

RF TEST REPORT

Applicant Xiaomi Communications Co., Ltd.

FCC ID 2AFZZFRA65G

Product Mobile Phone

Brand Redmi

Model 2502FRA65G

Report No. R2410A1618-R6

Issue Date December 25, 2024

Eurofins TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC CFR47 Part 15C (2023). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Xu Ying

Approved by: Xu Kai

Eurofins TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1	Test	t Laboratory	. 4
	1.1	Notes of the Test Report	. 4
	1.2.	Test facility	. 4
	1.3	Testing Location	. 4
2	Ger	neral Description of Equipment under Test	. 5
	2.1	Applicant and Manufacturer Information	5
	2.2	General information	. 5
3	App	lied Standards	. 6
4	Info	rmation about the FHSS characteristics	7
	4.1	Frequency Hopping System Requirement	7
	4.2	Pseudorandom Frequency Hopping Sequence	. 8
	4.3	Equal Hopping Frequency Use	. 9
	4.4	System Receiver Input Bandwidth	. 9
	4.5	Test Configuration	10
5	Test	t Case Results	11
	5.1	Peak Power Output	11
	5.2	99% Bandwidth and 20dB Bandwidth	17
	5.3	Frequency Separation	28
	5.4	Time of Occupancy (Dwell Time)	34
	5.5	Band Edge Compliance	45
	5.6	Number of hopping Frequency	58
	5.7	Spurious RF Conducted Emissions	61
	5.8	Unwanted Emission	72
	5.9	Conducted Emission	91
6	Mai	n Test Instruments	94
1A	NNEX.	A: The EUT Appearance	95
1A	NNEX	B: Test Setup Photos	96
1A	NNEX	C: Product Change Description	97

Summary of Measurement Results

Number	Test Case	Clause in FCC rules	Verdict
1	Frequency Hopping System	15.247 (g), (h)	PASS
2	Peak Power Output	15.247(b)(1)	PASS
3	99% Bandwidth and 20dB Bandwidth	15.247(a)(1) C63.10 6.9	PASS
4	Frequency Separation	15.247(a)(1)	PASS
5	Time of Occupancy (Dwell Time)	15.247(a)(1)(iii)	PASS
6	Band Edge Compliance	15.247(d)	PASS
7	Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
8	Spurious RF Conducted Emissions	15.247(d)	PASS
9	Unwanted Emissions	15.247(d),15.205,15.209	PASS
10	Conducted Emissions	15.207	PASS

Date of Testing: September 23, 2023 ~ October 7, 2023

Date of Sample Received: September 20, 2023

Note: PASS: The EUT complies with the essential requirements in the standard.

FAIL: The EUT does not comply with the essential requirements in the standard.

All indications of Pass/Fail in this report are opinions expressed by Eurofins TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

2502FRA65G (Report No.: R2410A1618-R6) is a variant model of 23117RA68G (Report No.: R2309A0986-R6).

R2309A0986-E1).

ID difference between 2502FRA65G and 23117RA68G: battery cover and Deco

The difference is derived from the ID set: Rear main camera bracket,

Motherboard bracket, flash shield, lens, Plastic & metal ring size changes.

Compared with the 23117RA68G, the 2502FRA65G adds a charging IC: SC6601A (Southchip) Compared with N6, N6R adds NFC chip (THN31FGB1N), supplier: Beijing Tsingteng

Microsystem Co., Ltd.

There is no additional test for variant in this report. Test values all duplicated from original report (Report No.: R2309A0986-R6).

The detailed product change description please refers to the Difference Declaration Letter.

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **Eurofins TA Technology (Shanghai) Co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

A2LA (Certificate Number: 3857.01)

Eurofins TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement.

1.3 Testing Location

Company: Eurofins TA Technology (Shanghai) Co., Ltd.

Address: Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: https://www.eurofins.com/electrical-and-electronics

E-mail: Kain.Xu@cpt.eurofinscn.com

2 General Description of Equipment under Test

2.1 Applicant and Manufacturer Information

Applicant	Xiaomi Communications Co., Ltd.
Applicant address	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085
Manufacturer	Xiaomi Communications Co., Ltd.
Manufacturer address	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085

2.2 General information

EUT Description						
Model	2502FRA65G					
		Conduc	ted	IMEI 1: 863357060096302 IMEI 2: 863357060096310		
IMEL	Original	Dadiata	ــا	Radiated Emissio	n	IMEI 1: 863357060105648 IMEI 2: 863357060105655
IMEI		Radiate	Radiated	Conducted Emiss	ion	IMEI 1: 863357060104481 IMEI 2: 863357060106499
	Variant			IMEI 1: 86621307	'0041	589
	Vallalit			IMEI 2: 86621307	'0041	597
Hardware Version	135100N6	SR .				
Software Version	Xiaomi Hy	per OS1.	.0			
Antenna Type	PIFA Ante	nna				
Antenna Connector	A permanently attached antenna (meet with the standard FCC Part 15.203 requirement)					
Antenna Gain	-3.6 dBi					
Test Mode(s)	Basic Rate	Э	Enh	anced Data Rate(E	DR)	
Madulatian Tura	Frequency Hopping Spread Spectrum (FHSS)					
Modulation Type	GFSK π/4		π/4	DQPSK	8DF	SK
Packet Type (Maximum Payload) DH5			2DH	15	3DF	15
Max. Output Power 12.47 dBm						
Operating Frequency Range(s)	Operating Frequency Range(s) 2402-2480 MHz					
Note: 1. The EUT is sent from the applicant to Eurofins TA and the information of the EUT is declared by the						

Note: 1. The EUT is sent from the applicant to Eurofins TA and the information of the EUT is declared by the applicant.

