

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 1 of 206

FCC SAR TEST REPORT

Application No.: SZCR2504001554WM

Applicant: Xiaomi Communications Co., Ltd.

Address of Applicant: #019, 9th Floor, Building 6, 33 Xi'ergi Middle Road, Haidian District, Beijing,

China, 100085

Manufacturer: Xiaomi Communications Co., Ltd.

Address of Manufacturer: #019, 9th Floor, Building 6, 33 Xi'ergi Middle Road, Haidian District, Beijing,

China, 100085

EUT Description: Mobile Phone Model No.: 25069PTEBG

Trade Mark: Xiaomi

FCC ID: 2AFZZPTEBG

Standards: FCC 47CFR §2.1093

Date of Receipt: 2025-05-05

Date of Test: 2025-05-08 to 2025-06-01

Date of Issue: 2025-06-06

PASS * Test Result:

Kenv Xu **EMC Laboratory Manager**

Ceny. Ku

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's soile responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN. Doccheck@ass.com

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Sherzhen, Guangdong, China 518057 t (86–755) 26012053 f (86–755) 26710594 www.sgsgroup.com.cn 中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057 t (86-755)26012053 f (86-755)26710594 sgs.china@sgs.com

In the configuration tested, the EUT detailed in this report complied with the standards specified above.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 2 of 206

Revision Record				
Version Description Date Remark				
01		2025-06-06		

Authorized for issue by:		
	Levin lan	
	Kevin Lan/Project Engineer	
	Exic Fu	
	Eric Fu/Reviewer	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without proven it in the proval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@ags.com"

or email: CN.Doccheck@sgs.com |Mo.11Mortatop, M-10, Middle Section, Science & Bednutoge Part, |Reinstein District, Sherzhen, Guargotong, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 3 of 206

TEST SUMMARY

	Maximum Reported SAR(W/kg)			
Frequency Band	Head	Body-worn	Hotspot	Product specific 10g SAR
GSM850	1.06	1.08	0.68	/
GSM1900	0.89	1.00	0.75	/
WCDMA Band II	0.97	1.02	1.08	/
WCDMA Band IV	0.87	1.09	0.78	/
WCDMA Band V	1.09	1.03	0.66	/
LTE Band 2	1.03	1.01	0.63	/
LTE Band 7	1.09	1.08	0.83	/
LTE Band 12/17	0.73	0.69	1.02	/
LTE Band 13	0.91	0.95	1.05	/
LTE Band 26/5	0.97	1.00	1.09	/
LTE Band 41/38	1.03	0.93	0.65	/
LTE Band 42	1.09	1.09	0.82	/
LTE Band 48	0.87	0.85	0.39	/
LTE Band 66/4	1.06	0.94	0.78	/
LTE Band 71	0.38	0.73	0.54	/
NR Band n2	1.06	0.94	0.67	/
NR Band n7	1.08	1.03	0.69	/
NR Band n12	0.82	0.92	0.75	/
NR Band n26/5	0.90	1.06	0.98	/
NR Band n38	1.00	1.09	0.42	/
NR Band n41	1.09	1.03	0.41	/
NR Band n48	0.67	0.71	0.29	/
NR Band n66	1.08	1.09	0.59	/
NR Band n71	0.41	0.59	0.28	/

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without provintien approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com"

or email: CN.Doccheck@sgs.com
Wo.1Workshop, M-10, Middle Section, Science & Technology Part, Nanohan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn
中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 4 of 206

	o					
NR Band n77	1.09	1.01	0.80	/		
NR Band n78	1.09	1.03	0.66	/		
WI-FI (2.4GHz)	0.98	0.73	0.53	/		
WI-FI (5GHz)	0.89	0.89	0.85	1.69		
WI-FI 6E	<0.10	<0.10	/	0.11		
ВТ	0.55	0.36	0.17	/		
SAR Limited(W/kg)	1.6		4.0			
Maxim	Maximum Simultaneous Transmission SAR (W/kg)					
Scenario			Product specific 10g SAR			
Sum SAR	1.57	1.59	1.59	1.69		
SPLSR	0.03	0.03	0.02	/		
SPLSR Limited	0.04		0.1			

Frequency Band	Reported PD (W/m²)
WIFI 6E	6.90
PD Limit	10.00

Note: The Simultaneous transmission SAR is the same test position of the WWAN Antenna + WiFi/BT Antenna.

According to TCB workshop (Overlapping LTE Bands): SAR in LTE band 4 is covered by LTE band 66. SAR in LTE band 5 is covered by LTE band 26. SAR in LTE band 17 is covered by LTE band 12. SAR in LTE band 38 is covered by LTE band 41. SAR in NR Band n5 is covered by NR Band n26. Because the frequency range is similar, the maximum tuning limit is the same, and the channel bandwidth and other operating parameters for the smaller band is fully supported by the larger band.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 5 of 206

Contents

		AR 1	
1		eral Information	
	1.1 G	General Description of EUT	9
	1.1.1	1 DUT Antenna Locations (Back View)	12
	1.1.2	2 Smart Transmit feature for RF Exposure compliance	13
	1.1.3	3 Power reduction specification	14
		est Specification	
		RF exposure limits	
	1.4 T	est Location	17
		est Facility	
2		ratory Environment	
3		Measurements System Configuration	
		he SAR Measurement System	
		sotropic E-field Proble EX3DV4	
		Pata Acquisition Electronics (DAE)	
		SAM Twin Phantom	
		LI Phantom	
		Pevice Holder for Transmitters	
		1 Scanning procedure	
		2 Data storage	
		3 Data Evaluation by SEMCAD	
4		er density measurement system	
		UmmWaVe probe	
4		measurement variability and uncertainty	
		AR measurement variability	
		AR measurement uncertainty	
_		D measurement uncertainty	
5		iption of Test Position he Head Test Position	
		1 SAM Phantom Shape	
		2 EUT constructions	
		3 Definition of the "check" position	
		4 Definition of the "tilted" position	
		he Body Test Position	
	5.2.	1 Body-worn accessory exposure conditions	38

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without proven it in the proval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@ags.com"

or email: CN.Doccheck@sgs.com

No.1 Workshop, N-1D, Middle Sedon, Seenes & Rednology Park, Manshan District, Sheruben, Guangdong, Chine 518057

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057

t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn

t (86-755) 26710594 j www.sgsgroup.com.cn

t (86-755) 26710594 j www.sgsgroup.com.cn

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.:	SZCR250400155410
-------------	------------------

Page: 6 of 206

	5.2.2	Wireless Router exposure conditions	39
		tremity exposure conditions	
^		oximity Sensor Triggering Test	
6		System Verificaion Proceduressue Simulate Liquid	
		Recipes for Tissue Simulate Liquid	
		Measurement for Tissue Simulate Liquid	
		AR System Check	
	6.2.1	Justification for Extended SAR Dipole Calibrations	51
	6.2.2	Summary System Check Result(s)	52
	6.2.3	Detailed System Check Results	52
7		stem Check	
8		SonfigurationS SAR Test Reduction Procedure	
		peration Configurations	
	1	GSM Test Configuration	
		WCDMA Test Configuration	
		WIFI Test Configuration	
		LTE Test Configuration	
	8.2.5	NR Band Test Configuration	76
9	Test R	tesult	80
		easurement of RF Conducted Powereasurement of SAR Data	
		SAR Result of GSM850	
		SAR Result of GSM1900	
		SAR Result of WCDMA Band II	
		SAR Result of WCDMA Band IV	
		SAR Result of WCDMA Band V	
		SAR Result of LTE Band 2	
		SAR Result of LTE Band 4	
		SAR Result of LTE Band 7	
		SAR Result of LTE Band 12	
	9.2.9		
	9.2.10		
	_		
	9.2.12	2 SAR Result of LTE Band 38	109

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without provintien approval of the Company, Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: Co. Doccheck@ass.com"

or email: CN.Doccheck@sgs.com

No.1 Workshop, N-1D, Middle Sedon, Seenes & Rednology Park, Manshan District, Sheruben, Guangdong, Chine 518057

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057

t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn

t (86-755) 26710594 j www.sgsgroup.com.cn

t (86-755) 26710594 j www.sgsgroup.com.cn

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.:	SZCR250400155410
-------------	------------------

Page: 7 of 206

pp	pendix A: Deta	iled System Check Results	206
3	Photograp	ohs	206
2	Calibration	n certificate	206
1		ot SAR Antenna Group Analysist listt list	
	•	worn SAR Antenna Group Analysis	
	10.1 Head \$	SAR Antenna Group Analysis	197
0		nna groups	
		nultaneous Transmission SAR Summation Scenario	
	•	nultaneous SAR test evaluation	
		Result of Wifi 6Ee Transmitter Evaluation	
		rement of PD Data	
	9.2.34	SAR Result of BT	
	9.2.33	SAR Result of WIFI 6E	
	9.2.32	SAR Result of WIFI 5G	
	9.2.31	SAR Result of WIFI 2.4G	
	9.2.30	SAR Result of NR Band n78(3700-3800)	
	9.2.29	SAR Result of NR Band n78(3450-3550)	
	9.2.28	SAR Result of NR Band n77(3700-3980)	
	9.2.27	SAR Result of NR Band n77(3450-3550)	
	9.2.26	SAR Result of NR Band n71	
	9.2.25	SAR Result of NR Band n66	
	9.2.24	SAR Result of NR Band n48	
	9.2.23	SAR Result of NR Band n41	
	9.2.22	SAR Result of NR Band n38	
	9.2.21	SAR Result of NR Band n26	
	9.2.20	SAR Result of NR Band n12	
	9.2.19	SAR Result of NR Band n7	
	9.2.18	SAR Result of NR Band n2	
	9.2.17	SAR Result of LTE Band 71	
	9.2.16	SAR Result of LTE Band 66	
	9.2.15	SAR Result of LTE Band 48	
	_		
	9.2.14	SAR Result of LTE Band 42	
	9.2.13	SAR Result of LTE Band 41	111

1

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without provintien approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com"

or email: CN.Doccheck@sgs.com
Wo.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Sheraben, Guangdong, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn
中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057 t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 8 of 206

Appendix B: Detailed Test Results	206
Appendix C: Calibration certificate	
Appendix D: Photographs	
Appendix E: Conducted RF Output Power	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without proven it in the proval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@ags.com"

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

9 of 206 Page:

General Information 1

1.1 General Description of EUT

Product Name:	Mobile Phone				
Model No.:	25069PTEBG				
Trade Mark:	Xiaomi				
Product Phase:	production unit				
Device Type:	portable device				
Exposure Category:	uncontrolled environme	ent / general population			
IMEI:	860647070070484; 860647070070542; 860647070067548; 860647070065823; 860647070066003; 860647070065641; 860647070065567; 860647070065542; 860647070066128; 860647070066169; 860647070065682; 860647070065948; 860647070065963; 860647070066045; 860647070065807; 860647070069767; 860647070069569; 860647070069429; 860647070069668; 860647070066060; 860647070069361; 860647070069585; 860647070066029; 860647070070468; 860647070070567.				
Hardware Version:	1351P2405				
Software Version:	Xiaomi HyperOS 2.0				
Antenna Type:	Fixed Internal Antenna				
Device Operating Configurations:	Device Operating Configurations:				
Modulation Mode:	GSM:GMSK,8PSK; WCDMA:QPSK,16QAM LTE:QPSK,16QAM,64QAM,256QAM 5G NR:DFT-s-OFDM(PI/2 BPSK,QPSK,16QAM,64QAM,256QAM) CP-OFDM(QPSK,16QAM,64QAM,256QAM) WIFI:DSSS,OFDM,OFDMA; BT:GFSK, π/4DQPSK,8DPSK NFC: ASK				
Device Class:	В				
GPRS Multi-slots Class:	12	EGPRS Multi-slots Class:	12		
HSDPA UE Category:	24	HSUPA UE Category:	6		
DC-HSDPA UE Category:	24				
Power Class:	4, tested with power level 5(GSM850) 1, tested with power level 0(GSM1900) 3, tested with power control "all 1"(WCDMA Band) 3, tested with power control "max power"(LTE Band)				
Frequency Bands:	Band Tx(MHz)				

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without provintien approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com"

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 10 of 206

GSM850	824~849
GSM1900	1850~1910
WCDMA Band II	1850~1910
WCDMA Band IV	1710~1755
WCDMA Band V	824~849
LTE Band 2	1850 ~1910
LTE Band 4	1710~1755
LTE Band 5	824~849
LTE Band 7	2500~2570
LTE Band 12	699~716
LTE Band 13	777~787
LTE Band 17	704-716
LTE Band 26	814~849
LTE Band 38	2570~2620
LTE Band 41	2496~2690
LTE Band 42	3400~3600
LTE Band 48	3550~3700
LTE Band 66	1710~1780
LTE Band 71	663~698
NR Band n2	1850 ~1910
NR Band n5	824~849
NR Band n7	2500~2570
NR Band n12	699~716
NR Band n26	814~849
NR Band n38	2570~2620
NR Band n41 (Class 2/3)	2496~2690
NR Band n48	3550~3700
NR Band n66	1710~1780
NR Band n71	663~698
NR Band n77(Class	3450~3550
2/3)	3700~3980
NR Band n78(Class	3450~3550
2/3)	3700~3800

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without proven it in the proval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@ags.com"

or email: CN.Doccheck@sgs.com
Wo.1Workshop, M-10, Middle Section, Science & Technology Part, Nanohan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn
中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

11 of 206 Page:

	WIFI 2.4G	2412~2462
		5150~5250
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5250~5350
	WIFI 5G	5470~5725
		5725~5850
		5925~6425
	Wi-Fi 6E	6425~6525
		6525~6875
		6875~7125
	ВТ	2402~2480
	NFC	13.56
RF Cable:	☑Provided by applicant ☐Provided by the laboratory	
	Model:	BP5J
Datter / Information	Normal Voltage:	3.93V
Battery Information:	Rated capacity:	5350mAh
	Brand Name:	MI

Note:

*Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, SGS is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

As above information is provided and confirmed by the applicant. SGS is not liable to the accuracy, suitability, reliability or/and integrity of the information.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 12 of 206

1.1.1 DUT Antenna Locations (Back View)

The DUT Antenna Locations can be referred to Appendix D Note:

- 1) The test device is a smart phone. The overall diagonal dimension of this device is 175mm. Per KDB 648474 D04, because the diagonal distance of this device is ≥160mm, so it is a phablet.
- 2) When the antenna-to-edge distance is greater than 25mm, such position does not need to be tested.

According to the distance between the antennas and the sides of the EUT we can draw the conclusion that:

Distance of the Antenna to the EUT surface/edge						
Mode	Front	Back	Left	Right	Тор	Bottom
Ant0	≤25mm	≤25mm	≤25mm	>25mm	>25mm	≤25mm
Ant1	≤25mm	≤25mm	>25mm	≤25mm	>25mm	>25mm
Ant2	≤25mm	≤25mm	>25mm	≤25mm	≤25mm	>25mm
Ant3	≤25mm	≤25mm	>25mm	≤25mm	>25mm	≤25mm
Ant4	≤25mm	≤25mm	>25mm	≤25mm	≤25mm	>25mm
Ant5	≤25mm	≤25mm	≤25mm	>25mm	>25mm	>25mm
An6	≤25mm	≤25mm	≤25mm	>25mm	≤25mm	>25mm
Ant7	≤25mm	≤25mm	>25mm	≤25mm	≤25mm	>25mm
Ant8	≤25mm	≤25mm	≤25mm	>25mm	≤25mm	>25mm
Ant9	≤25mm	≤25mm	>25mm	≤25mm	≤25mm	>25mm
Ant16	≤25mm	≤25mm	>25mm	>25mm	≤25mm	>25mm
Ant17	≤25mm	≤25mm	≤25mm	>25mm	≤25mm	>25mm
Ant 18	≤25mm	≤25mm	≤25mm	>25mm	>25mm	>25mm

Table 1: Distance of the Antenna to the EUT surface/edge

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 13 of 206

1.1.2 Smart Transmit feature for RF Exposure compliance

The RF exposure limit is defined based on time-averaged RF exposure. The product implements MTK Smart Transmit feature which controls the instantaneous transmit power for WWAN transmitter to ensure the product in compliance with RF exposure limit over a defined time window, for SAR(transmit frequency ≤ 6GHz). To control and manage transmitting power in real time and to ensure at all times the time-averaged RF exposure is compliant to the regulation requirement.

The RF exposure limit is defined based on time-averaged RF exposure. The product implements MediaTek Time-averaged SAR (TA-SAR) feature which controls the instantaneous transmit power for WWAN transmitter to ensure the product in compliance with RF exposure limit over a defined time window, for SAR(transmit frequency ≤ 6GHz). To control and manage transmitting power in real time and to ensure at all times the time-averaged RF exposure is compliant to the regulation requirement.

