FCC SAR Test Report

Report No.: FA931204-03

Cert #5145.02

APPLICANT : Xiaomi Communications Co., Ltd.

EQUIPMENT : Mobile Phone

: MI **BRAND NAME**

MODEL NAME : M1903F10G

FCC ID : 2AFZZ-XMSF10G

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2013

The product was received on Jun. 11, 2019 and testing was started from Jun. 19, 2019 and completed on Jun. 22, 2019. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Reviewed by: Rose Wang / Supervisor

Approved by: Kat Yin / Manager

Sporton International (Kunshan) Inc.

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jun. 26, 2019 Form version.: 181113 FCC ID: 2AFZZ-XMSF10G Page 1 of 49

Table of Contents

1. Statement of Compliance	
2. Administration Data	5
3. Guidance Applied	5
4. Equipment Under Test (EUT) Information	6
4.1 General Information	6
4.2 General LTE SAR Test and Reporting Considerations	8
5. Proximity Sensor Triggering Test	10
5.1 Proximity sensor triggering distances(Per KDB616217§6.2)	10
5.2 Tilt angle influences to proximity sensor triggering(Per KDB616217 §6.4)	14
6. RF Exposure Limits	15
6.1 Uncontrolled Environment	15
6.2 Controlled Environment	15
7. Specific Absorption Rate (SAR)	16
7.1 Introduction	16
7.2 SAR Definition	16
8. System Description and Setup	17
8.1 E-Field Probe	18
8.2 Data Acquisition Electronics (DAE)	18
8.3 Phantom	19
8.4 Device Holder	
9. Measurement Procedures	
9.1 Spatial Peak SAR Evaluation	21
9.2 Power Reference Measurement	22
9.3 Area Scan	
9.4 Zoom Scan	
9.5 Volume Scan Procedures	
9.6 Power Drift Monitoring	
10. Test Equipment List	
11. System Verification	
11.1 Tissue Simulating Liquids	
11.2 Tissue Verification	
11.3 System Performance Check Results	
12. RF Exposure Positions	
12.1 Ear and handset reference point	
12.2 Definition of the cheek position	
12.3 Definition of the tilt position	
12.4 Body Worn Accessory	
12.5 Product Specific 10g SAR Exposure	
12.6 Wireless Router	
13. SAR Test Results	
13.1 Head SAR	
13.2 Hotspot SAR	
13.3 Body Worn Accessory SAR	
13.4 Product specific 10g SAR	
13.5 Repeated SAR Measurement	
14. Simultaneous Transmission Analysis	
14.1 Head Exposure Conditions	
14.2 Hotspot Exposure Conditions	
14.3 Body-Worn Accessory Exposure Conditions	46
14.4 Product specific 10g SAR Exposure Conditions	
15. Uncertainty Assessment	
16. References	49
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID: 2AFZZ-XMSF10G

Revision History

Report No. : FA931204-03

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA931204-03	Rev. 01	Initial issue of report	Jun. 26, 2019

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jun. 26, 2019 Form version. : 181113 FCC ID: 2AFZZ-XMSF10G Page 3 of 49

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Xiaomi Communications Co., Ltd., Mobile Phone, M1903F10G, are as follows.

Report No. : FA931204-03

		Hig	hest 1g SAR Sui	nmary			
Equipment Class		quency Band	Head (Separation 0mm)	(Sep	otspot paration Omm)	Body-worn (Separation 15mm)	Highest Simultaneous Transmission
				1g SA	R (W/kg)		1g SAR (W/kg)
	GSM	GSM850	0.77	(0.36	0.26	
	GSIVI	GSM1900	0.98	(0.98	0.27	
		Band V	0.96	(0.52	0.31	
	WCDMA	Band IV	1.08	(0.91	0.87	
Licensed		Band II	1.03	(0.74	0.75	1.53
Licensed		Band 5	1.05	(0.44	0.33	1.55
		Band 4	0.96	,	1.01	0.65	
	LTE	Band 2	1.01	(0.93	0.56	
		Band 7	1.18	(0.89	0.35	
		Band 38	0.94	•	1.11	0.24	
DTS	WLAN	2.4GHz WLAN	0.63	(0.25	0.18	1.52
NII	WLAIN	5GHz WLAN	1.00	0.70		0.83	1.53
DSS	Bluetooth	2.4GHz Bluetooth	0.15	<	0.10	<0.10	1.53
		Higl	hest 10g SAR Su	mmary			
	oment ass		quency Band			Specific 10g SAR (W/kg) aration 0mm)	Highest Simultaneous Transmission 10g SAR (W/kg)
		GSM	GSM1900			1.86	
		WCDMA	Band IV			3.11	
Lice	ensed	WODINA	Band II			3.29	3.29
		LTE	Band 4			2.64	3.23
		EIE	Band 2			2.88	
١	NII .	WLAN	5GHz WLAI	N		1.81	
		Date of Testing:				2019/6/19~2019	9/6/22

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR, 4.0 W/kg for Product Specific 10g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jun. 26, 2019 FCC ID: 2AFZZ-XMSF10G Form version.: 181113 Page 4 of 49

2. Administration Data

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02

Report No.: FA931204-03

	Testing Laboratory							
Test Firm	Sporton International (Kunshan) Inc.							
Test Site Location	No. 1098, Pengxi North Road, Kunshan Econo Jiangsu Province 215300 People's Republic of TEL: +86-512-57900158 FAX: +86-512-57900958	•						
Test Site No.	FCC Designation No.	FCC Test Firm Registration No.						
Test Site No.	CN1257	314309						

	Applicant
Company Name	Xiaomi Communications Co., Ltd.
Address	The Rainbow City of China Resources, NO.68, Qinghe Middle Street, Haidian District, Beijing, China

3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05
- FCC KDB 941225 D05A Rel.10 LTE SAR Test Guidance v01r02
- FCC KDB 941225 D06 Hotspot Mode SAR v02r01
- FCC KDB 616217 D04 SAR for laptop and tablets v01r02

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jun. 26, 2019 Form version.: 181113 FCC ID: 2AFZZ-XMSF10G Page 5 of 49

4. Equipment Under Test (EUT) Information

4.1 General Information

	Product Feature & Specification
Equipment Name	Mobile Phone
Brand Name	MI
Model Name	M1903F10G
FCC ID	2AFZZ-XMSF10G
IMEI Code	SIM1: 866962040433736 SIM2: 866962040433744
Wireless Technology and Frequency Range	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band IV: 1712.4 MHz ~ 1752.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 4: 1710.7 MHz ~ 1754.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 7: 2502.5 MHz ~ 2567.5 MHz LTE Band 38: 2572.5 MHz ~ 2617.5 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5500 MHz ~ 5700 MHz WLAN 5.5GHz Band: 5745 MHz ~ 5805 MHz Bluetooth: 2402 MHz ~ 2480 MHz NFC: 13.56 MHz
Mode	GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+: 16QAM (uplink is not supported) LTE: QPSK, 16QAM, 64QAM, 256QAM (Downlink Only) WLAN 2.4GHz 802.11b/g/n HT20 WLAN 5GHz 802.11a/n HT20/HT40 WLAN 5GHz 802.11ac VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE NFC
HW Version	P2
SW Version	MIUI 10
	Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously but
mode	can automatically switch between Packet and Circuit Switched Network.
EUT Stage	Identical Prototype

Report No. : FA931204-03

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jun. 26, 2019 Form version. : 181113 FCC ID: 2AFZZ-XMSF10G Page 6 of 49

FCC SAR Test Report

Remark:

This device supports VoIP in GPRS, EGPRS, CDMA, WCDMA and LTE (e.g. for 3rd-party VoIP), LTE supports VoLTE operation.

Report No.: FA931204-03

- This device 2.4GHz WLAN support hotspot operation and Bluetooth support tethering applications.
- This device 2.4GHz WLAN/5.2GHz WLAN/5.8GHz WLAN support hotspot operation, and 5.2GHz WLAN/5.8GHz WLAN supports WiFi Direct (GC/GO), and 5.3GHz / 5.5GHz supports WiFi Direct (GC only).
- This device does not support DTM operation and supports GRPS/EGRPS mode up to multi-slot class 33.
- This device has two WWAN transmit antennas. WWAN bottom antenna is located at the bottom edge of the device, and WWAN top antenna is located at the top edge of the device which can refer to antenna location chapter. Top and Bottom antenna support the same WWAN frequency bands, and they can't transmit simultaneously.
- For top WWAN antenna and WLAN antenna:
 - When the phone is in talking mode and receiver worked, then power reduction will be implemented immediately in GSM850, WCDMA band 2/4/5, LTE B2/4/5/7/38 and WLAN 2.4GHz/5.2/5.3/5.8GHz.
 - When hotspot mode is enabled, power reduction will be activated to GSM850, WCDMA band 2/4/5, LTE B2/4/5/7/38 and WLAN 2.4GHz/5.2/5.8GHz.
- For bottom WWAN antenna:

Sporton International (Kunshan) Inc.

- a. P-sensor can detect handheld state, WCDMA band II/IV and LTE band 2/4/7 for front/back/bottom sides of product specific 10g SAR condition reduced powers will be active
- When hotspot mode is enabled, power reduction will be activated to GSM1900, WCDMA band II/IV, LTE band 2/4/7.
- There are two types of EUT sample 1 and sample 2, the differences between two samples is for memory, sample 1 6+64GB capacity and sample 2 is 6+128GB capacity. According to the difference, memory capacity has no effect on SAR distribution, so sample 1 is chose to perform full SAR testing.
- 9. For dual SIM card mobile has two SIM slots and supports dual SIM dual standby. The WWAN radio transmission will be enabled by either one SIM at a time (single active). After pre-scan two SIM cards power, we found test result of the SIM1 was the worse, so we chose SIM1 slot to perform all tests.
- 10. The device distinguishes different countries by MCC information. If we are close to a country border and the phone switches to a neighboring network the power reduction will follow the newest registered MCC information. The default status when the device doesn't know the MCC information will be set to the Lower Power Level between A and B, the detail information can refer to operation description. This mechanism limited to WLAN only.
- 11. This is a variant report for M1903F10G, the change note could be referred to the product equality declaration which is exhibit separately. Based on the similarity between two models, only the worst case from original test report (Sporton Report Number FA931204) were verified for the differences.

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Jun. 26, 2019

Form version. : 181113 FCC ID: 2AFZZ-XMSF10G Page 7 of 49

4.2 General LTE SAR Test and Reporting Considerations

Summari	zed necessary it	ems addre	ssed in K	DB 9412	25 D05 v0	2r05		
FCC ID	2AFZZ-XMSF10	G						
Equipment Name	Mobile Phone							
Operating Frequency Range of each LTE transmission band	LTE Band 2: 185 LTE Band 4: 171 LTE Band 5: 824 LTE Band 7: 250 LTE Band 38: 25	0.7 MHz ~ .7 MHz ~ 8 2.5 MHz ~	1754.3 MHz 48.3 MHz 2567.5 MH	Hz Hz				
Channel Bandwidth	LTE Band 2:1.4N LTE Band 4:1.4N LTE Band 5:1.4N LTE Band 7: 5MH LTE Band 38: 5N	1Hz, 3MHz 1Hz, 3MHz Hz, 10MHz	5MHz, 10 5MHz, 10 15MHz, 2	OMHz, 15 OMHz OMHz				
uplink modulations used	QPSK / 16QAM /	64QAM /2	.56QAM (E	Downlink	Only)			
LTE Voice / Data requirements	Voice and Data							
LTE Release Version	R12, Cat13							
CA Support	Yes, Uplink and I	Downlink						
LTE MPR permanently built-in by design	Modulation QPSK 16 QAM 16 QAM 64 QAM 64 QAM 256 QAM	1.4 MHz > 5 ≤ 5 > 5 ≤ 5 > 5	3.0 MHz > 4 ≤ 4 > 4 > 4 > 4	5 MHz > 8 ≤ 8 > 8 ≤ 8 > 8	nsmission 10 MHz > 12 ≤ 12 > 12 ≤ 12 > 12 ≥ 12 ≥ 12 ≥ 12	bandwidth 15 MHz > 16 ≤ 16 > 16 ≤ 16 > 16	(N _{RB}) 20 MHz > 18 ≤ 18 > 18 ≤ 18 > 18	MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3 ≤ 5
LTE A-MPR	A-MPR during S (Maximum TTI) A properly config	SAR testin	g and the	LTE SA	AR tests v	vas transm	nitting on a	all TTI frames
Spectrum plots for RB configuration	therefore, spectr the SAR report.							
Power reduction applied to satisfy SAR compliance	res, the detail pi							
LTE Carrier Aggregation Combinations	Intra-Band and referred to originate	al report (S	porton Re	port Num	ber FA931	204)		·
LTE Carrier Aggregation Additional Information	component evaluated p (2) This device Additional for	carriers ir er FCC Gu supports r ollowing LT	the uplir idance. naximum o E Release	nk. SAR of 2 carrie e features	Measuren ers in the case are not s	nents and lownlink ar	conducted nd 2 carrier Relay, Hetl	C /38C with two I powers were rs in the uplink. Net, Enhanceding, Enhanced

Report No. : FA931204-03

TEL: +86-512-57900158 / FAX: +86-512-57900958

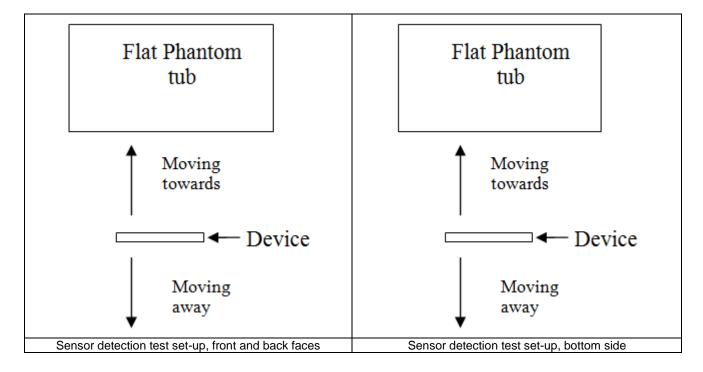
Issued Date : Jun. 26, 2019 Form version. : 181113 FCC ID: 2AFZZ-XMSF10G Page 8 of 49

				Transmi	ission (H, I	И, L) (chani	nel number	s and freq	uenci	es in	each LTE	band			
								LTE Ba	nd 2							
	Bandwidtl	h 1.4 ľ	ИНz	Bandwidt	th 3 MHz	Bar	ndwid	th 5 MHz	Bandwidth 10 MHz Bandwidth		h 15 MHz 📙 Ban		andwidth 20 MHz			
	Ch. #	Fre (Mh		Ch. #	Freq. (MHz)	Ch	. #	Freq. (MHz)	Ch. #	Fre (Mh		Ch. #	Freq. (MHz)	Ch	. #	Freq. (MHz)
L	18607	185	0.7	18615	1851.5	186	625	1852.5	18650	18	55	18675	1857.5	187	700	1860
М	18900	18	80	18900	1880	189	900	1880	18900	1880		18900	1880	189	900	1880
Н	19193	190	9.3	19185	1908.5	191	175	1907.5	19150	19	05	19125	1902.5	191	100	1900
		LTE Band 4														
	Bandwidtl	h 1.4 ľ	MHz	Bandwidt	Bandwidth 3 MHz Bandwidth 5 MHz		Bandwidt	h 10 N	ЛHz	Bandwidt	h 15 MHz	Ban	dwidtl	h 20 MHz		
	Ch. #	Fre (Mh		Ch. #	Freq. (MHz)	Ch	. #	Freq. (MHz)	Ch. #	Fre (Mh		Ch. #	Freq. (MHz)	Ch	. #	Freq. (MHz)
L	19957	171	0.7	19965	1711.5	199	975	1712.5	20000	17	15	20025	1717.5	200)50	1720
М	20175	173	2.5	20175	1732.5	201	175	1732.5	20175	173	2.5	20175	1732.5	201	175	1732.5
Н	20393	175	4.3	20385	1753.5	203	375	1752.5	20350	17	50	20325	1747.5	203	300	1745
								LTE Ba	nd 5							
	Ban	dwidth	1.4 ľ	MHz	Bar	ndwidt	th 3 N	1Hz	Bandwidth 5 MHz			Ban	Bandwidth 10 MHz			
	Ch. #		Fre	q. (MHz)	Ch. #		Fre	q. (MHz)	Ch. # Freq. (MHz)		Ch. #	:	Fre	q. (MHz)		
L	20407			824.7	20415			825.5	20425		826.5	20450			829	
М	20525			836.5	20525			836.5			836.5	20525		:	836.5	
Н	20643	3		848.3	20635	,		847.5	20625	5	846.5		20600)		844
								LTE Ba	-							
		ndwidt				dwidtl			Bandwidth 15 MHz				dwidtl			
	Ch. #			q. (MHz)	Ch. #			q. (MHz)	Ch. #			q. (MHz)	Ch. #			q. (MHz)
L	20775			2502.5	20800			2505	20825			2507.5	20850			2510
М	21100			2535	21100			2535	21100			2535	21100			2535
Н	21425	5	2	2567.5	21400)		2565	21375	5	2	2562.5	21350)		2560
								LTE Bar								
		andwi				ndwid				ndwidt				ndwidt		
	Ch.			eq. (MHz)	Ch. a		Fre	eq. (MHz)	Ch. #			eq. (MHz)	Ch. #			q. (MHz)
L	3777			2572.5	3780			2575	3782			2577.5	37850			2580
М				2595	3800			2595	3800			2595	38000			2595
Н	3822	25		2617.5	3820	0		2615	3817	5		2612.5	38150)		2610

Report No. : FA931204-03

TEL: +86-512-57900158 / FAX: +86-512-57900958

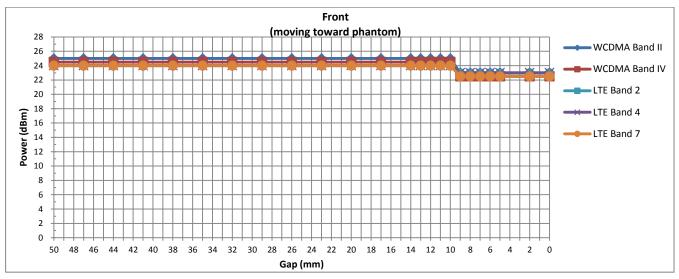
Issued Date : Jun. 26, 2019 Form version. : 181113 FCC ID: 2AFZZ-XMSF10G Page 9 of 49

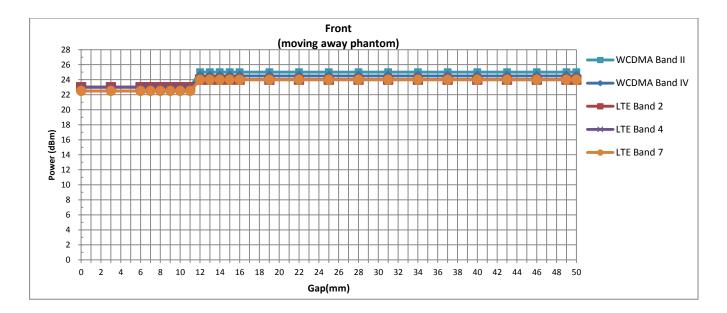

5. Proximity Sensor Triggering Test

5.1 Proximity sensor triggering distances(Per KDB616217§6.2)

1. Proximity sensor triggering distance testing was performed according to the procedures outlined in KDB 616217 D04 section 6.2, and EUT moving further away from the flat phantom and EUT moving toward the flat phantom were both assessed and the tissue-equivalent medium for highest frequency (2600MHz) and lowest (1750MHz) frequency was used for proximity sensor triggering testing.

