FCC SAR Test Report

Applicant : Xiaomi Communications Co., Ltd.

Equipment: Tablet Computer

Brand Name : Xiaomi

Model Name : 24091RPADG FCC ID : 2AFZZ1RPADG

Standard : FCC 47 CFR Part 2 (2.1093)

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures given in 47 CFR Part 2.1093 and FCC KDB and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

NDWS

Approved by: Si Zhang

lac-MRA

Report No.: FA480902-02

Sporton International Inc. (Kunshan)

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TEL: +86-512-57900158 FCC ID: 2AFZZ1RPADG

Sporton International Inc. (Kunshan)

Page 1 of 26 Issued Date : Dec. 02, 2024

Table of Contents

1. Statement of Compliance	
2. Administration Data	
3. Guidance Applied	
4. Equipment Under Test (EUT) Information	
4.1 General Information	6
5. RF Exposure Limits	
5.1 Uncontrolled Environment	7
5.2 Controlled Environment	
5.3 RF Exposure limit for below 6GHz	
5.4 RF Exposure limit for above 6GHz	
6. Specific Absorption Rate (SAR)	
6.1 Introduction	9
6.2 SAR Definition	
7. System Description and Setup	10
7.1 E-Field Probe	
7.2 Data Acquisition Electronics (DAE)	11
7.3 Phantom	12
7.4 Device Holder	13
8. Measurement Procedures	14
8.1 Spatial Peak SAR Evaluation	
8.2 Power Reference Measurement	15
8.3 Area Scan	15
8.4 Zoom Scan	
8.5 Volume Scan Procedures	16
8.6 Power Drift Monitoring	16
9. Test Equipment List	17
10. SAR System Verification	
10.1 Tissue Simulating Liquids	18
10.2 Tissue Verification	19
10.3 System Performance Check Results	19
11. RF Exposure Positions	20
11.1 SAR Testing for Tablet	
12. Conducted RF Output Power (Unit: dBm)	
13. SAR Test Results	
13.1 Body SAR Test Result	
14. Simultaneous Transmission Analysis	
14.1 Body Exposure Conditions	24
15. Uncertainty Assessment	25
16. References	26
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR and PD Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	
Appendix E. Conducted RF Output Power Table	

TEL: +86-512-57900158 FCC ID: 2AFZZ1RPADG

History of this test report

Report No.	Version	Description	Issued Date
FA480902-02	01	Initial issue of report	Dec. 02, 2024

Page 3 of 26 Issued Date Dec. 02, 2024

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for **Xiaomi Communications Co., Ltd., Tablet Computer, 24091RPADG**, are as follows.

Equipment Class	Band	Reported SAR Body (Separation 0mm)	Highest Simultaneous Transmission 1g SAR (W/kg)
DTS	2.4GHz WLAN	(1g SAR W/kg) 1.01	1.58
Date of Testing:		2024/10/23	

Remark: This is a variant report for 24091RPADG, the difference is that please refer to the 24091RPADG_Class II Permissive Change letter exhibit submitted. According to the difference, only reduced some WLAN 2.4GHz bands conducted power by software, so re-measured WLAN 2.4GHz bands conducted power, and the worse cases of WLAN 2.4GHz from original report (Sporton Report Number FA480902) were verified for difference.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR) specified in FCC 47 CFR part 2 (2.1093), ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

TEL: +86-512-57900158 FCC ID: 2AFZZ1RPADG

Sporton International Inc. (Kunshan)

Page 4 of 26 Issued Date : Dec. 02, 2024

2. Administration Data

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Testing Laboratory			
Test Firm	Sporton International Inc. (Kunshan)		
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL: +86-512-57900158		
T4 04- N-			FCC Test Firm Registration No.
Test Site No.	SAR07-KS	CN1257	314309

Applicant Applicant		
Company Name	Xiaomi Communications Co., Ltd.	
Address	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085	

Manufacturer		
Company Name	Xiaomi Communications Co., Ltd.	
Address	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085	

3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards.

