

T-Coil  
**HAC**  
**TEST REPORT**

ISSUED BY  
Shenzhen BALUN Technology Co., Ltd.



FOR  
**TD LTE digital mobile phone**

ISSUED TO  
Lemobile Information Technology (Beijing) Co., Ltd.  
WENHUAYING NORTH (NO.1, LINKONG 2ND ST), GAOLIYING,  
SHUNYI DISTRICT, BEIJING, CHINA



Tested by: Tu Lang  
Tu Lang  
(Engineer)

Date: Nov. 19, 2015

Approved by: Wei Yanquan  
Wei Yanquan  
(Chief Engineer)

Date: Nov. 19, 2015



|                  |                                                                               |
|------------------|-------------------------------------------------------------------------------|
| Report No.:      | BL-SZ1590187-702                                                              |
| EUT Type:        | TD LTE digital mobile phone                                                   |
| Model Name:      | Le Max                                                                        |
| Brand Name:      | Lete                                                                          |
| FCC ID:          | 2AFWMLEMAX                                                                    |
| Test Standard:   | FCC 47 CFR Part 20.19<br>ANSI C63.19: 2011<br>KDB 285076 D01 HAC Guidance v04 |
| T-Rating:        | T-Coil: T3                                                                    |
| Test conclusion: | Pass                                                                          |
| Test Date:       | Nov. 8, 2015                                                                  |
| Date of Issue:   | Nov. 19, 2015                                                                 |

*NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. BALUN Laboratory. Any objections should be raised within thirty days from the date of issue. To validate the report, please visit BALUN website.*

**Revision History**

| Version        | Issue Date           | Revisions            |
|----------------|----------------------|----------------------|
| <u>Rev. 01</u> | <u>Nov. 16, 2015</u> | <u>Initial Issue</u> |
| <u>Rev. 02</u> | <u>Nov. 19, 2015</u> | <u>Second Issue</u>  |

**TABLE OF CONTENTS**

|                                                             |    |
|-------------------------------------------------------------|----|
| 1 GENERAL INFORMATION.....                                  | 4  |
| 1.1 Identification of the Testing Laboratory.....           | 4  |
| 1.2 Identification of the Responsible Testing Location..... | 4  |
| 1.3 Test Environment Condition.....                         | 4  |
| 1.4 Announce.....                                           | 5  |
| 2 PRODUCT INFORMATION.....                                  | 6  |
| 2.1 Applicant.....                                          | 6  |
| 2.2 Manufacturer.....                                       | 6  |
| 2.3 Factory Information.....                                | 6  |
| 2.4 General Description for Equipment under Test (EUT)..... | 6  |
| 2.5 Technical Information.....                              | 7  |
| 2.6 EUT Air Interface Description.....                      | 8  |
| 2.7 Ancillary Equipment.....                                | 8  |
| 3 SUMMARY OF TEST RESULTS.....                              | 9  |
| 3.1 Test Standards.....                                     | 9  |
| 3.2 HAC Test Configuration and Setting.....                 | 9  |
| 3.3 Summary Of HAC T-Rating.....                            | 9  |
| 3.4 ANSI C63.19 HAC T-Coil Categories.....                  | 10 |
| 3.5 HAC Test Uncertainty.....                               | 12 |
| 4 SATIMO HSC MEASUREMENT SYSTEM.....                        | 13 |
| 4.1 Definition of Hearing Aid Compatibility (HAC).....      | 13 |
| 4.2 SATIMO HAC System.....                                  | 13 |
| 5 T-Coil AUDIO VALIDATION.....                              | 17 |
| 5.1 System Audio Validation.....                            | 17 |
| 5.2 System Validation Results.....                          | 17 |
| 6 HAC MEASUREMENT PROCEDURES.....                           | 18 |

|                                                    |    |
|----------------------------------------------------|----|
| 6.1 HAC Measurement Process Diagram.....           | 18 |
| 6.2 HAC T-Coil Test Setup.....                     | 19 |
| 6.3 T-Coil Measurement Procedure.....              | 20 |
| 7 CONDUCTED RF OUPUT POWER.....                    | 21 |
| 7.1 GSM.....                                       | 21 |
| 7.2 WCDMA.....                                     | 23 |
| 7.3 LTE.....                                       | 25 |
| 8 HAC T-Coil Test Results.....                     | 30 |
| 9 TEST EQUIPMENTS LIST.....                        | 31 |
| ANNEX A HAC TEST RESULT OF SYSTEM VERIFICAION..... | 32 |
| ANNEX B HAC RF MEASUREMENT RESULT.....             | 33 |
| ANNEX C EUT EXTERNAL PHOTOS.....                   | 58 |
| ANNEX D HAC T-Coil TEST SETUP PHOTOS.....          | 58 |
| ANNEX E CALIBRATION REPORT.....                    | 59 |
| F.1 T-coil Probe Calibration Report.....           | 59 |
| F.2 TMFS Calibration Report.....                   | 66 |

## 1 GENERAL INFORMATION

### 1.1 Identification of the Testing Laboratory

|              |                                                                                                                                 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|
| Company Name | Shenzhen BALUN Technology Co., Ltd.                                                                                             |
| Address      | Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China |
| Phone Number | +86 755 6685 0100                                                                                                               |
| Fax Number   | +86 755 6182 4271                                                                                                               |

### 1.2 Identification of the Responsible Testing Location

|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Location             | Shenzhen BALUN Technology Co., Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Address                   | Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Accreditation Certificate | <p>The laboratory has been listed by Industry Canada to perform electromagnetic emission measurements. The recognition numbers of test site are 11524A-1.</p> <p>The laboratory has been listed by US Federal Communications Commission to perform electromagnetic emission measurements. The recognition numbers of test site are 832625.</p> <p>The laboratory has met the requirements of the IAS Accreditation Criteria for Testing Laboratories (AC89), has demonstrated compliance with ISO/IEC Standard 17025:2005. The accreditation certificate number is TL-588.</p> <p>The laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L6791.</p> |
| Description               | All measurement facilities used to collect the measurement data are located at Block B, FL 1, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China 518055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

### 1.3 Test Environment Condition

|                           |                |
|---------------------------|----------------|
| Ambient Temperature       | 21 to 23 °C    |
| Ambient Relative Humidity | 40 to 50%      |
| Ambient Pressure          | 100 to 102 KPa |

## 1.4 Announce

- (1) The test report reference to the report template version v1.0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

## 2 PRODUCT INFORMATION

### 2.1 Applicant

|           |                                                                                     |
|-----------|-------------------------------------------------------------------------------------|
| Applicant | Lemobile Information Technology (Beijing) Co., Ltd.                                 |
| Address   | WENHUAYING NORTH (NO.1, LINKONG 2ND ST), GAOLIYING, SHUNYI DISTRICT, BEIJING, CHINA |

### 2.2 Manufacturer

|              |                                                                               |
|--------------|-------------------------------------------------------------------------------|
| Manufacturer | Lemobile Information Technology (Beijing) Co., Ltd.                           |
| Address      | WENHUAYING NORTH (NO.1, LINKONG 2ND ST), GAOLIYING, SHUNYI DISTRICT, BEIJING. |

### 2.3 Factory Information

|         |                                                                               |
|---------|-------------------------------------------------------------------------------|
| Factory | Lemobile Information Technology (Beijing) Co., Ltd.                           |
| Address | WENHUAYING NORTH (NO.1, LINKONG 2ND ST), GAOLIYING, SHUNYI DISTRICT, BEIJING. |

### 2.4 General Description for Equipment under Test (EUT)

|                                           |                                                                                                                                                                                            |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EUT Type                                  | TD LTE digital mobile phone                                                                                                                                                                |
| Model Name Under Test                     | Le Max                                                                                                                                                                                     |
| Series Model Name                         | N/A                                                                                                                                                                                        |
| Description of Model Name Differentiation | N/A                                                                                                                                                                                        |
| Hardware Version                          | N/A                                                                                                                                                                                        |
| Software Version                          | N/A                                                                                                                                                                                        |
| Dimensions                                | 83×165×6 mm                                                                                                                                                                                |
| Weight                                    | 202.8 g(with battery)                                                                                                                                                                      |
| Network and Wireless connectivity         | 2G Network GSM 850/ 900/ 1800/ 1900, GPRS, EGPRS;<br>3G Network WCDMA Band 2/ 5, HSDPA, HSUPA;<br>4G Network LTE FDD Band 1/ 3/ 7;<br>LTE TDD Band 38/ 39/ 40/ 41;<br>WLAN; Bluetooth; GPS |