Report No.: FA931204-03

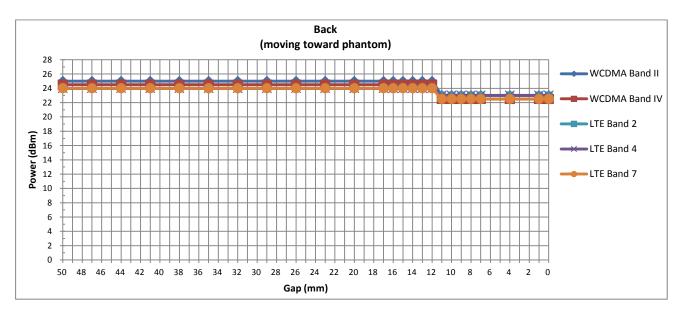

- 2. Capacitive proximity sensor placed coincident with antenna elements at the bottom end of the phone are utilized to determine when the device comes in proximity of the user's body at the front, back or bottom side surface of the device. There is no need to do sensor coverage testing for the proximity sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the proximity sensor entirely covers the antenna.
- 3. When the sensor is active, WCDMA B2 / B4, and LTE B2 / B4 / B7 reduced power will be active.
- 4. The sensors used to detect the proximity of the user's body at the front, back or bottom side surface of the device use a detection threshold distance. The data shown in the sections below shows the distance(s).

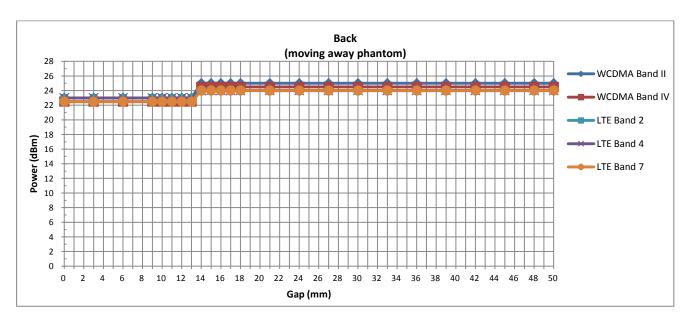


	Proximity Sensor Triggering Distance (mm)									
Docition	Fro	ont	Bottom Side							
Position	Moving towards	Moving away	Moving towards	Moving away	Moving towards	Moving away				
Minimum	9	11	11	13	12	14				

<Sensor Trigger Distance and Measured Power>

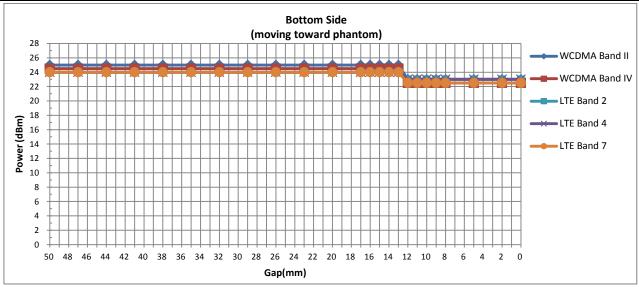
Report No. : FA931204-03

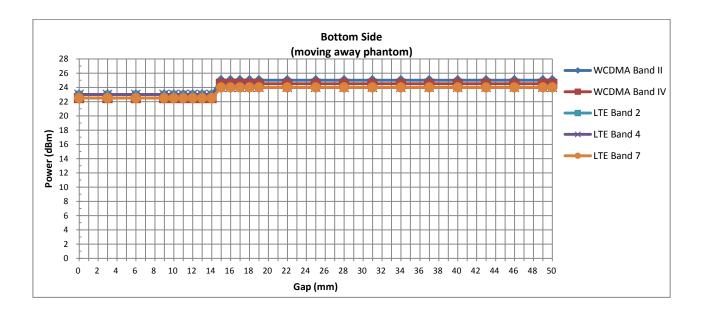




TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jun. 26, 2019 FCC ID: 2AFZZ-XMSF10G Page 11 of 49 Form version. : 181113

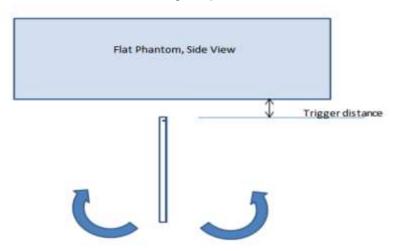



TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID: 2AFZZ-XMSF10G Page 12 of 49 Form version

Issued Date : Jun. 26, 2019 Form version. : 181113

TEL: +86-512-57900158 / FAX: +86-512-57900958


Issued Date : Jun. 26, 2019 FCC ID: 2AFZZ-XMSF10G Page 13 of 49 Form version. : 181113

5.2 Tilt angle influences to proximity sensor triggering(Per KDB616217 §6.4)

The DUT was positioned directly below the flat phantom at the minimum measured trigger distance with bottom side parallel to the base of the flat phantom for each band.

Report No. : FA931204-03

The EUT was rotated about bottom side for angles up to +/- 45°. If the output power increased during the rotation the DUT was moved 1mm toward the phantom and the rotation repeated. This procedure was repeated until the power remained reduced for all angles up to +/- 45°.

Proximity Sensor Coverage Assesment(Bottom Side)

Table: Summary of Tablet Tilt Angle Influence to Proximity Sensor Triggering (Bottom Side)

I able. 3	ullillary of Tablet Tilt	Angle initidence to Froximity Sensor Triggering (Bottom Side)			,							
					Pov	ver Red	uction	Status	3			
Main ant Band(MHz)	Minimum trigger distance at which power reduction was maintained over ±45°	-45°	-35°	-25°	-15°	-5°	0°	5°	15°	25°	35°	45°
WCDMA Band II	12mm	on	on	on	on	on	on	on	on	on	on	on
WCDMA Band IV	12mm	on	on	on	on	on	on	on	on	on	on	on
LTE Band 2	12mm	on	on	on	on	on	on	on	on	on	on	on
LTE Band 4	12mm	on	on	on	on	on	on	on	on	on	on	on
LTE Band 7	12mm	on	on	on	on	on	on	on	on	on	on	on

Conclusion: As is shown from the validation data, it can be ensured that the proximity sensor can be valid triggered for the DUT tilt coverage exposure condition.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jun. 26, 2019 Form version.: 181113 FCC ID: 2AFZZ-XMSF10G Page 14 of 49

6. RF Exposure Limits

6.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA931204-03

6.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

FCC ID: 2AFZZ-XMSF10G Page 15 of 49 Form version.: 181113

7. Specific Absorption Rate (SAR)

7.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: FA931204-03

7.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$


Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jun. 26, 2019 Form version.: 181113 FCC ID: 2AFZZ-XMSF10G Page 16 of 49

8. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No.: FA931204-03

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

FCC ID: 2AFZZ-XMSF10G Page 17 of 49 Form version.: 181113

8.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<EX3DV4 Probe>

Construction	Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)				
Frequency	10 MHz – >6 GHz				
Troquency	Linearity: ±0.2 dB (30 MHz – 6 GHz)				
Diroctivity	±0.3 dB in TSL (rotation around probe axis)				
Directivity	±0.5 dB in TSL (rotation normal to probe axis)				
Dynamic Range	10 μW/g – >100 mW/g				
Dynamic Range	Linearity: ±0.2 dB (noise: typically <1 μW/g)				
	Overall length: 337 mm (tip: 20 mm)				
Dimensions	Tip diameter: 2.5 mm (body: 12 mm)				
Dimensions	Typical distance from probe tip to dipole centers: 1				
	mm				

Report No.: FA931204-03

8.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Photo of DAE

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jun. 26, 2019 Form version.: 181113 FCC ID: 2AFZZ-XMSF10G Page 18 of 49

8.3 Phantom

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	July 2000
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	7 5
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

Report No.: FA931204-03

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jun. 26, 2019 FCC ID: 2AFZZ-XMSF10G Form version.: 181113 Page 19 of 49

8.4 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Report No.: FA931204-03

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jun. 26, 2019 Form version.: 181113 FCC ID: 2AFZZ-XMSF10G Page 20 of 49

9. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA931204-03

- Read the WWAN RF power level from the base station simulator.
- For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power
- Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- Find out the largest SAR result on these testing positions of each band (e)
- Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement (a)
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

Sporton International (Kunshan) Inc.

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- Extraction of the measured data (grid and values) from the Zoom Scan
- Calculation of the SAR value at every measurement point based on all stored data (A/D values and (b) measurement parameters)
- Generation of a high-resolution mesh within the measured volume (c)
- Interpolation of all measured values form the measurement grid to the high-resolution grid (d)
- Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface (e)
- Calculation of the averaged SAR within masses of 1g and 10g

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Jun. 26, 2019 Form version. : 181113

FCC ID: 2AFZZ-XMSF10G Page 21 of 49

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: FA931204-03

9.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution is x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be ≤ the corresponding levice with at least one

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Jun. 26, 2019

FCC ID: 2AFZZ-XMSF10G Page 22 of 49 Form version.: 181113

9.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA931204-03

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz	
Maximum zoom scan s	spatial reso	lution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 – 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$	
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz: } \le 4 \text{ mm}$ $4 - 5 \text{ GHz: } \le 3 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$	
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$	
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$		
Minimum zoom scan volume	X. V. 7		≥ 30 mm	$3 - 4 \text{ GHz:} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz:} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz:} \ge 22 \text{ mm}$	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

9.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

FCC ID: 2AFZZ-XMSF10G Page 23 of 49 Form version.: 181113

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

10. Test Equipment List

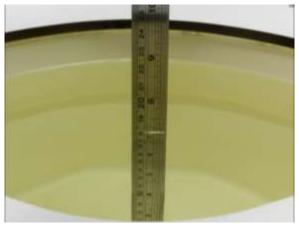
Manufact	Name of East	T (84	O	Calibra	ation
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	835MHz System Validation Kit	D835V2	4d151	2019/3/27	2020/3/26
SPEAG	1750MHz System Validation Kit	D1750V2	1090	2019/3/27	2020/3/26
SPEAG	1900MHz System Validation Kit	D1900V2	5d170	2019/3/26	2020/3/25
SPEAG	2450MHz System Validation Kit	D2450V2	908	2019/3/25	2020/3/24
SPEAG	2600MHz System Validation Kit	D2600V2	1061	2018/12/7	2019/12/6
SPEAG	5000MHz System Validation Kit	D5GHzV2	1006	2018/9/27	2019/9/26
SPEAG	Data Acquisition Electronics	DAE4	1279	2018/10/22	2019/10/21
SPEAG	Data Acquisition Electronics	DAE4	1338	2018/12/3	2019/12/2
SPEAG	Dosimetric E-Field Probe	EX3DV4	3954	2019/4/25	2020/4/24
SPEAG	Dosimetric E-Field Probe	EX3DV4	3843	2018/9/27	2019/9/26
SPEAG	Dosimetric E-Field Probe	EX3DV4	3911	2019/1/22	2020/1/21
SPEAG	SAM Twin Phantom	QD 000 P40 CB	TP-1839	NCR	NCR
SPEAG	SAM Twin Phantom	QD 000 P40 CB	TP-1503	NCR	NCR
SPEAG	SAM Twin Phantom	QD 000 P40 CB	TP-1697	NCR	NCR
SPEAG	Phone Positioner	N/A	N/A	NCR	NCR
Anritsu	Radio communication analyzer	MT8821C	6201432831	2019/4/17	2020/4/16
Agilent	ENA Series Network Analyzer	E5071C	MY46106933	2018/8/3	2019/8/2
SPEAG	Dielectric Probe Kit	DAK-3.5	1138	2018/11/20	2019/11/19
Anritsu	Vector Signal Generator	MG3710A	6201682672	2019/1/14	2020/1/13
Rohde & Schwarz	Power Meter	NRVD	102081	2018/8/20	2019/8/19
Rohde & Schwarz	Power Sensor	NRV-Z5	100538	2018/8/20	2019/8/19
Rohde & Schwarz	Power Sensor	NRV-Z5	100539	2018/8/20	2019/8/19
R&S	CBT BLUETOOTH TESTER	CBT	101641	2019/1/14	2020/1/13
EXA	Spectrum Analyzer	FSV7	101631	2019/1/14	2020/1/13
Testo	Hygrometer	608-H1	1241332126	2018/8/21	2019/8/20
FLUKE	DIGITAC THERMOMETER	51II	97240029	2018/8/8	2019/8/7
ARRA	Power Divider	A3200-2	N/A	Not	e
MCL	Attenuation1	BW-S10W5+	N/A	Not	е
MCL	Attenuation2	BW-S10W5+	N/A	Not	е
MCL	Attenuation3	BW-S10W5+	N/A	Not	е
BONN	POWER AMPLIFIER	BLMA 0830-3	087193A	Not	е
BONN	POWER AMPLIFIER	BLMA 2060-2	087193B	Not	е
Agilent	Dual Directional Coupler	778D	20500	Not	е
Agilent	Dual Directional Coupler	11691D	MY48151020	Not	е

Report No. : FA931204-03

Note: Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jun. 26, 2019 FCC ID: 2AFZZ-XMSF10G Form version.: 181113 Page 24 of 49


11. System Verification

11.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.2.

Report No.: FA931204-03

Fig 10.2 Photo of Liquid Height for Body SAR

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jun. 26, 2019 FCC ID: 2AFZZ-XMSF10G Form version.: 181113 Page 25 of 49

11.2 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Report No. : FA931204-03

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)			
For Head											
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5			
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.40	40.0			
2450	55.0		0	0	0	45.0	1.80	39.2			
2600	54.8	0	0	0.1	0	45.1	1.96	39.0			
				For Body							
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2			
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3			
2450	68.6	0	0	0	0	31.4	1.95	52.7			
2600	68.1	0	0	0.1	0	31.8	2.16	52.5			

Simulating Liquid for 5GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	64~78%
Mineral oil	11~18%
Emulsifiers	9~15%
Additives and Salt	2~3%

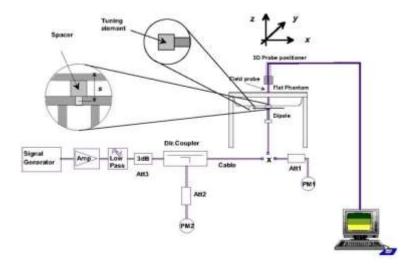
<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
835	Head	22.7	0.904	42.015	0.90	41.50	0.44	1.24	±5	2019/6/19
1750	Head	22.9	1.355	39.596	1.37	40.10	-1.09	-1.26	±5	2019/6/19
1900	Head	22.6	1.402	39.391	1.40	40.00	0.14	-1.52	±5	2019/6/19
2450	Head	22.9	1.860	38.914	1.80	39.20	3.33	-0.73	±5	2019/6/19
2600	Head	22.7	1.976	39.468	1.96	39.00	0.82	1.20	±5	2019/6/21
5250	Head	22.8	4.647	34.972	4.71	35.90	-1.34	-2.58	±5	2019/6/21
5600	Head	22.6	4.986	34.505	5.07	5.07 35.50		-2.80	±5	2019/6/21
5750	Head	22.7	5.140	34.286	5.22	35.40	-1.53	-3.15	±5	2019/6/21
835	Body	22.7	0.998	56.478	0.97	55.20	2.89	2.32	±5	2019/6/19
1750	Body	22.8	1.439	53.027	1.49	53.40	-3.42	-0.70	±5	2019/6/19
1900	Body	22.6	1.513	53.669	1.52	53.30	-0.46	0.69	±5	2019/6/19
2450	Body	22.6	1.992	53.992	1.95	52.70	2.15	2.45	±5	2019/6/19
2600	Body	22.7	2.203	53.413	2.16	52.50	1.99	1.74	±5	2019/6/19
5250	Body	22.7	5.503	47.874	5.36	48.90	2.67	-2.10	±5	2019/6/22
5600	Body	22.7	5.957	47.280	5.77	48.50	3.24	-2.52	±5	2019/6/22
5750	Body	22.7	6.179	47.023	5.94	48.30	4.02	-2.64	±5	2019/6/22