3 Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15C (2023) Radio Frequency Devices

ANSI C63.10-2013

Reference standard:

KDB 558074 D01 15.247 Meas Guidance v05r02

4 Information about the FHSS characteristics

4.1 Frequency Hopping System Requirement

Standard requirement:

(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

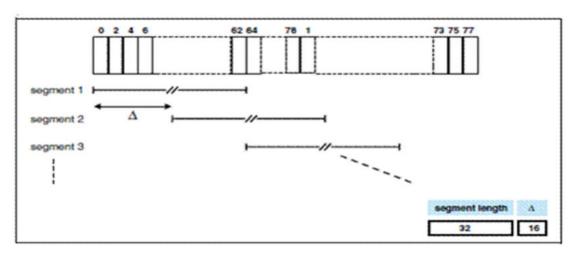
Compliance for section 15.247(g):

According to Bluetooth Core Specification, the Bluetooth system transmits the packets with the pseudorandom hopping frequency with a continuous data and short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

Compliance for section 15.247(h):

According to Bluetooth Core Specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to Bluetooth Core Specification, the Bluetooth system is designed not have the ability to coordinate with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.


4.2 Pseudorandom Frequency Hopping Sequence

Frequency Hopping Systems. A spread spectrum system in which the carrier is modulated with the coded information in a conventional manner causing a conventional spreading of the RF energy about the frequency carrier. The frequency of the carrier is not fixed but changes at fixed intervals under the direction of a coded sequence. The wide RF bandwidth needed by such a system is not required by spreading of the RF energy about the carrier but rather to accommodate the range of frequencies to which the carrier frequency can hop. The test of a frequency hopping system is that the near term distribution of hops appears random, the long term distribution appears evenly distributed over the hop set, and sequential hops are randomly distributed in both direction and magnitude of change in the hop set.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its pioneer to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

The selection scheme chooses a segment of 32 hop frequencies spanning about 64 MHz and visits these hops in a pseudo-random order. Next, a different 32-hop segment is chosen, etc. In the page, master page response, slave page response, page scan, inquiry, inquiry response and inquiry scan hopping sequences, the same 32-hop segment is used all the time (the segment is selected by the address; different devices will have different paging segments).

When the basic channel hopping sequence is selected, the output constitutes a pseudo-random sequence that slides through the 79 hops. The principle is depicted in the figure below.

Hop selection scheme in CONNECTION state.

Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45, etc.

Each frequency used equally on the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

4.3 Equal Hopping Frequency Use

All Bluetooth units participating in the Pico net are time and hop-synchronized to the channel. Each new transmission event begins on the next channel in the hopping sequence after the final channel used in the previous transmission event.

4.4 System Receiver Input Bandwidth

Each channel bandwidth is 1MHz. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

4.5 Test Configuration

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

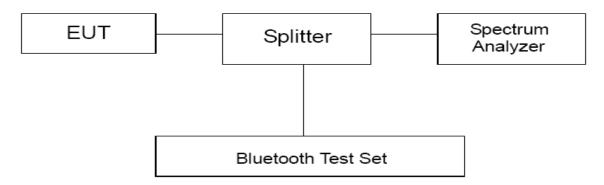
The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (Y axis) and the worst case was recorded.

Test Cases	Test Modes		
Peak Power Output -Conducted	DH5/2DH5/3DH5		
Occupied Bandwidth (20dB)	DH5/2DH5/3DH5		
Frequency Separation	DH5/2DH5/3DH5		
Time of Occupancy (Dwell Time)	DH5/2DH5/3DH5		
Band Edge Compliance	DH5/2DH5/3DH5		
Number of Hopping Frequency	DH5/2DH5/3DH5		
Spurious RF Conducted Emissions	DH5/2DH5/3DH5		
Unwanted Emission	DH5/2DH5/3DH5		
Conducted Emission	DH5/2DH5/3DH5		

F Test Report Report No.: R2410A1618-R6

5 Test Case Results

5.1 Peak Power Output


Ambient condition

Temperature	Relative humidity	Pressure	
23°C ~25°C	45%~50%	101.5kPa	

Methods of Measurement

During the process of the testing, The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. The EUT is controlled by the Bluetooth test set to ensure max power transmission with proper modulation. The peak detector is used. RBW is set to 2 MHz; VBW is set to 6 MHz. These measurements have been tested at following channels: 0, 39, and 78.

Test Setup

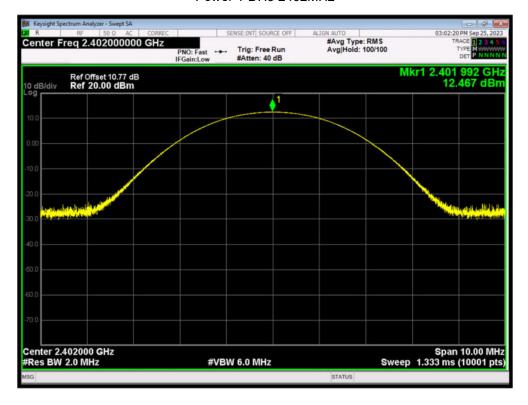
Limits

Rule Part 15.247 (b) (1) specifies that "For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts."

