration" with "all tested higher output power configurations"

2.4 GHz WiFi SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in following.

802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) . When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) . When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11g/n OFDM&OFDMA SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test

Report no.: 2560639R.707 Page 41 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

reduction procedures for OFDM are applied (section 5.3, including sub-sections). SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) . When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) . When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

SAR Test Requirements for OFDM&OFDMA configurations

When SAR measurement is required for 802.11 g/n OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

5 GHz WiFi SAR Procedures

U-NII-1 and U-NII-2A Bands

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following:

- When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, both bands are tested independently for SAR.
- 2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, both bands are tested independently for SAR.
- 3) The two U-NII bands may be aggregated to support a 160 MHz channel on channel number 50. Without additional testing, the maximum output power for this is limited to the lower of the maximum output power certified for the two bands. When SAR measurement is required for at least one of the bands and the highest reported SAR adjusted by the ratio of specified maximum output power of aggregated to standalone band is > 1.2 W/kg, SAR is required for the 160 MHz channel. This procedure does not apply to an aggregated band with maximum output higher than the standalone band(s); the aggregated band must be tested independently for SAR. SAR is not required when the 160 MHz channel is operating at a reduced maximum power and also qualifies for SAR test exclusion.

U-NII-2C and U-NII-3 Bands

The frequency range covered by these bands is 380 MHz (5.47 - 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. when Terminal Doppler Weather Radar (TDWR) restriction applies, all channels that operate at 5.60 - 5.65 GHz must be included to apply the SAR test reduction and measurement procedures.

When the same transmitter and antenna(s) are used for U-NII-2C band and U-NII-3 band or 5.8 GHz band of §15.247, the bands may be aggregated to enable additional channels with 20, 40 or 80 MHz bandwidth to span across the band gap, as illustrated in Appendix B. The maximum output power for the additional band gap channels is limited to the lower of those certified for the bands. Unless band gap channels are permanently disabled, they must be considered for SAR testing. The frequency range covered by these bands is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. To maintain SAR measurement accuracy and to facilitate test reduction, the channels in U-NII-2C band above 5.65 GHz may be grouped with the 5.8 GHz channels in U-NII-3 or §15.247 band to enable

Report no.: 2560639R.707 Page 42 / 91

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

two SAR probe calibration frequency points to cover the bands, including the band gap channels. When band gap channels are supported and the bands are not aggregated for SAR testing, band gap channels must be considered independently in each band according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

- OFDM&OFDMA Transmission Mode SAR Test Configuration and Channel Selection Requirements
 The initial test configuration for 5 GHz OFDM transmission modes is determined by the 802.11 configuration with
 the highest maximum output power specified for production units, including tune-up tolerance, in each standalone
 and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum
 output power channel determined by the default power measurement procedures. When multiple configurations
 in a frequency band have the same specified maximum output power, the initial test configuration is determined
 according to the following steps applied sequentially.
 - 1) The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
 - 2) If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
 - 3) If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
 - 4) When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n. After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.
 - a) The channel closest to mid-band frequency is selected for SAR measurement.
 - b) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

SAR Test Requirements for OFDM&OFDMA configurations

When SAR measurement is required for 802.11 a/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

6 GHz WiFi SAR Procedures

Initial Test Configuration: An initial test configuration is determined or OFDMA transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR ismeasured using the highest measured maximum output power channel. When thereported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is s 1.2 W/kg or all required channels are tested. Since the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration

Report no.: 2560639R.707 Page 43 / 91

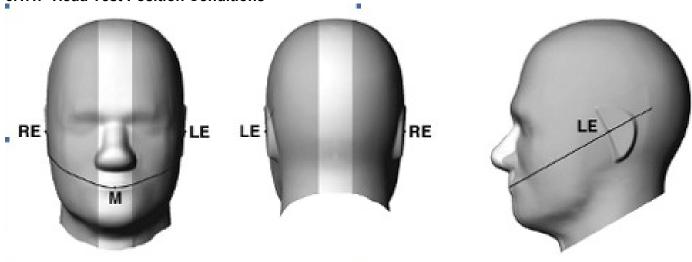
No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006, Jiangsu, China TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

specifiedmaximum output power and the adjusted SAR is \leq 1.2 W/kg, SAR is not required forsubsequent test configuration.

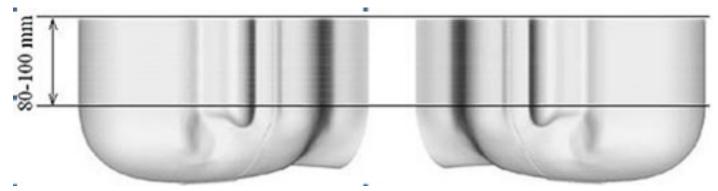
Power Density Test Requirements

Per October 2020 & April 2021 TCB Workshop interim proceduresand FCC guidance, start instead with a minimum of 5 test channels across the fullband, then adapt and apply conducted power and SAR test reduction procedures of KDB Pub.248227 v02r02.WLAN 6GHz SAR is measured by using 6-7GHzparameters per IEC/EEE62209-1528:2020 and report also estimated absorbed PD(for reference purposes only, not specifically for compliance). For the highest SARtest configurations also measure incident PD (total) using mmW near-field probe andtotal-field/power-density reconstruction method.

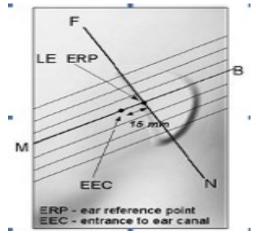
- Per equipmentmanufacturer guidance, power density wasmeasured at d=2mm with the grid step (0.0625λ) for determining compliance atd=2mm.
- 2) According to October 2020 TCB Workshop Interim procedurespower density results were scaled according to IEC 62479:2010 for the portion of themeasurement uncertainty> 30%. Total expanded uncertainty of 2.68 dB (85%) wasused to determine the psPD measurement scaling factor.
- 3) Per FCC guidance, for simultaneous transmission evaluation, using SAR sum and SPLSR for simultaneous transmit exclusion analyses and evaluations


Report no.: 2560639R.707 Page 44 / 91

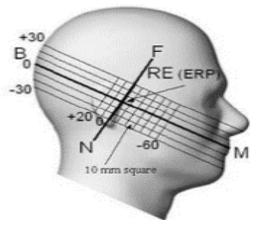
6 DESCRIPTION OF TEST POSITION


6.1 SAR Test Reduction Procedure

6.1.1. Head Test Position Conditions



Front, back, and side views of SAM (model for the phantom shell). Full-head model is for illustration purposes only-procedures in this recommended practice are intended primarily for the phantom setup.


Note: The centre strip including the nose region has a different thickness tolerance.

Sagittally bisected phantom with extended perimeter (shown placed on its side as used for SAR measurements)

Close-up side view of phantom, showing the ear region, N-F and B-M lines, and seven cross-sectional plane locations

Side view of the phantom showing relevant markings and seven cross-sectional plane locations

Report no.: 2560639R.707 Page 45 / 91