

Page 1 of 34

Report No.: 1610280464RFC-2

FCC TEST REPORT

Product

Mobile Phone

Trade mark

: MI

Model/Type reference

2016102

Report Number

1610280464RFC-2

Date of Issue

Dec. 08, 2016

FCC ID

: 2AFZZ-RT6102

Test Standards

FCC 47 CFR Part 15 Subpart C

Test result

PASS

Prepared for:

Xiaomi Communications Co., Ltd.
The Rainbow City of China Resources, NO.68, Qinghe Middle Street,
Haidian District, Beijing, China

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd. 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China

TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Tested by:

Levin Linny

Reviewed by:

Date:

Jim Long

Kevin Liang

Senior Engineer

Senior Supervisor

Approved by:

(3)

* Consisted

Technical Director

Billy Li

Page 2 of 34

Report No.: 1610280464RFC-2

Version

Version No.	Date	Description	
V1.0	Dec. 08, 2016	Original	

Content

			Page
1	GEN	ERAL INFORMATION	4
	1.1	CLIENT INFORMATION	4
	1.2	GENERAL DESCRIPTION OF EUT	
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
	1.4	DESCRIPTION OF SUPPORT UNITS	5
	1.5	TEST LOCATION	
	1.6	TEST FACILITY	
	1.7	DEVIATION FROM STANDARDS	6
	1.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	1.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
		MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=1.96)	
2	TES	T SUMMARY	7
3	EQU	IPMENT LIST	8
4	TES	T REQUIREMENT	10
	4.1	TEST SETUP	10
	7.1	4.1.1 For Conducted test setup	
		4.1.2 For Radiated Emissions test setup	
		4.1.3 For Conducted Emissions test setup	
	4.2	TEST ENVIRONMENT	
	4.3	SYSTEM TEST CONFIGURATION	11
	4.4	TEST CONDITION	
		4.4.1 Test channel	
		4.4.2 Duty Cycle	12
5	RAD	IO TECHNICAL REQUIREMENTS SPECIFICATION	13
	5.1	ANTENNA REQUIREMENT	13
	5.2	CONDUCTED PEAK OUTPUT POWER	14
	5.3	6DB BANDWIDTH	15
	5.4	POWER SPECTRAL DENSITY	
	5.5	CONDUCTED OUT OF BAND EMISSION	
	5.6	RADIATED SPURIOUS EMISSIONS	
		5.6.1 Radiated Emission Test Data (9 KHz ~ 30MHz)	
		5.6.2 Radiated Emission Test Data (Above 18 GHz)	
		5.6.3 Radiated Emission Test Data (30MHz ~ 1 GHz Worst Case)	
	E 7	5.6.4 Radiated Emission Test Data (1GHz ~ 18GHz)	
	5.7 5.8	CONDUCTED EMISSIONS	
		IX 1 PHOTOGRAPHS OF TEST SETUP	
AP	PEND	IX 2 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	34

Page 4 of 34 Report No.: 1610280464RFC-2

1 General Information

1.1 Client Information

Applicant:	Xiaomi Communications Co., Ltd.
Address of Applicant:	The Rainbow City of China Resources, NO.68, Qinghe Middle Street, Haidian District, Beijing, China
Manufacturer:	Xiaomi Communications Co., Ltd.
Address of Manufacturer:	The Rainbow City of China Resources, NO.68, Qinghe Middle Street, Haidian District, Beijing, China

1.2 General Description of EUT

2 General Description of Lot					
Product Name:	Mobile Phone	Mobile Phone			
Model No.(EUT):	2016102				
Add Model No.:	N/A				
Trade Mark:	MI				
EUT Supports Radios application:	GSM850/900/1800/1900 WCDMA Band I/Band II/Band V/Band VIII LTE FDD Band 1 /Band 3 /Band 4 /Band 5 /Band 7 /Band 8 /Band 20 LTE TDD Band 38 /Band 40 Wlan 2400MHz-2483.5MHz 802.11b/g/n(HT20&HT40) Wlan 5150MHz-5350MHz, 5470MHz-5725MHz, 5725MHz-5850MHz only support 802.11a Bluetooth V3.0+EDR&Bluetooth V4.0 BLE GPS, Glonass				
Power Supply:	AC adapter	Model: MDY-08-EF Input: 100-240V~50/60Hz 0.35A MAX Output: DC 5.0V == 2000mA			
	Battery Model: BN43 Brand: MI Rated Voltage: 3.85Vdc Battery Capacity: 4000mAh(Li-on Recha				
USB Micro-B Plug cable:	: 117cm(Shielded without ferrite)				
Sample Received Date:	Sep. 12, 2016				
Sample Tested Date:	Sep. 22, 2016 ~ Dec	c. 08, 2016			
Sample Tested Date:	Sep. 22, 2016 ~ Dec	c. 08, 2016			