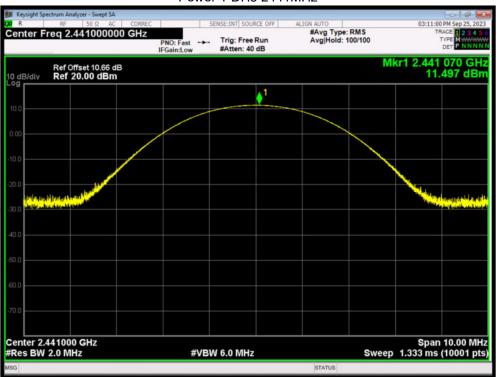
Peak Output Power	≤ 125 mW (21dBm)
-------------------	------------------

Measurement Uncertainty

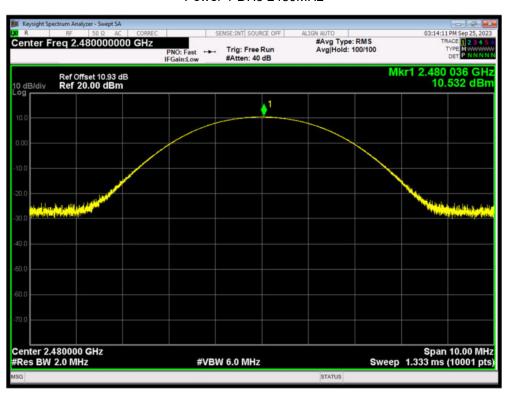
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U=0.44 dB.

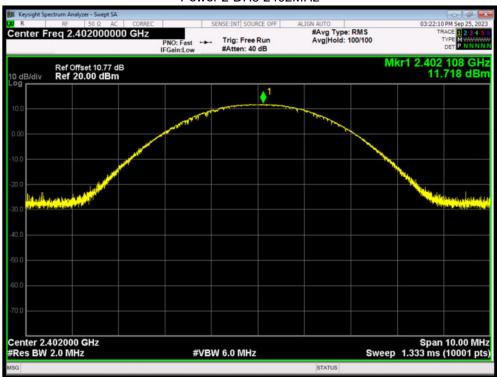


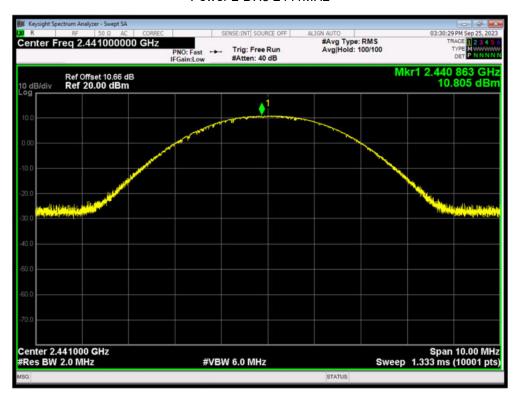
Test Results


Power setting: default

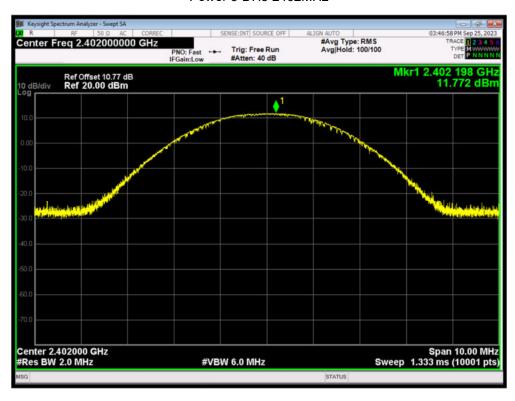
Channal	Frequency	Peak C	Output Power	Limit	Canalysian	
Channel	(MHz)	DH5	2DH5	3DH5	(dBm)	Conclusion
0	2402	12.47	11.72	11.77	21	PASS
39	2441	11.50	10.81	10.87	21	PASS
78	2480	10.53	9.95	9.95	21	PASS

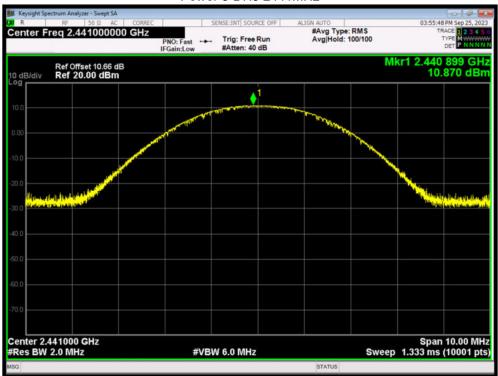

Power 1-DH5 2402MHz

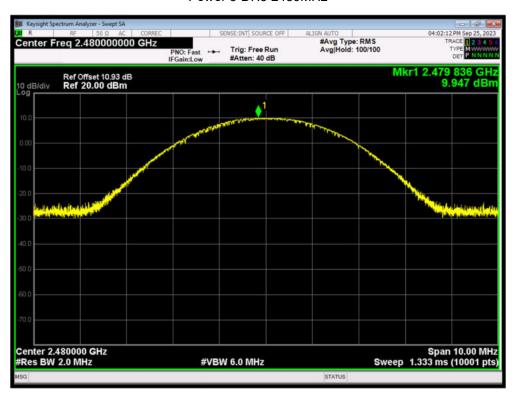

Power 1-DH5 2441MHz


Power 1-DH5 2480MHz

Power 2-DH5 2402MHz


Power 2-DH5 2441MHz

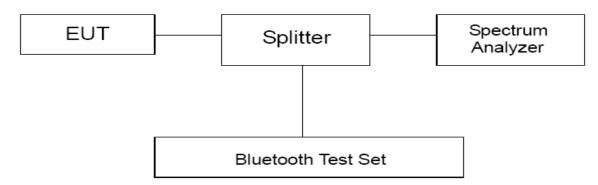

Power 2-DH5 2480MHz


Power 3-DH5 2402MHz

Power 3-DH5 2441MHz

Power 3-DH5 2480MHz

5.2 99% Bandwidth and 20dB Bandwidth


Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. The occupied bandwidth is measured using spectrum analyzer. RBW is set to 30kHz and VBW is set to 100kHz on spectrum analyzer. -20dB occupied bandwidths are recorded.