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jun. 26, 2019 FCC ID: 2AFZZ-XMSF10G Form version. : 181113 Page 26 of 49

11.3 System Performance Check Results


Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

<1g SAR>

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2019/6/19	835	Head	250	4d151	3843	1279	2.42	9.30	9.68	4.09
2019/6/19	1750	Head	250	1090	3843	1279	9.27	36.40	37.08	1.87
2019/6/19	1900	Head	250	5d170	3843	1279	9.67	39.00	38.68	-0.82
2019/6/19	2450	Head	250	908	3843	1279	13.40	52.80	53.6	1.52
2019/6/21	2600	Head	250	1061	3843	1279	14.40	57.70	57.6	-0.17
2019/6/21	5250	Head	100	1006	3954	1338	7.57	7.57 80.70	75.7	-6.20
2019/6/21	5600	Head	100	1006	3954	1338	7.68	83.30	76.8	-7.80
2019/6/21	5750	Head	100	1006	3954	1338	7.93	80.40	79.3	-1.37
2019/6/19	835	Body	250	4d151	3843	1279	2.51	9.53	10.04	5.35
2019/6/19	1750	Body	250	1090	3843	1279	9.20	37.70	36.8	-2.39
2019/6/19	1900	Body	250	5d170	3843	1279	9.68	40.00	38.72	-3.20
2019/6/19	2450	Body	250	908	3843	1279	13.10	50.80	52.4	3.15
2019/6/19	2600	Body	250	1061	3843	1279	13.80	54.20	55.2	1.85
2019/6/22	5250	Body	100	1006	3911	1338	8.23	78.30	82.3	5.11
2019/6/22	5600	Body	100	1006	3911	1338	38 7.97 81.00 79.7		79.7	-1.60
2019/6/22	5750	Body	100	1006	3911	1338	7.22	77.40	72.2	-6.72

<10g SAR>

	1.0g C/	og or an												
	Date	Frequency (MHz)	Tissue Power (mW)		Sue Power S/N		DAE S/N	Measured 10g SAR (W/kg)	Targeted 10g SAR (W/kg)	Normalized 10g SAR (W/kg)	Deviation (%)			
	2019/6/19	1750	Body	250	1090	3843	1279	4.99	19.90	19.96	0.30			
	2019/6/19	1900	Body	250	5d170	3843	1279	5.04	21.00	20.16	-4.00			
	2019/6/22	5250	Body	100	1006	3911	1338	2.31	21.70	23.1	6.45			
Ī	2019/6/22	5600	Body	100	1006	3911	1338	2.18	22.50	21.8	-3.11			

Report No. : FA931204-03

Fig 11.3.1 System Performance Check Setup

Fig 11.3.2 Setup Photo

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jun. 26, 2019 Page 27 of 49 FCC ID: 2AFZZ-XMSF10G Form version.: 181113

12. RF Exposure Positions

12.1 Ear and handset reference point

Figure 12.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 12.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 12.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 12.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek.

Fig 12.1.1 Front, back, and side views of SAM twin phantom

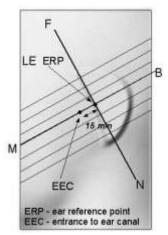
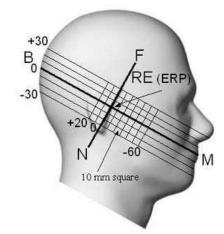
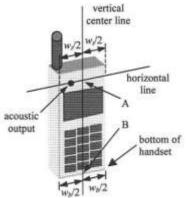



Fig 12.1.2 Close-up side view of phantom showing the ear region.

Report No.: FA931204-03

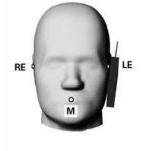

Fig 12.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jun. 26, 2019 Form version.: 181113 FCC ID: 2AFZZ-XMSF10G Page 28 of 49

12.2 Definition of the cheek position

- Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 12.2.1 and Figure 12.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 12.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output: however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 12.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets.
- Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 12.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP.
- While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane.
- Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line. 6.
- While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 12.2.3. The actual rotation angles should be documented in the test report.



line acoustic output bottom of handset

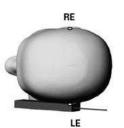

horizontal

Fig 12.2.1 Handset vertical and horizontal reference lines—"fixed case

Fig 12.2.2 Handset vertical and horizontal reference lines-"clam-shell case"

vertical

center line

Report No.: FA931204-03

Fig 12.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jun. 26, 2019 Form version. : 181113 FCC ID: 2AFZZ-XMSF10G Page 29 of 49

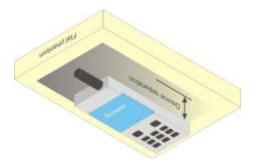
12.3 Definition of the tilt position

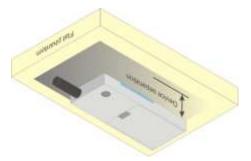
1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.

Report No.: FA931204-03

- 2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°.
- 3. Rotate the handset around the horizontal line by 15°.
- 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 12.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point

Fig 12.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated.


TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Jun. 26, 2019


FCC ID: 2AFZZ-XMSF10G Page 30 of 49 Form version.: 181113

12.4 Body Worn Accessory

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 12.4). Per KDB648474 D04v01r03, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Report No.: FA931204-03

Fig 12.4 Body Worn Position

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jun. 26, 2019 Form version. : 181113 Page 31 of 49 FCC ID: 2AFZZ-XMSF10G

12.5 Product Specific 10g SAR Exposure

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, According to KDB648474 D04v01r03, the following phablet procedures should be applied to evaluate SAR compliance for each applicable wireless modes and frequency band. Devices marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance

Report No.: FA931204-03

- 1. The normally required head and body-worn accessory SAR test procedures for handsets, including hotspot mode, must be applied.
- 2. The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge, in direct contact with a flat phantom, for 10-g extremity SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions.6 The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

12.6 Wireless Router

Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v02r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

Sporton International (Kunshan) Inc.

13. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No.: FA931204-03

- b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
- c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- d. For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- e. For TDD LTE SAR measurement, the duty cycle 1:1.59 (62.9 %) was used perform testing and considering the theoretical duty cycle of 63.3% for extended cyclic prefix in the uplink, and the theoretical duty cycle of 62.9% for normal cyclic prefix in uplink, a scaling factor of extended cyclic prefix 63.3%/62.9% = 1.006 is applied to scale-up the measured SAR result. The Reported TDD LTE SAR = measured SAR (W/kg)* Tune-up Scaling Factor* scaling factor for extended cyclic prefix.
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz.
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required when the measured SAR is ≥ 0.8W/kg. Per KDB 865664 D01v01r04, if the extremity repeated SAR is necessary, the same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.
- 4. This is a variant report for M1903F10G, the change note could be referred to the product equality declaration which is exhibit separately. Based on the similarity between two models, only the worst case from original test report (Sporton Report Number FA931204) were verified for the differences.
- 5. The verified SAR is the worst case from original application, the SAR value is less than original, although reported SAR higher than 0.8W/Kg, no need to considering other remaining channel SAR testing.
- For simultaneously transmission SAR analysis, SAR values only considered which we did perform SAR testing on FA931204-03, and other test results were leverage from the parent model which referred to the test report number FA931204.

Sporton International (Kunshan) Inc.

13.1 Head SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Antenna	Power Mode	Ch.	Freq. (MHz)	Average Power (dBm)			Drift	Measured 1g SAR (W/kg)	
01	GSM 850	GPRS 4 Tx slots	Right Cheek	Тор	Reduced	189	836.4	24.18	25.50	1.355	-0.02	0.567	<mark>0.768</mark>
02	GSM 1900	GPRS 4 Tx slots	Right Cheek	Тор	Full	810	1909.8	23.40	25.00	1.445	-0.16	0.677	0.979

Report No. : FA931204-03

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Antenna	Power Mode	Ch.	Freq. (MHz)	Average Power (dBm)		Tune-up Scaling Factor		Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
03	WCDMA Band V	RMC 12.2Kbps	Right Cheek	Тор	Reduced	4182	836.4	20.85	22.00	1.303	0.06	0.737	<mark>0.960</mark>
04	WCDMA Band IV	RMC 12.2Kbps	Right Cheek	Тор	Reduced	1513	1752.6	20.22	21.50	1.343	0.05	0.807	1.084
05	WCDMA Band II	RMC 12.2Kbps	Right Cheek	Тор	Reduced	9538	1907.6	20.60	21.50	1.230	-0.12	0.834	<mark>1.026</mark>

<FDD LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB Offset	Test Position	Antenna	Power Mode	Ch.	Freq. (MHz)	Average Power (dBm)		Tune-up Scaling Factor		Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
06	LTE Band 5	10M	QPSK	25	0	Right Cheek	Тор	Reduced	20525	836.5	21.21	22.50	1.346	0.01	0.780	1.050
	LTE Band 5	10M	QPSK	1	0	Right Cheek	Bottom	Full	20525	836.5	22.82	24.00	1.312	0.01	0.213	0.279
07	LTE Band 4	20M	QPSK	100	0	Right Cheek	Тор	Reduced	20175	1732.5	20.67	21.50	1.211	0.03	0.791	<mark>0.958</mark>
08	LTE Band 2	20M	QPSK	100	0	Right Cheek	Тор	Reduced	18900	1880	19.93	21.00	1.279	-0.08	0.791	1.012
	LTE Band 2	20M	QPSK	1	0	Left Cheek	Bottom	Full	18900	1880	22.74	24.00	1.337	0.03	0.095	0.127
09	LTE Band 7	20M	QPSK	1	0	Right Cheek	Тор	Reduced	21350	2560	17.94	19.50	1.432	0.07	0.824	1.180
	LTE Band 7	20M	QPSK	1	0	Right Cheek	Тор	Reduced	20850	2510	17.99	19.50	1.416	0.07	0.777	1.100
	LTE Band 7	20M	QPSK	1	0	Right Cheek	Тор	Reduced	21100	2535	18.10	19.50	1.380	-0.03	0.804	1.110
	LTE Band 7	20M	QPSK	1	0	Left Cheek	Bottom	Full	21100	2535	22.99	24.00	1.262	0.04	0.052	0.066

<TDD LTE SAR>

Plot No.	Rand	BW (MHz)	Modulation	RB Size	RB Offset	Test Position	Antenna	Power Mode	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
10	LTE Band 38	20M	QPSK	1	0	Right Cheek	Тор	Reduced	38000	2595	19.72	21.00	1.343	62.9	1.006	0.11	0.699	<mark>0.944</mark>

 Sporton International (Kunshan) Inc.

 TEL: +86-512-57900158 / FAX: +86-512-57900958
 Issue

<WLAN2.4GHz SAR>

Plot No.	Band	Mode	Test Position	Power Mode	Ch.		Average Power (dBm)		Tune-up Scaling Factor	Cycle	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
11	WLAN2.4GHz	802.11b 1Mbps	Left Tilted	Reduced	11	2462	16.77	17.50	1.183	100	1.000	0.08	0.529	<mark>0.626</mark>

Report No. : FA931204-03

<WLAN5GHz SAR>

Plo No	Rand	Mode	Test Position	Power Mode	Ch.	Freq. (MHz)	_		Tune-up Scaling Factor	-	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
12	WLAN5.3GHz	802.11a 6Mbps	Left Cheek	Reduced	56	5280	15.82	16.00	1.042	97.95	1.021	-0.08	0.895	0.952
13	WLAN5.5GHz	802.11a 6Mbps	Left Cheek	Full	100	5500	18.86	19.50	1.159	97.95	1.021	-0.05	0.844	0.999
14	WLAN 5.8GHz	802.11a 6Mbps	Left Cheek	Reduced	161	5805	17.56	18.00	1.107	97.95	1.021	-0.14	0.723	<mark>0.817</mark>

<Bluetooth SAR>

Plot No.	Band	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
15	Bluetooth	1Mbps	Left Tilted	78	2480	11.61	12.00	1.094	76.94	1.083	-0.02	0.130	<mark>0.154</mark>

FCC ID: 2AFZZ-XMSF10G Page 35 of 49 Form version.: 181113

13.2 Hotspot SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Power Mode	Ch.	Freq. (MHz)	Average Power (dBm)		Tune-up Scaling Factor		Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
16	GSM850	GPRS 4 Tx slots	Back	10	Bottom	Full	189	836.4	26.20	27.50	1.349	-0.05	0.263	<mark>0.355</mark>
17	GSM1900	GPRS 4 Tx slots	Bottom Side	10	Bottom	Reduced	810	1909.8	22.41	24.00	1.442	0.03	0.682	<mark>0.984</mark>

Report No. : FA931204-03

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Power Mode	Ch.	Freq. (MHz)	Average Power (dBm)		Tune-up Scaling Factor		Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
18	WCDMA Band V	RMC 12.2Kbps	Back	10	Bottom	Full	4182	836.4	23.99	25.00	1.262	0.01	0.412	0.520
19	WCDMA Band IV	RMC 12.2Kbps	Bottom Side	10	Bottom	Reduced	1413	1732.6	18.33	19.50	1.309	-0.09	0.695	0.910
20	WCDMA Band II	RMC 12.2Kbps	Bottom Side	10	Bottom	Reduced	9262	1852.4	18.20	19.00	1.202	-0.01	0.614	0.738

<FDD LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB Offset	Test Position	Gap (mm)	Antenna	Power Mode	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 5	10M	QPSK	1	0	Back	10	Тор	Reduced	20525	836.5	21.45	22.50	1.274	-0.13	0.237	0.302
21	LTE Band 5	10M	QPSK	1	0	Right Side	10	Bottom	Full	20525	836.5	22.82	24.00	1.312	-0.02	0.336	<mark>0.441</mark>
22	LTE Band 4	20M	QPSK	50	0	Bottom Side	10	Bottom	Reduced	20175	1732.5	18.75	20.00	1.334	0.03	0.754	1.005
	LTE Band 2	20M	QPSK	50	0	Left Side	10	Top	Reduced	18900	1880	19.97	21.00	1.268	-0.06	0.311	0.394
23	LTE Band 2	20M	QPSK	50	0	Bottom Side	10	Bottom	Reduced	18700	1860	18.26	19.50	1.330	0.01	0.701	<mark>0.933</mark>
	LTE Band 7	20M	QPSK	1	0	Left Side	10	Тор	Reduced	21100	2535	18.10	19.50	1.380	-0.06	0.381	0.526
24	LTE Band 7	20M	QPSK	100	0	Bottom Side	10	Bottom	Reduced	21100	2535	20.45	21.50	1.274	0.06	0.696	<mark>0.886</mark>

<TDD LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB Offset	_ 1.1.1	Gap (mm)	Antenna	Power Mode	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
25	LTE Band 38	20M	QPSK	1	0	Bottom Side	10	Bottom	Full	38000	2595	23.09	24.00	1.233	62.9	1.006	0.01	0.894	<mark>1.109</mark>

Sporton International (Kunshan) Inc.TEL: +86-512-57900158 / FAX: +86-512-57900958

<WLAN 2.4GHz SAR>

Plot No.		Mode	Test Position	Gap (mm)	Power Mode	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)	
26	WLAN 2.4GHz	802.11b 1Mbps	Top Side	10	Reduced	11	2462	16.77	17.50	1.183	100	1.000	0.05	0.215	<mark>0.254</mark>	

Report No. : FA931204-03

<WLAN 5GHz SAR>

Plot No.	Rand	Mode	Test Position	Gap (mm)	Power Mode	Ch.	Freq. (MHz)	Average Power (dBm)		Tune-up Scaling Factor		Duty Cycle Scaling Factor	Power Drift (dB)		Reported 1g SAR (W/kg)
27	WLAN5.2GHz	802.11a 6Mbps	Back	10	Reduced	44	5220	15.87	16.00	1.030	97.95	1.021	-0.03	0.191	0.201
28	WLAN5.8GHz	802.11a 6Mbps	Back	10	Reduced	161	5805	17.56	18.00	1.107	97.95	1.021	0.03	0.617	<mark>0.697</mark>

<Bluetooth SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	rrea.	Average Power (dBm)		Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
29	Bluetooth	1Mbps	Top Side	10	78	2480	11.61	12.00	1.094	76.94	1.083	0.04	0.048	0.057

FCC SAR Test Report

13.3 Body Worn Accessory SAR

<GSM SAR>

Pl No	Rand	Mode	Test Position	Gap (mm)	Antenna	Power Reduced	Ch.	Freq. (MHz)	Average Power (dBm)		Tune-up Scaling Factor		Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
3	GSM850	GPRS 4 Tx slots	Back	15	Bottom	Full	189	836.4	26.20	27.50	1.349	-0.01	0.196	<mark>0.264</mark>
3	GSM1900	GPRS 4 Tx slots	Back	15	Bottom	Full	661	1880	23.41	25.00	1.442	0.1	0.184	<mark>0.265</mark>

Report No. : FA931204-03

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Power Reduced	Ch.	Freq. (MHz)	Average Power (dBm)		Tune-up Scaling Factor		Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
32	WCDMA Band V	RMC 12.2Kbps	Back	15	Bottom	Full	4182	836.4	23.99	25.00	1.262	0.02	0.248	0.313
33	WCDMA Band IV	RMC 12.2Kbps	Back	15	Bottom	Full	1513	1752.6	23.12	24.50	1.374	-0.05	0.631	<mark>0.867</mark>
34	WCDMA Band II	RMC 12.2Kbps	Back	15	Bottom	Full	9538	1907.6	23.87	25.00	1.297	-0.14	0.579	<mark>0.751</mark>