1.3 Product Specification subjective to this standard

Operation Frequency:	2400MHz-2483.5MHz
Bluetooth Version:	V4.0 BLE
Modulation Technique:	DTS
Modulation Type:	GFSK
Number of Channel:	40
Channel Separation:	2MHz
Sample Type:	Portable device
Antenna Type:	LDS Antenna
Antenna Gain:	0.96 dBi
Normal Test Voltage:	3.85Vdc
Software Version:	MIUI8
Hardware Version:	P3

Page 5 of 34 Report No.: 1610280464RFC-2

	Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

1.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Serial Number	Supplied by
Notebook	Lenovo	E450	SL10G10780	UnionTrust

2) Cable

Cable No.	Description	Connector Type	Cable Type/Length	Supplied by
1	Antenna Cable	SMA	30cm	UnionTrust

1.5 Test Location

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1,

Longhua New District, Shenzhen, China 518109

Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

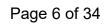
Tests were sub-contracted. (FCC 47 CFR Part 15 Subpart C Section 15.205/15.207/15.209) Compliance Certification Services (Shenzhen) Inc.

No.10-1 Mingkeda Logistics Park, No.18 Huanguan South RD. Guan Ian Town, Baoan Distr, Shenzhen, Guangdong, China.

Tel: 86 0755 28055000 Fax: 86 0755 29055221

1.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:


Shenzhen UnionTrust Quality and Technology Co., Ltd.

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC/EN 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

Compliance Certification Services (Shenzhen) Inc.

FCC Registration Number is 441872.

1.7 **Deviation from Standards**

None.

Abnormalities from Standard Conditions 1.8

1.9 Other Information Requested by the Customer

1.10 Measurement Uncertainty (95% confidence levels, k=1.96)

No.	Item	Measurement Uncertainty
1	Radio Frequency	±6.3 x 10-8
2	RF power, conducted	±0.52 dB
3	Spurious emissions, radiated (Below 1GHz)	±5.3 dB
3	Spurious emissions, radiated (Above 1GHz)	±5.1 dB
4	Conduction emission (9KHz~150KHz)	±3.8 dB
4	Conduction emission (150KHz~30MHz)	±3.4 dB
5	Temperature	±0.64 °C
6	Humidity	±2.8 %
7	Supply voltages	±0.49 %

Page 7 of 34 Report No.: 1610280464RFC-2

2 Test Summary

Tests for radiated and conducted emissions were performed. All measurements were performed according to the 2013 version of ANSI C63.10

the 2013 version of ANSI Co3.10						
Test Item	Test Requirement	Test method	Result			
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS			
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS*			
Conducted Peak Output Power	FCC 47 CFR Part 15 Subpart C Section 15.247 (b)(3)	KDB 558074 D01 v03r05, Section 9.1.2	PASS			
6dB Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(2)	KDB 558074 D01 v03r05, Section 8.1	PASS			
Power Spectral Density	FCC 47 CFR Part 15 Subpart C Section 15.247 (e)	KDB 558074 D01 v03r05, Section 10.2	PASS			
Conducted Out of Band Emission	FCC 47 CFR Part 15 Subpart C Section 15.247(d)	KDB 558074 D01 v03r05, Section 11	PASS			
Radiated Spurious Emissions	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	KDB 558074 D01 v03r05, Section 12.1	PASS*			
Band Edge Measurements (Radiated)	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	KDB 558074 D01 v03r05, Section 12.1	PASS*			

Remark:

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel.

"*": In this whole report "*" means tests were sub-contracted Item.

3 Equipment List

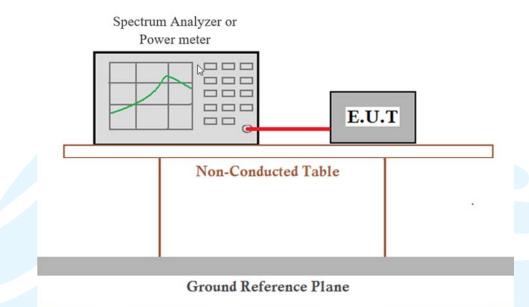
	3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Due date (mm-dd-yyyy)	Cal. Interval		
PSA Series Spectrum Analyzer	Agilent	E4446A	US44300399	02-20-2017	1 Year		
Turn Table	N/A	N/A	N/A	N.C.R	N.C.R		
Controller	Sunol Sciences	SC104V	022310-1	N.C.R	N.C.R		
Controller	СТ	N/A	N/A	N.C.R	N.C.R		
Bilog Antenna	SCHAFFNER	CBL6143	5063	02-21-2017	1 Year		
Horn Antenna	SCHWARZBECK	BBHA9120	D286	02-20-2017	1 Year		
Loop Antenna	COM-POWER	AL-130	121044	02-20-2017	1 Year		
High Noise Amplifier	Agilent	8449B	3008A01838	02-21-2017	1 Year		
Horn Antenna	Schwarzbeck	BBHA9120	D286	02-21-2017	1 Year		
Temp. / Humidity Meter	Anymetre	JR913	N/A	02-21-2017	N.C.R		
Antenna Tower	SUNOL	TLT2	N/A	N.C.R	N.C.R		
Test S/W	FARAO	LZ-RF / CCS-SZ-3A2					