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 616217 D04 SAR for laptop and tablets v01r02

TEL: +86-512-57900158 FCC ID: 2AFZZ1RPADG

Sporton International Inc. (Kunshan)

Page 5 of 26
Issued Date : Dec. 02, 2024

4. Equipment Under Test (EUT) Information

4.1 General Information

Model Name Xiaomi 24091RPADG	Product Feature & Specification			
## Version 24091RPADG 246C ID 2AFZZ1RPADG 24FZZ1RPADG 9f1d9729 WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5500 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5720 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5720 MHz WLAN 5.5GHz Band: 5745 MHz ~ 5825 MHz WLAN 6.GHz U-NII-5: 5925 MHz ~ 6425 MHz WLAN 6.GHz U-NII-6: 6425 MHz ~ 6425 MHz WLAN 6.GHz U-NII-6: 6425 MHz ~ 6875 MHz WLAN 6.GHz U-NII-8: 6875 MHz ~ 7125 MHz Bluetooth: 2402 MHz ~ 2480 MHz WPT: 135 KHz ~ 148 KHz WLAN 2.4GHz 802.11ax/be HE20/HE40/EHT20/EHT40 WLAN 5.GHz 802.11ax/be HE20/HE40/HE80/HE160/EHT20/EHT40/HA160/EHT30/EHT40/EHT80/EHT40	Equipment Name	Tablet Computer		
## Sin Pride Sin Pride Process Part of Price Process ## Pred Process Part of Price Process ## Pred Process Part of Price Process ## Pred Process ##	Brand Name	Xiaomi		
## WILAN 2.4GHz Band: 2412 MHz ~ 2462 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5560 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5720 MHz WLAN 5.5GHz Band: 5745 MHz ~ 5825 MHz WLAN 5.8GHz Band: 5745 MHz ~ 6425 MHz WLAN 6GHz U-NII-6: 5925 MHz ~ 6425 MHz WLAN 6GHz U-NII-6: 6425 MHz ~ 6525 MHz WLAN 6GHz U-NII-7: 6525 MHz ~ 6875 MHz WLAN 6GHz U-NII-8: 6875 MHz ~ 7125 MHz Bluetooth: 2402 MHz ~ 2480 MHz WPT: 135 KHz ~ 148 KHz WLAN 2.4GHz 802.11a/N HT20/HT40 WLAN 2.4GHz 802.11a/N HT20/HT40 WLAN 5GHz 802.11a/N HT20/HT40 WLAN 5GHz 802.11a/N HT20/HT40 WLAN 5GHz 802.11a/N HT20/HT40 WLAN 5GHz 802.11a VHT20/VHT40/VHT80/VHT160 WLAN 6GHz 802.11a VHZ0/VHT40/VHT80/HE160/EHT20/EHT40/EHT80/EHT160 WLAN 6GHz 802.11a HE20/HE40/HE80/HE160 WLAN 6GHz 802 HITA HE20/HE40/HE80/HE160 WLAN 6GHz 802 HITA HE20/HE40/HE80/HE160 WLAN 6GHz 802 HITA HE20/HE40/HE	Model Name	24091RPADG		
WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5320 MHz WLAN 5.3GHz Band: 5500 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5320 MHz WLAN 5.6GHz Band: 5745 MHz ~ 5825 MHz WLAN 5.8GHz Band: 5745 MHz ~ 6825 MHz WLAN 6GHz U-NII-5: 5925 MHz ~ 6425 MHz WLAN 6GHz U-NII-6: 6425 MHz ~ 6525 MHz WLAN 6GHz U-NII-7: 6525 MHz ~ 6875 MHz WLAN 6GHz U-NII-8: 