Please refer to part2 report for more details.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 14 of 206

1.1.3 Power reduction specification

This device uses a single fixed level of power reduction through static table look-up for SAR compliance and it is triggered by a single event or operation:

- This device uses the receiver to indicate whether the user is making a voice call in head scenario or not. The selection between head and body power levels is based on the receiver detection mechanism. A fixed level power reduction is applied for some frequency bands when the audio receiver is on.
- A fixed level power reduction is applied for some frequency bands when simultaneously transmitting with the other antennas in certain simultaneous transmission conditions.
- The proximity sensor is used to indicate when the device is held close to a user's body exposure condition. It utilizes the proximity sensor to reduce the output power in specific wireless and operating modes of main antenna to ensure SAR compliance (Refer to section 5.4 for detailed proximity Sensor information and validation data per KDB 616217).

The detailed power reduction information can be referred to Appendix E Conducted RF Output Power.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://iwww.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@gs.com"

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

15 of 206 Page:

1.2 Test Specification

Identity	Document Title
FCC 47CFR §2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices
ANSI/IEEE C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
IEC/IEEE 62209-1528:2020	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices —Part 1528: Human models, instrumentation, and procedures(Frequency range of 4 MHz to 10 GHz)
IEC/IEEE 63195-1:2022	Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz) –
	Part 1: Measurement procedure
KDB 941225 D01	3G SAR Measurement Procedures v03r01
KDB 941225 D05	SAR for LTE Devices v02r05
KDB 941225 D05A	LTE Rel.10 KDB Inquiry Sheet v01r02
KDB 941225 D06	Hotspot Mode SAR v02r01
KDB 248227 D01	SAR Guidance for IEEE 802 11 Wi-Fi SAR v02r02
KDB 648474 D04	Handset SAR v01r03
KDB 447498 D04	Interim General RF Exposure Guidance v01
KDB 865664 D01	SAR Measurement 100 MHz to 6 GHz v01r04
KDB 865664 D02	RF Exposure Reporting v01r02
KDB 690783 D01	SAR Listings on Grants v01r03
KDB 616217 D04	SAR for laptop and tablets v01r02

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without provintien approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com"

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 16 of 206

1.3 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational	
Spatial Peak SAR* (Brain*Trunk)	1.60 mW/g	8.00 mW/g	
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g	
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g	

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.)

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

^{*} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

^{**} The Spatial Average value of the SAR averaged over the whole body.

^{***} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 17 of 206

1.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China, 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

1.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI (Member No. 1937)

The 3m Fully-anechoic chamber for above 1GHz, 10m Semi-anechoic chamber for below 1GHz, Shielded Room for Mains Port Conducted Interference Measurement and Telecommunication Port Conducted Interference Measurement of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen EMC laboratory have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-20026, R-14188, C-12383 and T-11153 respectively.

• FCC -Designation Number: CN1336

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1336. Test Firm Registration Number: 787754.

• Innovation, Science and Economic Development Canada

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

CAB identifier: CN0006.

IC#: 4620C.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 18 of 206

2 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C	
Relative humidity	Min. = 30%, Max. = 70%	
Ground system resistance	< 0.5 Ω	
Ambient noise is checked and found very low and in compliance with requirement of standards.		
Reflection of surrounding objects is minimized and in compliance with requirement of standards.		

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without proven it in the proval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@ags.com"

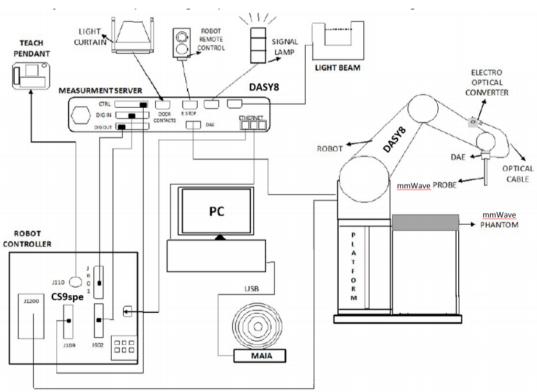
SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 19 of 206

3 SAR Measurements System Configuration

3.1 The SAR Measurement System


This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-Simulate.

The DASY system for performing compliance tests consists of the following items:
A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software. An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

F-1. SAR Measurement System Configuration

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://iwww.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@gs.com"

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 20 of 206

- The function of the measurement server is to perform the time critical tasks such as signal filtering. control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows system.
- DASY software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validating the proper functioning of the system.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without provintien approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com"

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

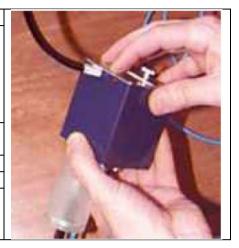
Page: 21 of 206

Isotropic E-field Proble EX3DV4 3.2

	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY52 SAR and higher, EASY4/MRI

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without provintien approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com"


SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 22 of 206

3.3 **Data Acquisition Electronics (DAE)**

Model	DAE
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV,400mV)
Input Offset Voltage	< 5µV (with auto zero)
Input Bias Current	< 50 f A
Dimensions	60 x 60 x 68 mm

3.4 SAM Twin Phantom

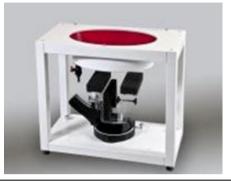
Material	Vinylester, glass fiber reinforced (VE-GF)	
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions (incl. Wooden Support)	Length: 1000 mm Width: 500 mm Height: adjustable feet	
Filling Volume	pprox 25 liters	
Wooden Support	SPEAG standard phantom table	

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com


SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 23 of 206

3.5 **ELI Phantom**

Material	Vinylester, glass fiber reinforced (VE-GF)	
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)	
Shell Thickness	2.0 ± 0.2 mm(bottom plate)	
Dimensions	Major axis: 600 mm Minor axis: 400 mm	
Filling Volume	pprox 30 liters	
Wooden Support	SPEAG standard phantom table	

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEEE 1528 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4 but has reinforced top structure.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 24 of 206

3.6 Device Holder for Transmitters

F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 25 of 206

3.7 **Measurement Procedure**

3.7.1 Scanning procedure

Step 1: Power reference measurement

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 12mm*12mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of 32mm*32mm*30mm (f≤2GHz), 30mm*30mm*30mm (f for 2-3GHz) and 24mm*24mm*22mm (f for 5-6GHz) was assessed by measuring 5x5x7 points (f≤2GHz), 7x7x7 points (f for 2-3GHz) and 7x7x12 points (f for 5-6GHz). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points were interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols: to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std. 1528-2013.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

26 of 206 Page:

			≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface			5 ± 1 mm	½·δ·ln(2) ± 0.5 mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location			30° ± 1°	20° ± 1°
			3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$	
	uniform grid: Δz _{Z∞m} (n)		≤ 5 mm	$3-4 \text{ GHz}: \le 4 \text{ mm}$ $4-5 \text{ GHz}: \le 3 \text{ mm}$ $5-6 \text{ GHz}: \le 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	esolution,	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3-4$ GHz: ≤ 3 mm $4-5$ GHz: ≤ 2.5 mm $5-6$ GHz: ≤ 2 mm
	grid $\Delta z_{Z_{00m}}(n>1)$: between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
Minimum zoom scan volume			≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max \pm 5 %.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 27 of 206

3.7.2 Data storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension "DAE". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [m W/g], [m W/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

3.7.3 Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

- Conversion factor ConvFi - Diode compression point Dcpi

Device parameters: - Frequency f

- Crest factor cf Media parameters: - Conductivity

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents, or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

3

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot c f / d c p_i$$

With Vi = compensated signal of channel I (I = x, y, z)

Ui = input signal of channel I (I = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp I = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated: E-field probes:

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://iwww.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@gs.com"

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 28 of 206

 $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes:

 $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$ With Vi = compensated signal of channel I (I = x, y, z)

Normi = sensor sensitivity of channel I

[mV/(V/m)2] for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel I in V/m

Hi = magnetic field strength of channel I in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

 $E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$ The primary field data are used to calculate the derived field units. $SAR = (Etot^2 \cdot \sigma) / (\varepsilon \cdot 1000)$

SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

σ= conductivity in [mho/m] or [Siemens/m]

ε= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

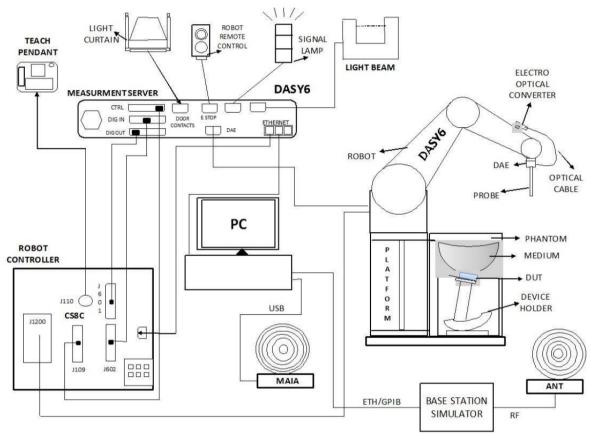
 $P_{pwe} = E_{tot}^2 2 / 3770_{or} P_{pwe} = H_{tot}^2 \cdot 37.7$

with Ppwe = equivalent power density of a plane wave in mW/cm2

Etot = total electric field strength in V/m

Htot = total magnetic field strength in A/m

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service print available on request or accessible at https://www.sgs.com/ser/Terms-and-Conditions, Attention is drawn to the limitation indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained her


SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 29 of 206

Power density measurement system 4

Power density measurements for mmWave frequencies were performed using SPEAG DASY6 with cDASY6 5G module. The DASY6 included a high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the 5G phantom cover.

Measurement System Configuration

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 30 of 206

4.1 FllmmWaVe probe

4.1 Eulillivvave probe	
Frequency	750 MHz – 110 GHz
Probe Overall Length	320 mm
Probe Body Diameter	8.0 mm
Tip Length	23.0 mm
Tip Diameter	8.0 mm
Probe's two dipoles length	0.9 mm – Diode loaded
Dynamic Range	< 20 V/m - 10000 V/m with PRE-10 (min < 50 V/m - 3000 V/m)
Position Precision	< 0.2 mm
Distance between diode sensors and probe's tip	1.5 mm
Minimum Mechanical separation between probe tip and a Surface	0.5 mm
Applications	E-field measurements of 5G devices and other mm-wave transmitters operating above 10GHz in < 2 mm distance from device (free-space) Power density, H-field and far-field analysis using total field reconstruction.
Compatibility	cDASY6 + 5G-Module SW1.0 and higher
9	Sensor————————————————————————————————————

The EUmmWaVe probe is based on the pseudo-vector probe design, which not only measures the field magnitude but also derives its polarization ellipse. The design entails two small 0.8mm dipole sensors mechanically protected by high-density foam, printed on both sides of a 0.9mm wide and 0.12mm thick glass substrate. The body of the probe is specifically constructed to minimize distortion by the scattered fields. The probe consists of two sensors with different angles (1 and 2) arranged in the same plane in the probe axis. Three or more measurements of the two sensors are taken for different probe rotational angles to derive the amplitude and polarization information. The probe design allows measurements at distances as small as 2mm from the sensors to the surface of the device under test (DUT). The typical sensor to probe tip distance is 1.5 mm. The exact distance is calibrated.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

31 of 206 Page:

4 SAR measurement variability and uncertainty

4.1 SAR measurement variability

Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissueequivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

4.2 SAR measurement uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

32 of 206 Page:

4.3 PD measurement uncertainty

Declaration of Conformity:

The test results with all measurement uncertainty excluded is presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The e valuation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed stand and uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quan tify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowle dge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

Standard Uncertainty for Assumed Distribution

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

(b) κ is the coverage factor

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in thefollowing tables.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined s

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without provintien approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com"

t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

33 of 206 Page:

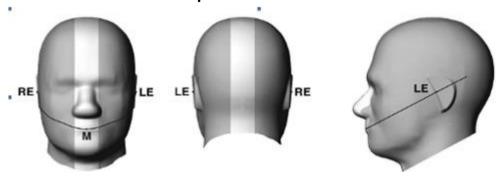
The judgment of conformity in thereport is based on the measurement results excluding the measurement uncertainty.

a a	b	С	d	е	f=b*e/d	g
Error Description	Uncertainty Value (±dB)	Probability	Div.	Ci	Standard Uncertainty (±dB)	Vi (Veff)
Probe Calibration	0.49	N	1	1	0.49	∞
Probe correction	0.00	R	1.732	1	0.00	∞
Frequency response (BW ≤1 GHz)	0.20	R	1.732	1	0.12	∞
Sensor cross coupling	0.00	R	1.732	1	0.00	∞
Isotropy	0.50	R	1.732	1	0.29	∞
Linearity	0.20	R	1.732	1	0.12	∞
Probe scattering	0.00	R	1.732	1	0.00	∞
Probe positioning offset	0.30	R	1.732	1	0.17	∞
Probe positioning repeatability	0.04	R	1.732	1	0.02	∞
Sensor mechanical offset	0.00	R	1.732	1	0.00	8
Probe spatial resolution	0.00	R	1.732	1	0.00	∞
Field impedance dependance	0.00	R	1.732	1	0.00	∞
Amplitude and phase drift	0.00	R	1.732	1	0.00	∞
Amplitude and phase noise	0.04	R	1.732	1	0.02	∞
Measurement area truncation	0.00	R	1.732	1	0.00	∞
Data acquisition	0.03	N	1	1	0.03	∞
Sampling	0.00	R	1.732	1	0.00	∞
Field reconstruction	2.00	R	1.732	1	1.15	∞
Forward transformation	0.00	R	1.732	1	0.00	∞
Power density scaling	0.00	R	1.732	1	0.00	∞
Spatial averaging	0.10	R	1.732	1	0.06	∞
System detection limit	0.04	R	1.732	1	0.02	∞
Probe coupling with DUT	0.00	R	1.732	1	0.00	∞
Modulation response	0.40	R	1.732	1	0.23	∞
Integration time	0.00	R	1.732	1	0.00	∞
Response time	0.00	R	1.732	1	0.00	∞
Device holder influence	0.10	R	1.732	1	0.06	∞
DUT alignment	0.00	R	1.732	1	0.00	∞
RF ambient conditions	0.04	R	1.732	1	0.02	∞
Ambient reflections	0.04	R	1.732	1	0.02	∞
Immunity / secondary reception	0.00	R	1.732	1	0.00	∞
Drift of the DUT		R	1.732	1	0.00	∞
Combined Std. Uncertainty					1.33	
Expanded STD Uncertainty (95%), K=2					2.67	

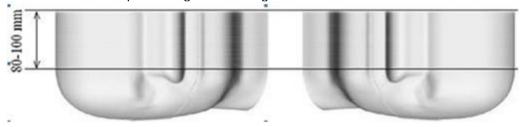
Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without provintien approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com"

SZSAR-TRF-01 Rev. A/0 May15,2023

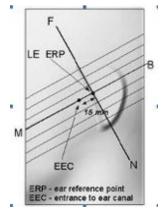

Report No.: SZCR250400155410

Page: 34 of 206


5 **Desciption of Test Position**

5.1 The Head Test Position

5.1.1 SAM Phantom Shape



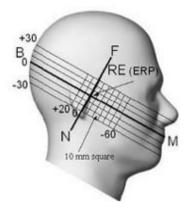
F-3. Front, back, and side views of SAM (model for the phantom shell). Full-head model is for illustration purposes only-procedures in this recommended practice are intended primarily for the phantom setup. Note: The centre strip including the nose region has a different thickness tolerance.

F-4. Sagittally bisected phantom with extended perimeter (shown placed on its side as used for SAR

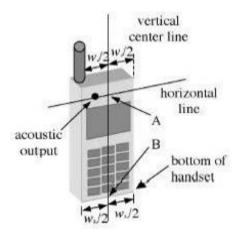
measurements)

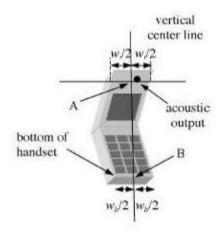
F-5. Close-up side view of phantom, showing the ear region, N-F and B-M lines, and seven cross-sectional plane locations

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.


Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

SZSAR-TRF-01 Rev. A/0 May15,2023


Report No.: SZCR250400155410


Page: 35 of 206

F-6. Side view of the phantom showing relevant markings and seven cross-sectional plane locations

5.1.2 EUT constructions

F-7. Handset vertical and horizontal reference lines-"fixed case"

F-8. Handset vertical and horizontal reference lines-"clam-shell case"

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

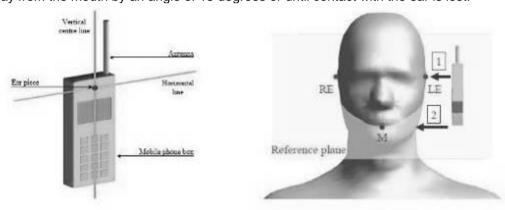
Report No.: SZCR250400155410

Page: 36 of 206

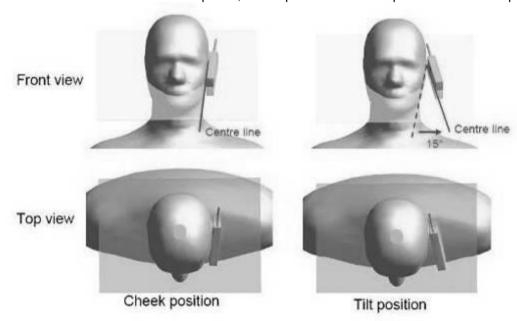
5.1.3 Definition of the "check" position

a) Position the device with the vertical centre line of the body of the device and the horizontal line crossing the centre of the ear piece in a plane parallel to the sagittal plane of the phantom ("initial position"). While maintaining the device in this plane, align the vertical centre line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the centre of the ear piece with the line RE-LE.

b) Translate the mobile phone box towards the phantom with the ear piece aligned with the line LE-RE until telephone touches the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.


SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410


37 of 206 Page:

5.1.4 Definition of the "tilted" position

- a) Position the device in the "cheek" position described above.
- b) While maintaining the device in the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

F-9.Definition of the reference lines and points, on the phone and on the phantom and initial position

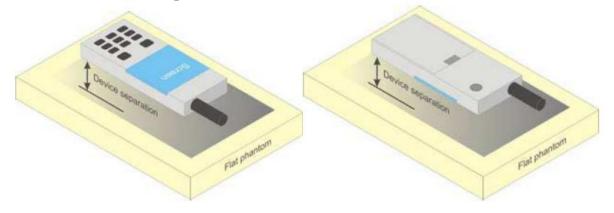
F-10. "Cheek" and "tilt" positions of the mobile phone on the left side

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 38 of 206

5.2 The Body Test Position


Body-worn accessory exposure conditions

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D04 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the bodyworn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

F-11. Test positions for body-worn devices

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Sherzhen, Guangdong, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 39 of 206

5.2.2 Wireless Router exposure conditions

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 where SAR test considerations for handsets (L x W ≥ 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed-use conditions for this type of devices. For devices with form factors smaller than 9 cm x 5 cm, a test separation distance of 5 mm is required.

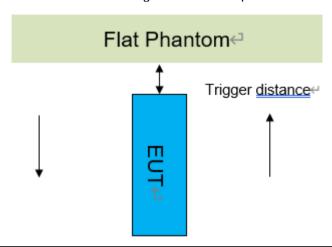
5.3 Extremity exposure conditions

Per FCC KDB 648474D04, for smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in minitablets or UMPC mini-tablets that support voice calls next to the ear, the device is marketed as "Phablet". The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge, in direct contact with a flat phantom, for Product Specific 10-g SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, Product Specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; however, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold.

According to the SAR hotspot results, and considering that WiFi 5G(U-NII-2A & U-NII 2C) and WiFi 6E do not support hotspot mode, only WiFi 5G(U-NII-2A & U-NII 2C) and WiFi 6E need to test with 0mm for the Product Specific 10-qSAR, the others are not required.

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

SZSAR-TRF-01 Rev. A/0 May15,2023


Report No.: SZCR250400155410

Page: 40 of 206

Proximity Sensor Triggering Test 5.4

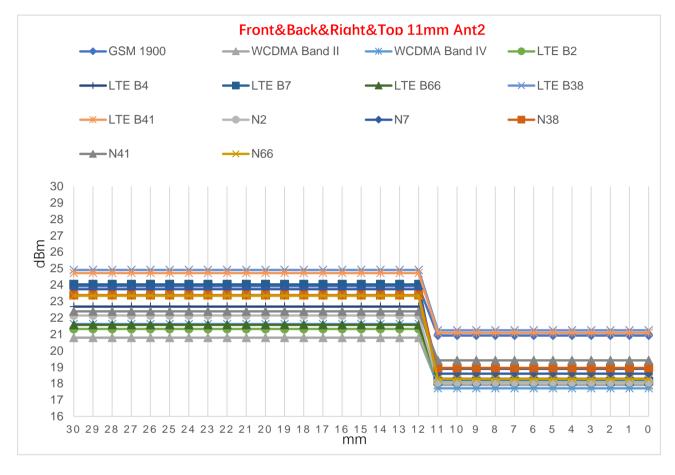
Proximity sensor triggering distances:

The Proximity sensor triggering was applied to WWAN antenna. Proximity sensor triggering distance testing was performed according to the procedures outlined in KDB 616217 D04 section 6.2, and EUT moving further away from the flat phantom and EUT moving toward the flat phantom were both assessed.

Proximity Sensor Triggering Distance(mm)								
Ant	Ant2	Ant6	Ant8					
Band	GSM 1900 WCDMA B2/4 LTE B2/4/7/38/41/66 NR n2/7/38/41/66	LTE B42/48 NR N48/77/78	LTE B42/48 NR n48/77/78					
Position	Front Side 11mm Back Side 11mm Top Side11mm Right Side 11mm	Front Side 11mm Back Side 11mm Top Side11mm Right Side 11mm	Front Side 11mm Back Side 11mm Top Side11mm Right Side 11mm					

Note:

SAR tests with proximity sensor power reduction are only required for the sides of frequency bands in the table above. For the other sides or other frequency bands of the device, SAR is still tested at the maximum power level with sensor off.

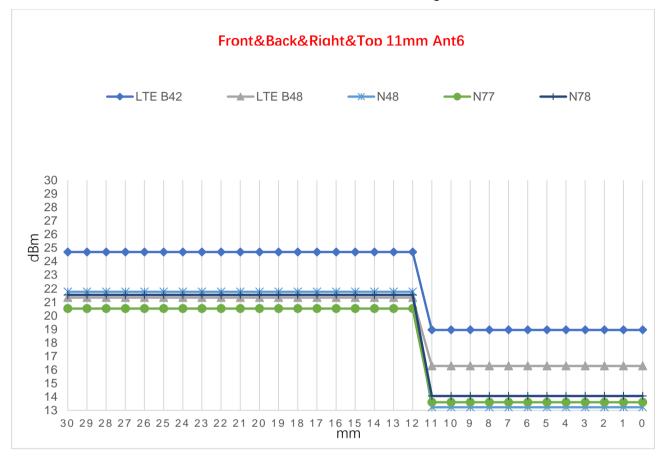


SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

41 of 206 Page:

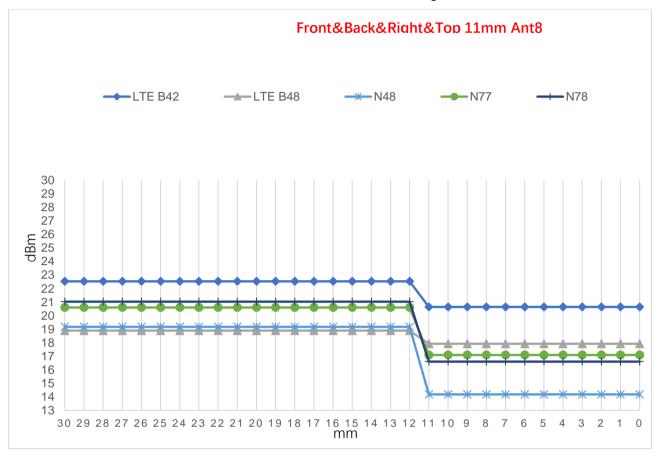
DUT Moving Toward(Trigger)the Phantom



SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

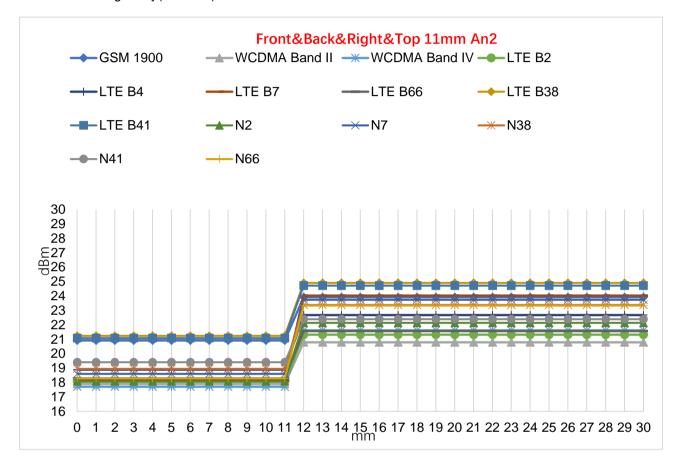
Page: 42 of 206



SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 43 of 206

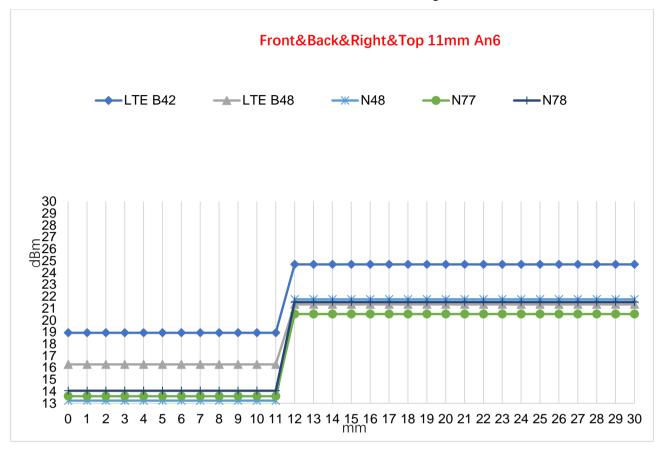


SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 44 of 206

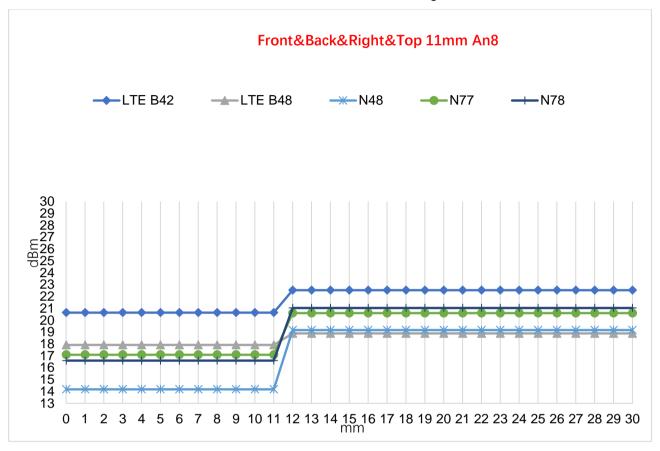
DUT Moving Away(Release) from the Phantom



SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 45 of 206



SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 46 of 206

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

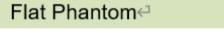
中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

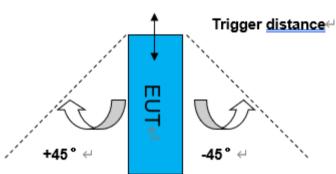
SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 47 of 206

Proximity sensor coverage


If a sensor is spatially offset from the antenna(s), it is necessary to verify sensor triggering for conditions where the antenna is next to the user, but the sensor is laterally further away to ensure sensor coverage is sufficient for reducing the power to maintain compliance. For p-sensor coverage testing, the device is moved and "along the direction of maximum antenna and sensor offset".


The proximity sensor and main antenna use same metallic electrode, so there is no spatial offset.

Device tilt angle influences on proximity sensor triggering

The influence of device tilt angles to proximity sensor triggering was determined by positioning each tablet edge that contains a transmitting antenna, perpendicular to the flat phantom.

Rotating the tablet around the edge next to the phantom in ≤ 10° increments until the tablet is ± 45° from the vertical position at 0°, and the maximum output power remains in the reduced mode.

	Summary of ⁻	Tablet Tilt Angle Infl	uence o	n Proxir	nity Sen	sor Trig	gering	for E	dge Si	de			
Dond	Minimum trigger c	Minimum trigger distance at which		Power Reduction Status									
Band (MHz)	distance Per KDB616217§6.2		-45°	-35°	-25°	-15°	-5°	0°	5°	15°	25°	35°	45°
Ant 2: GSM 1900 WCDMA B2/4 LTE B2/4/7/38/41/66 NR n2/7/38/41/66	Top/Right Side11mm	Top/Right Side11mm	on	on	on	on	on	on	on	on	on	on	on
Ant 6: LTE B42/48 NR N48/77/78	Top/Right Side11mm	Top/Right Side11mm	on	on	on	on	on	on	on	on	on	on	on
Ant 8: LTE B42/48 NR N48/77/78	Top/Right Side11mm	Top/Right Side11mm	on	on	on	on	on	on	on	on	on	on	on

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

48 of 206 Page:

SAR System Verificaion Procedure 6

6.1 **Tissue Simulate Liquid**

6.1.1 Recipes for Tissue Simulate Liquid

The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands:

Ingredients	Frequency (MHz)								
(% by weight)	450	700-1000	1700-2000	2300-2500	2500-2700				
Water	38.56	40.30	55.24	55.00	54.92				
Salt (NaCl)	3.95	1.38	0.31	0.2	0.23				
Sucrose	56.32	57.90	0	0	0				
HEC	0.98	0.24	0	0	0				
Bactericide	0.19	0.18	0	0	0				
Tween	0	0	44.45	44.80	44.85				

Sucrose: 98+% Pure Sucrose

HEC: Hydroxyethyl Cellulose

Salt: 99+% Pure Sodium Chloride Water: De-ionized, 16 MΩ+ resistivity

Tween: Polyoxyethylene (20) sorbitan monolaurate

HSL5GHz is composed of the following ingredients: (Manufactured by SPEAG)

Water: 50-65% Mineral oil: 10-30% Emulsifiers: 8-25% Sodium salt: 0-1.5%

Table 2: Recipe of Tissue Simulate Liquid

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

49 of 206 Page:

6.1.2 Measurement for Tissue Simulate Liquid

The Conductivity (σ) and Permittivity (ϵr) are listed in Table 2. For the SAR measurement given in this report.

The temperature varieties of the Tiesus Simulate Liquide was 22,2°C

The temper	erature varia	tion of the	Tissue S	imulate Liqui	ids was 22±2	2°C.			
Tissue Type	Measured Frequency	Measured	l Tissue	Target Tis	ssue (±5%)	Devia (Within		Liquid Temp.	Test Date
,,	(MHz)	ε _r	σ(S/m)	ε _r	σ(S/m)	ε _r	σ(S/m)	(℃)	
750 Head	750	40.300	0.896	41.90	0.89	-3.82%	0.67%	22.5	2025/5/9
750 Head	750	43.600	0.871	41.90	0.89	4.06%	-2.13%	21.8	2025/5/12
750 Head	750	41.000	0.888	41.90	0.89	-2.15%	-0.22%	22.1	2025/5/14
835 Head	835	40.100	0.924	41.50	0.90	-3.37%	2.67%	21.5	2025/5/12
835 Head	835	40.700	0.909	41.50	0.90	-1.93%	1.00%	22.3	2025/5/13
835 Head	835	40.100	0.925	41.50	0.90	-3.37%	2.78%	22.3	2025/5/21
1750 Head	1750	39.000	1.330	40.10	1.37	-2.74%	-2.92%	20.0	2025/5/13
1750 Head	1750	40.000	1.410	40.10	1.37	-0.25%	2.92%	22.7	2025/5/15
1750 Head	1750	41.100	1.340	40.10	1.37	2.49%	-2.19%	22.3	2025/5/16
1950 Head	1950	40.300	1.420	40.00	1.40	0.75%	1.43%	22.1	2025/5/19
1950 Head	1950	40.100	1.420	40.00	1.40	0.25%	1.43%	22.0	2025/5/20
1950 Head	1950	40.100	1.440	40.00	1.40	0.25%	2.86%	22.6	2025/5/27
2450 Head	2450	40.000	1.800	39.20	1.80	2.04%	0.00%	22.4	2025/5/22
2600 Head	2600	40.100	1.940	39.00	1.96	2.82%	-1.02%	22.0	2025/5/16
2600 Head	2600	37.600	1.950	39.00	1.96	-3.59%	-0.51%	22.1	2025/5/21
2600 Head	2600	38.200	1.900	39.00	1.96	-2.05%	-3.06%	21.9	2025/5/22
2600 Head	2600	38.400	2.010	39.00	1.96	-1.54%	2.55%	22.6	2025/5/23
2600 Head	2600	38.800	1.930	39.00	1.96	-0.51%	-1.53%	22.2	2025/5/23
3500 Head	3500	37.800	2.850	37.90	2.91	-0.26%	-2.06%	22.0	2025/5/10
3500 Head	3500	38.300	3.000	37.90	2.91	1.06%	3.09%	22.0	2025/5/11
3500 Head	3500	38.000	2.990	37.90	2.91	0.26%	2.75%	22.7	2025/5/18
3500 Head	3500	38.200	2.990	37.90	2.91	0.79%	2.75%	22.0	2025/5/20
3500 Head	3500	38.400	3.000	37.90	2.91	1.32%	3.09%	22.3	2025/5/29
3700 Head	3700	37.600	3.230	37.70	3.12	-0.27%	3.53%	22.2	2025/5/11
3700 Head	3700	37.400	3.230	37.70	3.12	-0.80%	3.53%	22.7	2025/5/18
3700 Head	3700	37.500	3.220	37.70	3.12	-0.53%	3.21%	22.4	2025/5/19
3700 Head	3700	37.000	3.010	37.70	3.12	-1.86%	-3.53%	21.9	2025/5/23
3900 Head	3900	36.900	3.450	37.50	3.32	-1.60%	3.92%	22.4	2025/5/19
5250 Head	5250	36.000	4.780	35.90	4.71	0.28%	1.49%	22.3	2025/5/24
5600 Head	5600	35.100	5.170	35.50	5.07	-1.13%	1.97%	22.3	2025/5/25
5750 Head	5750	35.000	5.360	35.40	5.22	-1.13%	2.68%	22.3	2025/5/26
6500 Head	6500	34.300	6.240	34.50	6.07	-0.58%	2.80%	22.4	2025/5/28