Test Setup

Limits

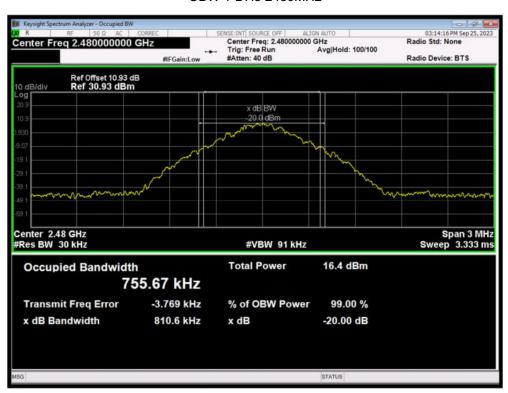
No specific occupied bandwidth requirements in part 15.247(a) (1).

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

Test Results

Test Mode		Channel	Frequency (MHz)	99% bandwidth(MHz)	20dB Bandwidth(MHz)
		0	2402	0.750	0.853
	DH5	39	2441	0.755	0.852
		78	2480	0.756	0.840
	2DH5 3DH5	0	2402	1.137	1.270
ВТ		39	2441	1.174	1.257
		78	2480	1.172	1.263
		0	2402	1.178	1.253
		39	2441	1.157	1.250
		78	2480	1.157	1.191


99% Bandwidth

OBW 1-DH5 2402MHz

OBW 1-DH5 2441MHz 03:10:47 PM Sep 25, 2023 Center Freq: 2.441000000 GHz Trig: Free Run Avg #Atten: 40 dB Radio Std: None Center Freq 2.441000000 GHz Avg|Hold: 100/100 Radio Device: BTS #IFGain:Low Ref Offset 10.66 dB Ref 30.66 dBm Center 2.441 GHz #Res BW 30 kHz Span 3 MHz Sweep 3.333 ms **#VBW 91 kHz Total Power** 17.4 dBm **Occupied Bandwidth** 754.79 kHz **Transmit Freq Error** -4.405 kHz % of OBW Power 99.00 % x dB Bandwidth 815.6 kHz -20.00 dB

OBW 1-DH5 2480MHz

x dB Bandwidth

est Report No.: R2410A1618-R6

OBW 2-DH5 2402MHz 03:22:16 PM Sep 25, 2023 Center Freq: 2.402000000 GHz Trig: Free Run Avg #Atten: 40 dB Radio Std: None Center Freq 2.402000000 GHz Avg|Hold: 100/100 Radio Device: BTS #IFGain:Low Ref Offset 10.77 dB Ref 30.77 dBm x dB BW -20.0 dBm Center 2.402 GHz #Res BW 30 kHz Span 3 MHz Sweep 3.333 ms **#VBW 91 kHz Total Power** 16.8 dBm **Occupied Bandwidth** 1.1366 MHz **Transmit Freq Error** -1.624 kHz % of OBW Power 99.00 %

OBW 2-DH5 2441MHz

-20.00 dB

1.252 MHz

OBW 2-DH5 2480MHz

OBW 3-DH5 2402MHz

OBW 3-DH5 2441MHz

OBW 3-DH5 2480MHz

20 dB bandwidth

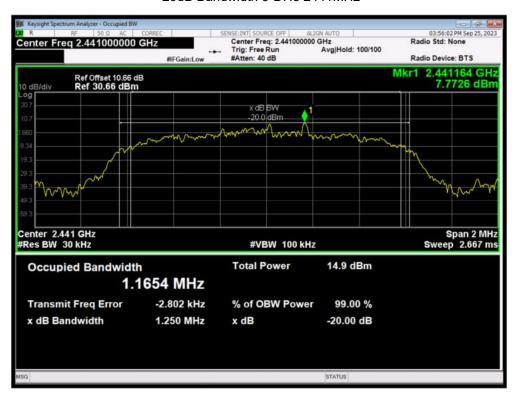
-20dB Bandwidth 1-DH5 2402MHz

-20dB Bandwidth 1-DH5 2441MHz

-20dB Bandwidth 1-DH5 2480MHz

-20dB Bandwidth 2-DH5 2402MHz

-20dB Bandwidth 2-DH5 2441MHz

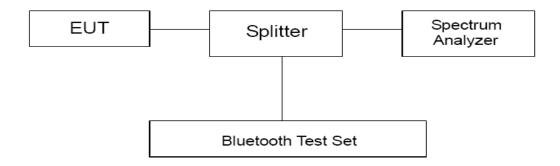

-20dB Bandwidth 2-DH5 2480MHz

-20dB Bandwidth 3-DH5 2402MHz

-20dB Bandwidth 3-DH5 2441MHz

-20dB Bandwidth 3-DH5 2480MHz

5.3 Frequency Separation


Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

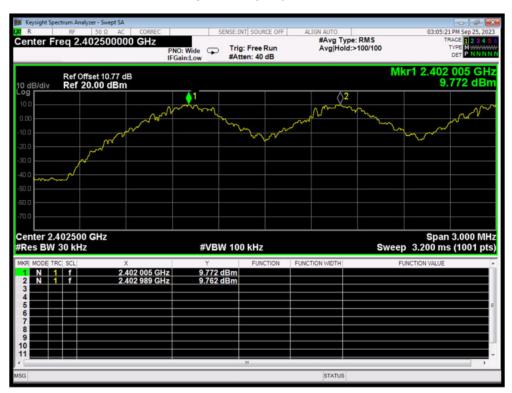
The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. RBW is set to 30 kHz and VBW is set to 100 kHz on spectrum analyzer. Set EUT on Hopping on mode.