## 2.5 Technical Information

The requirement for the following technical information of the EUT was tested in this report:

|                   |                                                                     |                         |                         |  |  |
|-------------------|---------------------------------------------------------------------|-------------------------|-------------------------|--|--|
| Operating Mode    | GSM; WCDMA; LTE; WLAN; Bluetooth                                    |                         |                         |  |  |
| Frequency Range   | GSM 850                                                             | TX: 824 MHz ~ 849 MHz   | RX: 869 MHz ~ 894 MHz   |  |  |
|                   | GSM 1900                                                            | TX: 1850 MHz ~ 1910 MHz | RX: 1930 MHz ~ 1990 MHz |  |  |
|                   | WCDMA Band 2                                                        | TX: 1850 MHz ~ 1910 MHz | RX: 1930 MHz ~ 1990 MHz |  |  |
|                   | WCDMA Band 5                                                        | TX: 824 MHz ~ 849 MHz   | RX: 869 MHz ~ 894 MHz   |  |  |
|                   | LTE Band 7                                                          | TX: 2500 MHz ~ 2570 MHz | RX: 2620 MHz ~ 2690 MHz |  |  |
|                   | LTE Band 41                                                         | TX: 2469 MHz ~ 2690 MHz | RX: 2469 MHz ~ 2690 MHz |  |  |
|                   | 802.11b/g                                                           | 2400 MHz ~ 2483.5 MHz   |                         |  |  |
|                   | 802.11 n(HT20/HT40)                                                 | 2400 MHz ~ 2483.5 MHz   |                         |  |  |
|                   | 802.11a                                                             | 5150 MHz ~ 5250 MHz     |                         |  |  |
|                   |                                                                     | 5725 MHz ~ 5850 MHz     |                         |  |  |
|                   | 802.11 n(HT20/HT40)                                                 | 5150 MHz ~ 5250 MHz     |                         |  |  |
|                   |                                                                     | 5725 MHz ~ 5850 MHz     |                         |  |  |
|                   | 802.11ac(HT20 /HT40/HT80)                                           | 5150 MHz ~ 5250 MHz     |                         |  |  |
|                   |                                                                     | 5725 MHz ~ 5850 MHz     |                         |  |  |
|                   | Bluetooth                                                           | 2400 MHz ~ 2483.5 MHz   |                         |  |  |
| Antenna Type      | WWAN: PIFA Antenna<br>WLAN: PIFA Antenna<br>Bluetooth: PIFA Antenna |                         |                         |  |  |
| DTM               | Not Support                                                         |                         |                         |  |  |
| Hotspot Function  | Support                                                             |                         |                         |  |  |
| Exposure Category | General Population/Uncontrolled exposure                            |                         |                         |  |  |
| EUT Stage         | Portable Device                                                     |                         |                         |  |  |

## 2.6 EUT Air Interface Description

| Air Interface                                                                                                          | Band    | Type  | C63.19 Tested       | Simultaneous Transmitter | OTT | Power Reduction |
|------------------------------------------------------------------------------------------------------------------------|---------|-------|---------------------|--------------------------|-----|-----------------|
| GSM                                                                                                                    | GSM850  | Voice | Yes                 | Bluetooth/WLAN           | N/A | Not Support     |
|                                                                                                                        | GSM1900 | Voice | Yes                 | Bluetooth/WLAN           | N/A | Not Support     |
| WCDMA                                                                                                                  | Band 2  | RMC   | Yes                 | Bluetooth/WLAN           | N/A | Not Support     |
|                                                                                                                        | Band 5  | RMC   | Yes                 | Bluetooth/WLAN           | N/A | Not Support     |
| LTE                                                                                                                    | FDD B7  | VOIP  | Yes <sup>Note</sup> | Bluetooth/WLAN           | N/A | Not Support     |
|                                                                                                                        | TDD B41 | VOIP  | Yes <sup>Note</sup> | Bluetooth/WLAN           | N/A | Not Support     |
| Note: Testing the T-coil for LTE VOIP is not required according with KDB 285076 D02 T Coil testing for CMRS IP v01r01. |         |       |                     |                          |     |                 |

## 2.7 Ancillary Equipment

|                       |                                  |                             |
|-----------------------|----------------------------------|-----------------------------|
| Ancillary Equipment 1 | Battery                          |                             |
|                       | Brand Name                       | LeTV                        |
|                       | Model No.                        | LT633                       |
|                       | Serial No.                       | N/A                         |
|                       | Capacitance                      | 3400 mAh                    |
|                       | Rated Voltage                    | 3.8 V                       |
|                       | Extreme Voltage                  | 4.35 V                      |
| Ancillary Equipment 2 | AC Adapter (Charger for Battery) |                             |
|                       | Brand Name                       | CHENYANG                    |
|                       | Model Number                     | LSUUL050200-A00             |
|                       | Rated Input                      | 100-240 V~, 50/60 Hz, 0.5 A |
|                       | Rated Output                     | 5 V=, 2000 mA               |

## 3 SUMMARY OF TEST RESULTS

### 3.1 Test Standards

| No. | Identity                           | Document Title                                                                                                                           |
|-----|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | FCC 47 CFR Part 20.19              | Hearing aid-compatible mobile handsets.                                                                                                  |
| 2   | ANSI C 63.19:2011                  | American National Standard Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids              |
| 3   | KDB 285076 D01<br>HAC Guidance v04 | Provides equipment authorization guidance for mobile handsets subject to the requirements of Section 20.19 for hearing aid compatibility |

### 3.2 HAC Test Configuration and Setting

For HAC T-Coil testing, the EUT was linked and controlled by wireless communication test set. Communication between the EUT and the wireless communication test set was established by coaxial connection. The EUT was set from the wireless communication test set to radiate maximum output power during HAC testing.

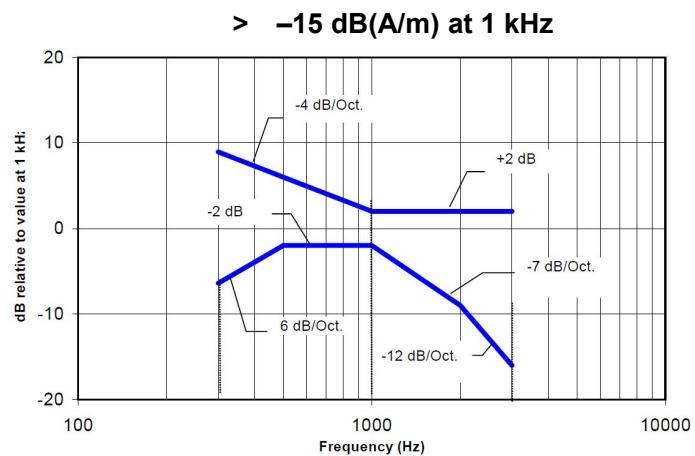
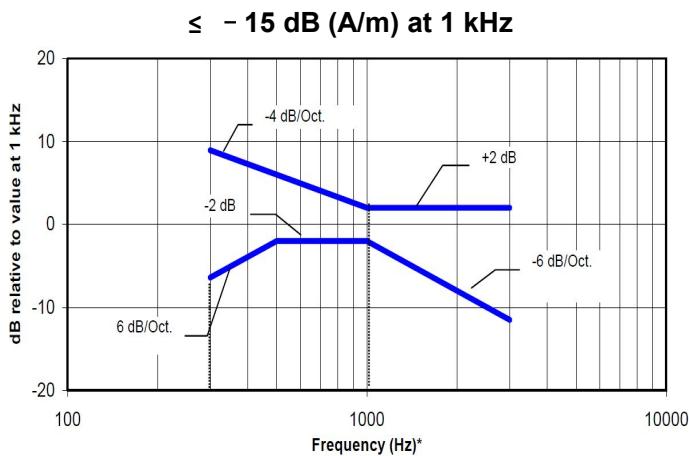
### 3.3 Summary Of HAC T-Rating

| Band         | T-Rating | Frequency response |
|--------------|----------|--------------------|
| GSM 850      | T3       | PASS               |
| GSM 1900     | T3       | PASS               |
| WCDMA Band 2 | T4       | PASS               |
| WCDMA Band 5 | T4       | PASS               |

## 3.4 ANSI C63.19 HAC T-Coil Categories

### 3.4.1 T-Coil Field Intensity

When measured as specified in this standard, the T-Coil signal shall be  $\geq -18$  dB (A/m) at 1 kHz, in a 1/3 octave band filter for all orientations.