<FDD LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB Offset	Test Position	Gap (mm)	Antenna	Power Reduced	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor		Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
	LTE Band 5	10M	QPSK	1	0	Back	15	Тор	Full	20525	836.5	22.82	24.00	1.312	-0.08	0.145	0.190
35	LTE Band 5	10M	QPSK	1	0	Back	15	Bottom	Full	20525	836.5	22.82	24.00	1.312	0.01	0.252	<mark>0.331</mark>
36	LTE Band 4	20M	QPSK	1	0	Back	15	Bottom	Full	20175	1732.5	22.85	24.00	1.303	-0.15	0.502	<mark>0.654</mark>
	LTE Band 2	20M	QPSK	1	0	Back	15	Тор	Full	18900	1880	22.74	24.00	1.337	-0.09	0.114	0.152
37	LTE Band 2	20M	QPSK	1	0	Back	15	Bottom	Full	18900	1880	22.74	24.00	1.337	-0.13	0.419	<mark>0.560</mark>
	LTE Band 7	20M	QPSK	1	0	Front	15	Тор	Full	21100+ 20902	2535+ 2515.2	22.85	23.50	1.161	-0.11	0.220	0.256
38	LTE Band 7	20M	QPSK	1	0	Back	15	Bottom	Full	21100	2535	22.99	24.00	1.262	0.08	0.276	<mark>0.348</mark>

<TDD LTE SAR>

PI N		Band	BW (MHz)	Modulation	RB Size	RB Offset	Test Position	Gap (mm)	Antenna	Power Reduced	Ch.	Freq. (MHz)	Average Power (dBm)		Tune-up Scaling Factor		Duty Cycle Scaling Factor			
3	9 L	TE Band 38	20M	QPSK	1	0	Back	15	Bottom	Full	38000	2595	23.09	24.00	1.233	62.9	1.006	0.12	0.191	0.237

<WLAN 2.4GHz SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Power Reduced	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cycle	Duty Cycle Scaling Factor	Power Drift (dB)	1g SAR	Reported 1g SAR (W/kg)
40	WLAN 2.4GHz	802.11b 1Mbps	Back	15	Full	11	2462	20.93	21.50	1.140	100	1.000	-0.06	0.159	<mark>0.181</mark>

<WLAN 5GHz SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Power Reduced Level	Ch.	Freq. (MHz)	Average Power (dBm)		Tune-up Scaling Factor		Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
41	WLAN5.3GHz	802.11a 6Mbps	Back	15	Full	56	5280	18.86	19.50	1.159	97.95	1.021	0.03	0.303	<mark>0.358</mark>
42	WLAN5.5GHz	802.11a 6Mbps	Back	15	Full	132	5660	18.75	19.50	1.189	97.95	1.021	-0.03	0.683	<mark>0.829</mark>
43	WLAN5.8GHz	802.11a 6Mbps	Back	15	Full	161	5805	18.79	19.50	1.178	97.95	1.021	0.02	0.460	<mark>0.553</mark>

<Bluetooth SAR>

Plo No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)			Tune-up Scaling Factor		Duty Cycle Scaling Factor		Measured 1g SAR (W/kg)	
44	Bluetooth	1Mbps	Back	15	78	2480	11.61	12.00	1.094	76.94	1.083	0.05	0.013	0.016

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jun. 26, 2019 Page 38 of 49 Form version. : 181113 FCC ID: 2AFZZ-XMSF10G

13.4 Product specific 10g SAR

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Power Mode	Ch.	Freq. (MHz)	Average Power (dBm)	Limit	Tune-up Scaling Factor	Drift	Measured 10g SAR (W/kg)	Reported 10g SAR (W/kg)
45	GSM1900	GPRS 4 Tx slots	Bottom Side	0	Bottom	Full	661	1880	23.41	25.00	1.442	0.02	1.290	<mark>1.860</mark>

Report No. : FA931204-03

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Power Mode	Ch.	Freq. (MHz)	Average Power (dBm)		Tune-up Scaling Factor		Measured 10g SAR (W/kg)	Reported 10g SAR (W/kg)
	WCDMA Band IV	RMC 12.2Kbps	Bottom Side	0	Bottom	Reduced	1413	1732.6	21.31	22.50	1.315	-0.07	2.330	3.064
	WCDMA Band IV	RMC 12.2Kbps	Bottom Side	0	Bottom	Reduced	1513	1752.6	21.27	22.50	1.327	-0.02	2.290	3.040
46	WCDMA Band IV	RMC 12.2Kbps	Bottom Side	0	Bottom	Reduced	1312	1712.4	21.26	22.50	1.330	-0.03	2.340	3.113
	WCDMA Band II	RMC 12.2Kbps	Bottom Side	0	Bottom	Reduced	9400	1880	21.91	23.00	1.285	-0.09	2.540	3.265
	WCDMA Band II	RMC 12.2Kbps	Bottom Side	0	Bottom	Reduced	9262	1852.4	21.85	23.00	1.303	-0.01	2.440	3.180
47	WCDMA Band II	RMC 12.2Kbps	Bottom Side	0	Bottom	Reduced	9538	1907.6	21.84	23.00	1.306	-0.06	2.520	3.292

<FDD LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB Offset	Test Position	Gap (mm)	Antenna	Power Mode	Ch.	Freq. (MHz)	Average Power (dBm)	Limit		Drift	Measured 10g SAR (W/kg)	
48	LTE Band 4	20M	QPSK	50	0	Back	0	Bottom	Reduced	20175	1732.5	21.86	23.00	1.300	-0.04	2.030	2.639
	LTE Band 2	20M	QPSK	50	0	Bottom Side	0	Bottom	Reduced	18900	1880	21.82	23.00	1.312	0.06	2.130	2.795
	LTE Band 2	20M	QPSK	50	0	Bottom Side	0	Bottom	Reduced	18700	1860	21.71	23.00	1.346	0.03	2.080	2.799
49	LTE Band 2	20M	QPSK	50	0	Bottom Side	0	Bottom	Reduced	19100	1900	21.73	23.00	1.340	0.01	2.150	2.880

<WLAN 5GHz SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)		Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 10g SAR (W/kg)	
50	WLAN5.3GHz	802.11a 6Mbps	Back	0	Full	56	5280	18.86	19.50	1.159	97.95	1.021	-0.02	0.847	1.002
51	WLAN5.5GHz	802.11a 6Mbps	Back	0	Full	100	5500	18.86	19.50	1.159	97.95	1.021	0.03	1.530	<mark>1.810</mark>

Sporton International (Kunshan) Inc.TEL: +86-512-57900158 / FAX: +86-512-57900958

13.5 Repeated SAR Measurement

<1g SAR>

No.	Band	Mode	BW (MHz)	Modulation	RB Size	RB Offset	Test Position	Gap (mm)		Power Mode	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
1st	WCDMA Band IV	RMC 12.2Kbps	-	1	•	-	Right Cheek	0	Тор	Reduced	1513	1752.6	20.22	21.50	1.343	-		0.05	0.807	1	1.084
2nd	WCDMA Band IV	RMC 12.2Kbps	•		1	-	Right Cheek	0	Тор	Reduced	1513	1752.6	20.22	21.50	1.343	-		-0.02	0.802	1.006	1.077
1st	WCDMA Band II	RMC 12.2Kbps	•		1	-	Right Cheek	0	Тор	Reduced	9538	1907.6	20.60	21.50	1.230	-		-0.12	0.834	1	1.026
2nd	WCDMA Band II	RMC 12.2Kbps	•		1	-	Right Cheek	0	Тор	Reduced	9538	1907.6	20.60	21.50	1.230	-		0.08	0.811	1.028	0.998
1st	WLAN5.3GHz	802.11a 6Mbps	-	-	-	-	Left Cheek	0	-	Reduced	56	5280	15.82	16.00	1.042	97.95	1.021	-0.08	0.895	1	0.952
2nd	WLAN5.3GHz	802.11a 6Mbps	-	-	1	-	Left Cheek	0	-	Reduced	56	5280	15.82	16.00	1.042	97.95	1.021	0.05	0.871	1.028	0.927
1st	LTE Band 38		20M	QPSK	1	0	Bottom Side	10	Bottom	Full	38000	2595	23.09	24.00	1.233	62.9	1.006	0.01	0.894	1	1.109
2nd	LTE Band 38	-	20M	QPSK	1	0	Bottom Side	10	Bottom	Full	38000	2595	23.09	24.00	1.233	62.9	1.006	-0.09	0.866	1.032	1.074

Report No. : FA931204-03

<10g SAR>

N	lo.	Band	Mode	BW (MHz)	Modulation	RB Size	RB Offset	Test Position	Gap (mm)		Power Mode	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor		Measured 10g SAR (W/kg)		Reported 10g SAR (W/kg)
1	st	WCDMA Band IV	RMC 12.2Kbps	-	-	-	-	Bottom Side	0	Bottom	Reduced	1312	1712.4	21.26	22.50	1.330	-	-	-0.03	2.340	1	3.113
21	nd	WCDMA Band IV	RMC 12.2Kbps	-	-	-	-	Bottom Side	0	Bottom	Reduced	1312	1712.4	21.26	22.50	1.330		-	0.04	2.290	1.022	3.047
1	st	WCDMA Band II	RMC 12.2Kbps	-	-	-	-	Bottom Side	0	Bottom	Reduced	9400	1880	21.91	23.00	1.285	-	-	-0.09	2.540	1	3.265
21	nd	WCDMA Band II	RMC 12.2Kbps	-	-	-	-	Bottom Side	0	Bottom	Reduced	9400	1880	21.91	23.00	1.285	-	-	0.03	2.490	1.020	3.200

General Note:

- 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.
- 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 3. Per KDB 865664 D01v01r04, if the extremity repeated SAR is necessary, the same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.
- 4. The ratio is the difference in percentage between original and repeated measured SAR.
- 5. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jun. 26, 2019 Form version.: 181113 FCC ID: 2AFZZ-XMSF10G Page 40 of 49

SPONTON LAB. FCC SAR Test Report

14. Simultaneous Transmission Analysis

NI-	O'		Portable Handset	
No.	Simultaneous Transmission Configurations	Head	Body-worn	Hotspot
1.	GSM Voice + WLAN2.4GHz	Yes	Yes	
2.	GPRS/EDGE + WLAN2.4GHz	Yes	Yes	Yes
3.	WCDMA + WLAN2.4GHz	Yes	Yes	Yes
4.	CDMA + WLAN2.4GHz	Yes	Yes	Yes
5.	LTE + WLAN2.4GHz	Yes	Yes	Yes
6.	GSM Voice + WLAN5.3/5.5GHz	Yes	Yes	
7.	GPRS/EDGE + WLAN5.3/5.5GHz	Yes	Yes	
8.	WCDMA + WLAN5.3/5.5GHz	Yes	Yes	
9.	CDMA + WLAN5.3/5.5GHz	Yes	Yes	
10.	LTE + WLAN5.3/5.5GHz	Yes	Yes	
11.	GSM Voice + WLAN5.2/5.8GHz	Yes	Yes	
12.	GPRS/EDGE + WLAN5.2/5.8GHz	Yes	Yes	Yes
13.	WCDMA + WLAN5.2/5.8GHz	Yes	Yes	Yes
14.	CDMA + WLAN5.2/5.8GHz	Yes	Yes	Yes
15.	LTE + WLAN5.2/5.8GHz	Yes	Yes	Yes
16.	GSM Voice + Bluetooth	Yes	Yes	
17.	GPRS/EDGE + Bluetooth	Yes	Yes	Yes
18.	WCDMA + Bluetooth	Yes	Yes	Yes
19.	CDMA + Bluetooth	Yes	Yes	Yes
20.	LTE + Bluetooth	Yes	Yes	Yes
21.	Bluetooth + WLAN5GHz	Yes	Yes	Yes
22.	GSM Voice + Bluetooth + WLAN5.3/5.5GHz	Yes	Yes	
23.	GPRS/EDGE + Bluetooth + WLAN5.3/5.5GHz	Yes	Yes	
24.	WCDMA + Bluetooth + WLAN5.3/5.5GHz	Yes	Yes	
25.	CDMA + Bluetooth + WLAN5.3/5.5GHz	Yes	Yes	
26.	LTE + Bluetooth + WLAN5.3/5.5GHz	Yes	Yes	
27.	GSM Voice + Bluetooth + WLAN5.2/5.8GHz	Yes	Yes	
28.	GPRS/EDGE + Bluetooth + WLAN5.2/5.8GHz	Yes	Yes	Yes
29.	WCDMA + Bluetooth + WLAN5.2/5.8GHz	Yes	Yes	Yes
30.	CDMA + Bluetooth + WLAN5.2/5.8GH	Yes	Yes	Yes
31.	LTE + Bluetooth + WLAN5.2/5.8GHz	Yes	Yes	Yes

Report No.: FA931204-03

General Note:

- For simultaneously transmission SAR analysis, SAR values only considered which we did perform SAR testing on FA931204-03, and other test results were leverage from the parent model which referred to the test report number FA931204.
- 2. This device supports VoIP in GPRS, EGPRS, CDMA, WCDMA and LTE (e.g. for 3rd-party VoIP), LTE supports VoLTE operation.
- EUT will choose each GSM, WCDMA, CDMA and LTE according to the network signal condition; therefore, they will not operate simultaneously at any moment.
- 4. WLAN2.4GHz antenna and Bluetooth share the same antenna, so can't transmit simultaneously.
- 5. This device 2.4GHz WLAN support hotspot operation and Bluetooth support tethering applications.
- 6. This device 2.4GHz WLAN/ 5.2GHz WLAN/5.8GHz WLAN support hotspot operation, and 5.2GHz WLAN/5.8GHz WLAN supports WLAN Direct (GC/GO), and 5.3GHz / 5.5GHz supports WLAN Direct (GC only).
- 7. The worst case 5 GHz WLAN SAR for each configuration was used for SAR summation.
- 8. For simultaneously analysis, since the SAR summation of 3 transmitters can cover others combination of 2 transmitters, therefore in this section did not additional to evaluate 2TX combination of simultaneously transmission.
- 9. The reported SAR summation is calculated based on the same configuration and test position.
- 10. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
 - i) 1g Scalar SAR summation < 1.6W/kg and 10g Scalar SAR summation < 4.0W/kg.
 - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04 for 1g SAR, SPLSR ≤ 0.10 for 10g SAR simultaneously transmission SAR measurement is not necessary.
 - iv) Simultaneously transmission SAR measurement, and the reported multi-band 1g SAR < 1.6W/kg and 10g SAR < 4.0W/kg.
 - v) For WWAN/Bluetooth product specific 10g stand-alone SAR is not required for a transmitter or antenna, due to 1g hotspot SAR is <1.2W/kg.

Sporton International (Kunshan) Inc.

14.1 Head Exposure Conditions

<Top Antenna >

<1 op Ante			1	2	3	4	4.0	4.0.4
WWA	AN Band	Exposure Position	WWAN	2.4GHz WLAN	5GHz WLAN	Bluetooth	1+2 Summed 1g SAR	1+3+4 Summed 1g SAR
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	(W/kg)	(W/kg)
		Right Cheek	0.768	0.340	0.252	0.102	1.11	1.12
	GSM850	Left Cheek	0.367	0.530	0.999	0.128	0.90	1.49
GSM		Left Tilted	0.356	0.626	0.797	0.154	0.98	1.31
OSIVI		Right Cheek	0.979	0.340	0.252	0.102	1.32	1.33
	GSM1900	Left Cheek	0.277	0.530	0.999	0.128	0.81	1.40
		Left Tilted	0.211	0.626	0.797	0.154	0.84	1.16
		Right Cheek	0.960	0.340	0.252	0.102	1.30	1.31
	Band V	Left Cheek	0.371	0.530	0.999	0.128	0.90	1.50
		Left Tilted	0.263	0.626	0.797	0.154	0.89	1.21
		Right Cheek	1.084	0.340	0.252	0.102	1.42	1.44
WCDMA	Band IV	Left Cheek	0.325	0.530	0.999	0.128	0.86	1.45
		Left Tilted	0.256	0.626	0.797	0.154	0.88	1.21
		Right Cheek	1.026	0.340	0.252	0.102	1.37	1.38
	Band II	Left Cheek	0.288	0.530	0.999	0.128	0.82	1.42
		Left Tilted	0.218	0.626	0.797	0.154	0.84	1.17
		Right Cheek	1.050	0.340	0.252	0.102	1.39	1.40
	Band 5	Left Cheek	0.332	0.530	0.999	0.128	0.86	1.46
		Left Tilted	0.306	0.626	0.797	0.154	0.93	1.26
		Right Cheek	0.958	0.340	0.252	0.102	1.30	1.31
	Band 4	Left Cheek	0.308	0.530	0.999	0.128	0.84	1.44
		Left Tilted	0.235	0.626	0.797	0.154	0.86	1.19
		Right Cheek	1.012	0.340	0.252	0.102	1.35	1.37
LTE	Band 2	Left Cheek	0.264	0.530	0.999	0.128	0.79	1.39
		Left Tilted	0.213	0.626	0.797	0.154	0.84	1.16
		Right Cheek	1.180	0.340	0.252	0.102	1.52	<mark>1.53</mark>
	Band 7	Left Cheek	0.369	0.530	0.999	0.128	0.90	1.50
		Left Tilted	0.184	0.626	0.797	0.154	0.81	1.14
		Right Cheek	0.944	0.340	0.252	0.102	1.28	1.30
	Band 38	Left Cheek	0.366	0.530	0.999	0.128	0.90	1.49
		Left Tilted	0.168	0.626	0.797	0.154	0.79	1.12

Report No. : FA931204-03

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jun. 26, 2019 Form version. : 181113 FCC ID: 2AFZZ-XMSF10G Page 42 of 49