Conducted Emission test						
Equipment Manufacturer Model No. Serial Number Cal. Due date (mm-dd-yyyy) Cal. Interva					Cal. Interval	
EMI Test Receiver	R&S	ESCI	100783	02-21-2017	1 Year	
L.I.S.N	R&S	ENV216	101543-WX	02-21-2017	N.C.R	

	RF test system/ Conducted RF test								
Used Equipment		Manufacturer Model No. Serial Number			Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
\boxtimes	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	01-27-2016	01-26-2017			
\boxtimes	Receiver	R&S	ESR7	1316.3003K07 -101181-K3	02-23-2016	02-22-2017			
	Receiver	R&S	ESIB26	100114	08-06-2015	08-05-2017			
	USB Wideband KEYSI Power Sensor		U2021XA	MY55430035	01-09-2016	01-08-2017			
\boxtimes	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430023	12-16-2015	12-15-2017			
	EXG-B RF Analog Signal Generator	KEYSIGHT	N5171B	MY53051777	01-09-2016	01-08-2017			
	MXG X-Series RF Vector Signal Generator	KEYSIGHT	N5182B	MY51350267	01-08-2016	01-07-2017			
	4ch. Simultaneous Sampling 14 Bits 2MS/s	KEYSIGHT	U2531A	TW55193502	11-09-2015	11-08-2017			
	Communication Tester	R&S	CMU200	114713	12-07-2015	12-06-2017			
	Band rejection filter (5150MHz~5880MHz)	micro-tronics	BRM50716	G1868	06-15-2016	06-14-2017			

Page 9 of 34 Report No.: 1610280464RFC-2

	Band rejection filter (2400MHz~2500MHz)	micro-tronics	BRM50702	G248	06-21-2016	06-20-2017
ſ	DC Source	KIKUSUI	PWR400L	LK003024	09-21-2016	09-20-2017
	Temp & Humidity chamber	Ispec	GL(U)04K A(W)	1692H201P3	09-21-2016	09-20-2017



4 Test Requirement

4.1 Test setup

4.1.1 For Conducted test setup

4.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

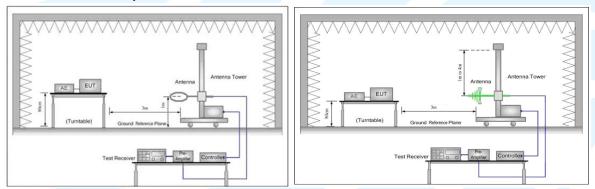


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

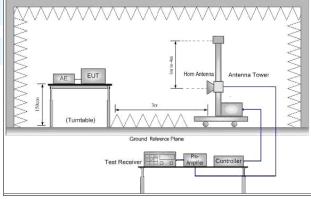
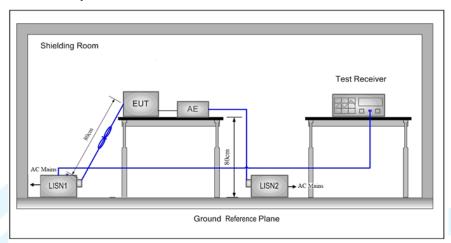



Figure 3. Above 1GHz

4.1.3 For Conducted Emissions test setup

Conducted Emissions setup

4.2 Test Environment

Operating Environment:		
Temperature:	24.6 °C	
Humidity:	53 % RH	
Atmospheric Pressure:	100.53 Kpa	

4.3 System Test Configuration

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 3.85Vdc rechargeable Li-on battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in (see table below) orientation.

Frequency Band(GHz)	Mode	Antenna Port	Worst-case Orientation	
Below 1GHz	1TX	Chain 0	X-Portrait	
Above 1GHz	1TX	Chain 0	X-Portrait	

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000MHz. The resolution is 1 MHz or greater for frequencies above 1000MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Report No.: 1610280464RFC-2

4.4 Test Condition

4.4.1 Test channel

Modulation	Data Rate	Tx/Rx	RF Channel			
Type	(Mbps)	TA/NA	Low(L)	Middle(M)	High(H)	
GFSK	1	2402MHz ~2480 MHz	Channel 0	Channel 19	Channel 39	
Grok		24UZIVIMZ ~248U IVIMZ	2402MHz	2440MHz	2480MHz	

Transmitting mode:

Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

4.4.2 Duty Cycle

Procedure: KDB 558074 Zero-Span Spectrum Analyzer Method.


Results:

Modulation Type	Data rates (Mbps)	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)
GFSK	1	0.3913	0.62609	0.62	62.50	2.04	2.56

Remark:

- 1) Duty cycle= On Time/ Period
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle)

The test plot as follows:

Page 13 of 34 Report No.: 1610280464RFC-2

5 Radio Technical Requirements Specification

Reference documents for testing:

	oromoo accamicinto ioi						
No.	Identity	Document Title					
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules regulations					
2	FCC 47 CFR Part 15	Radio Frequency Devices					
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices					
4	KDB 558074 D01 DTS Meas Guidance v03r05	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247					

5.1 Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	
--------------	--

Antenna in the interior of the equipment and no consideration of replacement. The gain of the antenna is 0.96 dBi.