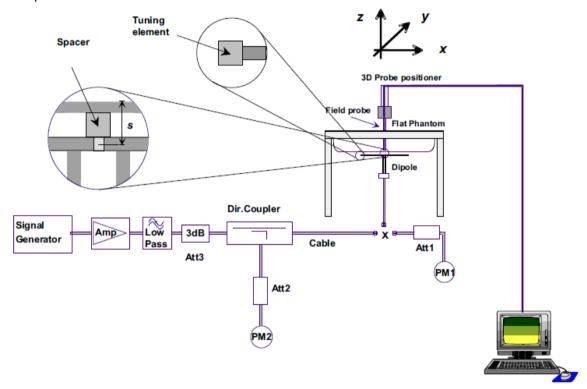
Table 3: Measurement result of Tissue electric parameters

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without provintien approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com"

No.1 Workshop, Ni-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86–755) 26012053 f (86–755) 26710594 www.sgsgroup.com.cn

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057


SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 50 of 206

6.2 **SAR System Check**

The microwave circuit arrangement for system Check is sketched in F-12. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the following table (A power level of 250mW (below 3GHz) or 100mW (3-6GHz) was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15±0.5 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

F-12. The microwave circuit arrangement used for SAR system Check

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 51 of 206

6.2.1 Justification for Extended SAR Dipole Calibrations

- 1) Instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
- a) There is no physical damage on the dipole;
- b) System check with specific dipole is within 10% of calibrated value;
- c) Return-loss is within 20% of calibrated measurement;
- d) Impedance is within 5Ω from the previous measurement.
- 2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

52 of 206 Page:

6.2.2 Summary System Check Result(s)

Validation Kit	Measured SAR 250mW	CVD	Measured SAR (normalized to 1W)	(normalized to 1W)	to 1W)	(normalized to 1W)		ation ±10%)	Liquid Temp. (°C)	Test Date				
	1g (W/kg)	(W/kg)	1g (W/kg)	10g (W/kg)	1-g(W/kg)	10-g(W/kg)	g(W/kg)							
D750V3_Head	2.05	1.33	8.20	5.32	8.37	5.53	-2.03%	-3.80%	22.5	2025/5/9				
D750V3_Head	2.23	1.48	8.92	5.92	8.37	5.53	6.57%	7.05%	21.8	2025/5/12				
D750V3_Head	2.24	1.49	8.96	5.96	8.37	5.53	7.05%	7.78%	22.1	2025/5/14				
D835V2_Head	2.42	1.61	9.68	6.44	9.53	6.29	1.57%	2.38%	21.5	2025/5/12				
D835V2_Head	2.44	1.64	9.76	6.56	9.53	6.29	2.41%	4.29%	22.3	2025/5/13				
D835V2_Head	2.47	1.66	9.88	6.64	9.53	6.29	3.67%	5.56%	22.3	2025/5/21				
D1750V2_Head	9.25	4.91	37.00	19.64	36.60	19.30	1.09%	1.76%	20.0	2025/5/13				
D1750V2_Head	9.44	5.15	37.76	20.60	36.60	19.30	3.17%	6.74%	22.7	2025/5/15				
D1750V2_Head	8.97	4.88	35.88	19.52	36.60	19.30	-1.97%	1.14%	22.3	2025/5/16				
D1950V3_Head	10.50	5.42	42.00	21.68	40.50	20.80	3.70%	4.23%	22.1	2025/5/19				
D1950V3_Head	10.60	5.43	42.40	21.72	40.50	20.80	4.69%	4.42%	22.3	2025/5/20				
D1950V3_Head	10.50	5.47	42.00	21.88	40.50	20.80	3.70%	5.19%	22.6	2025/5/27				
D2450V2_Head	13.10	6.08	52.40	24.32	52.20	24.30	0.38%	0.08%	22.4	2025/5/22				
D2600V2_Head	14.30	6.47	57.20	25.88	57.70	25.80	-0.87%	0.31%	22.0	2025/5/16				
D2600V2_Head	14.70	6.57	58.80	26.28	57.70	25.80	1.91%	1.86%	22.1	2025/5/21				
D2600V2_Head	13.90	6.28	55.60	25.12	57.70	25.80	-3.64%	-2.64%	21.9	2025/5/22				
D2600V2_Head	13.90	6.27	55.60	25.08	57.70	25.80	-3.64%	-2.79%	22.6	2025/5/23				
D2600V2_Head	14.20	6.37	56.80	25.48	57.70	25.80	-1.56%	-1.24%	22.2	2025/5/23				
Validation Kit	Measured SAR 100mW	Measured SAR 100mW	Measured SAR (normalized to 1W)	Measured SAR (normalized to 1W)	Target SAR (normalized to 1W)	(normalized to 1W)			(Within ±10%)		nalized (Within ±10%)		Liquid Temp. (°C)	Test Date
	1g (W/kg)	(W/kg)	1g (W/kg)	10g (W/kg)	1-g(W/kg)	10-g(W/kg)	g(W/kg)		` ′					
D3500V2_3.4GHz_Head	6.61	2.53	66.10	25.30	66.50	26.10	-0.60%	-3.07%	22.0	2025/5/10				
D3500V2_3.5GHz_Head	7.02	2.69	70.20	26.90	65.80	25.70	6.69%	4.67%	22.0	2025/5/11				
D3500V2_3.5GHz_Head	7.01	2.61	70.10	26.10	65.80	25.70	6.53%	1.56%	22.7	2025/5/18				
D3500V2_3.5GHz_Head	7.08	2.74	70.80	27.40	65.80	25.70	7.60%	6.61%	22.0	2025/5/20				
D3500V2_3.5GHz_Head	6.61	2.52	66.10	25.20	65.80	25.70	0.46%	-1.95%	22.3	2025/5/29				
D3700V2_Head	7.21	2.70	72.10	27.00	66.10	24.70	9.08%	9.31%	22.2	2025/5/11				
D3700V2_Head	7.02	2.55	70.20	25.50	66.10	24.70	6.20%	3.24%	22.7	2025/5/18				
D3700V2_Head	7.18	2.68	71.80	26.80	66.10	24.70	8.62%	8.50%	22.4	2025/5/19				
D3700V2_Head	6.92	2.59	69.20	25.90	66.10	24.70	4.69%	4.86%	21.9	2025/5/23				
D3900V2_3.9GHz_Head	7.14	2.51	71.40	25.10	66.70	23.80	7.05%	5.46%	22.4	2025/5/19				
D5GHzV2_5.25G_Head	7.49	2.28	74.90	22.80	77.30	22.10	-3.10%	3.17%	22.3	2025/5/24				
D5GHzV2_5.6G_Head	8.55	2.51	85.50	25.10	81.30	23.10	5.17%	8.66%	22.3	2025/5/25				
D5GHzV2_5.75G_Head	7.31	2.21	73.10	22.10	77.10	21.30	-5.19%	3.76%	22.3	2025/5/26				
D6500V2_Head	30.70	5.88	307.00	58.80	291.00	53.90	5.50%	9.09%	22.4	2025/5/28				

Table 4: SAR System Check Result

6.2.3 Detailed System Check Results

Please see the Appendix A

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

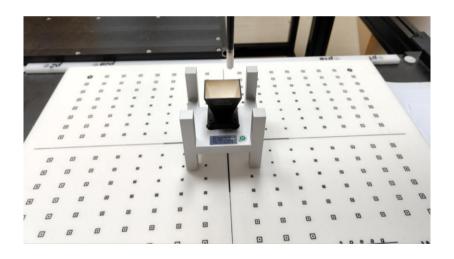
Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

No.1 Workshop, N-10, Middle Sedion, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057 t(86-755)26012053 f(86-755)26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410


Page: 53 of 206

7 PD System Check

The system was verified to be within ±0.66 dB of the power density targets on the calibration certificate according to the test system specification in the user's manual and calibration facility recommendation. The 0.66 dB deviation threshold represents the expanded uncertainty for system performance checks using SPEAG's mmWave verification sources. The same spatial resolution and measurement region used in the source calibration was applied during the system check. The measured power density distribution of verification source was also confirmed through visual inspection to have no noticeable differences, both spatially (shape) and numerically (level) from the distribution provided by the manufacturer, per November 2017 TCBC Workshop Notes.

Frequent	Measured PD W/m ²	Target PD W/m²	Circular Deviation (Within ±0.66dB)	Test Date
	4cm ²	4cm ²	4cm ²	
10G HZ Source	189.00	183	0.14	2025/6/1

Note: 1. Measured PD after normalized to Pard power with DASY Calibration Certificate in Appendix A.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 54 of 206

Test Configuration 8

8.1 3G SAR Test Reduction Procedure

According to KDB 941225D01, in the following procedures, the mode tested for SAR is referred to as the primary mode. The equivalent modes considered for SAR test reduction are denoted as secondary modes. Both primary and secondary modes must be in the same frequency band. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode. This is referred to as the 3G SAR test reduction procedure in the following SAR test guidance, where the primary mode is identified in the applicable wireless mode test procedures and the secondary mode is wireless mode being considered for SAR test reduction by that procedure. When the 3G SAR test reduction procedure is not satisfied, it is identified as "otherwise" in the applicable procedures; SAR measurement is required for the secondary mode.

8.2 **Operation Configurations**

8.2.1 **GSM Test Configuration**

SAR tests for GSM 850, GSM 900 and GSM 1800, a communication link is set up with a base station by air link. Using Radio Communication Analyzer, the power lever is set to "5" and "0" in SAR of GSM 900 and GSM 1800. The tests in the band of GSM 850, GSM 900 and GSM 1800 are performed in the mode of GPRS/EGPRS function. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. The EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink, and at most 4 timeslots in downlink, the maximum total timeslot is 5.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power, the higher number time-slot configuration should be tested.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8-PSK.

The 3G SAR test reduction procedure is applied to 8-PSK EDGE with GMSK GPRS/EDGE as the primary mode.

8.2.2 WCDMA Test Configuration

1) . Output Power Verification

Maximum output power is verified on the high, middle and low channels according to procedures described in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1's" for WCDMA/HSDPA or by applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HSDPA, HSPA) are required in the SAR report. All configurations that are not supported by the handset or cannot be measured due to technical or equipment limitations must be clearly identified.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 55 of 206

2) . Head SAR

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

3) . Body SAR

SAR for body configurations is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreaing code or DPDCHn, for the highest reported body-worn accessory exposure SAR configuration in 12.2 kbps RMC. When more than 2 DPDCHn are supported by the handset, it may be necessary to configure additional DPDCHn using FTM (Factory Test Mode) or other chipset based test approaches with parameters similar to those used in 384 kbps and 768 kbps RMC.

4) . HSDPA / HSUPA

RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power for production units in HSDPA / HSUPA is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest measured SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power of HSDPA / HSUPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.5 W/kg, SAR measurement is not required for HSDPA / HSUPA.

HSDPA is configured according to the applicable UE category of a test device. The number of HS-DSCH/HS-PDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the H-set for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 4 ms and a CQI repetition factor of 2 to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors (βc, βd), and HS-DPCCH power offset parameters (ΔACK, ΔNACK, ΔCQI) are set according to values indicated in the following table. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the H-set.

Sub-test	βc	Bd	βd(SF)	βc/βd	βhs	CM(dB)	MPR (dB)
1	2/15	15/15	64	2/15	4/15	0.0	0
2	12/15(3)	15/15(3)	64	12/15(3)	24/15	1.0	0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note1: \triangle ACK, \triangle NACK and \triangle CQI= 8 Ahs = β hs/ β c=30/15 β hs=30/15* β c

Note2:For the HS-DPCCH power mask requirement test in clause 5.2C,5.7A,and the Error Vector Magnitude(EVM) with HS-DPCCH test in clause 5.13.1.A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK= 8 (Ahs=30/15) with β hs=30/15* β c,and \triangle CQI= 7 (Ahs=24/15) with β hs= $24/15*\beta$ c.

Note3: CM=1 for β c/ β d =12/15, β hs/ β c=24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 56 of 206

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI"s
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

Table 5: settings of required H-Set 1 QPSK acc. to 3GPP 34.121

HS-DSCH Category	MaximumHS- DSCH Codes Received	Minimum Inter-TTI Interval MaximumHS-DSCH TransportBlockBits/H		TotalSoft Channel Bits
1	5	3	7298	19200
2	5	3	7298	28800
3	5	2	7298	28800
4	5	2	7298	38400
5	5	1	7298	57600
6	5	1	7298	67200
7	10	1	14411	115200
8	10	1	14411	134400
9	15	1	25251	172800
10	15	1	27952	172800
11	5	2	3630	14400
12	5	1	3630	28800
13	15	1	34800	259200
14	15	1	42196	259200
15	15	1	23370	345600
16	15	1	27952	345600

Table 6: HSDPA UE category

b) HSUPA

Due to inner loop power control requirements in HSUPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and E-DCH configurations for HSUPA should be configured according to the values indicated below as well as other applicable procedures described in the WCDMA Handset and Release 5 HSUPA Data Device sections of 3G device.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Hanshan District, Sherzhen, Guangdong, China 518057 t (86–755) 26012053 f (86–755) 26710594 www.sgsgroup.com.cn 中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 57 of 206

Sub -test₽	βοσ	βd€	β _d (SF)	β₀/β₫₽	β _{hs} (1	β _{ec} p	β _{ed} ₽	β _e _{e+} (SF)+ ³	β _{ed} ↔ (code	CM(2)+1 (dB)+2	MP R↓ (dB)↓	AG(4)+ ¹ Inde x+ ¹	E- TFC I
1₽	11/15(3)42	15/15(3)	64₽	11/15(3)42	22/15	209/22 5 ₄ 2	1039/225₽	4€	1₽	1.04	0.0₽	20₽	75₽
2₽	6/15₽	15/15∉	64₽	6/15₽	12/15₽	12/15₽	94/75₽	4₽	1₽	3.0₽	2.0₽	12₽	67₽
3₽	15/154	9/15₽	64₽	15/9₽	30/15₽	30/15₽	β _{ed1} :47/1 5 ₄ β _{ed2:} 47/1 5 ₄]	4₽	2₽	2.0₽	1.0₽	15.	92₽
4₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	2/15₽	56/75₽	4₽	1₽	3.0₽	2.0₽	17₽	71₽
5₽	15/15(4)+2	15/15(4)	64₽	15/15(4)43	30/15₽	24/15₽	134/15₽	4₽	1₽	1.0₽	0.0₽	21	81₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI=8 $A_{hs} = \beta_{hs}/\beta_{e} = 30/15$ $\beta_{hs} = 30/15 * \beta_{ed}$

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: βed can not be set directly; it is set by Absolute Grant Value.

Table 7: Subtests for UMTS Release 6 HSUPA

UE E-DCH Category	Maximum E-DCH Codes Transmitted	Number of HARQ Processes	E-DCH TTI(ms)	Minimum Speading Factor	Maximum E-DCH Transport Block Bits	Max Rate (Mbps)
1	1	4	10	4	7110	0.7296
2	2	8	2	4	2798	1.4592
2	2	4	10	4	14484	1.4592
3	2 4		10	4	14484	1.4592
4	2	8	2	2	5772	2.9185
4	2	4	10	2	20000	2.00
5	2	4	10	2	20000	2.00
6	4	8	10	2SF2&2SF	11484	5.76
(No DPDCH)	4	4	2	4	20000	2.00
7	4	8	2	2SF2&2SF	22996	?
(No DPDCH)	4	4	10	4	20000	?

NOTE: When 4 codes are transmitted in parallel, two codes shall be transmitted with SF2 and two with SF4.UE categories 1 to 6 support QPSK only. UE category 7 supports QPSK and 16QAM.(TS25.306-7.3.0).