Test setup

Limits

Rule Part 15.247(a)(1)specifies that "Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW."

Note: The value of two-thirds of 20 dB bandwidth is always greater than 25 kHz.

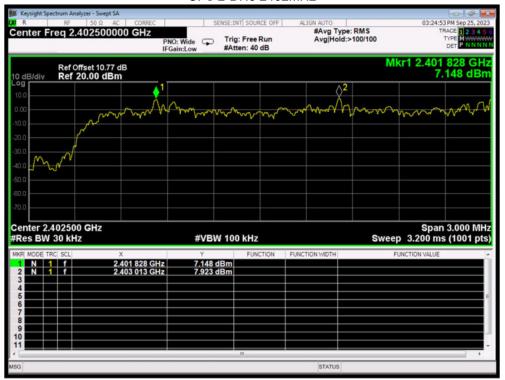

Measurement Uncertainty

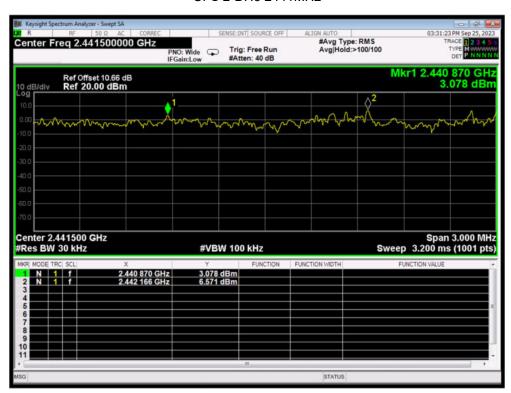
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.


Test Results:

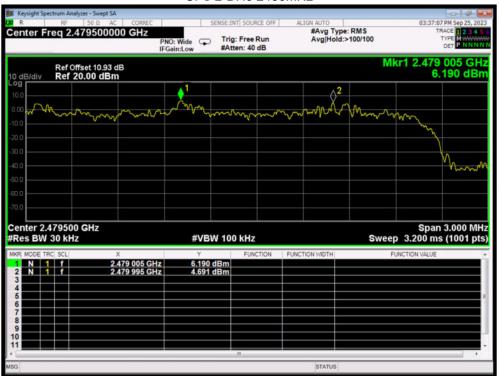
Test Mode	Carrier frequency (MHz)	Carrier frequency separation(MHz)	20dB Bandwidth(MHz)	Limit (MHz)	Conclusion		
	2402	0.98	0.853	0.569	PASS		
DH5	2441	1.03	0.852	0.568	PASS		
	2480	1.00	0.840	0.560	PASS		
	2402	1.18	1.270	0.847	PASS		
2DH5	2441	1.30	1.257	0.838	PASS		
	2480	0.99	1.263	0.842	PASS		
	2402	0.99	1.253	0.835	PASS		
3DH5	2441	1.10	1.250	0.833	PASS		
	2480	0.85	1.191	0.794	PASS		
Note: The limit is two-thirds of 20 dB bandwidth.							


CFS 1-DH5 2402MHz

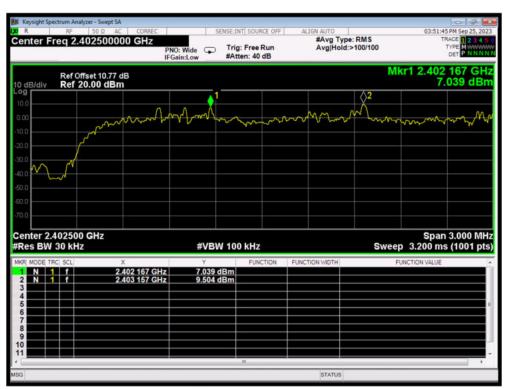

CFS 1-DH5 2441MHz


CFS 1-DH5 2480MHz

CFS 2-DH5 2402MHz

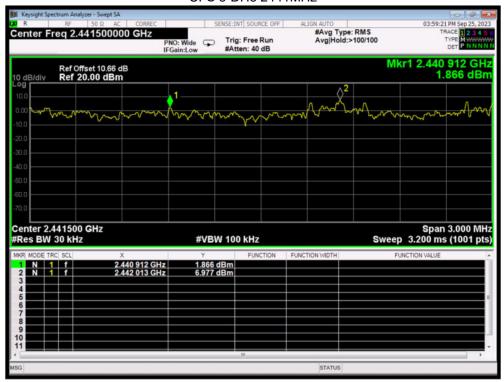


CFS 2-DH5 2441MHz

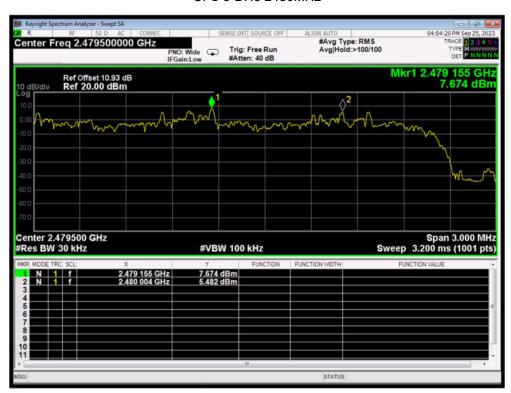


est Report Report No.: R2410A1618-R6

CFS 2-DH5 2480MHz



CFS 3-DH5 2402MHz



est Report Report No.: R2410A1618-R6

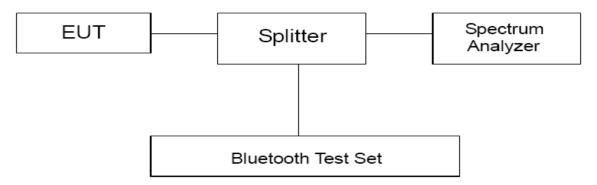
CFS 3-DH5 2441MHz

CFS 3-DH5 2480MHz

5.4 Time of Occupancy (Dwell Time)

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa


Methods of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. RBW is set to 1MHz and VBW is set to 1MHz on spectrum analyzer. The dwell time is calculated by:

Dwell time = Pulse Time * Number of Pulses in 31.6 seconds.