Page 14 of 34 Report No.: 1610280464RFC-2

5.2 Conducted Peak Output Power

Test Requirement: FCC 47 CFR Part 15 Subpart C Section15.247 (b)(3)

Test Method: KDB 558074 D01 v03r05, Section 9.1.2

Limit: For systems using digital modulation in the 2400-2483.5 MHz bands: 1

Vatt.

Test Procedure: 1. Remove the antenna from the EUT and then connect a low loss RF

cable from the antenna port to the power meter.

2. Measure out each test modes' peak or average output power, record

the power level.

Note: The cable loss and attenuator loss were offset into measure device

as an amplitude offset.

Test Setup: Refer to section 4.1.1 for details.

Instruments Used: Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Test Data:

Maximum Conducted Power:

Modulation Type	Channel	Frequency (MHz)	Maximum Conducted Peak Power (dBm)	Maximum Conducted Peak Power (mW)	
	0	2402	1.63	1.46	
GFSK	19	2440	1.92	1.56	
	39	2480	1.55	1.43	

Page 15 of 34 Report No.: 1610280464RFC-2

5.3 6dB Bandwidth

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(2)

Test Method: KDB 558074 D01 v03r05, Section 8.1

Limit: For direct sequence systems, the minimum 6dB bandwidth shall be at least

500kHz

Remove the antenna from the EUT and then connect a low loss RF cable **Test Procedure:**

from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings:

a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW) \geq 3 x RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum

level measured in the fundamental emission.

Note: The cable loss and attenuator loss were offset into measure device

as an amplitude offset.

Test Setup: Refer to section 4.1.1 for details.

Pass

Refer to section 3 for details **Instruments Used:**

Test Mode: Transmitter mode **Test Results:**

Test Data:

Occupied Bandwidth:

Modulation Type	Channel	Frequency (MHz)	6 dB 99% Bandwidth Bandwidth (MHz) (MHz)		6 dB Bandwidth Limit	Result (Pass / Fail)
	0	2402	0.6732	1.0851	> 500 kHz	Pass
GFSK	19	2440	0.6727	1.0832	> 500 kHz	Pass
	39	2480	0.6658	1.0836	> 500 kHz	Pass

Freq Offset

The test plot as follows:

Transmit Freq Error x dB Bandwidth

1.0832 MHz

15.029 kHz

672.7 kHz


OBW Power

x dB

99.00 %

-6.00 dB

Page 18 of 34 Report No.: 1610280464RFC-2

5.4 Power Spectral Density

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (e)

Test Method: KDB 558074 D01 v03r05, Section 10.2

Limit: For digitally modulated systems, the power spectral density conducted

from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable

from the antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to: 3 kHz ≤ RBW ≤ 100 kHz.

d) Set the VBW \geq 3 x RBW.

e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

 Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

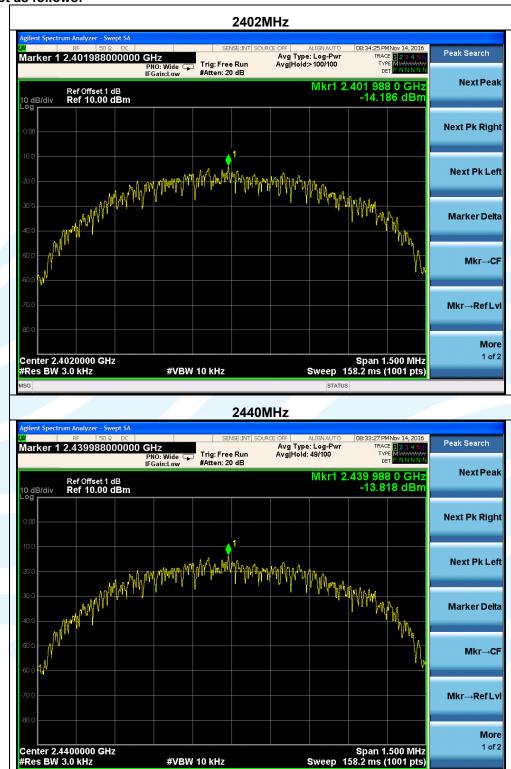
Note: The cable loss and attenuator loss were offset into measure device

as an amplitude offset.

Test Setup: Refer to section 4.1.1 for details.