Table 8: HSUPA UE category

c) DC-HSDPA

SAR is required for Rel. 8 DC-HSDPA when SAR is required for Rel. 5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in Table C.8.1.12 of 3GPP TS 34.121-1 to determine SAR test reduction. A primary and a Second serving HS-DSCH Cell are required

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without provintien approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com"

No.1 Workshop, M-10, Middle Section, Science & Technology Parls, Nanshan District, Shenzhen, Guangdong, China 518057 t (86–755) 26012053 f (86–755) 26710594 www.sgsgroup.com.cn

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057 t (86-755)26012053 f (86-755)26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 58 of 206

to perform the power measurement and for the results to be acceptable.

The following tests were completed according to procedures in section 7.3.13 of 3GPP TS 34.108 v9.5.0. A summary of these settings are illustrated below:

Downlink Physical Channels are set as per 3GPP TS34.121-1 v9.0.0 E.5.0

Table E.5.0: Levels for HSDPA connection setup

Parameter During Connection setup	Unit	Value
P-CPICH_Ec/lor	dB	-10
P-CCPCH and SCH_Ec/lor	dB	-12
PICH _Ec/lor	dB	-15
HS-PDSCH	dB	off
HS-SCCH_1	dB	off
DPCH_Ec/lor	dB	-5
OCNS_Ec/lor	dB	-3.1

Call is set up as per 3GPP TS34.108 v9.5.0 sub clause 7.3.13.

The configurations of the fixed reference channels for HSDPA RF tests are described in 3GPP TS 34.121, annex C for FDD and 3GPP TS 34.122.

The measurements were performed with a Fixed Reference Channel (FRC) H-Set 12 with QPSK.

Parameter	Value
Nominal average inf. bit rate	60 kbit/s
Inter-TTI Distance	1 TTI's
Number of HARQ Processes	6 Processes
Information Bit Payload	120 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	960 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	3200 SMLs
Coding Rate	0.15
Number of Physical Channel Codes	1

Table 9: settings of required H-Set 12 QPSK acc. To 3GPP 34.121

Note:

- 1. The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table above.
- 2. Maximum number of transmission is limited to 1,i.e.,retransmission is not allowed. The redundancy and constellation version 0 shall be used.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 59 of 206

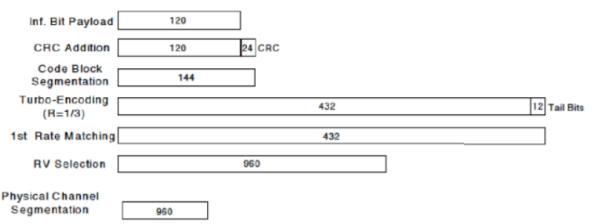


Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

The following 4 Sub-tests for HSDPA were completed according to Release 5 procedures. A summary of subtest settings are illustrated below:

Sub-test₽	βe₽	β _d ₽	β _d ·(SF)₽	$\beta_c \cdot / \beta_{d^{e}}$	β _{hs} (1)	CM(dB)(2)	MPR (dB)₽
1₽	2/15₽	15/15₽	64₽	2/15₽	4/15₽	0.0₽	0₽
2₽	12/15(3)	15/15(3)	64₽	12/15(3)	24/15₽	1.0₽	0₽
3₽	15/15₽	8/15₽	64₽	15/8₽	30/15₽	1.5₽	0.5₽
4₽	15/15₽	4/15₽	64₽	15/4₽	30/15₽	1.5₽	0.5₽

Note 1: \triangle ACK, \triangle NACK and \triangle CQI=8 $A_{hs} = \beta_{hs}/\beta_c = 30/15$ $\beta_{hs} = 30/15 * \beta_c$

Note 2: CM=1 for $\beta_c/\beta_{d=}$ 12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. Note 3: For subtest 2 the β₄/β₄ ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$

Up commands are set continuously to set the UE to Max power.

Note:

- 1. The Dual Carriers transmission only applies to HSDPA physical channels
- 2. The Dual Carriers belong to the same Node and are on adjacent carriers.
- 3. The Dual Carriers do not support MIMO to serve Ues configured for dual cell operation
- 4. The Dual Carriers operate in the same frequency band.
- 5. The device doesn't support the modulation of 16QAM in uplink but 64QAM in downlink for DC-HSDPA mode.
- 6. The device doesn't support carrier aggregation for it just can operate in Release 8.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 60 of 206

d) HSPA+

SAR is required for Rel. 7 HSPA+ when SAR is required for Rel. 6 HSPA; otherwise, the 3G SAR test reduction procedure is applied to (uplink) HSPA+ with 12.2 kbps RMC as the primary mode. Power is measured for HSPA+ that supports uplink 16 QAM according to configurations in Table C.11.1.4 of 3GPP TS 34.121-1 to determine SAR test reduction.

. Table C.11.1.4: β values for transmitter characteristics tests with HS-DPCCH and E-DCH with 16QAM-

	Sub- test	β _c ↓ (Note3)↓	βd∻	β _{HS} . (Note1).	β _{ec} ₊/	β _{ed} .√ (2xSF2) .√		CM√ (dB)√	MPR <i>⊷</i> (dB)⊷	Index⊎	(Note 5)	E-TFCI (boost)∂	÷
						(Note 4)₽	(Note 4)₽	(Note 2)⊹	(Note 2)⊹	(Note 4)₽			
-	- 1₽	1₽	0↔	30/15₽	30/15	βed1: 30/15↔	βed3: 24/15↔	3.5₽	2.5₽	14₽	105₽	105₽	÷
						βed2: 30/15₽	βed4: 24/15₽						

Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with β_{hs} = 30/15 * β_{e} .

Note 2: CM = 3.5 and the MPR is based on the relative CM difference, MPR = MAX(CM-1.0).

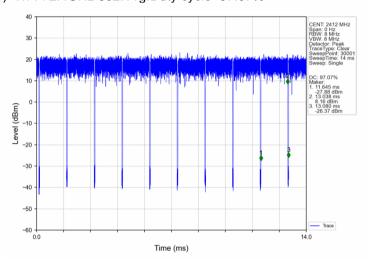
Note 3: DPDCH is not configured, therefore the β_o is set to 1 and β_d = 0 by default.

Note 4: βed can not be set directly; it is set by Absolute Grant Value. ₽

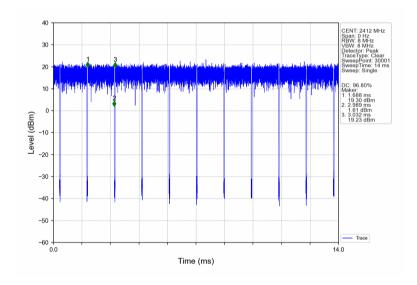
Note 5: All the sub-tests require the UE to transmit 2SF2+2SF4 16QAM EDCH and they apply for UE using E-DPDCH category 7. E-DCH TTI is set to 2ms TTI and E-DCH table index = 2. To support these E-DCH configurations DPDCH is not allocated. The UE is signalled to use the extrapolation algorithm.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410


Page: 61 of 206

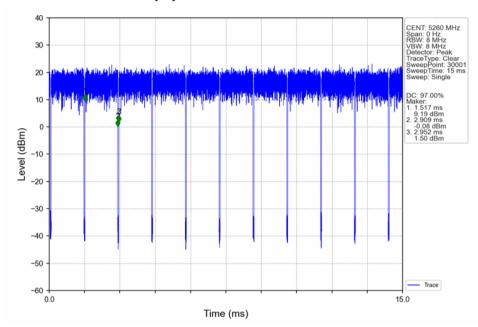
8.2.3 WIFI Test Configuration


A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement.

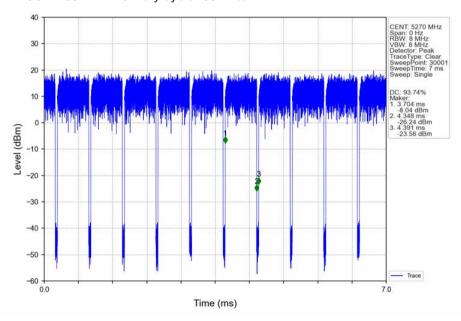
8.2.3.1 Duty cycle

1) Wi-Fi 2.4GHz 802.11g:Duty cycle=97.07%

2) Wi-Fi 2.4GHz 802.11b:Duty cycle=96.80%



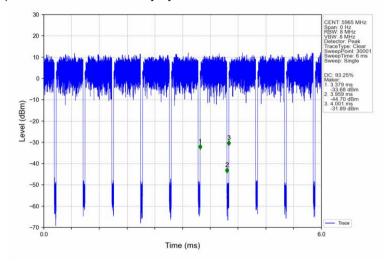
SZSAR-TRF-01 Rev. A/0 May15,2023


Report No.: SZCR250400155410

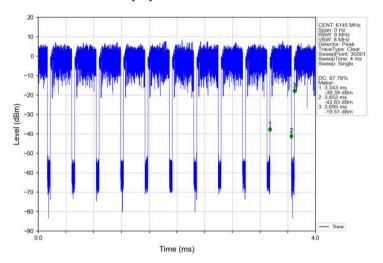
Page: 62 of 206

3) Wi-Fi 5GHz 802.11a:Duty cycle=97.00%

4) Wi-Fi 5GHz 802.11H40:Duty cycle=93.74%



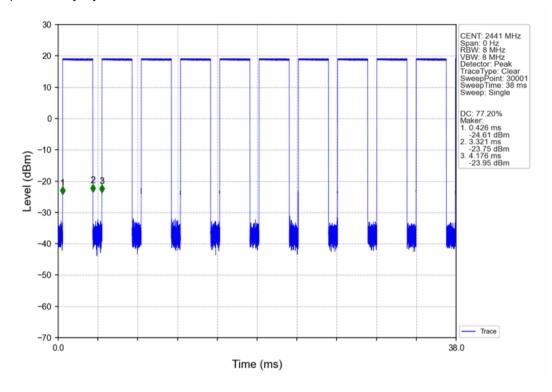
SZSAR-TRF-01 Rev. A/0 May15,2023


Report No.: SZCR250400155410

Page: 63 of 206

5) Wi-Fi 6E 802.11ax:Duty cycle=93.25%

6) Wi-Fi 6E 802.11ax:Duty cycle=87.78%



SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 64 of 206

7) DH5 Duty Cycle=77.20%

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 65 of 206

8.2.3.2 Initial Test Position SAR Test Reduction Procedure

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures. The initial test position procedure is described in the following:

- 1) . When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- 2) . When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- 3) . For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested, a) Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 66 of 206

8.2.3.3 Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- 1) . When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration. SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- 2) . When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- 3) . The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.
- SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.
- SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. i) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.
- 4) . SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by recursively applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:
- replace "subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
- replace "initial test configuration" with "all tested higher output power configurations"

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 67 of 206

8.2.3.4 2.4 GHz WiFi SAR Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in following.

802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) . When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) . When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3, including sub-sections). SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) . When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) . When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

SAR Test Requirements for OFDM configurations

When SAR measurement is required for 802.11 OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 68 of 206

8.2.3.5 5 GHz WiFi SAR Procedures

U-NII-1 and U-NII-2A Bands

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s). SAR test reduction is determined according to the following:

- When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, both bands are tested independently for SAR.
- When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, both bands are tested independently for SAR.
- The two U-NII bands may be aggregated to support a 160 MHz channel on channel number 50. Without additional testing, the maximum output power for this is limited to the lower of the maximum output power certified for the two bands. When SAR measurement is required for at least one of the bands and the highest reported SAR adjusted by the ratio of specified maximum output power of aggregated to standalone band is > 1.2 W/kg. SAR is required for the 160 MHz channel. This procedure does not apply to an aggregated band with maximum output higher than the standalone band(s); the aggregated band must be tested independently for SAR. SAR is not required when the 160 MHz channel is operating at a reduced maximum power and also qualifies for SAR test exclusion.

U-NII-2C and U-NII-3 Bands

The frequency range covered by these bands is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements, when Terminal Doppler Weather Radar (TDWR) restriction applies, all channels that operate at 5.60 - 5.65 GHz must be included to apply the SAR test reduction and measurement procedures.

When the same transmitter and antenna(s) are used for U-NII-2C band and U-NII-3 band or 5.8 GHz band of §15.247, the bands may be aggregated to enable additional channels with 20, 40 or 80 MHz bandwidth to span across the band gap, as illustrated in Appendix B. The maximum output power for the additional band gap channels is limited to the lower of those certified for the bands. Unless band gap channels are permanently disabled, they must be considered for SAR testing. The frequency range covered by these bands is 380 MHz (5.47 - 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. To maintain SAR measurement accuracy and to facilitate test reduction, the channels in U-NII-2C band above 5.65 GHz may be grouped with the 5.8 GHz channels in U-NII-3 or §15.247 band to enable two SAR probe calibration frequency points to cover the bands, including the band gap channels. When band gap channels are supported and the bands are not aggregated for SAR testing, band gap channels must be considered independently in each band according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 69 of 206

OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

The initial test configuration for 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures. When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- When multiple transmission modes have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n. After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.
 - The channel closest to mid-band frequency is selected for SAR measurement.
 - For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

SAR Test Requirements for OFDM configurations

When SAR measurement is required for 802.11 OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 70 of 206

8.2.3.6 5 GHz WiFi PD Procedures

Power Density General Notes:

- 1. The manufacturer has confirmed that the devices tested have the same physical, mechanical and thermalcharacteristics and are within operational tolerances expected for production units.
- 2. Batteries are fully charged at the beginning of the measurements.
- 3. Absorbed power density (APD) using a 4cm² averaging area is reported based on SAR measurements.
- 4. Power density was calculated by repeated E-field measurements on two measurement planes separatedby λ/4.
- 5. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools.
- 6. Per FCC guidance and equipment manufacturer guidance, power density results were scaled according to IEC 62479:2010 for the portion of the measurement uncertainty > 30%. Total expanded uncertainty of 2.67 dB (84.9%) was used to determine the psPD measurement scaling factor.
- 7. Per April 2021 TCB Workshop, For the highest SAR test configurations also measure incident PD (total) using powerdensity reconstruction methodin 2 mm closest measurement plane.
- 8. Since this device is considered a phablet and there is no different PD limit ondifferent exposure conditions, therefore select highestphablet SAR at 0 mm test distance and configurations evaluate power density. Since there is no different PD limit on different exposure conditions, therefore the PD test was performed of a 2mm separation between Probe sensor and EUT surface to cover all exposure conditions of phablet.
- 9. IPD is measured for all edges and surfaces of the device with a transmitting antenna located within 25 mm from that surface or edge.
- 10. Per October 2020 TCB Workshop,PTP-PR algorithm was used during psPD measurement and calculations.
- 11. The measurement procedure consists of measuring the PDinc at two different distances: 2 mm (compliance distance) and \(\lambda\)5. Thegrid extents should be large enough to fully capture the transmitted energy. The grid step should be fine enough to demonstrate that the integrated Power Density iPDn fulfill the criterion described below. Since iPD ratio between the two distances is ≥-1dB, the grid step (0.0625) was sufficient for determining compliance at d=2mm.

$$10*\log_{10}\frac{\mathrm{iPDn}(2mm)}{\mathrm{iPDn}(\lambda/5)} \ge -1$$

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 71 of 206

8.2.4 LTE Test Configuration

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes after the tabulated SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The Radio Communication Analyzer was used for LTE output power measurements and SAR testing. Max power control was used so the UE transmits with maximum output power during SAR testing. SAR must be measured with the maximum TTI (transmit time interval) supported by the device in each LTE configuration.

TDD LTE test consideration

For Time-Division Duplex (TDD) systems, SAR must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP LTE TDD configurations.

SAR was tested with the highest transmission duty factor (63.33%) using Uplink-downlink configuration 0 and Special subframe configuration 7.

LTE TDD Band support 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplinkdownlink configurations and Table 4.2-1 for Special subframe configurations.