### 3.4.2 T-Coil Signal Quality

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels. The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

| Category                     | Wireless Device Signal Quality<br>(Signal + Noise-to-noise ratio in dB) |
|------------------------------|-------------------------------------------------------------------------|
| T1                           | 0 to 10 dB                                                              |
| T2                           | 10 to 20 dB                                                             |
| T3                           | 20 to 30 dB                                                             |
| T4                           | >30 dB                                                                  |
| Magnetic Coupling Parameters |                                                                         |

### 3.4.3 Frequency Response

The frequency response of the axial component of the magnetic field, measured in 1/3 octave bands, shall follow the below response curve, over the frequency range 300 Hz to 3000 Hz. Following Figures provide the boundaries for the specified frequency. These response curves are for true field strength measurements of the T-Coil signal. Thus the 6 dB/octave probe response has been corrected from the raw readings.



Note: Frequency response is between 300 Hz and 3000 Hz.

### 3.4.4 Articulation Weighing Factor (AWF)

| Standard     | Technology      | AWF |
|--------------|-----------------|-----|
| T1/T1P1/3GPP | UMTS(WCDMA)     | 0   |
| IS-95        | CDMA            | 0   |
| iden         | GSM(22and 11Hz) | 0   |
| J-STD-007    | GSM(217Hz)      | -5  |

Note1: AWF has been developed from information presented to the committee regarding the interference potential of the various modulation types according to ANSI PC 63.19

### 3.5 HAC Test Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in ANSI C 63.19:2011. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

| Uncertainty Component            | Uncertainty Value | Prob. Dist. | Div.  | Ci (E) | Ci (H) | Std. Unc. (+/- %) |       |
|----------------------------------|-------------------|-------------|-------|--------|--------|-------------------|-------|
|                                  |                   |             |       |        |        | E                 | H     |
| Measurement System               |                   |             |       |        |        |                   |       |
| Probe calibration                | 6.00              | N           | 1.000 | 1      | 1      | 6.00              | 6.00  |
| Axial Isotropy                   | 2.02              | R           | 1.732 | 1      | 1      | 1.17              | 1.17  |
| Sensor Displacement              | 14.30             | R           | 1.732 | 1      | 0.217  | 8.26              | 1.79  |
| Boundary effect                  | 2.50              | R           | 1.732 | 1      | 1      | 0.87              | 0.87  |
| Phantom Boundary Effect          | 6.89              | R           | 1.732 | 1      | 0      | 3.52              | 0.00  |
| Linearity                        | 2.58              | R           | 1.732 | 1      | 1      | 1.49              | 1.49  |
| Scaling tp PMR Calibration       | 9.02              | N           | 1.000 | 1      | 1      | 9.02              | 9.02  |
| System detection limits          | 1.30              | R           | 1.732 | 1      | 1      | 0.75              | 0.75  |
| Readout Electronics              | 0.25              | R           | 1.732 | 1      | 1      | 0.14              | 0.14  |
| Reponse Time                     | 1.23              | R           | 1.732 | 1      | 1      | 0.71              | 0.71  |
| Integration Time                 | 2.15              | R           | 1.732 | 1      | 1      | 1.24              | 1.24  |
| RF ambient Conditions            | 2.03              | R           | 1.732 | 1      | 1      | 1.17              | 1.17  |
| RF Reflections                   | 9.09              | R           | 1.732 | 1      | 1      | 5.25              | 5.25  |
| Probe positioner                 | 0.63              | N           | 1.000 | 1      | 0.71   | 0.63              | 0.45  |
| Probe positioning                | 3.12              | N           | 1.000 | 1      | 0.71   | 3.12              | 2.22  |
| Extrapolation and Interpolation  | 1.18              | R           | 1.732 | 1      | 1      | 0.68              | 0.68  |
| Test sample Related              |                   |             |       |        |        |                   |       |
| Test sample positioning Vertical | 2.73              | R           | 1.732 | 1      | 0.71   | 1.58              | 1.12  |
| Test sample positioning Lateral  | 1.19              | R           | 1.732 | 1      | 1      | 0.69              | 0.69  |
| Device holder and Phantom        | 2.20              | N           | 1.000 | 1      | 1      | 2.20              | 2.20  |
| Power drift                      | 4.08              | R           | 1.732 | 1      | 1      | 2.36              | 2.36  |
| Phantom and Setup Related        |                   |             |       |        |        |                   |       |
| Phantom Thickness                | 2.00              | N           | 1.000 | 1      | 0.6    | 2.00              | 1,20  |
| Combined Std. Uncertainty(k=1)   |                   |             |       |        |        | 16.18             | 13.25 |
| Expanded Uncertainty on Power    |                   |             |       |        |        | 32.35             | 26.50 |
| Expanded Uncertainty on Field    |                   |             |       |        |        | 16.18             | 13.25 |

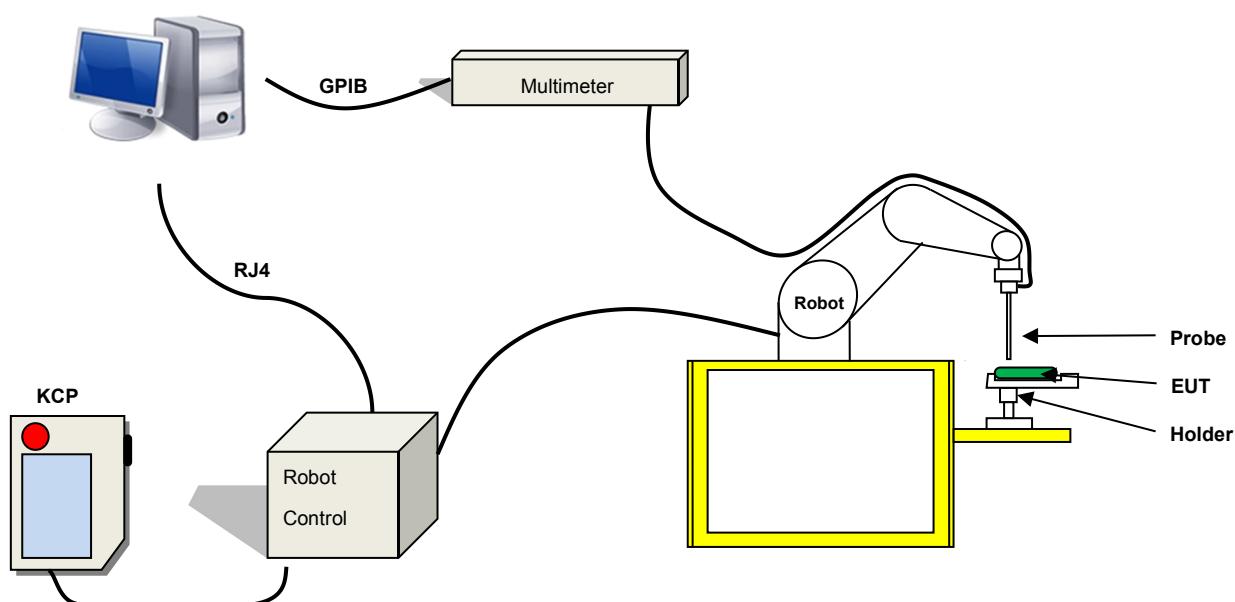
## 4 SATIMO HSC MEASUREMENT SYSTEM

### 4.1 Definition of Hearing Aid Compatibility (HAC)

On July 10.2003. the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658 to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide suffer from hearing loss.