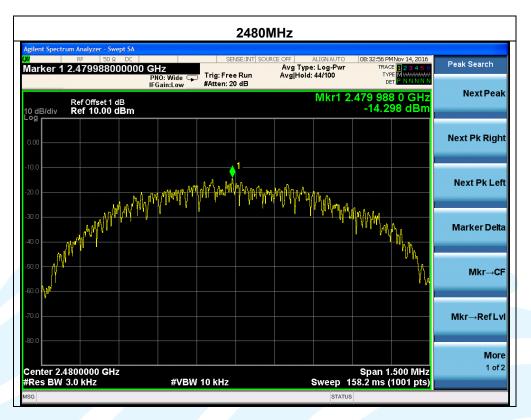
Instruments Used: Refer to section 3 for details

Test Mode: Transmitter mode


Test Results: Pass

Test Data:

Modulation Type	Channel	Frequency (MHz)	PSD (dBm)	Limit (dBm)	Result (Pass / Fail)
	0	2402	-14.186	8	Pass
GFSK	19	2440	-13.818	8	Pass
	39	2480	-14.298	8	Pass



The test plot as follows:

#VBW 10 kHz

Page 21 of 34 Report No.: 1610280464RFC-2

5.5 Conducted Out of Band Emission

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(d)

Test Method: KDB 558074 D01 v03r05, Section 11

Limit: In any 100kHz bandwidth outside the frequency bands in which the spread

spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the

desired power.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

Step 1: Measurement Procedure REF

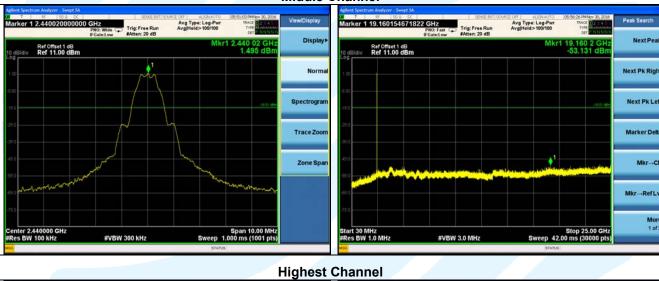
- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to ≥ 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW ≥ 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.
- j) Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

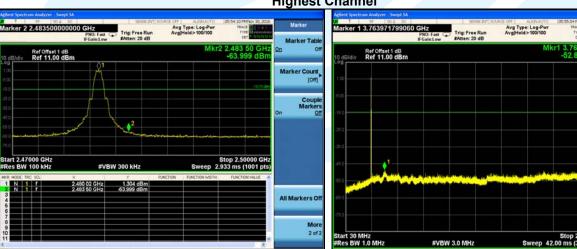
Step 2: Measurement Procedure OOBE

- a) Set RBW = 100 kHz.
- b) Set VBW ≥ 300 kHz.
- c) Detector = peak.
- d) Sweep = auto couple.
- e) Trace Mode = max hold.
- f) Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum amplitude level.

Note: The cable loss and attenuator loss were offset into measure device

as an amplitude offset.


Test Setup: Refer to section 4.1.1 for details.


Instruments Used: Refer to section 3 for details

Test Mode: Transmitter mode

Test Results: Pass

Uni Page 22 of 34 Report No.: 1610280464RFC-2 The test plot as follows: In-Band Reference Level **Out of Band Emission Lowest Channel** 000 GHz PNO: Fast FGain; Lew #Atten: 20 dB Avg Type: Log-Pwr Avg|Hold>100/100 Trig: Free Run Ref Offset 1 dB Ref 11.00 dBm Ref Offset 1 dB Ref 11.00 dBm Next Pk Righ All Markers Of #VBW 3.0 MHz **Middle Channel** arker 1 19.160154671822 GHz Avg Type: Log-Pwi Avg|Hold>100/100

Mkr-CF

Mkr→RefLv

Page 23 of 34 Report No.: 1610280464RFC-2

5.6 Radiated Spurious Emissions

Test Requirement: Test Method: Limit: FCC 47 CFR Part 15 Subpart C Section 15.205/15.209

KDB 558074 D01 v03r05, Section 12.1

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Remark:

- 1. The lower limit shall apply at the transition frequencies.
- Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

The emissions were measured using the following resolution bandwidths:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak
A b 4 C l l =	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Harmonic and Spurious emissions that were identified as coming from the EUT were checked in Peak and in Average Mode. The high frequency, which started from 10 to 26.5GHz, Peak measurements and average measurements are made. All emissions were determined to have a peak-to-average ratio of less than 20dB.

Test Procedure:

Below 1GHz test procedure as below:

- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Page 24 of 34 Report No.: 1610280464RFC-2

- horizontal and vertical polarizations of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f) Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel

Above 1GHz test procedure as below:

- g) Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h) Test the EUT in the lowest channel, the Highest channel
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j) Repeat above procedures until all frequencies measured was complete.

Test Setup: Refer to section 4.1.2 for details.