In normal mode, The selected EUT Packet type uses a slot type of DH5 packet and a hopping rate of 1600(ch*hop/s) for all channels. So the final hopping rate for all channel is 1600/5=320(ch*hop/s) In AFH mode, The selected EUT Packet type uses a slot type of DH5 packet and a hopping rate of 800(ch*hop/s) for all channels. So the final hopping rate for all channel is 800/5=160(ch*hop/s)

Test Setup

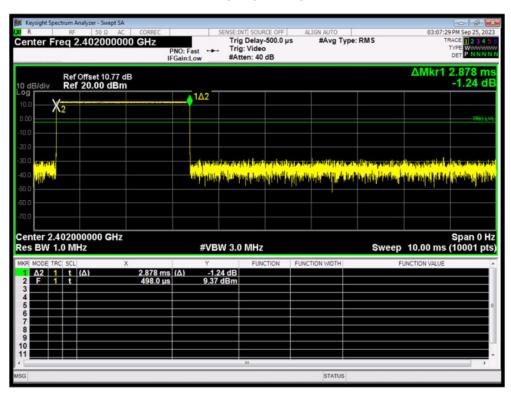
Limits

Rule Part15.247(a) specifies that "Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed."

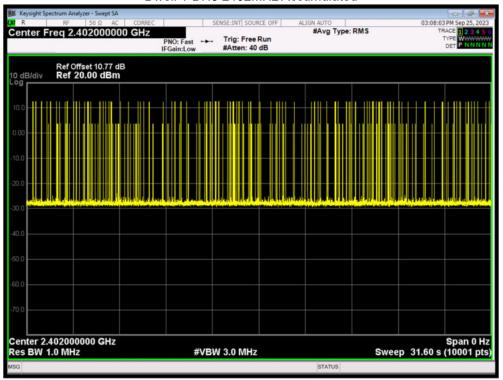
Dwell time	≤ 400ms
------------	---------

Measurement Uncertainty

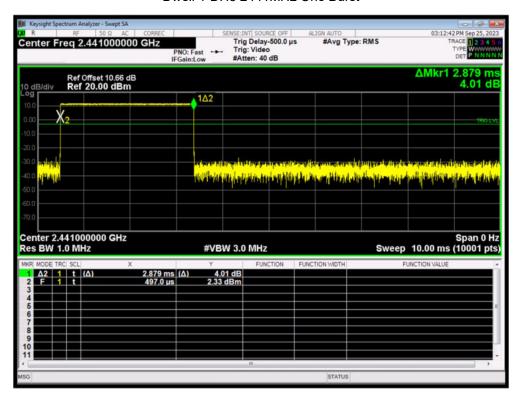
The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2.

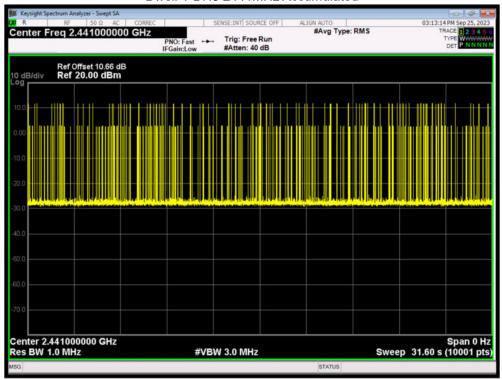

Requirements	Uncertainty					
Dwell Time	DH5	<i>U</i> =0.70ms	2DH5	<i>U</i> =0.70ms	3DH5	<i>U</i> =0.70ms

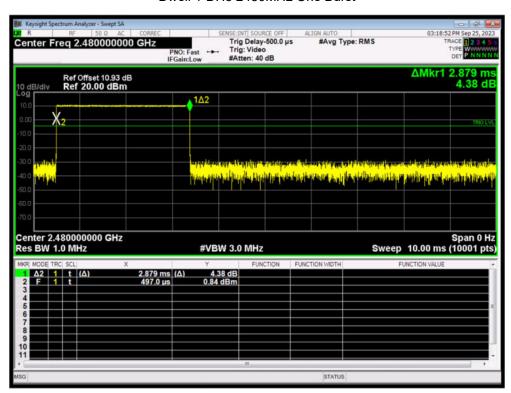
Test Results:

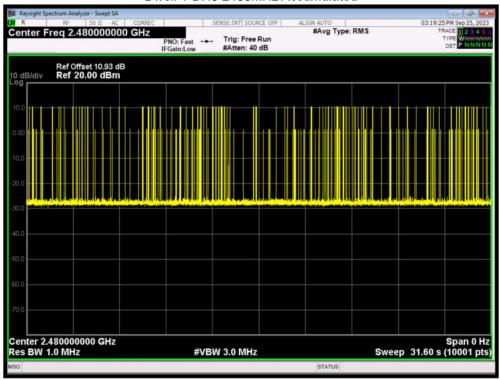

In normal mode:

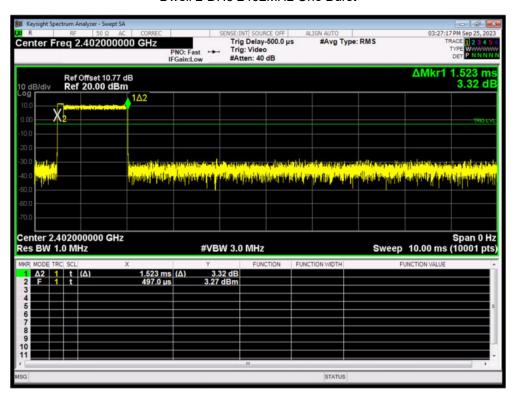
Test Mode	Frequency (MHz)	Number of Pulses in 31.6 seconds	Pulse Time (ms)	Dwell time (ms)	Limit (ms)	Conclusion
	2402	120	2.878	345.360	400	PASS
DH5	2441	106	2.879	305.174	400	PASS
	2480	114	2.879	328.206	400	PASS
	2402	114	1.523	173.622	400	PASS
2DH5	2441	113	1.523	172.099	400	PASS
	2480	102	1.523	155.346	400	PASS
	2402	123	1.066	131.118	400	PASS
3DH5	2441	106	1.066	112.996	400	PASS
	2480	94	1.066	100.204	400	PASS
Note: Dwell time = Pulse Time * Number of Pulses in 31.6 seconds						