Compatibility Tests involved:

The standard calls for wireless communications devices to be measured for:


- RF Electric-field emissions.
- RF Magnetic- field emissions.
- T-coil mode, magnetic-signal strength in the audio band.
- T-coil mode, magnetic-signal frequency response through the audio band.
- T-coil mode, magnetic-signal and noise articulation index.

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

### 4.2 SATIMO HAC System

SATIMO HAC System Diagram:



#### 4.2.1 Robot

The SATIMO HAC system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

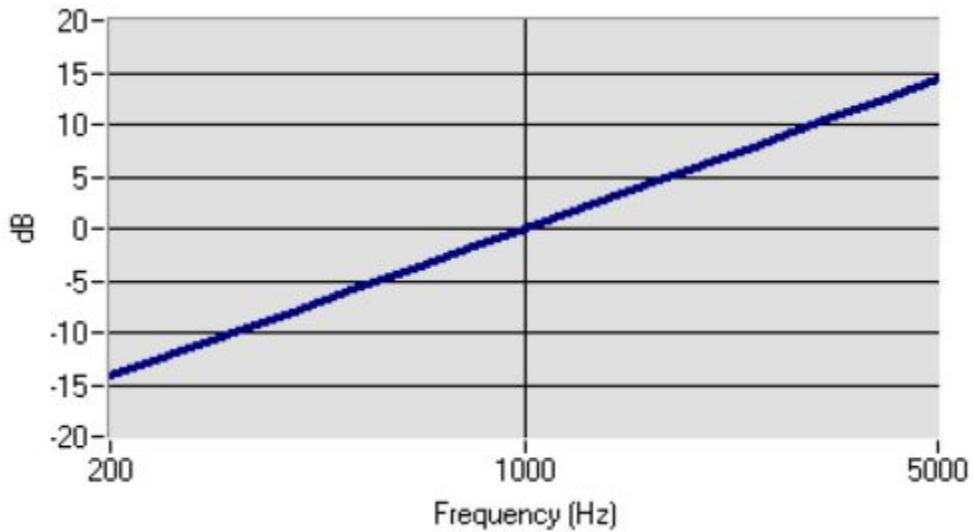


- High precision (repeatability  $\pm 0.035$  mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

#### 4.2.2 HAC T-Coil Probe



|                      |                   |
|----------------------|-------------------|
| Serial Number:       | SN 22/12 TCP26    |
| Frequency:           | 200Hz – 5000Hz    |
| Probe length:        | 220mm             |
| Length of Coil:      | 6.55mm            |
| Diameter of Coil:    | 2.29mm            |
| Resistance:          | 860.6             |
| Wire size:           | 51 AWG            |
| Inductance at 1 KHz: | 132.1 mH at 1 KHz |

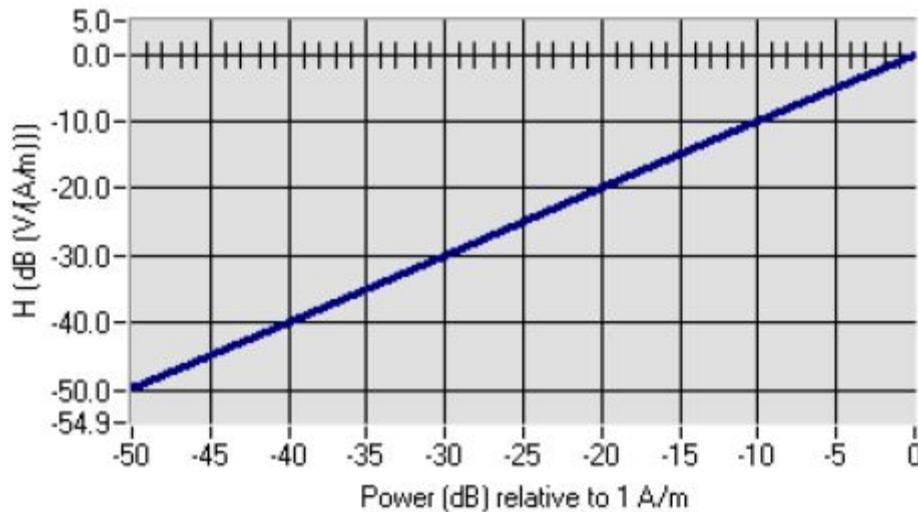

#### T-Coil Probe Calibration Process

All methods used to perform the measurements and calibrations comply with the ANSI C63.19 and IEEE 1309 standards.

#### SENSITIVITY

The T-coil was positioned within the Helmholtz coil in axial orientation. Using an audio generator connected to the input of the Helmholtz coil, a known field (1 A/m) was generated within the coil and the T-coil probe reading recorded over the frequency range of 100 Hz to 1000 Hz.

#### Probe Coil sensitivity relative to sensitivity at 1000 Hz




|                                 | Measured          | Required                  |
|---------------------------------|-------------------|---------------------------|
| Sensitivity at 1 KHz            | -60.22 dB (V/A/m) | - 60.5 +/- 0.5 dB (V/A/m) |
| Max. deviation from Sensitivity | 0.43 dB           | +/- 0.5 dB                |

## LINEARITY

The T-coil probe was positioned within the Helmholtz coil in axial orientation. The audio generator connected to the input of the Helmholtz coil was adjusted to obtain a field within the coil from 0 dB A/m to -50 dB A/m and the T-coil reading recorded at each power level (10 dB steps).

Linearity



|                 | Measured | Required  |
|-----------------|----------|-----------|
| Linearity Slope | 0.09 dB  | +/ 0.5 dB |

## SIGNAL TO NOISE MEASUREMENT OF THE CALIBRATION SYSTEM

The T-coil probe was positioned within the Helmholtz coil in axial orientation. The audio generator connected to the input of the Helmholtz coil was adjusted to obtain a field of -50 dB A/m. The T-coil reading was recorded. The audio generator is then turned off and the T-coil reading recorded.

|                 | Measured      | Required                                                           |
|-----------------|---------------|--------------------------------------------------------------------|
| Signal to Noise | -78.99 dB A/m | 'Reading with -50 dB A/m in coil' –<br>'no signal applied' > 10 dB |

## 5 T-Coil AUDIO VALIDATION

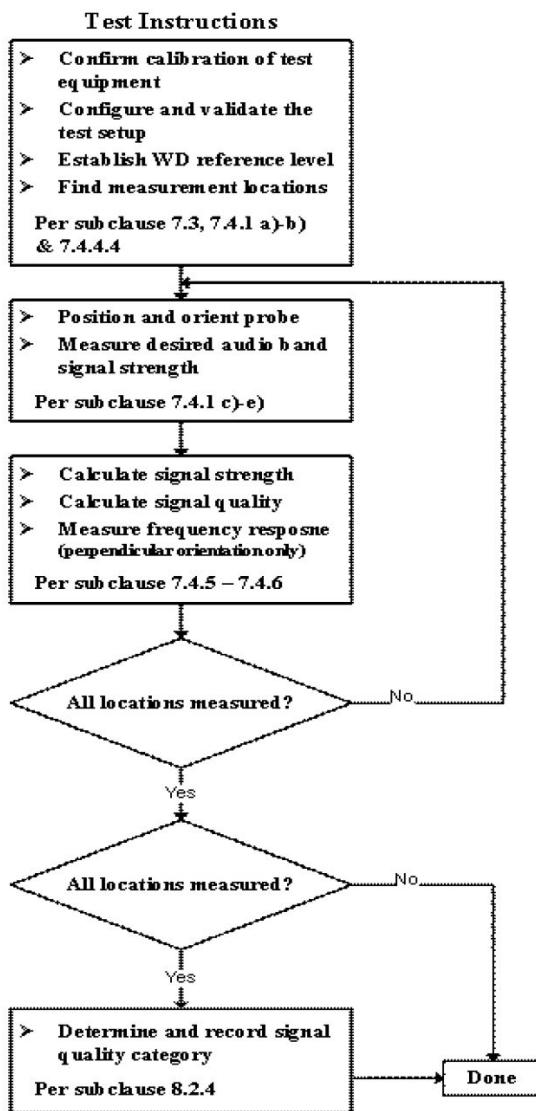
### 5.1 System Audio Validation

Put the phone on call and select the CMU decoder cal. When the decoder cal is selected, a full scale(3.14 dBm) signal is provided to the speech port. Measure the voltage from the speech connector using the provided CMU speech cable. For this connect the GSM/WCDMA out connector (or CDMA2K OUT connector) to the front panel of the keithley and read the AC voltage. With the speech cable provided by satori, the GSM/WCDMA OUT connector 2 and the CDMA2K OUT connector is the connector 4.