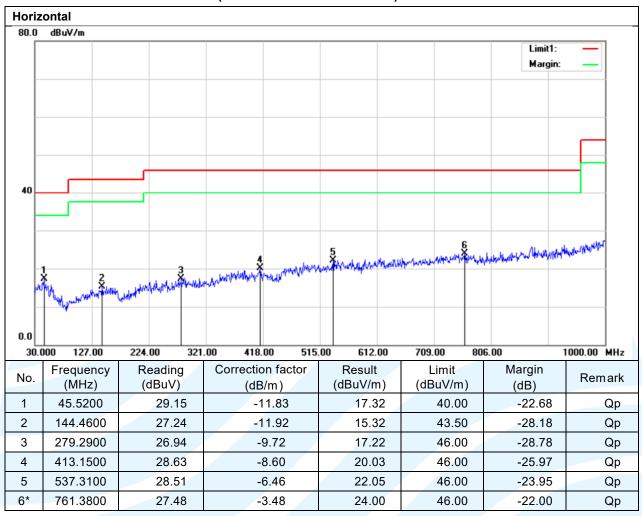
Instruments Used: Refer to section 3 for details

Test Mode: Transmitter mode

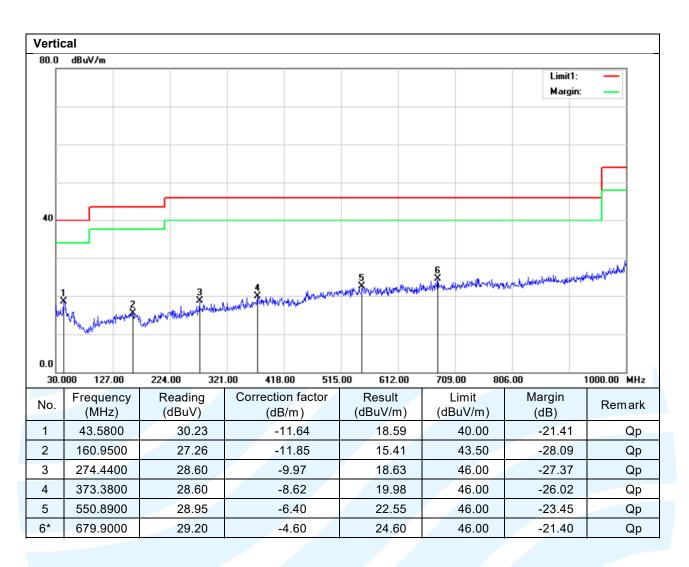
Test Results: Pass

Test Data:

5.6.1 Radiated Emission Test Data (9 KHz ~ 30MHz)


The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

5.6.2 Radiated Emission Test Data (Above 18 GHz)


The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

5.6.3 Radiated Emission Test Data (30MHz ~ 1 GHz Worst Case)

5.6.4 Radiated Emission Test Data (1GHz ~ 18GHz)

Tx_2402 M	Tx_2402 MHz											
.No.	Frequency (MHz)	Result (dBuV)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Polar.						
1	4804.0000	43.18	74	-30.82	Peak	Horizontal						
2	4804.0000	30.78	54	-23.22	Average	Horizontal						
3	7206.0000	46.92	74	-27.08	Peak	Horizontal						
4	7206.0000	34.57	54	-19.43	Average	Horizontal						
5	4804.0000	41.84	74	-32.16	Peak	Vertical						
6	4804.0000	30.27	54	-23.73	Average	Vertical						
7	7206.0000	45.97	74	-28.03	Peak	Vertical						
8	7206.0000	34.09	54	-19.91	Average	Vertical						

Tx 2440 MHz											
.No.	Frequency (MHz)	Result (dBuV)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Polar.					
1	4880.0000	42.69	74	-31.31	Peak	Horizontal					
2	4880.0000	31.29	54	-22.71	Average	Horizontal					
3	7320.0000	46.81	74	-27.19	Peak	Horizontal					
4	7320.0000	34.81	54	-19.19	Average	Horizontal					
5	4880.0000	41.57	74	-32.43	Peak	Vertical					
6	4880.0000	30.28	54	-23.72	Average	Vertical					
7	7320.0000	44.99	74	-29.01	Peak	Vertical					
8	7320.0000	33.68	54	-20.32	Average	Vertical					

Tx_2480 MI	Tx_2480 MHz												
.No.	Frequency (MHz)	Result (dBuV)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Polar.							
1	4960.0000	42.76	74	-31.24	Peak	Horizontal							
2	4960.0000	31.9	54	-22.1	Average	Horizontal							
3	7440.0000	45.67	74	-28.33	Peak	Horizontal							
4	7440.0000	33.84	54	-20.16	Average	Horizontal							
5	4960.0000	41.91	74	-32.09	Peak	Vertical							
6	4960.0000	30.37	54	-23.63	Average	Vertical							
7	7440.0000	45.53	74	-28.47	Peak	Vertical							
8	7440.0000	32.7	54	-21.3	Average	Vertical							

Remark:

Scan from 9 kHz to 25GHz, the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Page 28 of 34 Report No.: 1610280464RFC-2

5.7 Band Edge Measurements (Radiated)

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.205/15.209 KDB 558074 D01 v03r05. Section 12.1

Limit:

(22 0000) (20) (00) (00) (00) (12								
Frequency	Limit (dBµV/m @3m)	Remark						
30MHz-88MHz	40.0	Quasi-peak Value						
88MHz-216MHz	43.5	Quasi-peak Value						
216MHz-960MHz	46.0	Quasi-peak Value						
960MHz-1GHz	54.0	Quasi-peak Value						
Above 1GHz	54.0	Average Value						
	74.0	Peak Value						

Test Procedure:

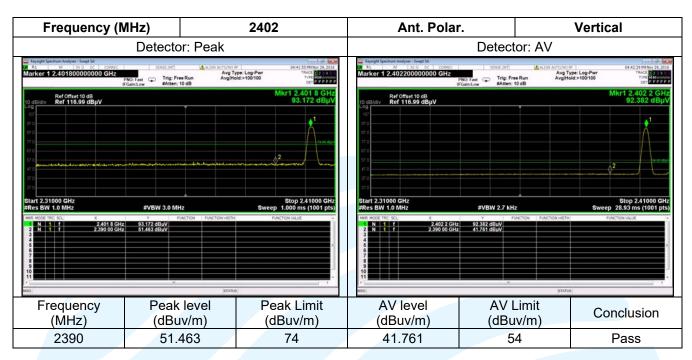
Radiated band edge measurements at 2390MHz and 2483MHz were made with the unit transmitting in the low end of the channel range and the high end closest to the restricted bands respectively. The emissions were made on the 966 Semi-Chamber. Use (resolution bandwidth (RBW) = 1 MHz, video bandwidth (VBW) = 3 MHz for peak levels and RBW = 1 MHz and VBW = 10 Hz or 1/T for average levels).

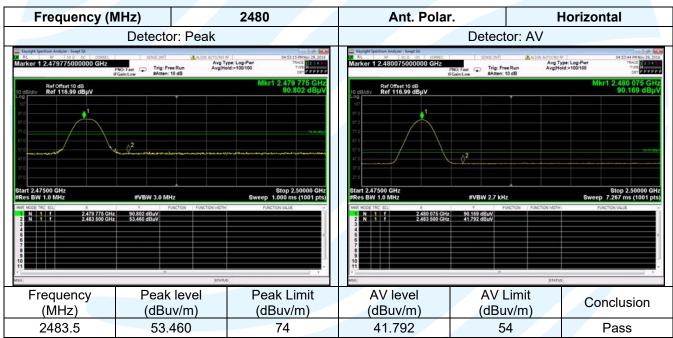
- 1. Use radiated spurious emission test procedure described in 5.6 clause. The transmitter output (antenna port) was connected to the test receiver.
- 2. Set the PK and AV limit line.
- 3. Record the fundamental emission and emissions out of the band-edge.
- 4. Determine band-edge compliance as required.

Test Setup: Refer to section 4.1.2 for details.

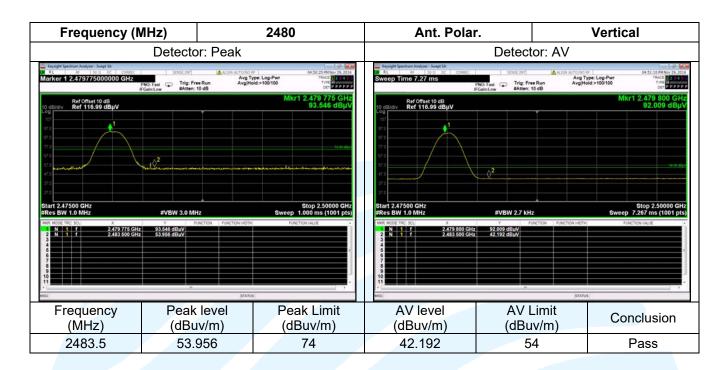
Pass

Instruments Used: Refer to section 3 for details


Test Mode: Transmitter mode


Test Data:

Test Results:


Frequency (M	Hz)	2402	Ant. Polar. Horizontal					
	Detector: Peal	(Detector: AV					
	SENSE INT ALION AL OF Fast Trig: Free Run sind.ow #Atten: 10 dB	TO/NO RI 04:39:40 PM Nov. 29, 2016 Avg Type: Log-Pwr Avg (Hold > 100/100 Det		PNO: Fast Frieg Free Run #Atten: 10 dB	10N AUTO/NO Nº 04-00 5 PM Nov 29, 2516 Avg Type: Log-Pwr Avg(Hold⇒100/100 Type:			
Ref Offset 10 dB 10 dB/div Ref 116.99 dBµV		Mkr1 2.402 3 GHz 90.735 dΒμV	Ref Offset 10 dB 10 dB/div Ref 116.99 dBµV		Mkr1 2.402 0 GHz 90.104 dΒμV			
10 00 00 00 00 00 00 00 00 00 00 00 00 0		♦ • • • • • • • • • • • • • • • • • • •	107 97 0 97 0 97 0 97 0 97 0 97 0 97 0 97 0 97 0		\$\dot\ \dot\			
Start 2.31000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Stop 2.41000 GHz Sweep 1.000 ms (1001 pts)	Start 2.31000 GHz #Res BW 1.0 MHz	#VBW 2.7 kHz	Stop 2.41000 GHz Sweep 28.93 ms (1001 pts)			
TWM NOCE THC SCL) X 2.402 3 GHz 2 N 1 f 2.2402 3 GHz 3 GHz 4 2.390 50 GHz 5 GHz 6 GH	90.735 dBuV 51.699 dBuV	FUNCTION VALUE	wey wode tric Sci. X 2.402 0 GHz N 1	99.104 dBuV PINCTON P. 41.809 dBuV	PUNCTION VALUE -			
MSG		STATUS	MSG		STATUS			
Frequency (MHz)	Peak level (dBuv/m)	Peak Limit (dBuv/m)	AV level (dBuv/m)	AV Limit (dBuv/m)	Conclusion			
2390	51.699	74	41.609	54	Pass			