6875 MHz ~ 7125 MHz Bluetooth: 2402 MHz ~ 2480 MHz WPT: 135 KHz ~ 148 KHz WLAN 2.4GHz 802.11b/g/n HT20/HT40 WLAN 2.4GHz 802.11a/hbe HE20/HE40/EHT20/EHT40 WLAN 5GHz 802.11a/hbe HE20/HE40/HE80/HE160/EHT20/EHT40/EHT80/EHT160 WLAN 5GHz 802.11a WHZ0/HT40/HE80/HE160/EHT20/EHT40/EHT80/EHT160 WLAN 6GHz 802.11a WHZ0/HE40/HE80/HE160/EHT320 Bluetooth BR/EDR/LE WPT: ASK HW Version Xiaomi HyperOS 2.0	FCC ID	2AFZZ1RPADG		
WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz WLAN 5.3GHz Band: 5500 MHz ~ 5720 MHz WLAN 5.5GHz Band: 5745 MHz ~ 5825 MHz WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz WLAN 6GHz U-NII-5: 5925 MHz ~ 6425 MHz WLAN 6GHz U-NII-6: 6425 MHz ~ 6525 MHz WLAN 6GHz U-NII-7: 6525 MHz ~ 6875 MHz WLAN 6GHz U-NII-8: 6875 MHz ~ 7125 MHz Bluetooth: 2402 MHz ~ 2480 MHz WPT: 135 KHz ~ 148 KHz WLAN 2.4GHz 802.11b/g/n HT20/HT40 WLAN 2.4GHz 802.11a/hb HE20/HE40/EHT20/EHT40 WLAN 5GHz 802.11a/hb HE20/HE40/HE80/HT160 WLAN 5GHz 802.11a/hb HE20/HE40/HE80/HE160/EHT20/EHT40/EHT80/EHT160 WLAN 6GHz 802.11a WLAN 6GHz 802.11a HE20/HE40/HE80/HE160 WLAN 6GHz 802.11a HE20/HE40/HE80/HE160 WLAN 6GHz 802.11b EHT20/EHT40/EHT80/EHT160/EHT320 Bluetooth BR/EDR/LE WPT: ASK HW Version Xiaomi HyperOS 2.0	S/N	9f1d9729		
WLAN 2.4GHz 802.11ax/be HE20/HE40/EHT20/EHT40 WLAN 5GHz 802.11a/n HT20/HT40 WLAN 5GHz 802.11ac VHT20/VHT40/VHT80/VHT160 WLAN 5GHz 802.11ac VHE20/HE40/HE80/HE160/EHT20/EHT40/EHT80/EHT160 WLAN 6GHz 802.11a WLAN 6GHz 802.11ac HE20/HE40/HE80/HE160 WLAN 6GHz 802.11bc EHT20/EHT40/EHT80/EHT160/EHT320 Bluetooth BR/EDR/LE WPT: ASK HW Version Xiaomi HyperOS 2.0	Wireless Technology and Frequency Range	WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5260 MHz ~ 5320 MHz WLAN 5.5GHz Band: 5500 MHz ~ 5720 MHz WLAN 5.8GHz Band: 5745 MHz ~ 5825 MHz WLAN 6GHz U-NII-5: 5925 MHz ~ 6425 MHz WLAN 6GHz U-NII-6: 6425 MHz ~ 6525 MHz WLAN 6GHz U-NII-7: 6525 MHz ~ 6875 MHz WLAN 6GHz U-NII-8: 6875 MHz ~ 7125 MHz Bluetooth: 2402 MHz ~ 2480 MHz		
SW Version Xiaomi HyperOS 2.0	WLAN 2.4GHz 802.11b/g/n HT20/HT40 WLAN 2.4GHz 802.11ax/be HE20/HE40/EHT20/EHT40 WLAN 5GHz 802.11a/n HT20/HT40 WLAN 5GHz 802.11ac VHT20/VHT40/VHT80/VHT160 WLAN 5GHz 802.11ac VHT20/HE40/HE80/HE160/EHT20/EHT40/EHT80/EHT1 WLAN 6GHz 802.11a WLAN 6GHz 802.11a WLAN 6GHz 802.11be EHT20/HE40/HE80/HE160 Bluetooth BR/EDR/LE			
	HW Version	135100O81		
EUT Stage Identical Prototype	SW Version	Xiaomi HyperOS 2.0		
	EUT Stage	Identical Prototype		