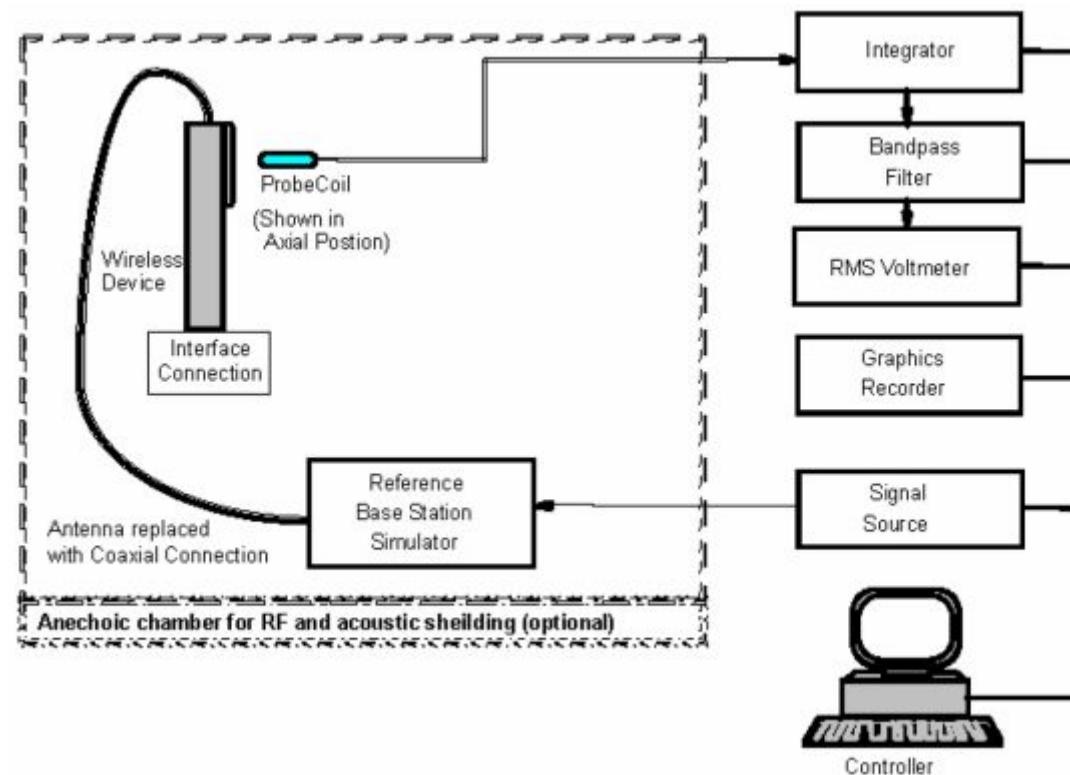
Put the phone on call and select the CMU encoder cal. And send a signal to the CMU and check to avoid influencing the calibration. An RMS voltmeter would indicate 100 mV RMS during the first phase and 10 mV RMS during the second phase. After the first two phases, the two input channels are both calibrated for absolute measurements of voltages. The resulting factors are displayed above the multi-meter window.

After phases 1 and 2, the input channels are calibrated to measure exact voltages. This is required to use the inputs for measuring voltages with their peak and RMS value.

In phase 3, a multi-sine signal covering each third-octave band from 50 Hz to 10 kHz is generated and applied to both audio outputs. The probe should be positioned in the center of the AMCC and aligned in the z-direction, the field orientation of the AMCC. The "Coil In" channel is measuring the voltage over the AMCC internal shunt, which is proportional to the magnetic field in the AMCC. At the same time, the "Probe In" channel samples the amplified signal picked up by the probe coil and provides it to a numerical integrator. The ratio of the two voltages in each third-octave filter leads to the spectral representation over the frequency band of interest. The Coil signal is scaled in dBV, and the Probe signal is first integrated and normalized to show dB A/m. The ratio probe-to-coil at the frequency of 1 kHz is the sensitivity which will be used in the consecutive T-Coil jobs.


### 5.2 System Validation Results

| Date       | Frequency | Input Level (mV) | Axial Description | Location   | Magnetic Field (dB A/m) | Target Field (dB A/m) | Tolerance (%) |
|------------|-----------|------------------|-------------------|------------|-------------------------|-----------------------|---------------|
| 2015/11/08 | 1025 Hz   | 500.0            | Axial             | Max        | -14.35                  | -13.68                | 4.90          |
|            |           |                  | Radial H          | Right side | -19.61                  | -20.68                | -5.17         |
|            |           |                  |                   | Left side  | -19.50                  | -20.85                | -6.47         |
|            |           |                  | Radial V          | Upper side | -19.27                  | -19.92                | -3.26         |
|            |           |                  |                   | Lower side | -19.10                  | -20.34                | -6.10         |


Note1: The tolerance limit of System validation  $\pm 10\%$ .

## 6 HAC MEASUREMENT PROCEDURES

### 6.1 HAC Measurement Process Diagram



## 6.2 HAC T-Coil Test Setup



T-Coil measurement test setup.

## 6.3 T-Coil Measurement Procedure

The following illustrate a typical T-Coil signal test scan over a wireless communications device:

- a. Confirm that the equipment that requires calibration has a current calibration.
- b. Set up the WD to output a broadband signal, such as in IEEE Std 269-2010 or the ITU Recommendation P.50 artificial voice signal referenced in ANSI C63.19-2011 section 7.4.2.
- c. Determine the acoustic reference point for the WD device. Set the drive level per ANSI C63.19-2011 section 7.4.2.1. Set the WD volume control so that the handset produces a broadband signal that is within the normal acoustic output range of the WD. The maximum setting that satisfies this criterion and avoids clipping may be used.
- d. Measure the audio power spectral density of the broadband signal input to the WD. Perform a frequency domain analysis, such as an FFT, of the broadband signal and record the level at each frequency in the corresponding 1/3 octave BW in the frequency range specified in ANSI C63.19-2011 section 8.3.2. If the input signal cannot be measured directly, other means to determine the frequency response may be used such as calculation from a digital input or extrapolation from a measurement of the acoustic output. However, these steps must be fully justified.
- e. Orient the magnetic probe in the perpendicular orientation.
- f. Locate the desired perpendicular measurement position as shown in ANSI C63.19-2011 Figure A.4. It has proven helpful to perform a field map of the T-Coil signal not only to locate the best position for the measurement but also to provide insight into the size and shape of the T-Coil signal.
- g. Measure the broadband audio-band magnetic signal, ABM1. Perform a frequency-domain analysis, over the frequency range specified in ANSI C63.19-2011 section 8.3.2, such as a fast Fourier transform, of the broadband magnetic signal as represented by the integrated probe coil output and record the level in decibels (A/m) for each 1/3 octave frequency band.
- h. Turn OFF the audio reference input signal and measure the half-band integrated, per D.9, A-weighted undesired audio-band magnetic signal, ABM2.
- i. Repeat step f) through step h) for the transverse position.
- j. Correct the reading for the spectrum of the broadband input by subtracting the input signal spectrum, found in step d), from the magnetic field spectrum, found in step g). (Delta T-Coil to input decibels = measured T-Coil signal-measured input signal.) Record results for use in the T-Coil assessment of the signal magnitude and signal quality at each probe orientation.