Frame structure type 2:

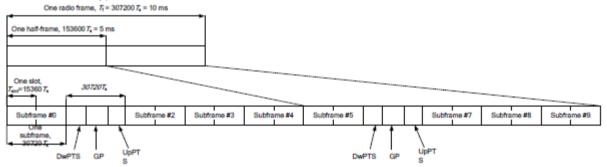


Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

	Norm	nal cyclic prefix in	downlink	Extended cyclic prefix in downlink				
Special	DwPTS	Up	PTS	DwPTS	UpPTS			
subframe		Normal cyclic	Extended		Normal cyclic	Extended		
configuration		prefix in	cyclic prefix in		prefix in	cyclic prefix in		
		uplink	uplink		uplink	uplink		
0	6592.Ts			7680.Ts				
1	19760.Ts			20480.Ts	2192.Ts	2560.Ts		
2	21952.Ts	2192.Ts	2560.Ts	23040.Ts	2192.15	2300.15		
3	24144.Ts			25600.Ts				
4	26336.Ts			7680.Ts				
5	6592.Ts			20480.Ts	4384.Ts	5120.Ts		
6	19760.Ts			23040.Ts	4304.15	5120.15		
7	21952.Ts	4384.Ts	5120.Ts	25600.Ts				
8	24144.Ts			-	-	-		
9	13168.Ts			-	-	-		

Table 4.2-2: Uplink-downlink configurations.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://iwww.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 83071443, or email: CN.Doccheck@gs.com"

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

72 of 206 Page:

Uplink-downlink	Downlink-to-	Subframe number										
configuration	Uplink Switch- point periodicity	0	1	2	3	4	5	6	7	8	9	
0	5 ms	D	S	U	U	U	D	S	U	U	U	
1	5 ms	D	S	U	U	D	D	S	U	U	D	
2	5 ms	D	S	U	D	D	D	S	U	D	D	
3	10 ms	D	S	U	U	U	D	D	D	D	D	
4	10 ms	D	S	U	U	D	D	D	D	D	D	
5	10 ms	D	S	U	D	D	D	D	D	D	D	
6	5 ms	D	S	U	U	U	D	S	U	U	D	

Calculated Duty Cycle=[Extended cyclic prefix in uplink x (Ts) x # of S + # of U]/10ms

baldalated Baty Gyolo-[Extended Gyolo Pronx in apinit x (10) x ii of G 1 ii of G 1 ii of G 1 iii of G 1 ii												
Uplink-		Subframe Number										Calculated
Downlink	Downlink-to- Uplink Switch-											Duty
Configur	point Periodicity	0	1	2	3	4	5	6	7	8	9	Cycle (%)
ation												
0	5 ms	D	S	J	J	J	D	S	J	U	U	63.33
1	5 ms	D	S	J	J	D	D	S	J	U	D	43.33
2	5 ms	D	S	J	D	D	D	S	J	D	D	23.33
3	10 ms	D	S	J	J	J	D	D	D	D	D	31.67
4	10 ms	D	S	J	J	D	D	D	D	D	D	21.67
5	10 ms	D	S	U	D	D	D	D	ם	D	D	11.67
6	5 ms	D	S	J	J	J	D	S	J	U	D	53.33

A) Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

B) MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 - 6.2.5 under Table 6.2.3-1.

	Channel bandwidth/Transmission bandwidth										
Modulation	1.4	3	5	10	15	20	MPR (dB)				
	MHz	MHz	MHz	MHz	MHz	MHz	(ub)				
QPSK	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	0				
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	1				
16QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	1				
16QAM	> 5	> 4	> 8	> 12	> 16	> 18	2				
64QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	2				
64QAM	> 5	> 4	> 8	> 12	> 16	> 18	3				
256QAM	≥1										

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without provintien approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com"

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Hanshan District, Sherzhen, Guangdong, China 518057 t (86–755) 26012053 f (86–755) 26710594 www.sgsgroup.com.cn

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 73 of 206

C) A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

D) Largest channel bandwidth standalone SAR test requirements

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

4) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > ½ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

E) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > 1/2 dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 74 of 206

F) LTE CA additional specification

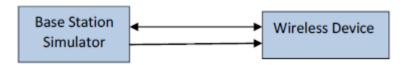
The device supports intra-band contiguous and inter-band discontinuous uplink and downlink LTE Carrier Aggregation (CA). When carrier aggregation applies, implementation and measurement details for the following are necessary.

- a) Intra-band carrier aggregation requirements for uplink.
- b) Intra-band and inter-band carrier aggregation requirements for downlink.

The possible downlink and uplink LTE CA combinations supported by this device are as below tables per 3GPP TS 36.101 V15.4.0. The conducted power measurement results of downlink and uplink LTE CA are provided in Appendix E (Conducted RF Output Power). The downlink LTE CA SAR test is not required since the maximum output power for downlink LTE CA was not more than 0.25dB higher than the maximum output power for without downlink LTE CA.

SAR test procedure for intra-band contiguous UL LTE CA is as below:

- 1)Maximum output power is measured for each UL CA configuration for the required test channels described in KDB 941225 D05
- UL PCC configuration is determined by the required test channel
- SCC and subsequent CCs are added alternatively to either side of the PCC or within the transmission band for channels at the ends of a frequency band.
- 2)SAR for UL CA is required in each exposure condition and frequency band combination
- 3) For this device, as the maximum output for Intra-band uplink LTE CA is ≤ standalone LTE mode (without CA),
- PCC is configured according to the highest standalone SAR configuration tested.
- SCC and subsequent CCs are configured according to procedures used for power measurement and parameters (BW, RB etc.) similar to that used for the PCC
- 4) When the reported SAR for UL CA configuration, described above, is > 1.2 W/kg, UL CA SAR is also required for all required test channels (PCC based)
- 5)UL CA SAR is also required for standalone SAR configurations > 1.2 W/kg when they are scaled to the UL CA power level.
- 6) General PCC and SCC configuration selection procedure
- PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)ii) of KDB 941225 D05 V01r02. All LTE bandwidth conducted powers needed for PCC uplink configuration selection can be found in appendix E. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation.
- To maximize aggregated bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the


SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 75 of 206

component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers.

All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier.

DL CA Power Measurement Setup

- c) Inter-band carrier aggregation requirements for uplink.
- For Inter-band uplink CA mode, MTK TA SAR algorithm in WWAN directly adds the time-averaged RF exposure from 4G(LTE) and time-averaged RF exposure from another 4G(LTE). MTK TA SAR algorithm controls the total RF exposure of Inter-band uplink CA to not exceed FCC limit.

The Inter band Uplink CA as below table:

Item	CA Combos	4G TX PCC	4G TX SCC
1	CA_2A-4A	B2: ANT3/4/2/5	B4: ANT3/4/2/5
2	CA_4A-5A	B4: ANT2/3/4/5	B5: ANT0/1
3	CA_2A-7A	B2: ANT3/4/2/5	B7: ANT2/4/3/5
4	CA_4A-7A	B4: ANT2/3/4/5	B7: ANT2/3/4/5

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 76 of 206

8.2.5 NR Band Test Configuration

1. NR Band n2/5/7/12/26/38/41/48/66/71/77/78 support SA mode and n5/7/38/41/66/77/78 support NSA mode. LTE+NR Band operations are possible only with LTE under EN-DC mode and the operations are

possible as following table:

	following table:	10.7%	5G TY				
Item	ENDC/DSDA Combos	4G TX	5G TX				
1	DC_26A_n78A	B26: ANT0/1	n78: ANT6/7/8/9				
2	DC_2A_n78A	B2: ANT2/3/4/5	n78: ANT6/7/8/9				
3	DC_38A_n78A	B38: ANT2/3/4/5	n78: ANT6/7/8/9				
4	DC_41A_n78A	B41: ANT2/3/4/5	n78: ANT6/7/8/9				
5	DC_4A_n78A	B4: ANT2/3/4/5	n78:ANT6/7/8/9				
6	DC_5A_n78A	B5: ANT0/1	n78: ANT6/7/8/9				
7	DC_5A_n7A	B5: ANT0/1	n7: ANT2/3/4/5				
8	DC_66A_n38A	B66: ANT3/4/2/5	n38: ANT2/4/3/5				
9	DC_66A_n41A	B66: ANT3/4/2/5	n41: ANT2/4/3/5				
10	DC_66A_n78A	B66: ANT2/3/4/5	n78: ANT6/7/8/9				
11	DC_7A_n78A	B7: ANT2/3/4/5	n78: ANT6/7/8/9				
12	DC_2A_n66A	B2: ANT2/4	n66: ANT3/4/2/5				
13	DC_2A_n77A	B2: ANT2/3/4/5	n77: ANT6/7/8/9				
14	DC_4A_n7A	B4: ANT3/4/2/5	n7: ANT2/4/3/5				
15	DC_5A_n66A	B5: ANT0/1	n66: ANT2/3/4/5				
16	DC_66A_n7A	B66: ANT3/4/2/5	n7: ANT2/4/3/5				
17	DC_7A_n5A	B7: ANT2/3/4/5	n5: ANT0/1				
18	DC_4A_n66A	B4: ANT3/4/2/5	n66: ANT2/4/3/5				
19	DC_2A_n7A	B2: ANT3/4	n7: ANT2/4/3/5				
20	DC_5A_n38A	B5: ANT0/1	n38: ANT2/3/4/5				
21	DC_5A_n41A	B5: ANT0/1	n41: ANT2/3/4/5				
22	DC_2A_n38A	B2: ANT3/4/2/5	n38: ANT2/4/3/5				
23	DC_2A_n41A	B2: ANT3/4/2/5	n41: ANT2/4/3/5				
24	DC_7A_n66A	B7: ANT2/4/3/5	n66: ANT3/4/2/5				
25	DC_66A_n66A	B66: ANT3/4/2/5	n66:ANT2/4/3/5				

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

No.1 Workshop, Ni-10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86–755) 26012053 f (86–755) 26710594 www.sgsgroup.com.cn

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 77 of 206

2. The general information supported by the NR band is as following table:

	The general memation experies by the fire band to do following table.													
3	. Band		n2	n5	n7	n12	n26	n38	n41	n48	n66	n71	n77	n78
		PI/2 BPSK	Yes	Yes										
	DET -	QPSK	Yes	Yes										
DFT-s- OFDM	_	16QAM	Yes	Yes										
	OFDIVI	64QAM	Yes	Yes										
Modulation		256QAM	Yes	Yes										
		QPSK	Yes	Yes										
	CP-	16QAM	Yes	Yes										
	OFDM	64QAM	Yes	Yes										
		256QAM	Yes	Yes										
Max Duty Cycle		100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	

	200							Bandwid	dth					
Band	SCS	5MHz	10MHz	15MHz	20MHz	25MHz	30MHz	40MHz	50MHz	60MHz	70MHz	80MHz	90MHz	100MHz
20	15 kHz	Yes	Yes	Yes	Yes	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
n2	30 kHz	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
~F	15 kHz	Yes	Yes	Yes	Yes	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
n5	30 kHz	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
7	15 kHz	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A	N/A	N/A	N/A
n7	30 kHz	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
-10	15 kHz	Yes	Yes	Yes	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
n12	30 kHz	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
-00	15 kHz	Yes	Yes	Yes	Yes	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
n26	30 kHz	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
00	15 kHz	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
n38	30 kHz	N/A	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A	N/A	N/A	N/A	N/A
- 11	15 kHz	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
n41	30 kHz	N/A	Yes	Yes	Yes	N/A	Yes	Yes	Yes	Yes	N/A	Yes	Yes	Yes
- 10	15 kHz	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
n48	30 kHz	N/A	Yes	Yes	Yes	N/A	N/A	Yes	N/A	N/A	N/A	N/A	N/A	N/A
n66	15 kHz	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N/A	N/A	N/A	N/A	N/A	N/A
1100	30 kHz	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
n71	15 kHz	Yes	Yes	Yes	Yes	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
11/1	30 kHz	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
77	15 kHz	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
n77	30 kHz	N/A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
n78	15 kHz	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
11/8	30 kHz	N/A	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Yes	Yes	Yes

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without or written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-75) 8307 1443, or email: CR.Doccheck@sgs.com"

No.1 Workshop, N=10, Middle Section, Science & Technology Park, Nanshan District, Shenzhen, Guangdong, China 518057 t (86–755) 26012053 f (86–755) 26710594 www.sgsgroup.com.cn

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 78 of 206

- 3. For 5G NR test procedure was following step similar FCC KDB 941225 D05:
- a. For DFT-OFDM and CP-OFDM output power measurement reduction, according to 3GPP 38.101 maximum power reduction for power class 3, the CP-OFDM mode will not higher than DFT-OFDM mode, therefore, similar FCC KDB 941225 D05 procedure for other modulation output power for each RB allocation configuration is > not ½ dB higher than the same configuration in DFT-QPSK and the reported SAR for the DFT-QPSK configuration is ≤ 1.45 W/kg; CP-OFDM testing is not required.
- b. For DFT-OFDM output power measurement reduction, according to 38.101 maximum power reduction for power class 3, for PI/2 BPSK/16QAM/64QMA/256QAM and smaller bandwidth output power will spot check largest channel bandwidth worst RB configuration to ensure the PI/2 BPSK/16QAM/64QMA/256QAM and smaller bandwidth output power will not ½ dB higher than the same configuration in the largest supported
- c. SAR testing start with the largest SCS and largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
- d. 50% RB allocation for QPSK SAR testing follows 1RB QPSK allocation procedure
- e. QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- f. PI/2 BPSK/16QAM/64QAM/256QAM output powers according to 3GPP MPR will not ½ dB higher than the same configuration in QPSK, also reported SAR for the QPSK configuration is less than 1.45 W/kg, PI/2 BPSK/16QAM/64QAM/256QAM SAR testing are not required.
- g. Smaller SCS/bandwidth output power for each RB allocation configuration for this device will not ½ dB higher than the same configuration in the largest supported bandwidth, and the reported SAR for the largest supported bandwidth is ≤ 1.45 W/kg, smaller bandwidth SAR testing is not required for this device

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 79 of 206

4. MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS 38.101-1 Section 6.2.2 under Table 6.2.2 -1

Section 6.2.2 under	14010 0.2.2 1.			
Modul	ation		MPR (dB)	
Modul	alion	Edge RB allocations	Outer RB allocations	Inner RB allocations
	PI/2 BPSK	≤ 3.5 ¹	≤ 1.2 ¹	≤ 0.2 ¹
		≤ 0.5 ²	≤ 0.5 ²	0 ²
DFT-s-OFDM	QPSK	≤	1	0
	16 QAM	≤	≤ 1	
	64 QAM		≤ 2.5	
	256 QAM		≤ 4.5	
	QPSK	≤	3	≤ 1.5
CP-OFDM	16 QAM	≤	3	≤ 2
CF-OFDIVI	64 QAM		≤ 3.5	
	256 QAM		≤ 6.5	

- NOTE 1: Applicable for UE operating in TDD mode with Pi/2 BPSK modulation and UE indicates support for UE capability powerBoosting-pi2BPSK and if the IE powerBoostPi2BPSK is set to 1 and 40 % or less slots in radio frame are used for UL transmission for bands n40, n41, n77, n78 and n79. The reference power of 0 dB MPR is 26dBm.
- NOTE 2: Applicable for UE operating in FDD mode, or in TDD mode in bands other than n40, n41, n77, n78 and n79 with Pi/2 BPSK modulation and if the IE powerBoostPi2BPSK is set to 0 and if more than 40 % of slots in radio frame are used for UL transmission for bands n40, n41, n77, n78 and n79.
- For FDD NR Band operation does not have the fixed UL/DL frame structure, but during the transmitting/ receiving it can be operated in the slot structure of 100% UL duty cycle, we are proposing the conservative way to evaluate SAR at 100% duty cycle. For the purpose of test NR Band standalone SAR, and also test SAR level at 100% TX duty cycle.
- For 5G NR Sub6GHz SISO Mode, SAR Test plan as below:
- 1) For 5G NR NSA mode with the same UL EN DC combination but different DL EN DC combinations, eq. EN-DC configuration: UL DC 7A n5 (UL two bands) with DL DC 7C n5 (DL two bands)
- a) The UL EN-DC configuration, including the Tx antenna configuration, RF path, the channel bandwidth and other operating parameters are the same.
- b) The maximum output power, including tolerance, for the UL EN-DC configuration with DL two or more bands must be ≤ the same UL EN-DC configuration with DL two bands only to qualify for the SAR test exclusion.
- 7. For EN-DC mode, MTK TA SAR algorithm in WWAN directly adds the time-averaged RF exposure from 4G(LTE) and time-averaged RF exposure from 5G NR. MTK TA SAR algorithm controls the total RF exposure from both 4G and 5G NR to not exceed regulatory limit.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 80 of 206

Test Result 9

Measurement of RF Conducted Power 9.1

The detailed conducted power can be referred to Appendix E.

Note:

1) . For SAR the time based average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

No. of timeslots	1	2	3	4
Duty Cycle	1:8.3	1:4.15	1:2.77	1:2.075
Time based avg. power compared to slotted avg. power	-9.19	-6.18	-4.42	-3.17

2) . The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below:

Frame-averaged power = 10 x log (Burst-averaged power mW x Slot used / 8.