<Bottom Antenna >

			1	2	3	4	1+2	1+3+4
WWA	N Band	Exposure Position	WWAN	2.4GHz WLAN	5GHz WLAN	Bluetooth	Summed 1g SAR	Summed 1g SAR
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	(W/kg)	(W/kg)
		Right Cheek	0.279	0.340	0.252	0.102	0.62	0.63
	Band 5	Left Cheek	0.205	0.530	0.999	0.128	0.74	1.33
		Left Tilted	0.131	0.626	0.797	0.154	0.76	1.08
LTE	Band 2	Left Cheek	0.127	0.530	0.999	0.128	0.66	1.25
	Danu Z	Left Tilted	0.049	0.626	0.797	0.154	0.68	1.00
	Band 7	Left Cheek	0.066	0.530	0.999	0.128	0.60	1.19
	Dailu 7	Left Tilted	0.077	0.626	0.797	0.154	0.70	1.03

Report No. : FA931204-03

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jun. 26, 2019 Form version. : 181113 FCC ID: 2AFZZ-XMSF10G Page 43 of 49

14.2 Hotspot Exposure Conditions

<Top Antenna >

			1	2	3	4	1,2	1+3+4
WW	AN Band	Exposure Position	WWAN	2.4GHz WLAN	5GHz WLAN	Bluetooth	Summed	Summed 1g SAR
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	(W/kg)	(W/kg)
	Band 5	Back	0.302	0.137	0.697	0.048	0.44	1.05
	Band 5	Top side	0.196	0.254	0.317	0.057	0.45	0.57
		Back	0.140	0.137	0.697	0.048	0.28	0.89
LTE	Band 2	Left side	0.394				1+2 Summed 1g SAR (W/kg) 0.048 0.44 0.057 0.45	0.39
LIE		Top side	0.111	0.254	0.317	0.057	0.37	0.49
		Back	0.222	0.137	0.697	0.048	0.36	0.97
	Band 7	Left side	0.526				0.53	0.53
		Top side	0.136	0.254	0.317	0.057	0.39	0.51

Report No. : FA931204-03

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jun. 26, 2019 Form version. : 181113 FCC ID: 2AFZZ-XMSF10G Page 44 of 49

<Bottom Antenna>

	Artema>		1	2	3	4	1+2	1+3+4
WW	AN Band	Exposure Position	WWAN	2.4GHz WLAN	5GHz WLAN	Bluetooth	Summed 1g SAR	Summed 1g SAR
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	(W/kg)	(W/kg)
	GSM850	Back	0.355	0.137	0.697	0.048	0.49	1.10
	O3101030	Top side		0.254	0.317	0.057	0.25	0.37
GSM		Back	0.557	0.137	0.697	0.048	0.69	1.30
	GSM1900	Top side		0.254	0.317	0.057	0.25	0.37
		Bottom side	0.984				0.98	0.98
	Band V	Back	0.520	0.137	0.697	0.048	0.66	1.27
	Band V	Top side		0.254	0.317	0.057	0.25	0.37
		Back	0.535	0.137	0.697	0.048	0.67	1.28
WCDMA	Band IV	Top side		0.254	0.317	0.057	0.25	0.37
VVCDIVIA		Bottom side	0.910				0.91	0.91
		Back	0.360	0.137	0.697	0.048	0.50	1.11
	Band II	Top side		0.254	0.317	0.057	0.25	0.37
		Bottom side	0.738				0.74	0.74
		Back	0.279	0.137	0.697	0.048	0.42	1.02
	Band 5	Right side	0.441	0.102	0.315	0.033	0.54	0.79
		Top side		0.254	0.317	0.057	0.25	0.37
		Back	0.615	0.137	0.697	0.048	0.75	1.36
	Band 4	Top side		0.254	0.317	0.057	0.25	0.37
		Bottom side	1.005				1.01	1.01
		Back	0.482	0.137	0.697	0.048	0.62	1.23
LTE	Band 2	Top side		0.254	0.317	0.057	0.25	0.37
		Bottom side	0.933				0.93	0.93
		Back	0.371	0.137	0.697	0.048	0.51	1.12
	Band 7	Top side		0.254	0.317	0.057	0.25	0.37
		Bottom side	0.886				0.89	0.89
		Back	0.470	0.137	0.697	0.048	0.61	1.22
	Band 38	Top side		0.254	0.317	0.057	0.25	0.37
		Bottom side	1.109				1.11	1.11

Report No. : FA931204-03

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jun. 26, 2019 Form version. : 181113 FCC ID: 2AFZZ-XMSF10G Page 45 of 49

14.3 Body-Worn Accessory Exposure Conditions

<Top Antenna>

·			1	2	3	4	1+2	1+3+4
WWA	N Band	Exposure Position	WWAN	2.4GHz WLAN	5GHz WLAN	Bluetooth	Summed 1g SAR	Summed 1g SAR
			1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	(W/kg)	(W/kg)
	Band 5	Back	0.190	0.181	0.829	0.016	0.37	1.04
LTE	Band 2	Back	0.152	0.181	0.829	0.016	0.33	1.00
	Band 7	Front	0.256	0.144	0.105	0.021	0.40	0.38

Report No. : FA931204-03

<Bottom Antenna>

			1	2	3	4	1+2	1-	-3+4	
WWA	N Band	Exposure Position	WWAN	2.4GHz WLAN	5GHz WLAN	Bluetooth	Summed	Summed	eni en	Case
			1g SAR (W/kg)	SPLSK	No					
GSM	GSM850	Back	0.264	0.181	0.829	0.016	0.45	1.11		
GSIVI	GSM1900	Back	0.265	0.181	0.829	0.016	0.45	1.11		
	Band V	Back	0.313	0.181	0.829	0.016	0.49	1.16		
WCDMA	Band IV	Back	0.867	0.181	0.829	0.016	1.05	1.71**		
	Band II	Back	0.751	0.181	0.829	0.016	0.93	1.60**	SPLSR	
	Band 5	Back	0.331	0.181	0.829	0.016	0.51	1.18		
	Band 4	Back	0.654	0.181	0.829	0.016	0.84	1.50		
LTE	Band 2	Back	0.560	0.181	0.829	0.016	0.74	1.41		
	Band 7	Back	0.348	0.181	0.829	0.016	0.53	1.19		
	Band 38	Back	0.237	0.181	0.829	0.016	0.42	1.08	SPLSR	

Note: Above table "**" means no need to do SPLSR analysis gain, for WCDMA band II/IV and 5G WLAN/Bluetooth verified SAR value for back side are all less than original application, original SPLSR analysis can represent more conservatively for this variant report.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date : Jun. 26, 2019 FCC ID: 2AFZZ-XMSF10G Page 46 of 49 Form version. : 181113

14.4 Product specific 10g SAR Exposure Conditions

			1	2		1+2	
WWA	AN Band	Exposure Position	WWAN	5GHz WLAN	Summed	001.00	Case
			10g SAR (W/kg)	10g SAR (W/kg)	10g SAR (W/kg)	SPLSR	No
GSM	GSM1900	Bottom Side	1.860		1.86		
WCDMA	Band IV	Bottom Side	3.113		3.11		
VVCDIVIA	Band II	Bottom Side	3.292		3.29		
LTE	Band 4	Back	2.639	1.810	4.45**		
LIE	Band 2	Bottom Side	2.880		2.88		

Report No.: FA931204-03

- For Bluetooth Product specific 10g stand-alone SAR is not required for a transmitter or antenna, due to 1g hotspot SAR is <1.2W/kg.
- Above table "**" means no need to do SPLSR analysis gain, for LTE band 4 and 5G WLAN verified SAR value for 2. back side are all less than original application, original SPLSR analysis can represent more conservatively for this variant report.

Test Engineer: Nick Hu

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Jun. 26, 2019 Page 47 of 49 FCC ID: 2AFZZ-XMSF10G Form version.: 181113

15. Uncertainty Assessment

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg and highest measured 10-g SAR is less 3.75W/kg. Therefore, the measurement uncertainty table is not required in this report.

Report No.: FA931204-03

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Jun. 26, 2019 FCC ID: 2AFZZ-XMSF10G Form version.: 181113

Page 48 of 49

16. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No.: FA931204-03

- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [6] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [7] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [8] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.
- [9] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [10] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [11] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [12] FCC KDB 941225 D05A v01r02, "Rel. 10 LTE SAR Test Guidance and KDB Inquiries", Oct 2015
- [13] FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 2015.
- [14] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015

Appendix A. Plots of System Performance Check

The plots are shown as follows.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958
FCC ID: 2AFZZ-XMSF10G Page A1 of A1

Issued Date: Jun. 26, 2019 Form version: 181113

Report No. : FA931204-03

System Check_Head_835MHz

DUT: D835V2 - SN:4d151

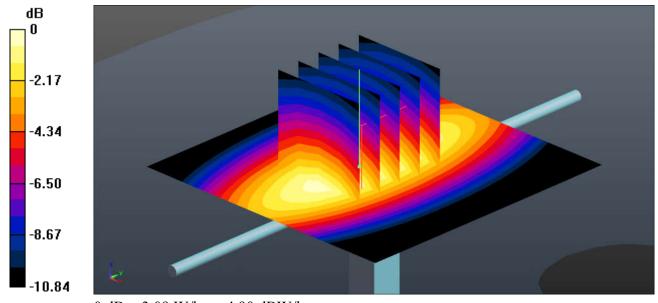
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL_835 Medium parameters used: f = 835 MHz; $\sigma = 0.904$ S/m; $\varepsilon_r = 42.015$; $\rho = 1000$

Date: 2019.6.19

 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(9.01, 9.01, 9.01); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM1; Type: SAM; Serial: TP-1839
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.06 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 53.27 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.66 W/kg

SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.57 W/kgMaximum value of SAR (measured) = 3.09 W/kg

0 dB = 3.09 W/kg = 4.90 dBW/kg

System Check_Head_1750MHz

DUT: D1750V2 - SN:1090

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

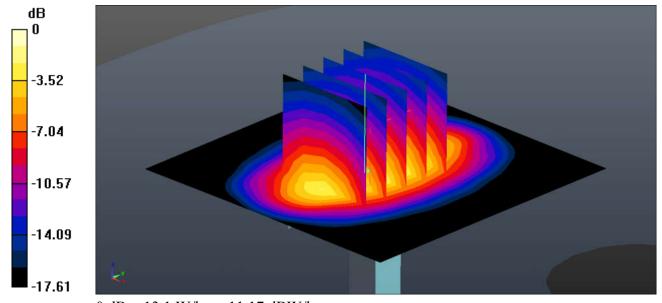
Medium: HSL_1750 Medium parameters used: f = 1750 MHz; $\sigma = 1.355$ S/m; $\varepsilon_r = 39.596$; $\rho = 1000$

Date: 2019.6.19

 kg/m^3

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:


- Probe: EX3DV4 SN3843; ConvF(7.79, 7.79, 7.79); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 13.3 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 87.15 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 9.27 W/kg; SAR(10 g) = 4.92 W/kg

Maximum value of SAR (measured) = 13.1 W/kg

0 dB = 13.1 W/kg = 11.17 dBW/kg

System Check_Head_1900MHz

DUT: D1900V2 - SN:5d170

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.402$ S/m; $\varepsilon_r = 39.391$; $\rho = 1000$

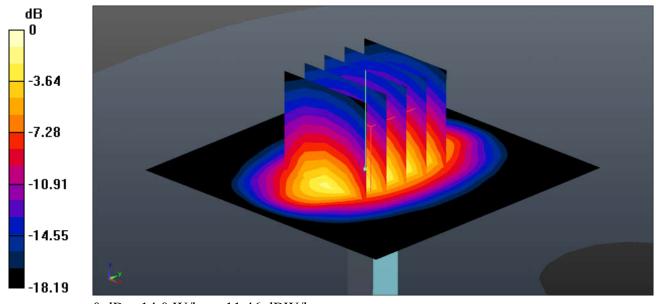
Date: 2019.6.19

 kg/m^3

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.4, 7.4, 7.4); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)


Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 14.1 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm,dy=8mm, dz=5mm Reference Value = 87.87 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 9.67 W/kg; SAR(10 g) = 5 W/kg

Maximum value of SAR (measured) = 14.0 W/kg

0 dB = 14.0 W/kg = 11.46 dBW/kg

System Check_Head_2450MHz

DUT: D2450V2 - SN:908

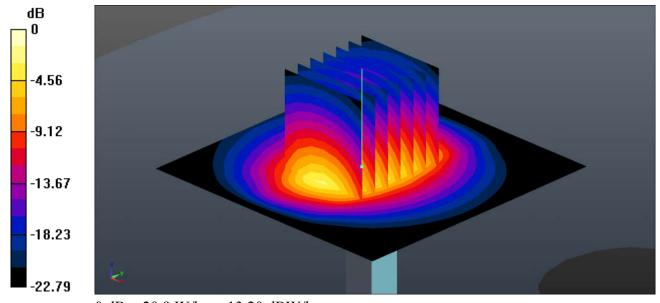
Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.86$ S/m; $\varepsilon_r = 38.914$; $\rho = 1000$

Date: 2019.6.19

 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.9 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.08, 7.08, 7.08); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Pin=250mW/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 21.2 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.74 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 28.6 W/kg

SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.15 W/kgMaximum value of SAR (measured) = 20.9 W/kg

0 dB = 20.9 W/kg = 13.20 dBW/kg

System Check_Head_2600MHz

DUT: D2600V2 - SN:1061

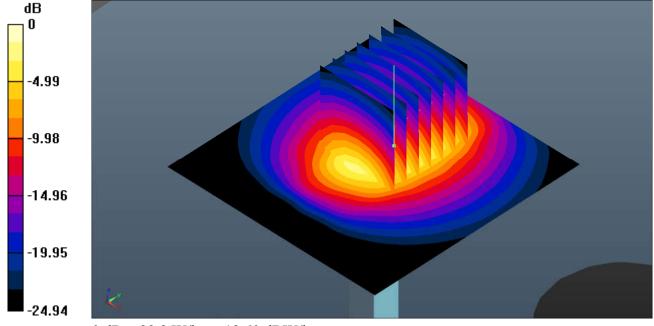
Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: HSL_2600 Medium parameters used: f = 2600 MHz; $\sigma = 1.976$ S/m; $\varepsilon_r = 39.468$; $\rho = 1000$

Date: 2019.6.21

 kg/m^3

Ambient Temperature : 23.1 °C; Liquid Temperature : 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(6.86, 6.86, 6.86); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Pin=250mW/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 23.0 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.04 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.39 W/kg Maximum value of SAR (measured) = 22.9 W/kg

0 dB = 22.9 W/kg = 13.60 dBW/kg

System Check Head_5250MHz

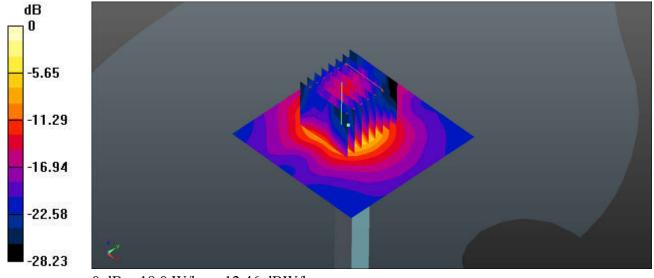
DUT: D5GHzV2-SN:1006

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: HSL_5000 Medium parameters used: f = 5250 MHz; σ = 4.647 S/m; ϵ_r = 34.972; ρ =

 1000kg/m^3

Ambient Temperature : 23.2 °C; Liquid Temperature : 22.8 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3954; ConvF(4.98, 4.98, 4.98); Calibrated: 2019.4.25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2018.12.3
- Phantom: SAM1; Type: SAM; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.0 W/kg

Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 39.03 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 32.7 W/kg SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 17.5 W/kg

0 dB = 18.0 W/kg = 12.46 dBW/kg

System Check Head 5600MHz

DUT: D5GHzV2-SN:1006

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1

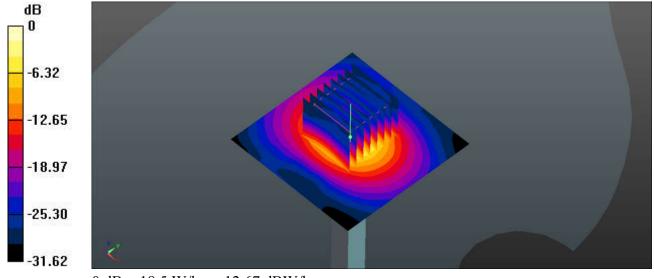
Medium: HSL_5000 Medium parameters used: f = 5600 MHz; $\sigma = 4.986$ S/m; $\epsilon_r = 34.505$; $\rho = 4.986$ S/m; $\epsilon_r = 34.505$; $\epsilon_r = 34.505$; $\epsilon_r = 34.505$

 1000kg/m^3

Ambient Temperature : 23.3 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3954; ConvF(4.51, 4.51, 4.51); Calibrated: 2019.4.25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2018.12.3
- Phantom: SAM1; Type: SAM; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)


Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.5 W/kg

Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 39.17 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 33.2 W/kg

SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.37 W/kg

Maximum value of SAR (measured) = 17.8 W/kg

0 dB = 18.5 W/kg = 12.67 dBW/kg

System Check Head 5750MHz

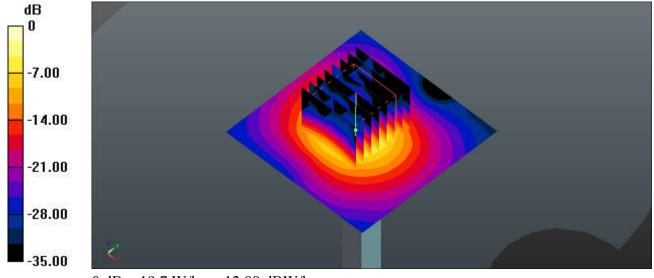
DUT: D5GHzV2-SN:1006

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1

Medium: HSL_5000 Medium parameters used: f = 5750 MHz; σ = 5.14 S/m; ϵ_r = 34.286; ρ =