Remark:

- 1. The EUT has no voice function.
- 2. The Bluetooth (EDR only)/2.4GHz/5GHz/6GHz WLAN can transmit in SISO and MIMO mode.
- The device does not support UNII-8 CH233 (BW=20M, Center Frequency = 7115MHz).
 For Ant0, the device employs proximity sensors that detect the presence of the user's body also a finger or hand at the bottom face of the device. When bottom face of body is detected, all Ant0 bands reduced power will be active. (P-sensor can't work at detecting presence of the user's body at other edges of the device.)
- 5. This device will be equipped with keyboard, and its working modes are laptop and tablet, for the tablet mode test is more conservatively, so no need to evaluate laptop mode separately.
- 6. This device does not support MIMO(CDD) mode for WLAN 2.4GHz 802.11g.
 7. The device support DRS (Duel Bond Simultaneous) function when the device
- The device support DBS (Dual Band Simultaneous) function, when the device WLAN 2.4GHz and WLAN 5GHz or WLAN 6GHz transmit at the same time the device will limit different output power for simultaneous transmission
- For BT when transmit simultaneously with WLAN, the device power will be reduced power at body conditions.

TEL: +86-512-57900158 FCC ID: 2AFZZ1RPADG

Sporton International Inc. (Kunshan)

Page 6 of 26 Issued Date : Dec. 02, 2024

5. RF Exposure Limits

5.1 <u>Uncontrolled Environment</u>

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA480902-02

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

5.3 RF Exposure limit for below 6GHz

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

 Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

 Sporton International Inc. (Kunshan)
 Page 7 of 26

 TEL: +86-512-57900158
 Issued Date: Dec. 02, 2024

5.4 RF Exposure limit for above 6GHz

According to ANSI/IEEE C95.1-1992, the criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio frequency (RF) radiation as specified in §1.1310. The unit of power density evaluation is W/m2 or mW/cm2.

Peak Spatially Averaged Power Density was evaluated over a square area of 4cm² per interim FCC Guidance for near-field power density evaluations per October 2018 TCB Workshop notes

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
700 - 700 s	(A) Limits for O	ccupational/Controlled Expo	sures	10 20
0.3-3.0	614	1.63	*(100)	6
3.0-30	1842/	f 4.89/	f *(900/f2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
	(B) Limits for Gene	ral Population/Uncontrolled	Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/	f 2.19/	f *(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000		9 -	1.0	30

Note: 1.0 mW/cm^2 is 10 W/m^2

TEL: +86-512-57900158 FCC ID: 2AFZZ1RPADG

Sporton International Inc. (Kunshan)

Page 8 of 26 Issued Date : Dec. 02, 2024

6. Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2 SAR Definition

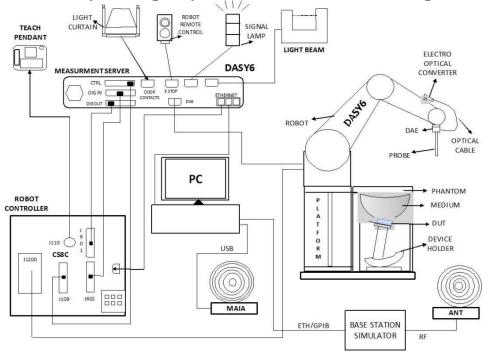
The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.


TEL: +86-512-57900158 FCC ID: 2AFZZ1RPADG

Sporton International Inc. (Kunshan)

Page 9 of 26 Issued Date : Dec. 02, 2024

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 or Win10 and the DASY5 or DASY6⁽¹⁾ software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

 Note: 1. DASY6 software used: DASY6 mmWave V3.0.0.841 and older generations and used the developed Plane-to-Plane Phase Reconstruction (PTP-PR) Algorithm which was used in PD measurement.

TEL: +86-512-57900158 FCC ID: 2AFZZ1RPADG

Sporton International Inc. (Kunshan)

Page 10 of 26 Issued Date : Dec. 02, 2024

7.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<EX3DV4 Probe>

Construction	Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	4 MHz – 10 GHz Linearity: ±0.2 dB (30 MHz – 10 GHz)	
Directivity	±0.3 dB in TSL (rotation around probe axis) ±0.5 dB in TSL (rotation normal to probe axis)	
Dynamic Range	10 μW/g – >100 mW/g Linearity: ±0.2 dB (noise: typically <1 μW/g)	
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

Report No. : FA480902-02

7.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Photo of DAE

Sporton International Inc. (Kunshan)
TEL: +86-512-57900158
FCC ID: 2AFZZ1RPADG

Page 11 of 26 Issued Date : Dec. 02, 2024

7.3 Phantom

<SAM Twin Phantom>

-O7 till 1 Will 1 Halltolli		
Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	5
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

Ob all Thislenas	0 + 0 0 (440/)	
Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices or for evaluating transmitters operating at low frequencies. ELI is fully compatible with standard and all known tissue simulating liquids.