## 7 CONDUCTED RF OUTPUT POWER

### 7.1 GSM

| Test Band | Test Mode | Test Channel | Measured (dBm) |
|-----------|-----------|--------------|----------------|
| 850       | GSM       | LCH          | 33.69          |
|           |           | MCH          | 33.47          |
|           |           | HCH          | 33.37          |
|           | GSM/GPRS  | LCH_Slot1    | 33.61          |
|           |           | LCH_Slot2    | 31.98          |
|           |           | LCH_Slot3    | 31.10          |
|           |           | LCH_Slot4    | 29.36          |
|           |           | MCH_Slot1    | 33.44          |
|           |           | MCH_Slot2    | 32.27          |
|           |           | MCH_Slot3    | 30.98          |
|           |           | MCH_Slot4    | 29.82          |
|           |           | HCH_Slot1    | 33.33          |
|           |           | HCH_Slot2    | 31.96          |
|           |           | HCH_Slot3    | 30.57          |
|           | GSM/EDGE  | HCH_Slot4    | 29.47          |
|           |           | LCH_Slot1    | 27.91          |
|           |           | LCH_Slot2    | 25.72          |
|           |           | LCH_Slot3    | 24.01          |
|           |           | LCH_Slot4    | 23.34          |
|           |           | MCH_Slot1    | 27.69          |
|           |           | MCH_Slot2    | 25.57          |
|           |           | MCH_Slot3    | 23.91          |
|           |           | MCH_Slot4    | 23.25          |
|           |           | HCH_Slot1    | 27.37          |
|           |           | HCH_Slot2    | 25.21          |
|           |           | HCH_Slot3    | 23.59          |
|           |           | HCH_Slot4    | 22.95          |

| Test Band | Test Mode | Test Channel | Measured (dBm) |
|-----------|-----------|--------------|----------------|
| 1900      | GSM/TM1   | LCH          | 30.13          |
|           |           | MCH          | 30.54          |
|           |           | HCH          | 30.61          |
|           | GSM/TM2   | LCH_Slot1    | 30.63          |
|           |           | LCH_Slot2    | 29.48          |
|           |           | LCH_Slot3    | 27.15          |
|           |           | LCH_Slot4    | 25.90          |
|           |           | MCH_Slot1    | 30.93          |
|           |           | MCH_Slot2    | 29.53          |
|           |           | MCH_Slot3    | 27.38          |
|           |           | MCH_Slot4    | 26.12          |
|           |           | HCH_Slot1    | 30.85          |
|           |           | HCH_Slot2    | 29.44          |
|           |           | HCH_Slot3    | 27.78          |
|           |           | HCH_Slot4    | 25.96          |
|           | GSM/TM3   | LCH_Slot1    | 25.67          |
|           |           | LCH_Slot2    | 24.25          |
|           |           | LCH_Slot3    | 22.86          |
|           |           | LCH_Slot4    | 20.83          |
|           |           | MCH_Slot1    | 26.07          |
|           |           | MCH_Slot2    | 24.73          |
|           |           | MCH_Slot3    | 23.37          |
|           |           | MCH_Slot4    | 21.43          |
|           |           | HCH_Slot1    | 26.22          |
|           |           | HCH_Slot2    | 24.94          |
|           |           | HCH_Slot3    | 23.58          |
|           |           | HCH_Slot4    | 21.57          |

## 7.2 WCDMA

| Test Band | Test Mode   | Test Channel | Measured (dBm) |
|-----------|-------------|--------------|----------------|
| WCDMA850  | UMTS/TM1    | LCH_RMC12    | 24.15          |
|           |             | MCH_RMC12    | 24.95          |
|           |             | HCH_RMC12    | 24.69          |
| WCDMA850  | UMTS/HSD PA | LCH_Case1    | 23.12          |
|           |             | LCH_Case2    | 22.36          |
|           |             | LCH_Case3    | 22.31          |
|           |             | LCH_Case4    | 22.22          |
|           |             | MCH_Case1    | 23.92          |
|           |             | MCH_Case2    | 23.06          |
|           |             | MCH_Case3    | 23.03          |
|           |             | MCH_Case4    | 23.01          |
|           |             | HCH_Case1    | 23.62          |
|           |             | HCH_Case2    | 22.84          |
|           |             | HCH_Case3    | 22.80          |
|           |             | HCH_Case4    | 22.79          |
|           |             | LCH_Case1    | 22.70          |
|           |             | LCH_Case2    | 21.69          |
|           |             | LCH_Case3    | 21.68          |
| WCDMA850  | UMTS/HSU PA | LCH_Case4    | 22.23          |
|           |             | LCH_Case5    | 22.36          |
|           |             | MCH_Case1    | 23.70          |
|           |             | MCH_Case2    | 22.15          |
|           |             | MCH_Case3    | 21.82          |
|           |             | MCH_Case4    | 23.16          |
|           |             | MCH_Case5    | 22.45          |
|           |             | HCH_Case1    | 23.27          |
|           |             | HCH_Case2    | 21.87          |
|           |             | HCH_Case3    | 21.60          |
|           |             | HCH_Case4    | 22.95          |
|           |             | HCH_Case5    | 22.26          |

| Test Band | Test Mode | Test Channel | Measured (dBm) |
|-----------|-----------|--------------|----------------|
| WCDMA1900 | UMTS/TM1  | LCH_RMC12    | 23.44          |
|           |           | MCH_RMC12    | 23.60          |
|           |           | HCH_RMC12    | 23.23          |
| WCDMA1900 | UMTS/TM2  | LCH_Case1    | 22.62          |
|           |           | LCH_Case2    | 21.89          |
|           |           | LCH_Case3    | 22.18          |
|           |           | LCH_Case4    | 22.17          |
|           |           | MCH_Case1    | 23.19          |
|           |           | MCH_Case2    | 22.45          |
|           |           | MCH_Case3    | 22.39          |
|           |           | MCH_Case4    | 22.36          |
|           |           | HCH_Case1    | 22.67          |
|           |           | HCH_Case2    | 21.89          |
|           |           | HCH_Case3    | 21.84          |
|           |           | HCH_Case4    | 21.82          |
| WCDMA1900 | UMTS/TM3  | LCH_Case1    | 22.63          |
|           |           | LCH_Case2    | 21.70          |
|           |           | LCH_Case3    | 21.68          |
|           |           | LCH_Case4    | 21.86          |
|           |           | LCH_Case5    | 21.84          |
|           |           | MCH_Case1    | 22.83          |
|           |           | MCH_Case2    | 21.95          |
|           |           | MCH_Case3    | 21.93          |
|           |           | MCH_Case4    | 22.12          |
|           |           | MCH_Case5    | 21.86          |
|           |           | HCH_Case1    | 22.35          |
|           |           | HCH_Case2    | 20.91          |
|           |           | HCH_Case3    | 20.97          |
|           |           | HCH_Case4    | 21.63          |
|           |           | HCH_Case5    | 21.62          |

## 7.3LTE

Channel Bandwidth: 5 MHz

| Modulation | Channel | RB Configuration |        | Average Power [dBm] | Verdict |
|------------|---------|------------------|--------|---------------------|---------|
|            |         | Size             | Offset |                     |         |
| QPSK       | LCH     | 1                | 0      | 21.57               | PASS    |
|            |         | 1                | 12     | 21.64               | PASS    |
|            |         | 1                | 24     | 21.65               | PASS    |
|            |         | 12               | 0      | 20.52               | PASS    |
|            |         | 12               | 6      | 20.57               | PASS    |
|            |         | 12               | 13     | 20.57               | PASS    |
|            |         | 25               | 0      | 20.54               | PASS    |
|            | MCH     | 1                | 0      | 23.95               | PASS    |
|            |         | 1                | 12     | 23.73               | PASS    |
|            |         | 1                | 24     | 24.04               | PASS    |
|            |         | 12               | 0      | 22.97               | PASS    |
|            |         | 12               | 6      | 23.06               | PASS    |
|            |         | 12               | 13     | 23.01               | PASS    |
|            |         | 25               | 0      | 23.00               | PASS    |
| 16QAM      | LCH     | 1                | 0      | 23.04               | PASS    |
|            |         | 1                | 12     | 22.83               | PASS    |
|            |         | 1                | 24     | 22.59               | PASS    |
|            |         | 12               | 0      | 22.15               | PASS    |
|            |         | 12               | 6      | 22.09               | PASS    |
|            |         | 12               | 13     | 21.93               | PASS    |
|            |         | 25               | 0      | 22.04               | PASS    |
|            | MCH     | 1                | 0      | 20.81               | PASS    |
|            |         | 1                | 12     | 20.90               | PASS    |
|            |         | 1                | 24     | 20.92               | PASS    |
|            |         | 12               | 0      | 19.61               | PASS    |
|            |         | 12               | 6      | 19.67               | PASS    |
|            |         | 12               | 13     | 19.65               | PASS    |
|            |         | 25               | 0      | 19.52               | PASS    |
|            | HCH     | 1                | 0      | 23.20               | PASS    |
|            |         | 1                | 12     | 23.51               | PASS    |
|            |         | 1                | 24     | 23.47               | PASS    |
|            |         | 12               | 0      | 22.04               | PASS    |
|            |         | 12               | 6      | 22.13               | PASS    |
|            |         | 12               | 13     | 22.09               | PASS    |
|            |         | 25               | 0      | 22.05               | PASS    |
|            | HCH     | 1                | 0      | 22.05               | PASS    |
|            |         | 1                | 12     | 21.84               | PASS    |
|            |         | 1                | 24     | 21.59               | PASS    |
|            |         | 12               | 0      | 21.18               | PASS    |
|            |         | 12               | 6      | 21.13               | PASS    |
|            |         | 12               | 13     | 20.96               | PASS    |