Page 31 of 34 Report No.: 1610280464RFC-2

5.8 Conducted Emissions

Test Requirement: 47 CFR Part 15C Section 15.207

Test Method: ANSI C63.10
Test Frequency Range: 150KHz to 30MHz

Limit:

Test Procedure:

Fraguency range (MUz)	Limit (dBμV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Test frequency range :150KHz-30MHz

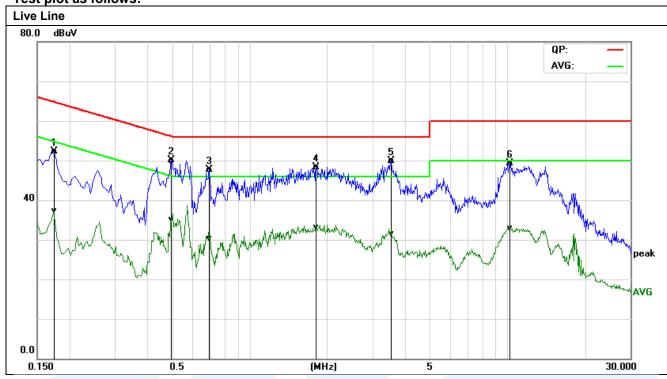
- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Test Setup: Refer to section 4.1.3 for details.

Instruments Used: Refer to section 3 for details

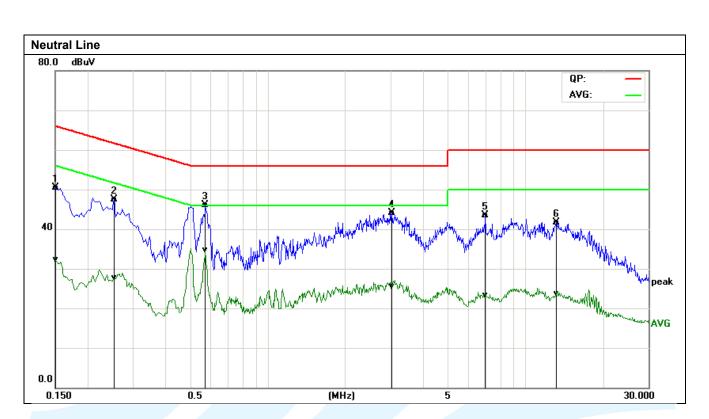
Test Mode: Transmitter mode

Test Results: Pass


Test Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.



Test plot as follows:

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin		Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.1740	32.80	17.71	19.58	52.38	37.29	64.76	54.77	-12.38	-17.48	Pass
2*	0.4980	30.37	15.44	19.63	50.00	35.07	56.03	46.03	-6.03	-10.96	Pass
3P	0.6980	27.85	10.46	19.81	47.66	30.27	56.00	46.00	-8.34	-15.73	Pass
4P	1.8140	28.67	13.45	19.71	48.38	33.16	56.00	46.00	-7.62	-12.84	Pass
5P	3.5620	30.14	11.78	19.68	49.82	31.46	56.00	46.00	-6.18	-14.54	Pass
6P	10.2540	29.12	12.71	20.14	49.26	32.85	60.00	50.00	-10.74	-17.15	Pass

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin		Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.1500	30.78	12.58	19.72	50.50	32.30	65.99	56.00	-15.49	-23.70	Pass
2P	0.2540	27.87	7.89	19.72	47.59	27.61	61.62	51.63	-14.03	-24.02	Pass
3*	0.5740	26.35	15.06	19.66	46.01	34.72	56.00	46.00	-9.99	-11.28	Pass
4P	3.0300	24.37	5.81	19.72	44.09	25.53	56.00	46.00	-11.91	-20.47	Pass
5P	6.9940	23.68	3.66	19.73	43.41	23.39	60.00	50.00	-16.59	-26.61	Pass
6P	13.2180	21.82	3.75	19.87	41.69	23.62	60.00	50.00	-18.31	-26.38	Pass

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

See test photographs attached in Appendix 1 for the actual connections between Product and support equipment.

APPENDIX 2 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS

Refer to Appendix 2 for EUT external and internal photographs.

*** End of Report ***

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.