TEL: +86-512-57900158 FCC ID: 2AFZZ1RPADG

Sporton International Inc. (Kunshan)

Page 12 of 26
Issued Date : Dec. 02, 2024

7.4 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

Sporton International Inc. (Kunshan)
TEL: +86-512-57900158
FCC ID: 2AFZZ1RPADG

Page 13 of 26 Issued Date : Dec. 02, 2024

8. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA480902-02

- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

 Sporton International Inc. (Kunshan)
 Page
 14 of 26

 TEL: +86-512-57900158
 Issued Date: Dec. 02, 2024

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

8.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz			
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$			
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°			
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	$3 - 4 \text{ GHz:} \le 12 \text{ mm}$ $4 - 6 \text{ GHz:} \le 10 \text{ mm}$			
Maximum area scan spatial resolution: $\Delta x_{Area},\Delta y_{Area}$	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.				

TEL: +86-512-57900158 FCC ID: 2AFZZ1RPADG

Sporton International Inc. (Kunshan)

Page 15 of 26 Issued Date : Dec. 02, 2024

8.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			≤3 GHz	> 3 GHz		
Maximum zoom scan s	spatial reso	olution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$		
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$		
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Z_{00m}}(n-1)$			
Minimum zoom scan volume x, y, z			≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

TEL: +86-512-57900158 FCC ID: 2AFZZ1RPADG

Sporton International Inc. (Kunshan)

Page 16 of 26 Issued Date : Dec. 02, 2024

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9. Test Equipment List

Manustantona	Name of Employment	Towns (Manufacture	O mind Normalism	Calib	ration
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	2450MHz System Validation Kit	D2450V2	1095	2024/2/8	2025/2/7
SPEAG	Data Acquisition Electronics	DAE4	1303	2023/11/20	2024/11/19
SPEAG	Dosimetric E-Field Probe	EX3DV4	7764	2024/9/2	2025/9/1
SPEAG	ELI Phantom	ELI V8.0	TP-2134	NCR	NCR
Testo	Thermo-Hygrometer	HTC-1	55011	2024/1/4	2025/1/3
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR
Agilent	ENA Series Network Analyzer	E5071C	MY46112129	2024/7/4	2025/7/3
SPEAG	Dielectric Probe Kit	DAK-3.5	1071	2024/2/19	2025/2/18
Anritsu	Vector Signal Generator	MG3710A	6201682672	2024/1/2	2025/1/1
Rohde & Schwarz	Power Meter	NRVD	102081	2024/7/4	2025/7/3
Rohde & Schwarz	Power Sensor	NRV-Z5	100538	2024/7/4	2025/7/3
Rohde & Schwarz	Power Sensor	NRV-Z5	100539	2024/7/4	2025/7/3
R&S	BLUETOOTH TESTER	CBT	101246	2024/7/4	2025/7/3
Rohde & Schwarz	Spectrum Analyzer	FSV7	101631	2024/10/11	2025/10/10
TES	DIGITAC THERMOMETER	TYPE-K	220305411	2024/1/4	2025/1/3
ARRA	Power Divider	A3200-2	N/A	No	te 1
MCL	Attenuation1	BW-S10W5+	N/A	No	te 1
MCL	Attenuation2	BW-S10W5+	N/A	No	te 1
MCL	Attenuation3	BW-S10W5+	N/A	No	te 1
BONN	POWER AMPLIFIER	BLMA 0830-3	087193A	No	te 1
BONN	POWER AMPLIFIER	BLMA 2060-2	087193B	No	te 1
Agilent	Dual Directional Coupler	778D	20500	No	te 1
Agilent	Dual Directional Coupler	11691D	MY48151020	No	te 1

General Note:

- 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.
- 2. The dipole calibration interval can be extended to 3 years with justification according to KDB 865664 D01. The dipoles are also not physically damaged, or repaired during the interval. The justification data in appendix C can be found which the return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration for each dipole.