 1000kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3954; ConvF(4.65, 4.65, 4.65); Calibrated: 2019.4.25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2018.12.3
- Phantom: SAM1; Type: SAM; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.7 W/kg

Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 39.81 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 34.4 W/kg SAR(1 g) = 7.93 W/kg; SAR(10 g) = 2.32 W/kg

Maximum value of SAR (measured) = 17.7 W/kg

0 dB = 19.7 W/kg = 12.88 dBW/kg

System Check_Body_835MHz

DUT: D835V2 - SN:4d151

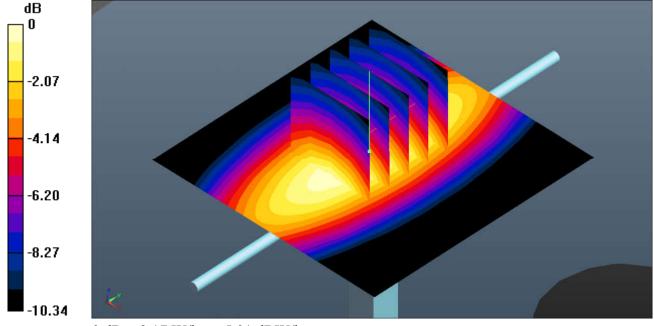
Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_835 Medium parameters used: f = 835 MHz; $\sigma = 0.998$ S/m; $\varepsilon_r = 56.478$; $\rho = 1000$

Date: 2019.6.19

 kg/m^3

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(9.03, 9.03, 9.03); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM1; Type: SAM; Serial: TP-1839
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.16 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 51.82 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.51 W/kg; SAR(10 g) = 1.65 W/kgMaximum value of SAR (measured) = 3.17 W/kg

0 dB = 3.17 W/kg = 5.01 dBW/kg

System Check_Body_1750MHz

DUT: D1750V2 - SN:1090

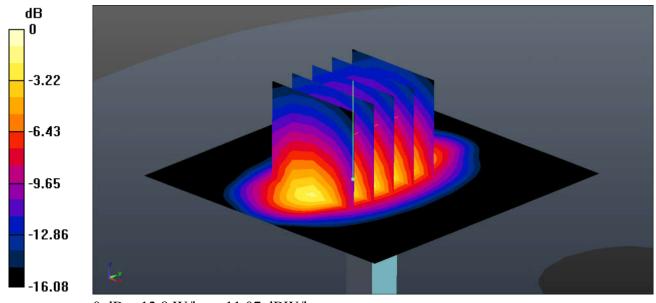
Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

Medium: MSL_1750 Medium parameters used: f = 1750 MHz; $\sigma = 1.439$ S/m; $\varepsilon_r = 53.027$; $\rho = 1000$

Date: 2019.6.19

 kg/m^3

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.41, 7.41, 7.41); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 12.9 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 81.89 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 15.9 W/kg

SAR(1 g) = 9.2 W/kg; SAR(10 g) = 4.99 W/kg Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

System Check_Body_1900MHz

DUT: D1900V2 - SN:5d170

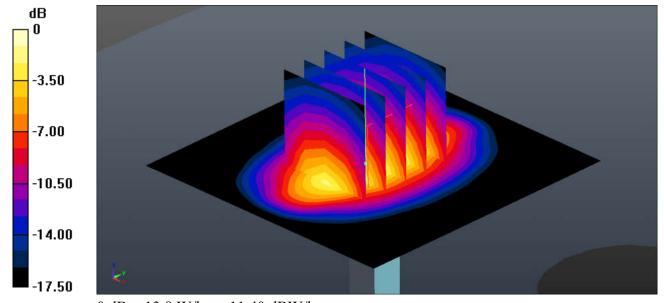
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.513$ S/m; $\varepsilon_r = 53.669$; $\rho = 1000$

Date: 2019.6.19

 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.07, 7.07, 7.07); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 13.9 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 84.83 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 9.68 W/kg; SAR(10 g) = 5.04 W/kg Maximum value of SAR (measured) = 13.8 W/kg

0 dB = 13.8 W/kg = 11.40 dBW/kg

System Check_Body_2450MHz

DUT: D2450V2 - SN:908

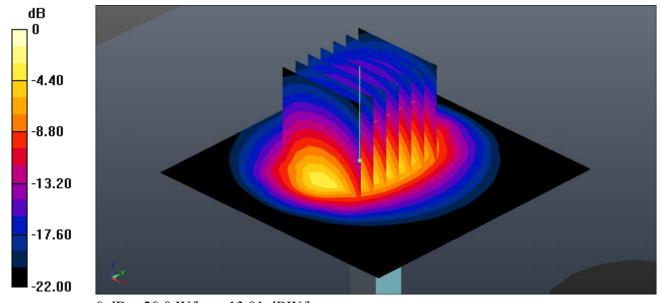
Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.992$ S/m; $\varepsilon_r = 53.992$; $\rho = 1000$

Date: 2019.6.19

 kg/m^3

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.02, 7.02, 7.02); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Pin=250mW/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 20.5 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 72.12 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.04 W/kg Maximum value of SAR (measured) = 20.0 W/kg

0 dB = 20.0 W/kg = 13.01 dBW/kg

System Check_Body_2600MHz

DUT: D2600V2 - SN:1061

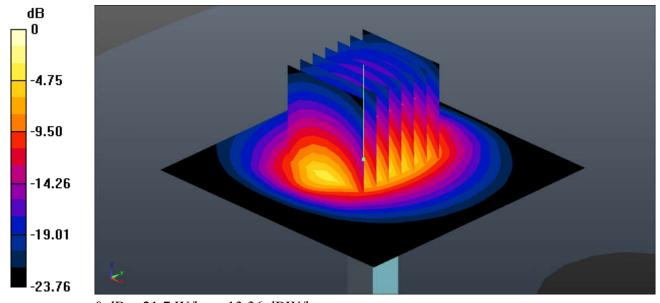
Communication System: UID 0, CW (0); Frequency: 2600 MHz; Duty Cycle: 1:1

Medium: MSL_2600 Medium parameters used: f = 2600 MHz; $\sigma = 2.203$ S/m; $\varepsilon_r = 53.413$; $\rho = 1000$

Date: 2019.6.19

 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(6.7, 6.7, 6.7); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Pin=250mW/Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 21.8 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 71.30 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 30.0 W/kg

SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.08 W/kgMaximum value of SAR (measured) = 21.7 W/kg

0 dB = 21.7 W/kg = 13.36 dBW/kg

System Check Body 5250MHz

DUT: D5GHzV2-SN:1006

Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1

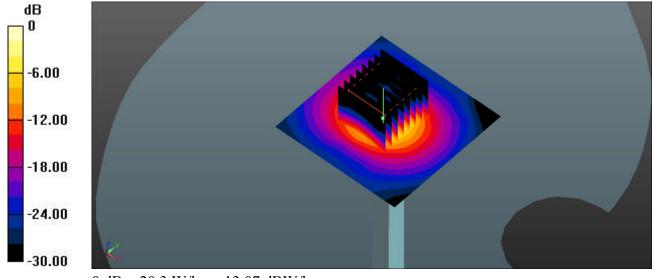
Medium: MSL_5000 Medium parameters used: f = 5250 MHz; $\sigma = 5.503$ S/m; $\varepsilon_r = 47.874$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3911; ConvF(4.67, 4.67, 4.67); Calibrated: 2019.1.22
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2018.12.3
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)


Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.2 W/kg

Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 40.13 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 35.7 W/kg

SAR(1 g) = 8.23 W/kg; SAR(10 g) = 2.31 W/kg

Maximum value of SAR (measured) = 20.3 W/kg

0 dB = 20.3 W/kg = 13.07 dBW/kg

System Check Body 5600MHz

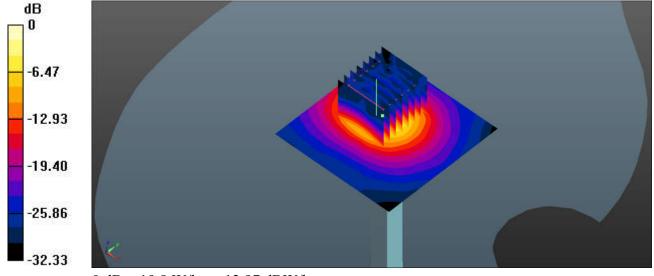
DUT: D5GHzV2-SN:1006

Communication System: UID 0, CW (0); Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: MSL_5000 Medium parameters used: f = 5600 MHz; $\sigma = 5.957$ S/m; $\varepsilon_r = 47.28$; $\rho = 1000$

 kg/m^3

Ambient Temperature : 23.2 °C; Liquid Temperature : 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3911; ConvF(4.04, 4.04, 4.04); Calibrated: 2019.1.22
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2018.12.3
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.8 W/kg

Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 22.48 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 37.5 W/kg

SAR(1 g) = **7.97 W/kg; SAR(10 g)** = **2.18 W/kg** Maximum value of SAR (measured) = 19.8 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg

System Check_Body_5750MHz

DUT: D5GHzV2-SN:1006

Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1

Medium: MSL_5000 Medium parameters used: f = 5750 MHz; $\sigma = 6.179$ S/m; $\varepsilon_r = 47.023$; $\rho = 1000$

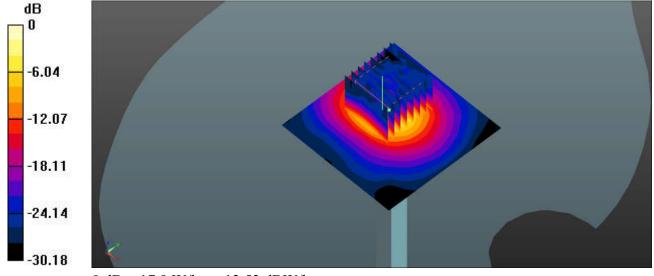
Date: 2019.6.22

kg/m³

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3911; ConvF(4.16, 4.16, 4.16); Calibrated: 2019.1.22
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2018.12.3
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)


Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 17.9 W/kg

Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 20.81 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 35.2 W/kg

SAR(1 g) = 7.22 W/kg; SAR(10 g) = 1.98 W/kg

Maximum value of SAR (measured) = 17.9 W/kg

0 dB = 17.9 W/kg = 12.53 dBW/kg

Appendix B. Plots of High SAR Measurement

Report No. : FA931204-03

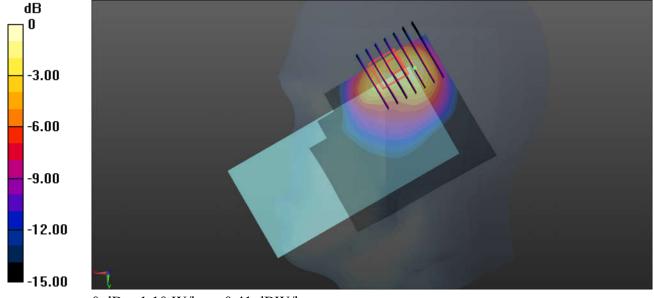
The plots are shown as follows.

Sporton International (Kunshan) Inc.

01_GSM850-UAT_GPRS 4 Tx slots_Right Cheek_0mm_Ch189

Communication System: UID 0, GSM850-4UP (0); Frequency: 836.4 MHz; Duty Cycle: 1:2.08 Medium: HSL_835 Medium parameters used: f = 836.4 MHz; $\sigma = 0.906$ S/m; $\epsilon_r = 41.986$; $\rho = 1000$ kg/m³

Date: 2019.6.19


Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(9.01, 9.01, 9.01); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM1; Type: SAM; Serial: TP-1839
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch189/Area Scan (71x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.874 W/kg

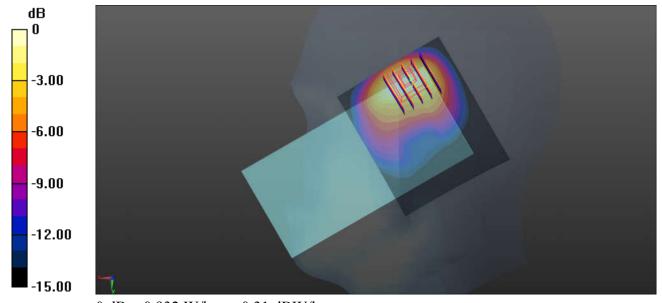
Ch189/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.95 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.41 W/kg SAR(1 g) = 0.567 W/kg; SAR(10 g) = 0.282 W/kg Maximum value of SAR (measured) = 1.10 W/kg

0 dB = 1.10 W/kg = 0.41 dBW/kg

02_GSM1900-UAT_GPRS 4 Tx slots_Right Cheek_0mm_Ch810

Communication System: UID 0, PCS-4UP (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.08 Medium: HSL_1900 Medium parameters used: f = 1910 MHz; $\sigma = 1.411$ S/m; $\epsilon_r = 39.358$; $\rho = 1000$ kg/m³

Date: 2019.6.19


Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.4, 7.4, 7.4); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch810/Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.23 W/kg

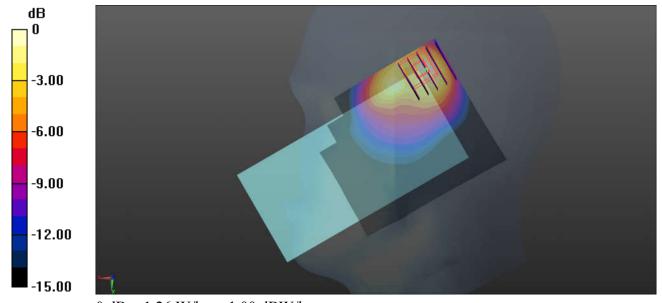
Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.87 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 1.29 W/kg SAR(1 g) = 0.677 W/kg; SAR(10 g) = 0.346 W/kg Maximum value of SAR (measured) = 0.932 W/kg

0 dB = 0.932 W/kg = -0.31 dBW/kg

03 WCDMA V-UAT RMC 12.2Kbps Right Cheek 0mm Ch4182

Communication System: UID 0, WCDMA (0); Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium: HSL_835 Medium parameters used: f = 836.4 MHz; $\sigma = 0.906$ S/m; $\epsilon_r = 41.986$; $\rho = 1000$ kg/m³

Date: 2019.6.19


Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(9.01, 9.01, 9.01); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM1; Type: SAM; Serial: TP-1839
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch4182/Area Scan (71x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.26 W/kg

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.58 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.78 W/kg SAR(1 g) = 0.737 W/kg; SAR(10 g) = 0.369 W/kg Maximum value of SAR (measured) = 1.26 W/kg

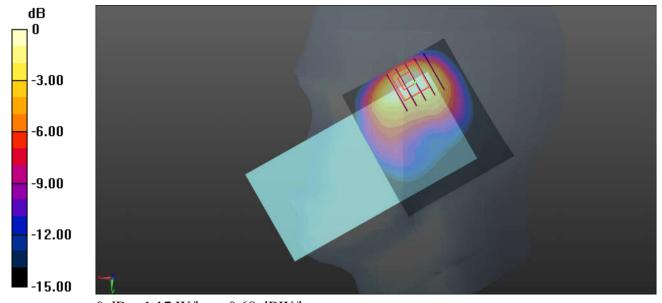
0 dB = 1.26 W/kg = 1.00 dBW/kg

04_WCDMA IV-UAT_RMC 12.2Kbps_Right Cheek_0mm_Ch1513

Communication System: UID 0, WCDMA (0); Frequency: 1752.6 MHz; Duty Cycle: 1:1 Medium: HSL_1750 Medium parameters used: f = 1753 MHz; $\sigma = 1.359$ S/m; $\epsilon_r = 39.579$; $\rho = 1000$

Date: 2019.6.19

 kg/m^3


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.79, 7.79, 7.79); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch1513/Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.48 W/kg

Ch1513/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.92 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 1.60 W/kg SAR(1 g) = 0.807 W/kg; SAR(10 g) = 0.421 W/kg Maximum value of SAR (measured) = 1.17 W/kg

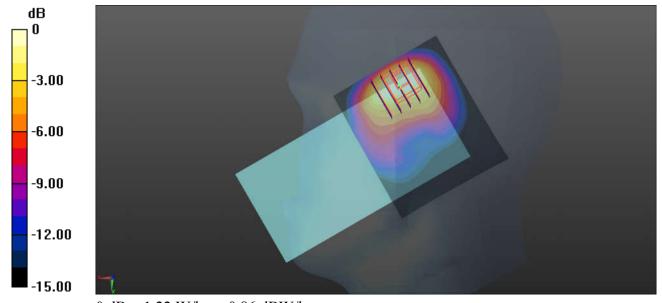
0 dB = 1.17 W/kg = 0.68 dBW/kg

05 WCDMA II-UAT RMC 12.2Kbps Right Cheek 0mm Ch9538

Communication System: UID 0, WCDMA (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1908 MHz; $\sigma = 1.409$ S/m; $\epsilon_r = 39.362$; $\rho = 1000$

Date: 2019.6.19

 kg/m^3


Ambient Temperature: 23.4°C; Liquid Temperature: 22.6°C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.4, 7.4, 7.4); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch9538/Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.53 W/kg

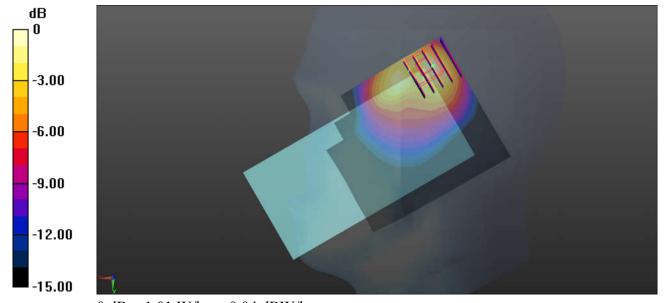
Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.56 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 1.63 W/kg SAR(1 g) = 0.834 W/kg; SAR(10 g) = 0.422 W/kg Maximum value of SAR (measured) = 1.22 W/kg