|  |  |    |   |       |      |
|--|--|----|---|-------|------|
|  |  | 25 | 0 | 21.09 | PASS |
|--|--|----|---|-------|------|

Channel Bandwidth: 10 MHz

| Modulation | Channel | RB Configuration |        | Average Power [dBm] | Verdict |
|------------|---------|------------------|--------|---------------------|---------|
|            |         | Size             | Offset |                     |         |
| QPSK       | LCH     | 1                | 0      | 21.67               | PASS    |
|            |         | 1                | 24     | 21.95               | PASS    |
|            |         | 1                | 49     | 21.91               | PASS    |
|            |         | 25               | 0      | 20.88               | PASS    |
|            |         | 25               | 12     | 21.02               | PASS    |
|            |         | 25               | 25     | 20.91               | PASS    |
|            |         | 50               | 0      | 20.94               | PASS    |
|            | MCH     | 1                | 0      | 24.03               | PASS    |
|            |         | 1                | 24     | 24.21               | PASS    |
|            |         | 1                | 49     | 24.00               | PASS    |
|            |         | 25               | 0      | 22.95               | PASS    |
|            |         | 25               | 12     | 22.94               | PASS    |
|            |         | 25               | 25     | 22.89               | PASS    |
|            |         | 50               | 0      | 23.00               | PASS    |
| 16QAM      | LCH     | 1                | 0      | 23.05               | PASS    |
|            |         | 1                | 24     | 22.99               | PASS    |
|            |         | 1                | 49     | 22.43               | PASS    |
|            |         | 25               | 0      | 22.45               | PASS    |
|            |         | 25               | 12     | 22.38               | PASS    |
|            |         | 25               | 25     | 22.03               | PASS    |
|            |         | 50               | 0      | 22.20               | PASS    |
|            | MCH     | 1                | 0      | 20.85               | PASS    |
|            |         | 1                | 24     | 21.15               | PASS    |
|            |         | 1                | 49     | 21.10               | PASS    |
|            |         | 25               | 0      | 19.84               | PASS    |
|            |         | 25               | 12     | 20.00               | PASS    |
|            |         | 25               | 25     | 19.88               | PASS    |
|            |         | 50               | 0      | 19.89               | PASS    |
|            | HCH     | 1                | 0      | 23.40               | PASS    |
|            |         | 1                | 24     | 23.54               | PASS    |
|            |         | 1                | 49     | 23.40               | PASS    |
|            |         | 25               | 0      | 21.94               | PASS    |
|            |         | 25               | 12     | 22.03               | PASS    |
|            |         | 25               | 25     | 21.88               | PASS    |
|            |         | 50               | 0      | 21.92               | PASS    |
|            | HCH     | 1                | 0      | 22.36               | PASS    |
|            |         | 1                | 24     | 22.33               | PASS    |
|            |         | 1                | 49     | 21.74               | PASS    |
|            |         | 25               | 0      | 21.46               | PASS    |

|  |  |    |    |       |      |
|--|--|----|----|-------|------|
|  |  | 25 | 12 | 21.41 | PASS |
|  |  | 25 | 25 | 21.06 | PASS |
|  |  | 50 | 0  | 21.21 | PASS |

### Channel Bandwidth: 15 MHz

| Modulation | Channel | RB Configuration |        | Average Power [dBm] | Verdict |
|------------|---------|------------------|--------|---------------------|---------|
|            |         | Size             | Offset |                     |         |
| QPSK       | LCH     | 1                | 0      | 22.02               | PASS    |
|            |         | 1                | 37     | 21.99               | PASS    |
|            |         | 1                | 74     | 22.36               | PASS    |
|            |         | 37               | 0      | 21.13               | PASS    |
|            |         | 37               | 18     | 21.06               | PASS    |
|            |         | 37               | 38     | 21.26               | PASS    |
|            |         | 75               | 0      | 21.22               | PASS    |
|            | MCH     | 1                | 0      | 23.84               | PASS    |
|            |         | 1                | 37     | 23.88               | PASS    |
|            |         | 1                | 74     | 24.09               | PASS    |
|            |         | 37               | 0      | 23.02               | PASS    |
|            |         | 37               | 18     | 23.01               | PASS    |
|            |         | 37               | 38     | 22.88               | PASS    |
|            |         | 75               | 0      | 23.02               | PASS    |
| 16QAM      | HCH     | 1                | 0      | 23.50               | PASS    |
|            |         | 1                | 37     | 23.06               | PASS    |
|            |         | 1                | 74     | 22.69               | PASS    |
|            |         | 37               | 0      | 22.53               | PASS    |
|            |         | 37               | 18     | 22.50               | PASS    |
|            |         | 37               | 38     | 22.27               | PASS    |
|            |         | 75               | 0      | 22.48               | PASS    |
|            | LCH     | 1                | 0      | 21.26               | PASS    |
|            |         | 1                | 37     | 21.18               | PASS    |
|            |         | 1                | 74     | 21.58               | PASS    |
|            |         | 37               | 0      | 20.12               | PASS    |
|            |         | 37               | 18     | 20.02               | PASS    |
|            |         | 37               | 38     | 20.23               | PASS    |
|            |         | 75               | 0      | 20.20               | PASS    |
|            | MCH     | 1                | 0      | 23.23               | PASS    |
|            |         | 1                | 37     | 23.39               | PASS    |
|            |         | 1                | 74     | 23.37               | PASS    |
|            |         | 37               | 0      | 21.99               | PASS    |
|            |         | 37               | 18     | 22.03               | PASS    |
|            |         | 37               | 38     | 21.88               | PASS    |
|            |         | 75               | 0      | 22.00               | PASS    |
|            | HCH     | 1                | 0      | 22.91               | PASS    |
|            |         | 1                | 37     | 22.46               | PASS    |
|            |         | 1                | 74     | 22.05               | PASS    |

|  |  |    |    |       |      |
|--|--|----|----|-------|------|
|  |  | 37 | 0  | 21.46 | PASS |
|  |  | 37 | 18 | 21.49 | PASS |
|  |  | 37 | 38 | 21.32 | PASS |
|  |  | 75 | 0  | 21.55 | PASS |