TEL: +86-512-57900158 FCC ID: 2AFZZ1RPADG

Sporton International Inc. (Kunshan)

Page 17 of 26 Issued Date : Dec. 02, 2024

10. SAR System Verification

10.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1.

Fig 10.1 Photo of Liquid Height for Body SAR

TEL: +86-512-57900158 FCC ID: 2AFZZ1RPADG

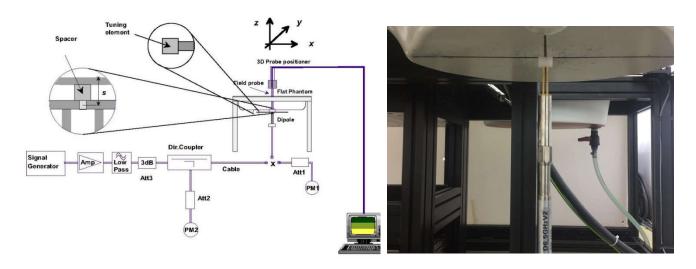
Sporton International Inc. (Kunshan)

Page 18 of 26 Issued Date : Dec. 02, 2024

10.2 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)				
	For Head											
2450	55.0	0	0	0	0	45.0	1.80	39.2				


<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (℃)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
2450	Head	22.8	1.850	39.100	1.80	39.20	2.78	-0.26	±5	2024/10/23

10.3 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2024/10/23	2450	Head	50	1095	7764	1303	2.580	52.60	51.6	-1.90

System Performance Check Setup

Setup Photo

TEL: +86-512-57900158 FCC ID: 2AFZZ1RPADG

Sporton International Inc. (Kunshan)

Page 19 of 26 Issued Date : Dec. 02, 2024

11. RF Exposure Positions

11.1 SAR Testing for Tablet

This device can be used also in full sized tablet exposure conditions, due to its size. Per FCC KDB 616217, the back surface and edges of the tablet should be tested for SAR compliance with the tablet touching the phantom. The SAR exclusion threshold in KDB 447498 D01v06 can be applied to determine SAR test exclusion for adjacent edge configurations. The closest distance from the antenna to an adjacent tablet edge is used to determine if SAR testing is required for the adjacent edges, with the adjacent edge positioned against the phantom and the edge containing the antenna positioned perpendicular to the phantom.

<EUT Setup Photos>

Please refer to Appendix D for the test setup photos.

TEL: +86-512-57900158 FCC ID: 2AFZZ1RPADG

Sporton International Inc. (Kunshan)

Page 20 of 26 Issued Date : Dec. 02, 2024

12. Conducted RF Output Power (Unit: dBm)

The detailed conducted power table can refer to Appendix E.

<WLAN Conducted Power>

General Note:

1. For each antenna, transmit power in SISO operation is larger than (or equal to) the power in MIMO operation, RF exposure compliance of MIMO mode can be deduced from the compliance simultaneous transmission of antennas operating in SISO mode.

Report No.: FA480902-02

- 2. For each frequency band or when MIMO mode was not performed, due to for each antenna, transmit power in SISO operation is larger than (or equal to) the power in MIMO operation, RF exposure compliance of MIMO mode can be deduced from the compliance simultaneous transmission of antennas operating in SISO mode.
- 3. Per KDB 248227 D01v02r02, the simultaneous SAR provisions in KDB publication 447498 should be applied to determine simultaneous transmission SAR test exclusion for WiFi MIMO. If the sum of 1g single transmission chain SAR measurements is < 1.6W/kg and SAR peak to location ratio ≤ 0.04, no additional SAR measurements for MIMO.
- 4. The maximum output power specified for production units are determined for all applicable 802.11 transmission modes in each standalone and aggregated frequency band. Maximum output power is measured for the highest maximum output power configuration(s) in each frequency band according to the default power measurement procedures. For "Not required", SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band or when MIMO mode was not performed, due to for each antenna, transmit power in SISO operation is larger than (or equal to) the power in MIMO operation, RF exposure compliance of MIMO mode can be deduced from the compliance simultaneous transmission of antennas operating in SISO mode. Additional output power measurements were not necessary.
- 5. Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions.
- 6. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s).
- 7. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band.
- 8. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following:
 - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band.
 - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.