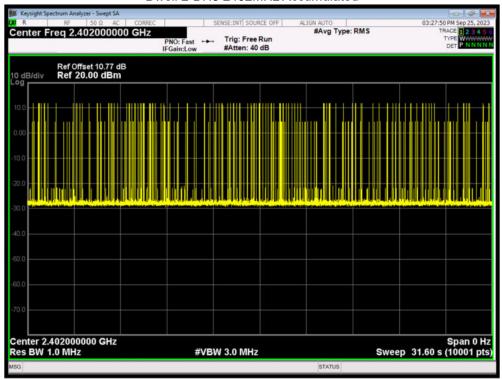

Dwell 1-DH5 2402MHz One Burst

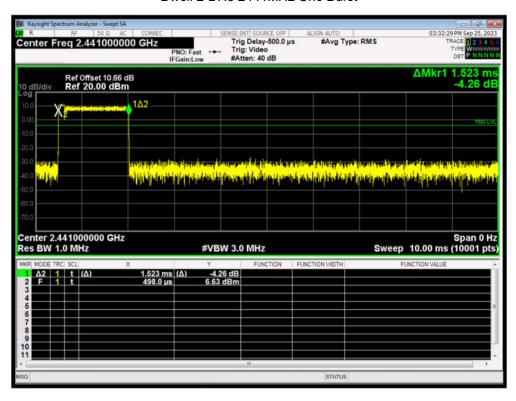

Dwell 1-DH5 2402MHz Accumulated

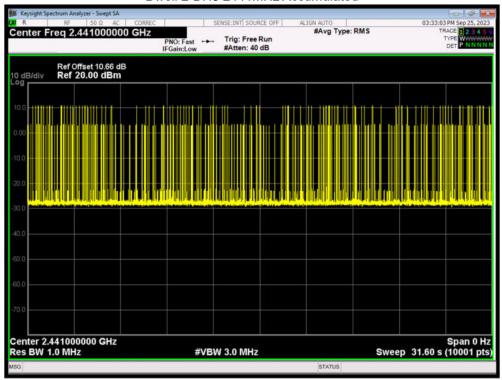

Dwell 1-DH5 2441MHz One Burst

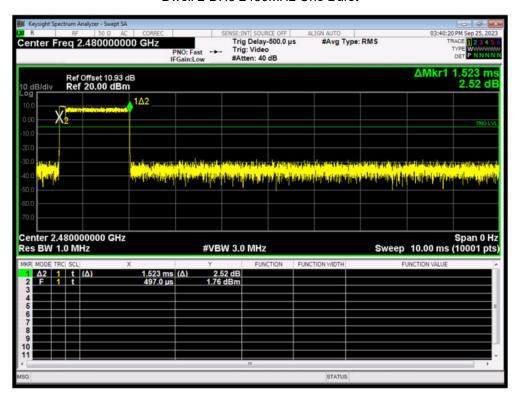

Dwell 1-DH5 2441MHz Accumulated

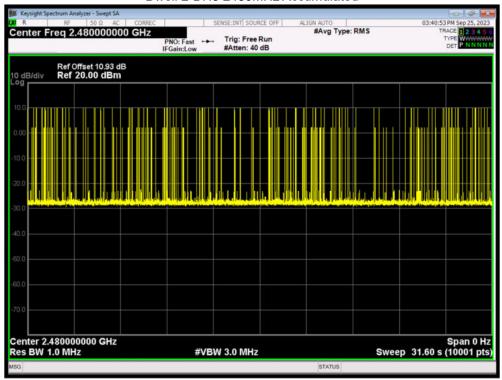

Dwell 1-DH5 2480MHz One Burst

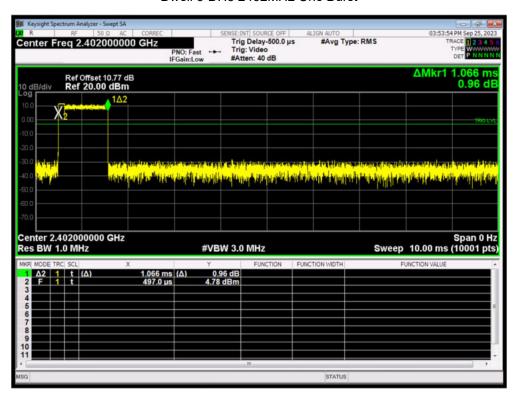

Dwell 1-DH5 2480MHz Accumulated


Dwell 2-DH5 2402MHz One Burst

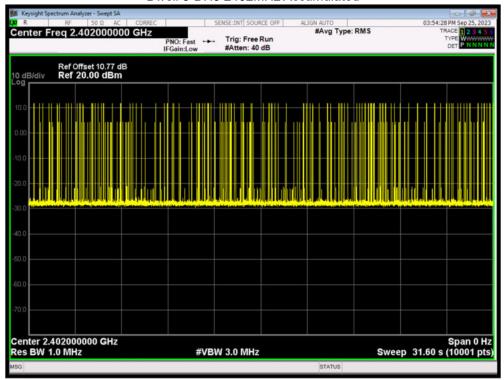

Dwell 2-DH5 2402MHz Accumulated


Dwell 2-DH5 2441MHz One Burst

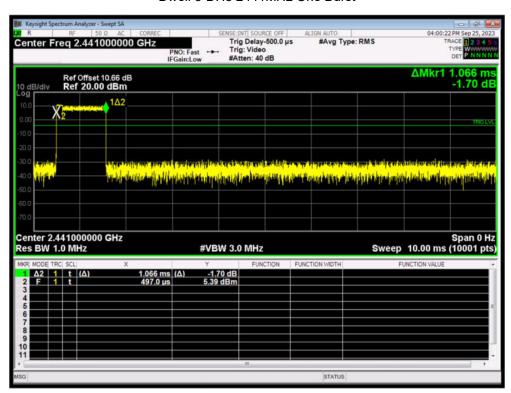

Dwell 2-DH5 2441MHz Accumulated


Dwell 2-DH5 2480MHz One Burst

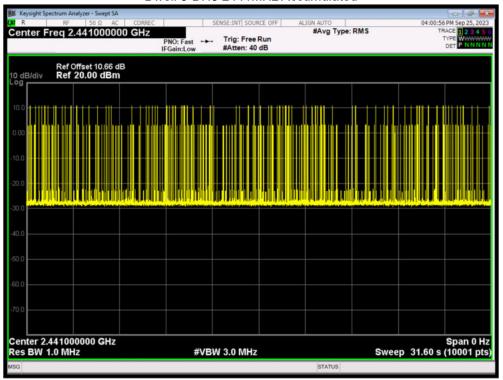
Dwell 2-DH5 2480MHz Accumulated

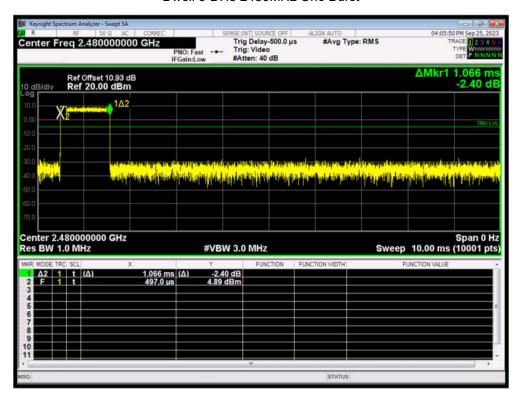


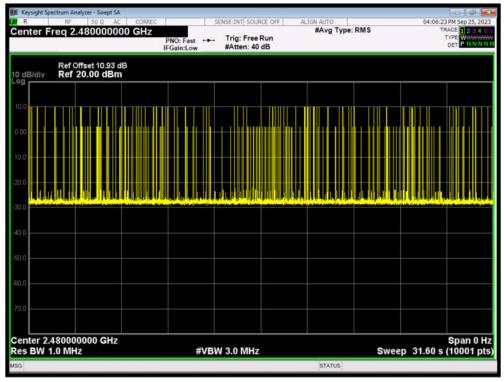
Dwell 3-DH5 2402MHz One Burst



est Report Report No.: R2410A1618-R6


Dwell 3-DH5 2402MHz Accumulated

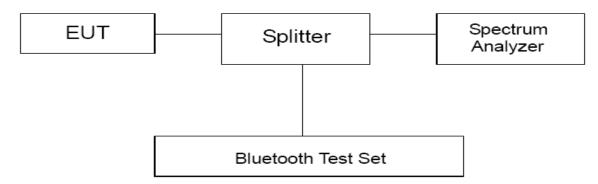

Dwell 3-DH5 2441MHz One Burst


Dwell 3-DH5 2441MHz Accumulated

Dwell 3-DH5 2480MHz One Burst

Dwell 3-DH5 2480MHz Accumulated

5.5 Band Edge Compliance


Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

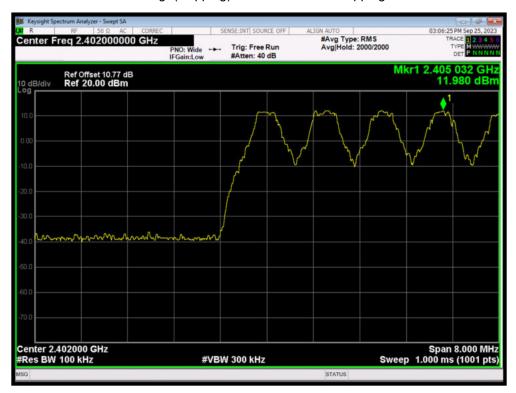
Method of Measurement

The EUT was connected to the spectrum analyzer and Bluetooth test set via a power splitter with a known loss. The lowest and highest channels were measured. The peak detector is used. RBW is set to 100 kHz and VBW is set to 300 kHz on spectrum analyzer. EUT test for Hopping On mode and Hopping Off mode.

Test Setup

Limits

Rule Part 15.247(d) specifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits."


Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty	
2GHz-3GHz	1.407 dB	

Test Results Hopping On

Band Edge(Hopping) 1-DH5 2402MHz Hopping Ref



Band Edge(Hopping) 1-DH5 2402MHz Hopping Emission

Band Edge(Hopping) 1-DH5 2480MHz Hopping Emission