0 dB = 1.22 W/kg = 0.86 dBW/kg

06 LTE Band 5-UAT 10M QPSK 25RB 0Offset Right Cheek 0mm Ch20525

Communication System: UID 0, LTE-FDD (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: HSL_835 Medium parameters used: f = 836.5 MHz; $\sigma = 0.906$ S/m; $\varepsilon_r = 41.985$; $\rho = 1000$ kg/m³

Date: 2019.6.19


Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(9.01, 9.01, 9.01); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM1; Type: SAM; Serial: TP-1839
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch20525/Area Scan (71x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.942 W/kg

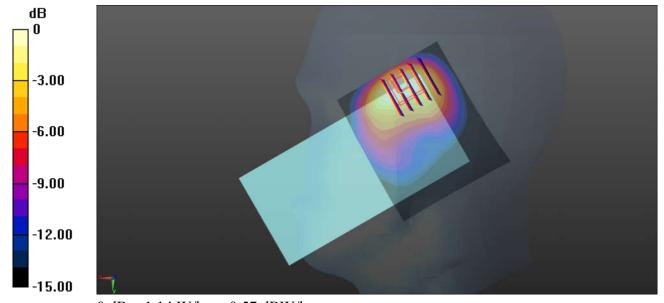
Ch20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.23 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.76 W/kg SAR(1 g) = 0.780 W/kg; SAR(10 g) = 0.396 W/kg Maximum value of SAR (measured) = 1.01 W/kg

0 dB = 1.01 W/kg = 0.04 dBW/kg

07 LTE Band 4-UAT 20M QPSK 100RB 0Offset Right Cheek 0mm Ch20175

Communication System: UID 0, LTE-FDD (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: HSL_1750 Medium parameters used: f = 1733 MHz; $\sigma = 1.338$ S/m; $\epsilon_r = 39.678$; $\rho = 1000$ kg/m³

Date: 2019.6.19


Ambient Temperature : 23.2 °C; Liquid Temperature : 22.9 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.79, 7.79, 7.79); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch20175/Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.47 W/kg

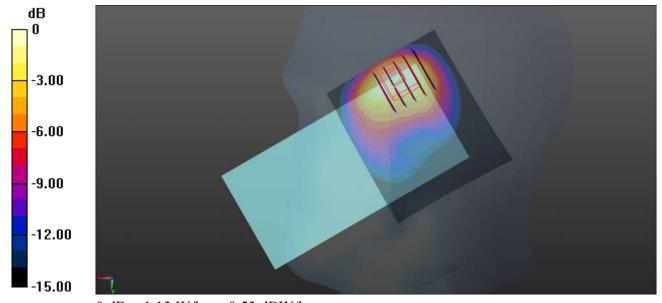
Ch20175/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.98 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.56 W/kg
SAR(1 g) = 0.791 W/kg; SAR(10 g) = 0.415 W/kg
Maximum value of SAR (measured) = 1.14 W/kg

0 dB = 1.14 W/kg = 0.57 dBW/kg

08 LTE Band 2-UAT 20M QPSK 100RB 0Offset Right Cheek 0mm Ch18900

Communication System: UID 0, LTE-FDD (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: HSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.38$ S/m; $\epsilon_r = 39.466$; $\rho = 1000$ kg/m³

Date: 2019.6.19


Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.4, 7.4, 7.4); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch18900/Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.50 W/kg

Ch18900/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.18 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 1.56 W/kg SAR(1 g) = 0.791 W/kg; SAR(10 g) = 0.404 W/kg Maximum value of SAR (measured) = 1.13 W/kg

0 dB = 1.13 W/kg = 0.53 dBW/kg

09 LTE Band 7-UAT 20M QPSK 1RB 0Offset Right Cheek 0mm Ch21350

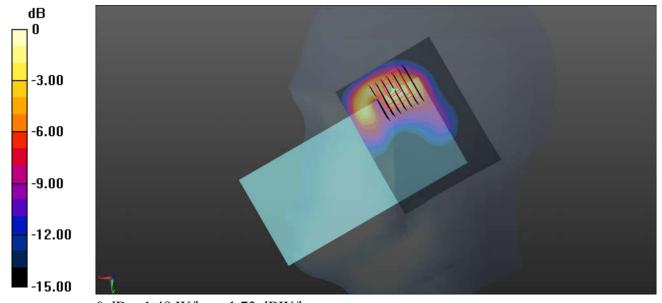
Communication System: UID 0, LTE-FDD (0); Frequency: 2560 MHz; Duty Cycle: 1:1

Medium: HSL_2600 Medium parameters used: f = 2560 MHz; $\sigma = 1.928$ S/m; $\epsilon_r = 39.619$; $\rho = 1000$

Date: 2019.6.21

 kg/m^3

Ambient Temperature : 23.1 °C; Liquid Temperature : 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(6.86, 6.86, 6.86); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch21350/Area Scan (91x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.17 W/kg

Ch21350/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.05 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 2.00 W/kg

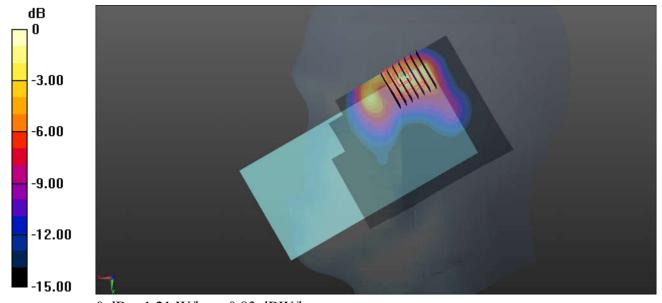
SAR(1 g) = 0.824 W/kg; SAR(10 g) = 0.349 W/kgMaximum value of SAR (measured) = 1.49 W/kg

0 dB = 1.49 W/kg = 1.73 dBW/kg

10 LTE Band 38-UAT 20M QPSK 1RB 0Offset Right Cheek 0mm Ch38000

Communication System: UID 0, LTE-TDD (0); Frequency: 2595 MHz; Duty Cycle: 1:1.59 Medium: HSL_2600 Medium parameters used: f = 2595 MHz; σ = 1.97 S/m; ϵ_r = 39.481; ρ = 1000 kg/m³

Date: 2019.6.21


Ambient Temperature : 23.1 °C; Liquid Temperature : 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(6.86, 6.86, 6.86); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch38000/Area Scan (81x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.923 W/kg

Ch38000/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.491 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 1.67 W/kg SAR(1 g) = 0.699 W/kg; SAR(10 g) = 0.296 W/kg Maximum value of SAR (measured) = 1.21 W/kg

0 dB = 1.21 W/kg = 0.83 dBW/kg

11 WLAN2.4GHz 802.11b 1Mbps Left Tilted 0mm Ant 1 Ch11

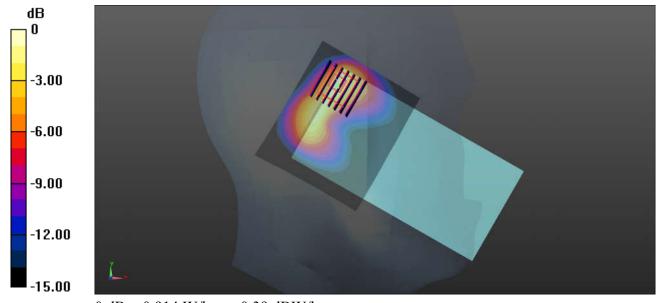
Communication System: UID 0, 802.11b (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: HSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.874$ S/m; $\varepsilon_r = 38.87$; $\rho = 1000$

Date: 2019.6.19

 kg/m^3

Ambient Temperature : 23.3 °C; Liquid Temperature : 22.9 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.08, 7.08, 7.08); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch11/Area Scan (81x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.965 W/kg

Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 18.60 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 1.32 W/kg SAR(1 g) = 0.529 W/kg; SAR(10 g) = 0.233 W/kg

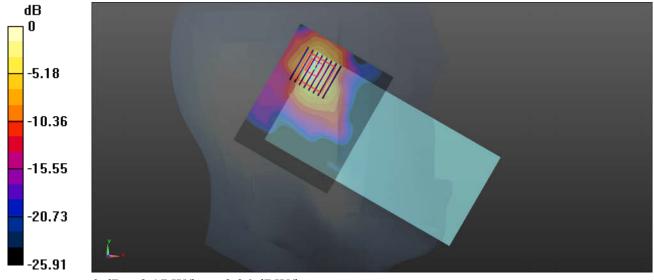
Maximum value of SAR (measured) = 0.914 W/kg

0 dB = 0.914 W/kg = -0.39 dBW/kg

12 WLAN5GHz 802.11a 6Mbps Left Cheek 0mm Ant 1 Ch56

Communication System: UID 0, 802.11a (0); Frequency: 5280 MHz; Duty Cycle: 1:1.021 Medium: HSL 5000 Medium parameters used: f = 5280 MHz; σ = 4.677 S/m; ϵ_r = 34.965; ρ = 1000 kg/m³

Date: 2019.6.21


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3954; ConvF(4.98, 4.98, 4.98); Calibrated: 2019.4.25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2018.12.3
- Phantom: SAM1; Type: SAM; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch56/Area Scan (101x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.09 W/kg

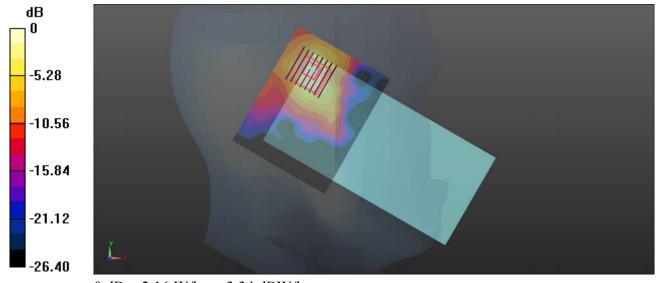
Ch56/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 6.041 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 0.895 W/kg; SAR(10 g) = 0.295 W/kg Maximum value of SAR (measured) = 2.17 W/kg

0 dB = 2.17 W/kg = 3.36 dBW/kg

13 WLAN5GHz 802.11a 6Mbps Left Cheek 0mm Ant 1 Ch100

Communication System: UID 0, 802.11a (0); Frequency: 5500 MHz; Duty Cycle: 1:1.021 Medium: HSL 5000 Medium parameters used: f = 5500 MHz; σ = 4.883 S/m; ϵ_r = 34.644; ρ = 1000 kg/m³

Date: 2019.6.21


Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3954; ConvF(4.51, 4.51, 4.51); Calibrated: 2019.4.25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2018.12.3
- Phantom: SAM1; Type: SAM; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch100/Area Scan (101x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.78 W/kg

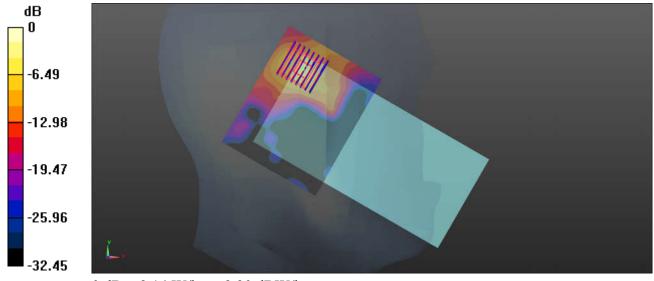
Ch100/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 6.410 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.74 W/kg SAR(1 g) = 0.844 W/kg; SAR(10 g) = 0.289 W/kg Maximum value of SAR (measured) = 2.16 W/kg

0 dB = 2.16 W/kg = 3.34 dBW/kg

14 WLAN5GHz 802.11a 6Mbps Left Cheek 0mm Ant 1 Ch161

Communication System: UID 0, 802.11a (0); Frequency: 5805 MHz; Duty Cycle: 1:1.021 Medium: HSL 5000 Medium parameters used: f = 5805 MHz; σ = 5.197 S/m; ϵ_r = 34.221; ρ = 1000 kg/m³

Date: 2019.6.21


Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3954; ConvF(4.65, 4.65, 4.65); Calibrated: 2019.4.25
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2018.12.3
- Phantom: SAM1; Type: SAM; Serial: TP-1697
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch161/Area Scan (101x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.18 W/kg

Ch161/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 4.463 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 4.20 W/kg SAR(1 g) = 0.723 W/kg; SAR(10 g) = 0.171 W/kg Maximum value of SAR (measured) = 2.14 W/kg

0 dB = 2.14 W/kg = 3.30 dBW/kg

15_Bluetooth_1Mbps_Left Tilted_0mm_Ant 1_Ch78

Communication System: UID 0, Bluetooth (0); Frequency: 2480 MHz; Duty Cycle: 1:1.3

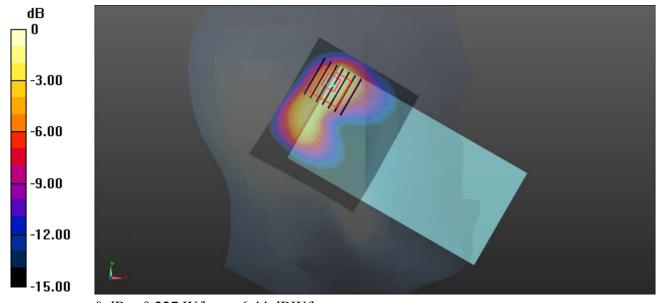
Medium: HSL_2450 Medium parameters used: f = 2480 MHz; $\sigma = 1.895$ S/m; $\varepsilon_r = 38.797$; $\rho = 1000$

Date: 2019.6.19

 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.9 °C

DASY5 Configuration:


- Probe: EX3DV4 SN3843; ConvF(7.08, 7.08, 7.08); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch78/Area Scan (81x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.224 W/kg

Ch78/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.305 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.320 W/kg

SAR(1 g) = 0.130 W/kg; SAR(10 g) = 0.058 W/kgMaximum value of SAR (measured) = 0.227 W/kg

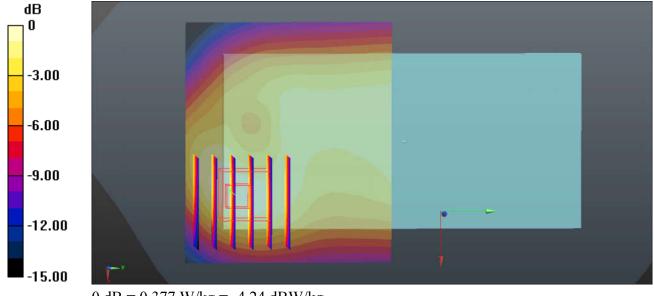
0 dB = 0.227 W/kg = -6.44 dBW/kg

16_GSM850-LAT_GPRS 4 Tx slots_Back_10mm_Ch189

Communication System: UID 0, GSM850-4UP (0); Frequency: 836.4 MHz; Duty Cycle: 1:2.08 Medium: MSL_835 Medium parameters used: f = 836.4 MHz; $\sigma = 1$ S/m; $\epsilon_r = 56.462$; $\rho = 1000$ kg/m³

Date: 2019.6.19

Ambient Temperature : 23.2 °C; Liquid Temperature : 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(9.03, 9.03, 9.03); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM1; Type: SAM; Serial: TP-1839
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch189/Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.400 W/kg

Ch189/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.60 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.474 W/kg SAR(1 g) = 0.263 W/kg; SAR(10 g) = 0.157 W/kg

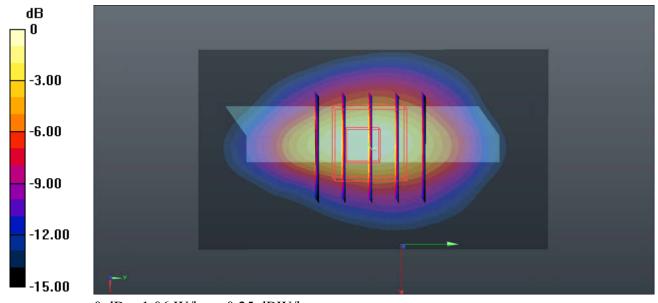
Maximum value of SAR (measured) = 0.377 W/kg

0 dB = 0.377 W/kg = -4.24 dBW/kg

17_GSM1900-LAT_GPRS 4 Tx slots_Bottom Side_10mm_Ch810

Communication System: UID 0, PCS-4UP (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.08 Medium: MSL_1900 Medium parameters used: f = 1910 MHz; $\sigma = 1.523$ S/m; $\epsilon_r = 53.685$; $\rho = 1000$ kg/m³

Date: 2019.6.19


Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.07, 7.07, 7.07); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch810/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.11 W/kg

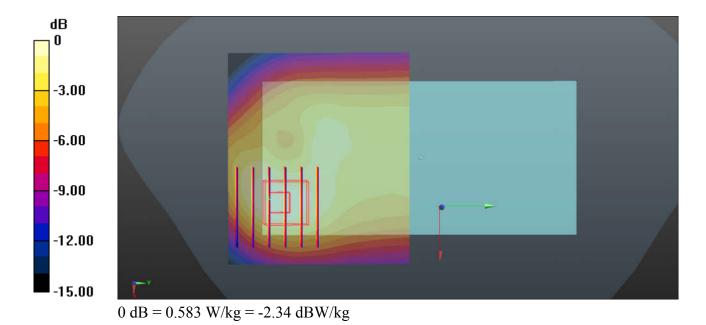
Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.39 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.682 W/kg; SAR(10 g) = 0.355 W/kg Maximum value of SAR (measured) = 1.06 W/kg

0 dB = 1.06 W/kg = 0.25 dBW/kg

18_WCDMA V-LAT_RMC 12.2Kbps_Back_10mm_Ch4182

Communication System: UID 0, WCDMA (0); Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium: MSL_835 Medium parameters used: f = 836.4 MHz; $\sigma = 1$ S/m; $\epsilon_r = 56.462$; $\rho = 1000$ kg/m³