 Sporton International Inc. (Kunshan)
 Page
 21 of 26

 TEL: +86-512-57900158
 Issued Date: Dec. 02, 2024

FORTON LAB. FCC SAR Test Report

c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

Report No.: FA480902-02

- 9. Per April 2019 TCB workshops, General principles of FCC KDB Publication 248227 D01 can be applied to determine the SAR Initial Test Configurations and test reduction for 802.11ax SAR testing. For the table below the 802.11ax maximum power is SU (non-OFDMA), and the SU maximum power also higher than RU (OFDMA).
- In applying the test guidance, the IEEE 802.11 mode with the maximum output power (out of all modes) should be considered for testing
- 11. For modes with the same maximum output power, the guidance from section 5.3.2 a) of FCC KDB Publication 248227 D01 should be applied, with 802.11ax being considered as the highest 802.11 mode for the appropriate frequency bands
- 12. When SAR testing for 802.11ax is required
 - If the maximum output power is highest for OFDMA scenarios, choose the tone size with the maximum number
 of tones and the highest maximum output power
 - b. Otherwise, consider the fully allocated channel for SAR testing
 - c. When SAR testing is required on RU sizes less than the fully allocated channel, use the RU number closest to the middle of the channel, choosing the higher RU number when two RUs are equidistant to the middle of the channel
- 13. 802.11 ax/be supports both full tone size mode and partial tone size mode, after verification on partial tone size mode that partial size tone mode power will not be higher than full tone size mode, therefore, full tone mode power was chosen to be measured in this report.
- 14. The 2.4GHz/5GHz/6GHz WLAN can transmit in SISO/MIMO antenna mode.
- 15. For the conducted power measurement is MIMO chains transmitting simultaneously and measured the separately conducted power for both chains and then based on the conducted power of two SISO antennas respectively to calculate sum of the power for MIMO mode.

 Sporton International Inc. (Kunshan)
 Page
 22 of 26

 TEL: +86-512-57900158
 Issued Date: Dec. 02, 2024

13. SAR Test Results

13.1 Body SAR Test Result

	lot lo.	Band	Mode	Test Position	Gap (mm)	Antenna	Power Reduction	Ch.		Power	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cyclo		Drift	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
(01	WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0mm	Ant 0	Sensor on_ Standalone / non DBS	11	2462	13.07	14.00	1.239	100	1.000	0.03	0.818	1.013
		WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0mm	Ant 0	Sensor on_ Standalone / non DBS	1	2412	13.12	14.00	1.225	100	1.000	0.01	0.797	0.976
		WLAN2.4GHz	802.11b 1Mbps	Bottom Face	0mm	Ant 0	DBS	11	2462	10.21	11.00	1.199	100	1.000	-0.06	0.391	0.469

Report No.: FA480902-02

14. Simultaneous Transmission Analysis

NO.	Simultaneous Transmission Configurations	Tablet Computer Body
1.	WLAN 5GHz + Bluetooth	Yes
2.	WLAN 6GHz + Bluetooth	Yes
3.	WLAN 5GHz + WLAN2.4GHz	Yes
4.	WLAN 6GHz + WLAN2.4GHz	Yes

Note:

- 1. Simultaneous transmission analysis for all bands and all position are based on maximum SAR results chosen between the original filing and Spot check Verification Data. BT/WLAN5/6GHz test results were chosen from the original data which released from original report (Sporton Report Number FA480902) to do co-located analysis.
- The 2.4GHz/5GHz/6GHz WLAN can transmit in MIMO and SISO antenna mode and MIMO SAR base on standalone SAR summed together as MIMO SAR.
- 3. According to the EUT characteristic, WLAN 5GHz/6GHz and Bluetooth can transmit simultaneously.
- 4. According to the EUT characteristic, WLAN 5GHz/6GHz and WLAN 2.4GHz can transmit simultaneously.
- 5. According to the EUT characteristic, WLAN 5GHz and WLAN 6GHz can't transmit simultaneously.
- 6. According to the EUT characteristic, WLAN 2.4GHz and Bluetooth can't transmit simultaneously.
- 7. Bluetooth BR/EDR supports MIMO mode, so Bluetooth BR/EDR standalone SAR summed together as Bluetooth BR/EDR MIMO SAR.
- 8. The worst case 5 GHz WLAN SAR for each configuration was used for SAR summation.
- 9. The maximum SAR summation is calculated based on the same configuration and test position.
- 10. For distance SAR and non-distance SAR, always chose higher SAR to do co-located analysis.
- 11. For simultaneously analysis, since the SAR summation of 3 transmitters can cover others combination of 2 transmitters, therefore in this section did not additional to evaluate 2TX combination of simultaneously transmission.
- 12. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
 - i) 1g Scalar SAR summation < 1.6W/kg.
 - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04 for 1g SAR, simultaneously transmission SAR measurement is not necessary.
 - iv) Simultaneously transmission SAR measurement, and the reported multi-band 1g SAR < 1.6W/kg.
- 13. The WLAN6GHz Sim-Tx analysis guidance with other transmitters was based on SAR test results. The simultaneous transmission and test exemption analysis were compliant with KDB 447498 D01. For the device does not support FR2 or other MPE field measurement, therefore section 16 in the SAR report has no TER analysis according to KDB 987594 requirement.

 Sporton International Inc. (Kunshan)
 Page
 23 of 26

 TEL: +86-512-57900158
 Issued Date: Dec. 02, 2024

14.1 Body Exposure Conditions

	3	4	9	10	12	13	3+4	9+10	12+13	12+13+9	12+13+10	12+13+9+10
Exposure Position	WLAN2.4GHz Ant 0	WLAN2.4GHz Ant 2	Bluetooth Ant 0	Bluetooth Ant 2	WLAN5/6GHz Ant 0	WLAN5/6GHz Ant 1	Summed	Summed	Summed	Summed	Summed	Summed
	10g SAR (W/kg)	10g SAR (W/kg)	10g SAR (W/kg)	10g SAR (W/kg)	10g SAR (W/kg)	10g SAR (W/kg)	1g SAR (W/kg)		1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)
Bottom Face	1.013	0.129	0.297	0.038	0.878	0.254	1.14	0.34	1.13	1.43	1.17	1.47
Edge 1	0.199		0.063		0.420	1.057	0.20	0.06	1.48	1.54	1.48	1.54
Edge 4	0.312	0.353	0.002	0.128	0.365		0.67	0.13	0.37	0.37	0.49	0.50

	3	4	12	13	3+4+12+13
Exposure Position	WLAN2.4GHz Ant 0	WLAN2.4GHz Ant 2	WLAN5/6GHz Ant 0	WLAN5/6GHz Ant 1	Summed
	10g SAR (W/kg)	10g SAR (W/kg)	10g SAR (W/kg)	10g SAR (W/kg)	1g SAR (W/kg)
Bottom Face	0.553	0.129	0.749	0.148	<mark>1.58</mark>
Edge 1	0.199		0.420	0.675	1.29
Edge 4	0.312	0.353	0.389		1.05

Test Engineer: Martin Li, Varus Wang, Light Wang

TEL: +86-512-57900158 FCC ID: 2AFZZ1RPADG

Sporton International Inc. (Kunshan)

Page 24 of 26
Issued Date : Dec. 02, 2024

15. Uncertainty Assessment

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be $\leq 30\%$, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg and highest measured 10-g SAR is less 3.75W/kg. Therefore, the measurement uncertainty table is not required in this report.

Report No. : FA480902-02

 Sporton International Inc. (Kunshan)
 Page
 25 of 26

 TEL: +86-512-57900158
 Issued Date: Dec. 02, 2024

16. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [7] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [8] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [9] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015

----THE END-----

TEL: +86-512-57900158 FCC ID: 2AFZZ1RPADG

Sporton International Inc. (Kunshan)

Page 26 of 26 Issued Date : Dec. 02, 2024