- 3) . When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.
- 4) . According to FCC guidance, the output power with uplink CA active was measured for the high / middle / low channel configuration with the highest reported SAR for each exposure condition, the power was measured with wideband signal integration over both component carriers.
- 5) . In applying the power measurement procedures of KDB 941225 D05A for DL CA to qualify for UL SAR test exclusion, power measurement is required only for the subset in each row with the largest combination of frequency bands and CCs.
- 6) . Maximum output power measurement is required for each UL CA configuration for the required test channels described in KDB 941225 D05.
- 7) . Conducted power measurement results of downlink LTE carrier aggregation are provided to quantify downlink only carrier aggregation SAR test exclusion per KDB 941225 D05A. Uplink maximum output power is measured with downlink carrier aggregation active, using the channel with highest measured maximum output power when downlink carrier aggregation is inactive, to confirm that when downlink carrier aggregation is active uplink maximum output power remains within the specified tune-up tolerance limits and not more than ¼ dB higher than the maximum output power measured when downlink carrier aggregation inactive, therefore SAR evaluation with downlink carrier aggregation can

The possible downlink LTE CA combinations supported by this device are as below tables per 3GPP TS 36.101 V15.4.0. The detailed conducted power measurement results of downlink LTE CA are provided in the SAR report per 3GPP TS 36.521-1 V14.4.0. According to KDB 941225 D05A, the downlink only carrier aggregation conditions for this device can be excluded from SAR testing. The conducted power measurement results of downlink LTE CA Conducted Power are as Appendix E

conducted RF output power, so the downlink only carrier aggregation conditions for this device can be excluded from SAR testing.

8) . For conducted power of WIFI must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band. For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured. Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 81 of 206

1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.

2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 82 of 206

9.2 Measurement of SAR Data

Note:

- The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B. 1)
- Per KDB 447498 D04, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-q or 10-q SAR for the mid-band or highest output power channel is:
 - ≤ 0.8W/kg for 1-g or 2.0W/kg for 10-g respectively, when the transmission band is ≤ 100MHz.
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz.
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz.
- According to TCBC workshop April 2019. The following test procedure was followed to demonstrate that the SAR results in this report represent the appropriate SAR test conditions. For bands with dynamic tuning implemented, SAR will be measured according to the required SAR test procedures with the dynamic tuner active to allow the device to automatically tune to the antenna state for the respective RF exposure test configurations. Additional single point SAR time-sweep measurements will be evaluated for other tuner states to determine that the other tuner configurations would result in equivalent or lower SAR values. The additional tuner hardware has no influence to the antenna characteristics, other than impedance matching. In this report LTE B5/NR n5 (Ant 0/1), LTE B7/NR n7 (Ant 2/3/4/5) support 2 codes, we full test the worst code, and test worst case with the second code.

WiFi 2.4G:

1) When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR test for the other 802.11 modes are not required.

WiFi 5G:

- When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. As the highest reported SAR for a test configuration is \leq 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration.
- For Wi-Fi 5G, U-NII-2A (5250-5350 MHz) and U-NII-2C (5470-5725 MHz) bands does not support hotspot function.

When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR test for the other 802.11 modes are not required.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

83 of 206 Page:

9.2.1 SAR Result of GSM850

9.2.1 SANNE	GSM850 SAR Test Record															
					Test Rec											
Test position	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)		Scaled SAR 1- g (W/kg)	Liquid Temp.(℃)					
				Head ⁻	Test Data	DSI1										
Left cheek	GPRS 4TS	190/836.6	1:2.075	0.181	0.125	-0.17	26.82	28.00	1.312	0.238	22.1					
Left tilted	GPRS 4TS	190/836.6	1:2.075	0.100	0.074	0.01	26.82	28.00	1.312	0.131	22.1					
Right cheek	GPRS 4TS	190/836.6	1:2.075	0.235	0.168	-0.18	26.82	28.00	1.312	0.308	22.1					
Right tilted	GPRS 4TS	190/836.6	1:2.075	0.134	0.099	-0.03	26.82	28.00	1.312	0.176	22.1					
			Body w	orn Test o	data(Sepa	rate 5mm)	DSI4									
Front side	GPRS 4TS	190/836.6	1:2.075	0.415	0.264	0.01	26.82	28.00	1.312	0.545	22.3					
Back side	GPRS 4TS	190/836.6	1:2.075	0.819	0.516	-0.01	26.82	28.00	1.312	1.075	22.3					
Back side	GPRS 4TS	128/824.2	1:2.075	0.806	0.500	0.10	26.86	28.00	1.300	1.048	22.3					
Back side	GPRS 4TS	251/848.8	1:2.075	0.811	0.504	0.11	26.88	28.00	1.294	1.050	22.3					
Back side with Repeat	GPRS 4TS	190/836.6	1:2.075	0.808	0.508	-0.05	26.82	28.00	1.312	1.060	22.3					
			Hotspo	t Test dat	ta(Separat	te 10mm)	DSI5									
Front side	GPRS 4TS	190/836.6	1:2.075	0.213	0.135	0.13	26.82	28.00	1.312	0.279	22.3					
Back side	GPRS 4TS	190/836.6	1:2.075	0.290	0.185	0.16	26.82	28.00	1.312	0.381	22.3					
Right side	GPRS 4TS	190/836.6	1:2.075	0.238	0.156	0.03	26.82	28.00	1.312	0.312	22.3					
Bottom side	GPRS 4TS	190/836.6	1:2.075	0.176	0.102	-0.19	26.82	28.00	1.312	0.231	22.3					
	Ant 1 Test Record															
Test position	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)			Liquid Temp.(℃)					
		1		Head ⁻	Test Data	Head Test Data DSI1										
Left cheek	GPRS 4TS					DSI1										
Left tilted	0110	190/836.6	1:2.075	0.577	0.324	DSI1 0.19	26.39	28.00	1.449	0.836	22.1					
	GPRS 4TS			0.577 0.180		ı	26.39 26.39	28.00 28.00	1.449 1.449	0.836 0.261	22.1 22.1					
Right cheek			1:2.075		0.324	0.19				1						
Right cheek Right tilted	GPRS 4TS GPRS 4TS GPRS 4TS	190/836.6	1:2.075 1:2.075	0.180	0.324 0.124	0.19 0.12	26.39	28.00	1.449	0.261	22.1					
	GPRS 4TS GPRS 4TS	190/836.6 190/836.6	1:2.075 1:2.075 1:2.075	0.180 0.695	0.324 0.124 0.378	0.19 0.12 0.15	26.39 26.39	28.00 28.00	1.449 1.449	0.261 1.007	22.1 22.1					
Right tilted	GPRS 4TS GPRS 4TS GPRS 4TS	190/836.6 190/836.6 190/836.6	1:2.075 1:2.075 1:2.075 1:2.075	0.180 0.695 0.194	0.324 0.124 0.378 0.126	0.19 0.12 0.15 -0.06	26.39 26.39 26.39	28.00 28.00 28.00	1.449 1.449 1.449	0.261 1.007 0.281	22.1 22.1 22.1					
Right tilted Left cheek	GPRS 4TS GPRS 4TS GPRS 4TS GPRS 4TS	190/836.6 190/836.6 190/836.6 128/824.2 251/848.8	1:2.075 1:2.075 1:2.075 1:2.075 1:2.075	0.180 0.695 0.194 0.564	0.324 0.124 0.378 0.126 0.317	0.19 0.12 0.15 -0.06 -0.12	26.39 26.39 26.39 26.35	28.00 28.00 28.00 28.00	1.449 1.449 1.449 1.462	0.261 1.007 0.281 0.825	22.1 22.1 22.1 22.1					
Right tilted Left cheek Left cheek	GPRS 4TS GPRS 4TS GPRS 4TS GPRS 4TS GPRS 4TS	190/836.6 190/836.6 190/836.6 128/824.2 251/848.8 128/824.2	1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075	0.180 0.695 0.194 0.564 0.614 0.725	0.324 0.124 0.378 0.126 0.317 0.337	0.19 0.12 0.15 -0.06 -0.12 -0.01	26.39 26.39 26.39 26.35 26.37	28.00 28.00 28.00 28.00 28.00	1.449 1.449 1.449 1.462 1.455	0.261 1.007 0.281 0.825 0.894	22.1 22.1 22.1 22.1 22.1					
Right tilted Left cheek Left cheek Right cheek	GPRS 4TS GPRS 4TS GPRS 4TS GPRS 4TS GPRS 4TS GPRS 4TS	190/836.6 190/836.6 190/836.6 128/824.2 251/848.8 128/824.2 251/848.8	1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075	0.180 0.695 0.194 0.564 0.614 0.725 0.671	0.324 0.124 0.378 0.126 0.317 0.337 0.382	0.19 0.12 0.15 -0.06 -0.12 -0.01 0.06 -0.06	26.39 26.39 26.39 26.35 26.37 26.35 26.37	28.00 28.00 28.00 28.00 28.00 28.00	1.449 1.449 1.462 1.455 1.462	0.261 1.007 0.281 0.825 0.894 1.060	22.1 22.1 22.1 22.1 22.1 22.1 22.3					
Right tilted Left cheek Left cheek Right cheek	GPRS 4TS GPRS 4TS GPRS 4TS GPRS 4TS GPRS 4TS GPRS 4TS	190/836.6 190/836.6 190/836.6 128/824.2 251/848.8 128/824.2 251/848.8	1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 Body w	0.180 0.695 0.194 0.564 0.614 0.725 0.671 orn Test of	0.324 0.124 0.378 0.126 0.317 0.337 0.382 0.364	0.19 0.12 0.15 -0.06 -0.12 -0.01 0.06 -0.06	26.39 26.39 26.39 26.35 26.37 26.35 26.37	28.00 28.00 28.00 28.00 28.00 28.00	1.449 1.449 1.462 1.455 1.462	0.261 1.007 0.281 0.825 0.894 1.060	22.1 22.1 22.1 22.1 22.1 22.1 22.3					
Right tilted Left cheek Left cheek Right cheek Right cheek	GPRS 4TS	190/836.6 190/836.6 190/836.6 128/824.2 251/848.8 128/824.2 251/848.8	1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 Body w	0.180 0.695 0.194 0.564 0.614 0.725 0.671 orn Test of	0.324 0.124 0.378 0.126 0.317 0.337 0.382 0.364 data(Sepa	0.19 0.12 0.15 -0.06 -0.12 -0.01 0.06 -0.06 rate 5mm)	26.39 26.39 26.35 26.35 26.37 26.35 26.37	28.00 28.00 28.00 28.00 28.00 28.00 28.00	1.449 1.449 1.462 1.455 1.462 1.455	0.261 1.007 0.281 0.825 0.894 1.060 0.977	22.1 22.1 22.1 22.1 22.1 22.1 22.3 22.1					
Right tilted Left cheek Left cheek Right cheek Right cheek Front side	GPRS 4TS	190/836.6 190/836.6 190/836.6 128/824.2 251/848.8 128/824.2 251/848.8	1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 Body w 1:2.075	0.180 0.695 0.194 0.564 0.614 0.725 0.671 orn Test of the control of the c	0.324 0.124 0.378 0.126 0.317 0.337 0.382 0.364 data(Sepal	0.19 0.12 0.15 -0.06 -0.12 -0.01 0.06 -0.06 rate 5mm) 0.08 0.15	26.39 26.39 26.35 26.37 26.35 26.37) DSI4 24.84 24.84	28.00 28.00 28.00 28.00 28.00 28.00 28.00 26.00	1.449 1.449 1.462 1.455 1.462 1.455	0.261 1.007 0.281 0.825 0.894 1.060 0.977	22.1 22.1 22.1 22.1 22.1 22.3 22.1					
Right tilted Left cheek Left cheek Right cheek Right cheek Front side	GPRS 4TS	190/836.6 190/836.6 190/836.6 128/824.2 251/848.8 128/824.2 251/848.8 190/836.6	1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 Body w 1:2.075 1:2.075 1:2.075	0.180 0.695 0.194 0.564 0.614 0.725 0.671 orn Test of the control of the c	0.324 0.124 0.378 0.126 0.317 0.337 0.382 0.364 data(Sepal 0.155 0.225	0.19 0.12 0.15 -0.06 -0.12 -0.01 0.06 -0.06 rate 5mm) 0.08 0.15	26.39 26.39 26.35 26.37 26.35 26.37) DSI4 24.84 24.84	28.00 28.00 28.00 28.00 28.00 28.00 28.00 26.00	1.449 1.449 1.462 1.455 1.462 1.455	0.261 1.007 0.281 0.825 0.894 1.060 0.977	22.1 22.1 22.1 22.1 22.1 22.3 22.1					
Right tilted Left cheek Left cheek Right cheek Right cheek Front side Back side	GPRS 4TS	190/836.6 190/836.6 190/836.6 128/824.2 251/848.8 128/824.2 251/848.8 190/836.6	1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 Body w 1:2.075 1:2.075 1:2.075	0.180 0.695 0.194 0.564 0.614 0.725 0.671 orn Test of the control of the c	0.324 0.124 0.378 0.126 0.317 0.337 0.382 0.364 data(Separate	0.19 0.12 0.15 -0.06 -0.12 -0.01 0.06 -0.06 rate 5mm) 0.08 0.15 te 10mm)	26.39 26.39 26.35 26.35 26.37 26.35 26.37) DSI4 24.84 24.84 DSI5	28.00 28.00 28.00 28.00 28.00 28.00 28.00 26.00	1.449 1.449 1.449 1.455 1.462 1.455 1.306 1.306	0.261 1.007 0.281 0.825 0.894 1.060 0.977	22.1 22.1 22.1 22.1 22.1 22.3 22.1 22.3 22.3					
Right tilted Left cheek Left cheek Right cheek Right cheek Front side Back side	GPRS 4TS	190/836.6 190/836.6 190/836.6 128/824.2 251/848.8 128/824.2 251/848.8 190/836.6 190/836.6 190/836.6	1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 Body w 1:2.075 1:2.075 Hotspo 1:2.075	0.180 0.695 0.194 0.564 0.614 0.725 0.671 orn Test of 0.311 0.439 ot Test dat 0.251	0.324 0.124 0.378 0.126 0.317 0.337 0.382 0.364 data(Separation 1.155) 0.225 ta(Separation 1.146)	0.19 0.12 0.15 -0.06 -0.12 -0.01 0.06 -0.06 rate 5mm) 0.08 0.15 te 10mm) 0.13	26.39 26.39 26.35 26.37 26.35 26.37) DSI4 24.84 24.84 DSI5 24.84	28.00 28.00 28.00 28.00 28.00 28.00 28.00 26.00	1.449 1.449 1.462 1.455 1.462 1.455 1.306 1.306	0.261 1.007 0.281 0.825 0.894 1.060 0.977 0.406 0.573	22.1 22.1 22.1 22.1 22.1 22.3 22.1 22.3 22.3					
Right tilted Left cheek Left cheek Right cheek Right cheek Front side Back side Front side Back side	GPRS 4TS	190/836.6 190/836.6 190/836.6 128/824.2 251/848.8 128/824.2 251/848.8 190/836.6 190/836.6 190/836.6	1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075 1:2.075	0.180 0.695 0.194 0.564 0.614 0.725 0.671 orn Test of the control of the c	0.324 0.124 0.378 0.126 0.317 0.337 0.382 0.364 data(Separation of the content of	0.19 0.12 0.15 -0.06 -0.12 -0.01 0.06 -0.06 rate 5mm) 0.08 0.15 te 10mm) 0.13 -0.10	26.39 26.39 26.35 26.37 26.35 26.37) DSI4 24.84 24.84 DSI5 24.84 24.84	28.00 28.00 28.00 28.00 28.00 28.00 28.00 26.00 26.00	1.449 1.449 1.462 1.455 1.462 1.455 1.306 1.306	0.261 1.007 0.281 0.825 0.894 1.060 0.977 0.406 0.573	22.1 22.1 22.1 22.1 22.3 22.1 22.3 22.3					

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without provintien approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com"

 or email: CN. Doccheck@sgs.com
 t (86-755) 26012053
 f (86-755) 26710594
 www.sgsgroup.com.cn

 Mo.1 Wortshop, M-10, Middle Section, Science & Technology Part, Ikanshan District, Shenzhen, Guangdong, China 518057
 t (86-755) 26012053
 f (86-755) 26710594
 wwww.sgsgroup.com.cn

 中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057
 t (86-755) 26012053
 f (86-755) 26710594
 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 84 of 206

Test Position	Test ch./Freq.	Measured SAR (W/kg)	1 st Repeated	Ratio	2 nd Repeated	3 rd Repeated
Back side	190/836.6	0.819	0.808	1.014	N/A	N/A

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

- A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).
- 3) A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- 4) Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5) The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds. The repeated measurement results must be clearly identified in the SAR report.