Date: 2019.6.19


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(9.03, 9.03, 9.03); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM1; Type: SAM; Serial: TP-1839
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

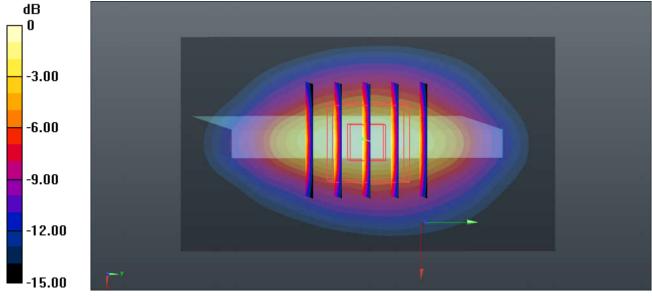
Ch4182/Area Scan (71x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.614 W/kg

Ch4182/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 18.87 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.707 W/kg SAR(1 g) = 0.412 W/kg; SAR(10 g) = 0.255 W/kg Maximum value of SAR (measured) = 0.583 W/kg

19_WCDMA IV-LAT_RMC 12.2Kbps_Bottom Side_10mm_Ch1413

Communication System: UID 0, WCDMA (0); Frequency: 1732.6 MHz; Duty Cycle: 1:1 Medium: MSL_1750 Medium parameters used: f = 1733 MHz; $\sigma = 1.419$ S/m; $\epsilon_r = 53.091$; $\rho = 1000$ kg/m³

Date: 2019.6.19


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.41, 7.41, 7.41); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch1413/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.08 W/kg

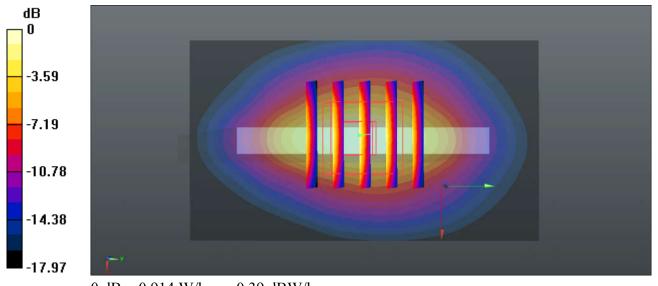
Ch1413/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 27.76 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 1.20 W/kg SAR(1 g) = 0.695 W/kg; SAR(10 g) = 0.375 W/kg Maximum value of SAR (measured) = 1.02 W/kg

0 dB = 1.02 W/kg = 0.09 dBW/kg

20_WCDMA II-LAT_RMC 12.2Kbps_Bottom Side_10mm_Ch9262

Communication System: UID 0, WCDMA (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: MSL_1900 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.446$ S/m; $\varepsilon_r = 53.862$; $\rho = 1000$ kg/m³

Date: 2019.6.19


Ambient Temperature : 23.3 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.07, 7.07, 7.07); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch9262/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mmMaximum value of SAR (interpolated) = 0.971 W/kg

Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 25.78 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.08 W/kg SAR(1 g) = 0.614 W/kg; SAR(10 g) = 0.323 W/kg Maximum value of SAR (measured) = 0.914 W/kg

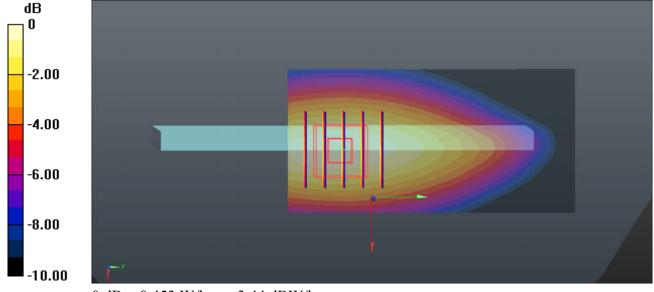
0 dB = 0.914 W/kg = -0.39 dBW/kg

21 LTE Band 5-LAT 10M QPSK 1RB 0Offset Right Side 10mm Ch20525

Communication System: UID 0, LTE-FDD (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: MSL_835 Medium parameters used: f = 836.5 MHz; $\sigma = 1$ S/m; $\epsilon_r = 56.461$; $\rho = 1000$ kg/m³

Date: 2019.6.19

Ambient Temperature : 23.2 °C; Liquid Temperature : 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(9.03, 9.03, 9.03); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM1; Type: SAM; Serial: TP-1839
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch20525/Area Scan (41x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.453 W/kg

Ch20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.68 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.525 W/kg SAR(1 g) = 0.336 W/kg; SAR(10 g) = 0.229 W/kg

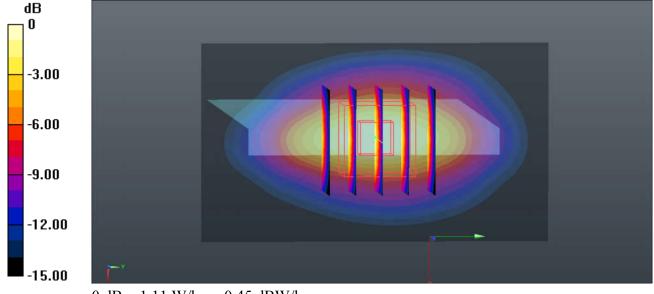
Maximum value of SAR (measured) = 0.453 W/kg

0 dB = 0.453 W/kg = -3.44 dBW/kg

22 LTE Band 4-LAT 20M QPSK 50RB 0Offset Bottom Side 10mm Ch20175

Communication System: UID 0, LTE-FDD (0); Frequency: 1732.5 MHz; Duty Cycle: 1:1 Medium: MSL_1750 Medium parameters used: f = 1733 MHz; $\sigma = 1.419$ S/m; $\epsilon_r = 53.091$; $\rho = 1000$ kg/m³

Date: 2019.6.19


Ambient Temperature: 23.2 °C; Liquid Temperature: 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.41, 7.41, 7.41); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch20175/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.19 W/kg

Ch20175/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 29.01 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.30 W/kg SAR(1 g) = 0.754 W/kg; SAR(10 g) = 0.407 W/kg Maximum value of SAR (measured) = 1.11 W/kg

0 dB = 1.11 W/kg = 0.45 dBW/kg

23 LTE Band 2-LAT 20M QPSK 50RB 0Offset Bottom Side 10mm Ch18700

Communication System: UID 0, LTE-FDD (0); Frequency: 1860 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1860 MHz; $\sigma = 1.456$ S/m; $\varepsilon_r = 53.801$; $\rho = 1000$

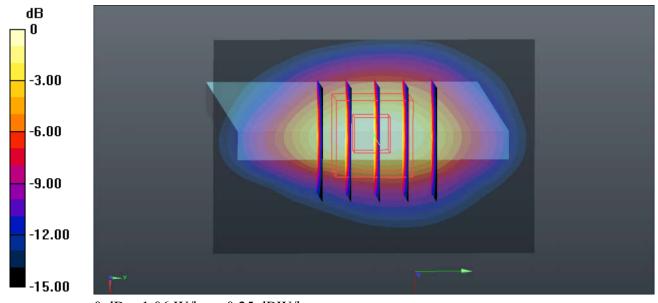
Date: 2019.6.19

 kg/m^3

Ambient Temperature: 23.3 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.07, 7.07, 7.07); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)


Ch18700/Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.09 W/kg

Ch18700/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.60 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.701 W/kg; SAR(10 g) = 0.368 W/kg

Maximum value of SAR (measured) = 1.06 W/kg

0 dB = 1.06 W/kg = 0.25 dBW/kg

24 LTE Band 7 20M QPSK 100RB 0Offset Bottom Side 10mm Ch21100

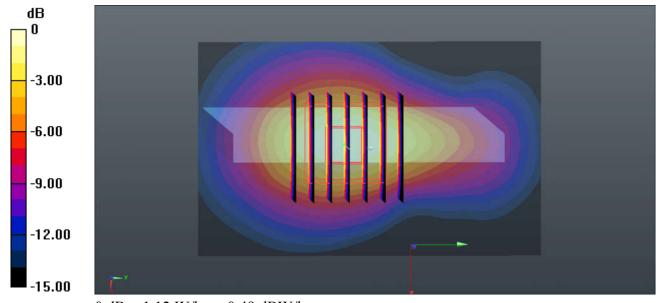
Communication System: UID 0, LTE-FDD (0); Frequency: 2535 MHz; Duty Cycle: 1:1 Medium: MSL_2600 Medium parameters used: f = 2535 MHz; σ = 2.109 S/m; ϵ_r = 53.649; ρ = 1000

Date: 2019.6.19

 kg/m^3

Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 °C

DASY5 Configuration:


- Probe: EX3DV4 SN3843; ConvF(6.7, 6.7, 6.7); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch21100/Area Scan (51x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.16 W/kg

Ch21100/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.112 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.37 W/kg

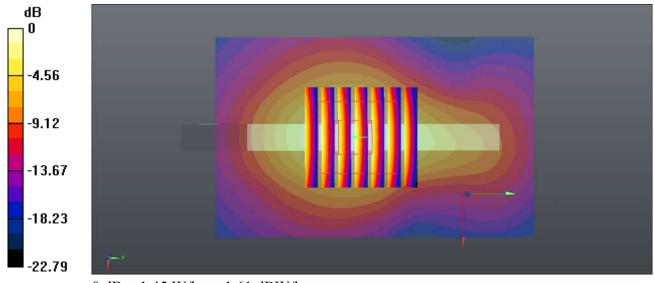
SAR(1 g) = 0.696 W/kg; SAR(10 g) = 0.341 W/kgMaximum value of SAR (measured) = 1.12 W/kg

0 dB = 1.12 W/kg = 0.49 dBW/kg

25 LTE Band 38-LAT 20M QPSK 1RB 0Offset Bottom Side 10mm Ch38000

Communication System: UID 0, LTE-TDD (0); Frequency: 2595 MHz; Duty Cycle: 1:1.59 Medium: MSL_2600 Medium parameters used: f = 2595 MHz; σ = 2.196 S/m; ϵ_r = 53.435; ρ = 1000 kg/m³

Date: 2019.6.19


Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(6.7, 6.7, 6.7); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch38000/Area Scan (51x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.50 W/kg

Ch38000/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.469 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.79 W/kg SAR(1 g) = 0.894 W/kg; SAR(10 g) = 0.432 W/kg Maximum value of SAR (measured) = 1.45 W/kg

0 dB = 1.45 W/kg = 1.61 dBW/kg

26_WLAN2.4GHz_802.11b 1Mbps_Top Side_10mm_Ch11

Communication System: UID 0, 802.11b (0); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 2.009$ S/m; $\varepsilon_r = 53.952$; $\rho = 1000$

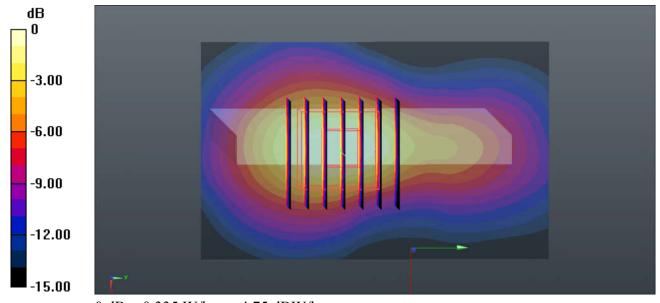
Date: 2019.6.19

 kg/m^3

Ambient Temperature : 23.2 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.02, 7.02, 7.02); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)


Ch11/Area Scan (51x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.348 W/kg

Ch11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.079 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.406 W/kg

SAR(1 g) = 0.215 W/kg; SAR(10 g) = 0.108 W/kg

Maximum value of SAR (measured) = 0.335 W/kg

0 dB = 0.335 W/kg = -4.75 dBW/kg

Communication System: UID 0, 802.11a (0); Frequency: 5220 MHz; Duty Cycle: 1:1.021

Medium: MSL_5000 Medium parameters used: f = 5220 MHz; $\sigma = 5.463$ S/m; $\varepsilon_r = 47.885$; $\rho = 1000$

Date: 2019.6.22

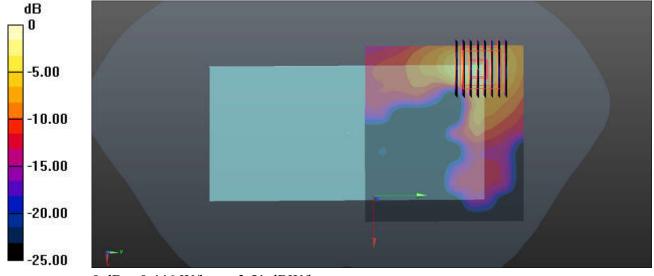
 kg/m^3

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3911; ConvF(4.67, 4.67, 4.67); Calibrated: 2019.1.22
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2018.12.3
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch44/Area Scan (101x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.446 W/kg


Ch44/Zoom Scan (9x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 0.8460 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.748 W/kg

SAR(1 g) = 0.191 W/kg; SAR(10 g) = 0.063 W/kg

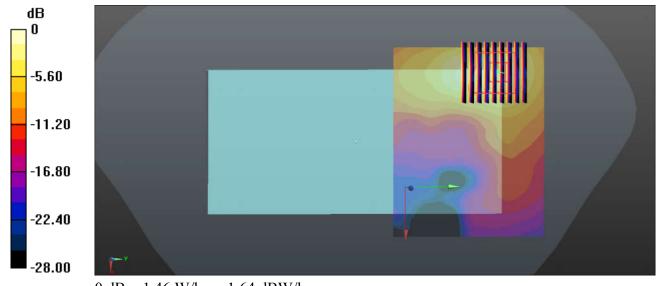
Maximum value of SAR (measured) = 0.459 W/kg

0 dB = 0.446 W/kg = -3.51 dBW/kg

28_WLAN5GHz_802.11a 6Mbps_Back_10mm_Ant 1_Ch161

Communication System: UID 0, 802.11a (0); Frequency: 5805 MHz; Duty Cycle: 1:1.021 Medium: MSL_5000 Medium parameters used: f = 5805 MHz; $\sigma = 6.248$ S/m; $\epsilon_r = 46.962$; $\rho = 1000$ kg/m³

Date: 2019.6.22


Ambient Temperature : 23.2 °C; Liquid Temperature : 22.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3911; ConvF(4.16, 4.16, 4.16); Calibrated: 2019.1.22
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1338; Calibrated: 2018.12.3
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch161/Area Scan (101x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.39 W/kg

Ch161/Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 3.068 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 2.58 W/kg SAR(1 g) = 0.617 W/kg; SAR(10 g) = 0.235 W/kg Maximum value of SAR (measured) = 1.46 W/kg

0 dB = 1.46 W/kg = 1.64 dBW/kg

29_Bluetooth_1Mbps_Top Side_10mm_Ch78

Communication System: UID 0, Bluetooth (0); Frequency: 2480 MHz; Duty Cycle: 1:1.3

Medium: MSL_2450 Medium parameters used: f = 2480 MHz; $\sigma = 2.033$ S/m; $\varepsilon_r = 53.884$; $\rho = 1000$

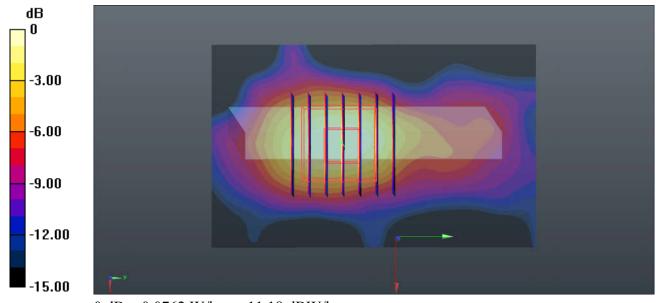
Date: 2019.6.19

 kg/m^3

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(7.02, 7.02, 7.02); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM2; Type: SAM; Serial: TP-1503
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)


Ch78/Area Scan (51x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0764 W/kg

Ch78/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.195 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.0940 W/kg

SAR(1 g) = 0.048 W/kg; SAR(10 g) = 0.024 W/kg

Maximum value of SAR (measured) = 0.0762 W/kg

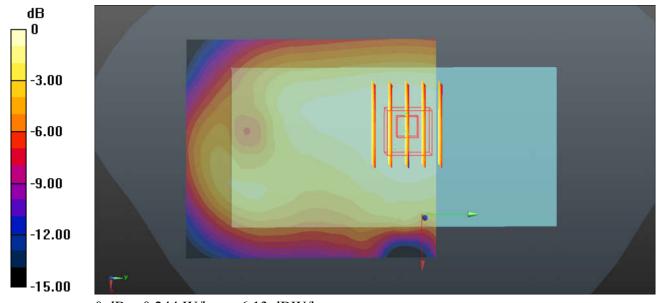
0 dB = 0.0762 W/kg = -11.18 dBW/kg

30_GSM850-LAT_GPRS 4 Tx slots_Back_15mm_Ch189

Communication System: UID 0, GSM850-4UP (0); Frequency: 836.4 MHz; Duty Cycle: 1:2.08 Medium: MSL_835 Medium parameters used: f = 836.4 MHz; $\sigma = 1$ S/m; $\epsilon_r = 56.462$; $\rho = 1000$ kg/m³

Date: 2019.6.19

Ambient Temperature: 23.2 °C; Liquid Temperature: 22.7 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3843; ConvF(9.03, 9.03, 9.03); Calibrated: 2018.9.27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1279; Calibrated: 2018.10.22
- Phantom: SAM1; Type: SAM; Serial: TP-1839
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

Ch189/Area Scan (71x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.248 W/kg

Ch189/Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.93 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.273 W/kg SAR(1 g) = 0.196 W/kg; SAR(10 g) = 0.149 W/kg

Maximum value of SAR (measured) = 0.149 W/kg

0 dB = 0.244 W/kg = -6.13 dBW/kg