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's sindings at the time of its intervention only and within the limits of Client's fany. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com

or email: CN.Doccheck@sgs.com

1. No.1 Workshop, W-10, Middle Section, Science & Technology Part, Nanshan District, Shercher, Guangdong, China 518057 t (86–755) 26012053 f (86–755) 26710594 www.sgsgroup.com.cn

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编:518057

t (86–755) 26012053 f (86–755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

85 of 206 Page:

9.2.2 SAR Result of GSM1900

GSM1900 SAR Test Record												
				Ant 2 T	est Reco	ď						
Test position	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor		Liquid Temp.(℃)	
				Head Te	st Data DS	SI1						
Left cheek	GPRS 4TS	661/1880	1:2.075	0.289	0.178	0.13	19.99	21.00	1.262	0.365	22.1	
Left tilted	GPRS 4TS	661/1880	1:2.075	0.344	0.203	0.01	19.99	21.00	1.262	0.434	22.1	
Right cheek	GPRS 4TS	661/1880	1:2.075	0.705	0.352	0.05	19.99	21.00	1.262	0.890	22.1	
Right tilted	GPRS 4TS	661/1880	1:2.075	0.695	0.340	0.17	19.99	21.00	1.262	0.877	22.1	
Right cheek	GPRS 4TS	512/1850.2	1:2.075	0.638	0.371	-0.08	19.56	21.00	1.393	0.889	22.1	
Right cheek	GPRS 4TS	810/1909.8	1:2.075	0.642	0.338	0.10	19.68	21.00	1.355	0.870	22.1	
Right tilted	GPRS 4TS	512/1850.2	1:2.075	0.638	0.323	-0.01	19.56	21.00	1.393	0.889	22.1	
Right tilted	GPRS 4TS	810/1909.8	1:2.075	0.656	0.344	-0.16	19.68	21.00	1.355	0.889	22.1	
		Bod	y worn Tes	st data(Sep	arate 5m	m) Senso	or on DSI3					
Front side	GPRS 4TS	661/1880	1:2.075	0.408	0.216	0.13	20.92	22.00	1.282	0.523	22.3	
Back side	GPRS 4TS	661/1880	1:2.075	0.766	0.380	0.15	20.92	22.00	1.282	0.982	22.3	
Back side	GPRS 4TS	512/1850.2	1:2.075	0.630	0.324	0.16	20.50	22.00	1.413	0.890	22.3	
Back side	GPRS 4TS	810/1909.8	1:2.075	0.639	0.331	-0.13	20.64	22.00	1.368	0.874	22.3	
Body worn Test data Sensor off DSI4												
Front side with 10mm	GPRS 4TS	661/1880	1:2.075	0.353	0.188	0.14	23.92	25.00	1.282	0.453	22.3	
Back side with 10mm	GPRS 4TS	661/1880	1:2.075	0.782	0.407	0.04	23.92	25.00	1.282	1.003	22.3	
Back side with 10mm	GPRS 4TS	512/1850.2	1:2.075	0.720	0.369	-0.08	23.67	25.00	1.358	0.978	22.3	
Back side with 10mm	GPRS 4TS	810/1909.8	1:2.075	0.713	0.369	0.08	23.80	25.00	1.318	0.940	22.3	
			Hotspot	Test data(Separate	10mm) D	SI5					
Front side	GPRS 4TS	661/1880	1:2.075	0.185	0.101	-0.10	19.99	21.00	1.262	0.233	22.3	
Back side	GPRS 4TS	661/1880	1:2.075	0.303	0.165	0.10	19.99	21.00	1.262	0.382	22.3	
Left side	GPRS 4TS	661/1880	1:2.075	0.231	0.114	-0.12	19.99	21.00	1.262	0.291	22.3	
Top side	GPRS 4TS	661/1880	1:2.075	0.230	0.135	-0.06	19.99	21.00	1.262	0.290	22.3	
				Ant 3 T	est Recoi	rd						
Test position	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power drift (dB)	Conducted Power(dBm)		Scaled factor		Liquid Temp.(℃)	
				Head Te	st Data D	SI1						
Left cheek	GPRS 4TS	661/1880	1:2.075	0.049	0.030	0.11	23.84	25.50	1.466	0.072	22.1	
Left tilted	GPRS 4TS	661/1880	1:2.075	0.015	0.003	0.01	23.84	25.50	1.466	0.022	22.1	
Right cheek	GPRS 4TS	661/1880	1:2.075	0.062	0.037	0.18	23.84	25.50	1.466	0.091	22.1	
Right tilted	GPRS 4TS	661/1880	1:2.075	0.023	0.011	-0.14	23.84	25.50	1.466	0.034	22.1	
			Body wor	n Test dat	a(Separat	e 5mm) I	DSI4					
Front side	GPRS 4TS	661/1880	1:2.075	0.397	0.209	-0.05	22.45	23.50	1.274	0.506	22.3	
Back side	GPRS 4TS	661/1880	1:2.075	0.513	0.266	0.07	22.45	23.50	1.274	0.653	22.3	
			Hotspot	Test data(Separate	10mm) D	SI5					
Front side	GPRS 4TS	661/1880	1:2.075	0.273	0.150	0.17	22.45	23.50	1.274	0.348	22.3	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without proven it in the proval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@ags.com"

or email: CN.Doccheck@sgs.com
Wo.1Workshop, M-10, Middle Section, Science & Technology Part, Nanohan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn
中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 86 of 206

Back side	GPRS 4TS 661/	/1880	1:2.075	0.352	0.189	0.06	22.45	23.50	1.274	0.448	22.3
Left side	GPRS 4TS 661/	/1880	1:2.075	0.106	0.059	-0.13	22.45	23.50	1.274	0.135	22.3
Bottom side	GPRS 4TS 661/	/1880	1:2.075	0.591	0.305	0.01	22.45	23.50	1.274	0.753	22.3
Bottom side	GPRS 4TS 512/1	1850.2	1:2.075	0.518	0.269	-0.14	22.02	23.50	1.406	0.728	22.3
Bottom side	GPRS 4TS 810/1	1909.8	1:2.075	0.516	0.268	0.17	22.15	23.50	1.365	0.704	22.3

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without proven it in the proval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@ags.com"

or email: CN.Doccheck@sgs.com |ku.l1Windstop,k=10,llifeth Section, Science & Technology Part, |kanshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 87 of 206

9.2.3 SAR Result of WCDMA Band II

WB2 SAR Test Record												
				Ant 2	Test Reco	rd						
Test position	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power drift (dB)	Conducted Power(dBm)		Scaled	Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)	
				Head Te	est Data D	SI1						
Left cheek	RMC	9262/1852.4	1:1	0.310	0.205	-0.11	17.76	18.50	1.186	0.368	22.3	
Left tilted	RMC	9262/1852.4	1:1	0.424	0.260	0.09	17.76	18.50	1.186	0.503	22.3	
Right cheek	RMC	9262/1852.4	1:1	0.780	0.458	0.15	17.76	18.50	1.186	0.925	22.3	
Right tilted	RMC	9262/1852.4	1:1	0.760	0.399	-0.18	17.76	18.50	1.186	0.901	22.3	
Right cheek	RMC	9400/1880	1:1	0.795	0.428	0.01	17.64	18.50	1.219	0.969	22.3	
Right cheek	RMC	9538/1907.6	1:1	0.734	0.434	-0.12	17.69	18.50	1.205	0.884	22.3	
Right tilted	RMC	9400/1880	1:1	0.758	0.384	-0.17	17.64	18.50	1.219	0.924	22.3	
Right tilted	RMC	9538/1907.6	1:1	0.711	0.361	0.01	17.69	18.50	1.205	0.857	22.3	
		Body w	orn Te	st data(Se	parate 5m	m) Senso	or on DSI3					
Front side	RMC	9538/1907.6	1:1	0.415	0.238	-0.03	17.98	19.00	1.265	0.525	22.1	
Back side	RMC	9538/1907.6	1:1	0.721	0.371	0.00	17.98	19.00	1.265	0.912	22.1	
Back side	RMC	9262/1852.4	1:1	0.793	0.408	0.00	17.90	19.00	1.288	1.022	22.1	
Back side	RMC	9400/1880	1:1	0.763	0.392	0.02	17.91	19.00	1.285	0.981	22.1	
Body worn Test data Sensor off DSI4												
Front side with 10mm	RMC	9538/1907.6	1:1	0.458	0.265	0.04	20.81	22.00	1.315	0.602	22.1	
Back side with 10mm	RMC	9538/1907.6	1:1	0.637	0.369	-0.03	20.81	22.00	1.315	0.838	22.1	
Back side with 10mm	RMC	9262/1852.4	1:1	0.744	0.398	-0.10	20.80	22.00	1.318	0.981	22.1	
Back side with 10mm	RMC	9400/1880	1:1	0.697	0.398	-0.03	20.79	22.00	1.321	0.921	22.1	
		Н	otspot	t Test data	(Separate	10mm) D	SI5					
Front side	RMC	9262/1852.4	1:1	0.231	0.115	0.04	17.76	18.50	1.186	0.274	22.3	
Back side	RMC	9262/1852.4	1:1	0.297	0.172	-0.03	17.76	18.50	1.186	0.352	22.3	
Left side	RMC	9262/1852.4	1:1	0.215	0.116	-0.16	17.76	18.50	1.186	0.255	22.3	
Top side	RMC	9262/1852.4	1:1	0.350	0.203	0.16	17.76	18.50	1.186	0.415	22.3	
				Ant 3	Test Reco	rd						
Test position	Test mode		Duty Cycle	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power drift (dB)	Conducted Power(dBm)	Tune up Limit(dBm)	Scaled factor	Scaled SAR 1-g (W/kg)	Liquid Temp.(℃)	
				Head Te	est Data D	SI1						
Left cheek	RMC	9538/1907.6	1:1	0.110	0.069	-0.11	23.98	25.00	1.265	0.139	22.3	
Left tilted	RMC	9538/1907.6	1:1	0.093	0.057	-0.02	23.98	25.00	1.265	0.118	22.3	
Right cheek	RMC	9538/1907.6	1:1	0.141	0.083	0.08	23.98	25.00	1.265	0.178	22.3	
Right tilted	RMC	9538/1907.6	1:1	0.078	0.048	-0.16	23.98	25.00	1.265	0.099	22.3	
Body worn Test data(Separate 5mm) DSI4												
Front side	RMC	9538/1907.6	1:1	0.468	0.243	-0.08	19.31	20.00	1.172	0.549	22.1	
Back side	RMC	9538/1907.6	1:1	0.593	0.307	0.16	19.31	20.00	1.172	0.695	22.1	

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without provintien approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CND.Doccheck@gs.com"

or email: CN_Doccheck@sgs_com

No.1 Workshop, M-10, Middle Sedon, Science & Technology Part, Namshan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn

中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 88 of 206

	Hotspot Test data(Separate 10mm) DSI5													
Front side	RMC	9538/1907.6	1:1	0.518	0.285	-0.12	19.31	20.00	1.172	0.607	22.3			
Back side	RMC	9538/1907.6	1:1	0.638	0.350	-0.13	19.31	20.00	1.172	0.748	22.3			
Left side	RMC	9538/1907.6	1:1	0.222	0.124	-0.14	19.31	20.00	1.172	0.260	22.3			
Bottom side	RMC	9538/1907.6	1:1	0.778	0.422	0.07	19.31	20.00	1.172	0.912	22.3			
Bottom side	RMC	9262/1852.4	1:1	0.925	0.487	0.00	19.31	20.00	1.172	1.084	22.3			
Bottom side	RMC	9400/1880	1:1	0.781	0.435	-0.06	19.31	20.00	1.172	0.915	22.3			
Bottom side with Repeat	RMC	9262/1852.4	1:1	0.912	0.468	-0.03	19.31	20.00	1.172	1.069	22.3			

Test Position	Test ch./Freq.	Measured SAR (W/kg)	1 st Repeated	Ratio	2 nd Repeated	3 rd Repeated	
Bottom side	9262/1852.4	0.925	0.912	1.014	N/A	N/A	

Note: 1) When the original highest measured SAR is ≥ 0.80 W/kg, the measurement was repeated once.

²⁾ A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was ≥ 1.45 W/kg (~ 10% from the 1g SAR limit).

³⁾ A third repeated measurement was performed only if the original, first or second repeated measurement was ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

⁴⁾ Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg

⁵⁾ The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds. The repeated measurement results must be clearly identified in the SAR report.

SZSAR-TRF-01 Rev. A/0 May15,2023

Report No.: SZCR250400155410

Page: 89 of 206

9.2.4 SAR Result of WCDMA Band IV

Ant 2 Test Record											
Test position	Test mode	Test ch./Freq.	Duty Cycle	1-9	(W/kg) 10-g	(ab)	Power(dBm)		Scaled		Liquid Temp.(℃)
Head Test Data DSI1											
Left cheek		1513/1752.6		0.390	0.262	-0.07	17.73	18.50	1.194	0.466	22.3
Left tilted		1513/1752.6		0.447	0.282	-0.09	17.73	18.50	1.194	0.534	22.3
Right cheek		1513/1752.6		0.727	0.416	0.00	17.73	18.50	1.194	0.868	22.3
Right tilted		1513/1752.6		0.697	0.363	0.00	17.73	18.50	1.194	0.832	22.3
Right cheek		1312/1712.4		0.619	0.380	0.14	17.72	18.50	1.197	0.741	22.3
Right cheek		1412/1732.4		0.704	0.427	-0.12	17.71	18.50	1.199	0.844	22.3
Right tilted		1312/1712.4		0.602	0.310	-0.05	17.72	18.50	1.197	0.720	22.3
Right tilted	RMC	1412/1732.4		0.681	0.350	0.06	17.71	18.50	1.199	0.817	22.3
		Body wo		t data(S	Separat	e 5mm) Sensor on D				
Front side		1312/1712.4		0.294		0.04	17.73	18.50	1.194	0.351	22.1
Back side	RMC	1312/1712.4	1:1	0.672	0.342	-0.08	17.73	18.50	1.194	0.802	22.1
Back side		1412/1732.4		0.745	0.385	0.16	17.71	18.50	1.199	0.894	22.1
Back side	RMC	1513/1752.6		0.677	0.350	0.07	17.72	18.50	1.197	0.810	22.1
							off DSI4				
Front side with 10mm		1312/1712.4			0.194	-0.03	21.70	22.50	1.202	0.363	22.1
Back side with 10mm		1312/1712.4	1:1	0.500	0.303	0.10	21.70	22.50	1.202	0.601	22.1
Back side with 10mm	RMC	1412/1732.4	1:1		0.340	0.11	21.62	22.50	1.225	0.708	22.1
Back side with 10mm	RMC	1513/1752.6			0.375	0.04	21.48	22.50	1.265	0.828	22.1
		Ho	tspot -	Test da	ta(Sepa	arate 10	Omm) DSI5				
Front side		1513/1752.6			0.146	0.01	17.73	18.50	1.194	0.327	22.3
Back side		1513/1752.6			0.375	0.04	17.73	18.50	1.194	0.782	22.3
Left side		1513/1752.6			0.118	0.17	17.73	18.50	1.194	0.290	22.3
Top side	RMC	1513/1752.6	1:1	0.381	0.231	0.04	17.73	18.50	1.194	0.455	22.3
				Ant 3	3 Test F	Record					
Test position	Test mode	Test ch./Freq.	Duty Cycle	SAR (W/kg) 1-g	SAR (W/kg) 10-g	Power drift (dB)	Conducted Power(dBm)		Scaled factor	1-g	Liquid Temp.(℃)
Head Test Data DSI1											
Left cheek	RMC	1312/1712.4	1:1		0.054	-0.12	23.70	25.50	1.514	0.130	22.3
Left tilted		1312/1712.4		0.051	0.034	-0.12	23.70	25.50	1.514	0.130	22.3
Right cheek		1312/1712.4		0.120	0.032	0.12	23.70	25.50	1.514	0.182	22.3
Right tilted		1312/1712.4			0.028	0.12	23.70	25.50	1.514	0.102	22.3
rtight tilted	IXIVIO						5mm) DSI4	20.00	1.514	0.070	22.0
Front side	RMC	1412/1732.4			0.255		19.21	21.00	1.510	0.764	22.1
Back side		1412/1732.4					19.21	21.00		0.920	22.1
Back side		1312/1712.4			0.290		19.15	21.00		0.842	22.1
Back side		1512/1712.4			0.362		19.14	21.00		1.091	21.6
Daok side	TAIVIO						0mm) DSI5	21.00	1.000	1.001	21.0
Front side	RMC	1412/1732.4			0.152		19.21	21.00	1 510	0.412	22.3
Back side		1412/1732.4			0.132	0.18	19.21	21.00		0.506	22.3
Left side		1412/1732.4			0.046	-0.16	19.21	21.00	1.510		22.3
Bottom side		1412/1732.4			0.200	0.01	19.21	21.00	1.510		22.3
Bottom side		1312/1732.4			0.204		19.15	21.00		0.562	22.3
Bottom side		1512/1712. 4 1513/1752.6			0.204		19.13	21.00		0.546	22.3
DULIUITI SIUE	LINIC	13/1/32.0	1.1	0.550	0.213	0.00	13.14	∠1.00	1.000	0.040	22.3

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at https://www.sgs.com/en/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without proven it in the proval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@ags.com"

or email: CN.Doccheck@sgs.com
Wo.1Workshop, M-10, Middle Section, Science & Technology Part, Nanohan District, Shenzhen, Guangdong, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn
中国・广东・深圳市南山区科技园中区M-10栋1号厂房 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com