Channel Bandwidth: 20 MHz

| Modulation | Channel | RB Configuration |        | Average Power [dBm] | Verdict |
|------------|---------|------------------|--------|---------------------|---------|
|            |         | Size             | Offset |                     |         |
| QPSK       | LCH     | 1                | 0      | 22.12               | PASS    |
|            |         | 1                | 49     | 22.35               | PASS    |
|            |         | 1                | 99     | 22.57               | PASS    |
|            |         | 50               | 0      | 21.28               | PASS    |
|            |         | 50               | 25     | 21.36               | PASS    |
|            |         | 50               | 50     | 21.37               | PASS    |
|            |         | 100              | 0      | 21.29               | PASS    |
|            | MCH     | 1                | 0      | 23.85               | PASS    |
|            |         | 1                | 49     | 24.11               | PASS    |
|            |         | 1                | 99     | 23.79               | PASS    |
|            |         | 50               | 0      | 22.98               | PASS    |
|            |         | 50               | 25     | 23.23               | PASS    |
|            |         | 50               | 50     | 23.01               | PASS    |
|            |         | 100              | 0      | 22.99               | PASS    |
| 16QAM      | LCH     | 1                | 0      | 23.38               | PASS    |
|            |         | 1                | 49     | 23.31               | PASS    |
|            |         | 1                | 99     | 22.87               | PASS    |
|            |         | 50               | 0      | 22.68               | PASS    |
|            |         | 50               | 25     | 22.64               | PASS    |
|            |         | 50               | 50     | 22.34               | PASS    |
|            |         | 100              | 0      | 22.51               | PASS    |
|            | MCH     | 1                | 0      | 21.34               | PASS    |
|            |         | 1                | 49     | 21.58               | PASS    |
|            |         | 1                | 99     | 21.80               | PASS    |
|            |         | 50               | 0      | 20.42               | PASS    |
|            |         | 50               | 25     | 20.31               | PASS    |
|            |         | 50               | 50     | 20.33               | PASS    |
|            |         | 100              | 0      | 20.39               | PASS    |
|            | HCH     | 1                | 0      | 23.57               | PASS    |
|            |         | 1                | 49     | 23.64               | PASS    |
|            |         | 1                | 99     | 23.71               | PASS    |
|            |         | 50               | 0      | 22.02               | PASS    |
|            |         | 50               | 25     | 22.18               | PASS    |
|            | HCH     | 50               | 50     | 21.97               | PASS    |
|            |         | 100              | 0      | 22.01               | PASS    |
|            | HCH     | 1                | 0      | 22.91               | PASS    |

|  |  |     |    |       |      |
|--|--|-----|----|-------|------|
|  |  | 1   | 49 | 22.78 | PASS |
|  |  | 1   | 99 | 22.29 | PASS |
|  |  | 50  | 0  | 21.73 | PASS |
|  |  | 50  | 25 | 21.64 | PASS |
|  |  | 50  | 50 | 21.33 | PASS |
|  |  | 100 | 0  | 21.54 | PASS |

## 8 HAC T-Coil Test Results

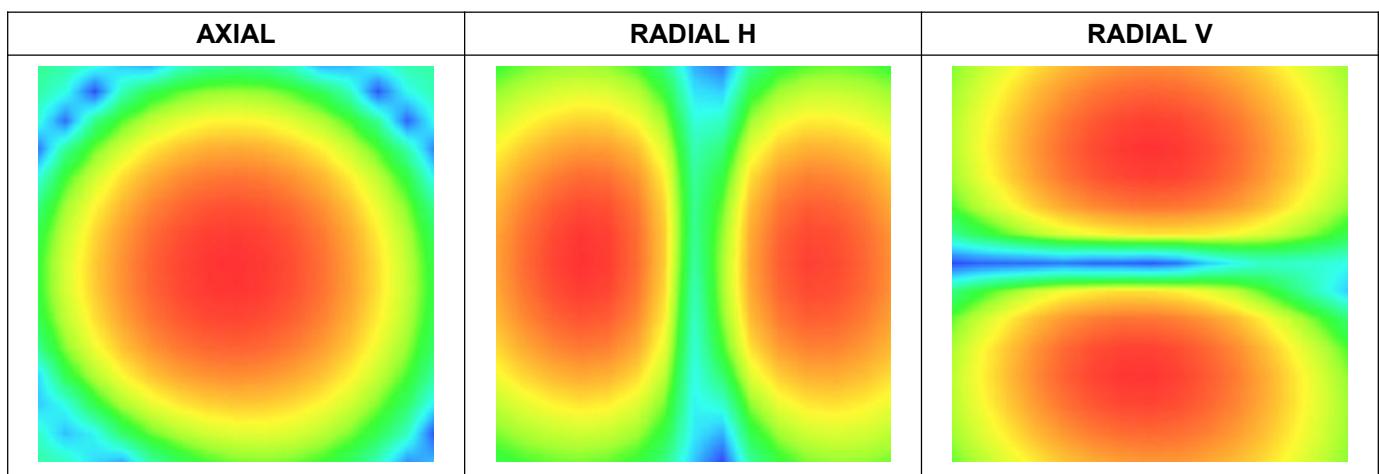
| Band            | Ch.  | Mode     | Signal to noise<br>(dB) | T-Rating | Frequency<br>Response | Meas.No. |
|-----------------|------|----------|-------------------------|----------|-----------------------|----------|
| GSM850          | 128  | Axial    | 28.86                   | T4       | PASS                  | 1#       |
|                 |      | Radial H | 21.65                   | T4       |                       |          |
|                 | 190  | Axial    | 28.75                   | T3       | PASS                  | 2#       |
|                 |      | Radial H | 23.68                   | T3       |                       |          |
|                 | 251  | Axial    | 28.65                   | T3       | PASS                  | 3#       |
|                 |      | Radial H | 23.59                   | T3       |                       |          |
|                 | 512  | Axial    | 33.78                   | T4       | PASS                  | 4#       |
|                 |      | Radial H | 26.27                   | T3       |                       |          |
| GSM1900         | 661  | Axial    | 32.86                   | T4       | PASS                  | 5#       |
|                 |      | Radial H | 25.38                   | T3       |                       |          |
|                 | 810  | Axial    | 33.86                   | T4       | PASS                  | 6#       |
|                 |      | Radial H | 24.84                   | T3       |                       |          |
| WCDMA<br>Band 2 | 9263 | Axial    | 33.28                   | T4       | PASS                  | 7#       |
|                 |      | Radial H | 31.33                   | T4       |                       |          |
|                 | 9400 | Axial    | 36.39                   | T4       | PASS                  | 8#       |
|                 |      | Radial H | 32.92                   | T4       |                       |          |
|                 | 9537 | Axial    | 34.80                   | T4       | PASS                  | 9#       |
|                 |      | Radial H | 33.04                   | T4       |                       |          |
| WCDMA<br>Band 5 | 4133 | Axial    | 35.43                   | T4       | PASS                  | 10#      |
|                 |      | Radial H | 34.32                   | T4       |                       |          |
|                 | 4175 | Axial    | 36.75                   | T4       | PASS                  | 11#      |
|                 |      | Radial H | 32.24                   | T4       |                       |          |
|                 | 4232 | Axial    | 41.05                   | T4       | PASS                  | 12#      |
|                 |      | Radial H | 38.95                   | T4       |                       |          |

## 9 TEST EQUIPMENTS LIST

| Description                     | Manufacturer | Model           | Serial No.      | Cal. Date  | Cal. Due   |
|---------------------------------|--------------|-----------------|-----------------|------------|------------|
| PC                              | Dell         | N/A             | N/A             | N/A        | N/A        |
| TMFS                            | SATIMO       | STMFS           | SN 22/12 TMFS18 | 2015/03/30 | 2016/03/29 |
| T-coil Probe                    | SATIMO       | STCOIL          | SN 22/12 TCP26  | 2015/03/16 | 2016/03/15 |
| RF coaxial Cable                | SATIMO       | N/A             | N/A             | N/A        | N/A        |
| MultiMeter                      | Keithley     | MultiMeter 2000 | 4024022         | 2014/12/13 | 2015/12/12 |
| Signal Generator                | R&S          | SMBV100A        | 260592          | 2015/07/16 | 2016/07/15 |
| Power Meter                     | Agilent      | E4419B          | GB40201833      | 2015/10/14 | 2016/10/13 |
| Power Sensor                    | R&S          | NRP-Z21         | 103971          | 2015/07/16 | 2016/07/15 |
| Power Amplifier                 | SATIMO       | 6552B           | 22374           | N/A        | N/A        |
| Wireless Communication Test Set | R&S          | CMU 200         | 123666          | 2015/10/15 | 2016/10/14 |

## ANNEX A HAC TEST RESULT OF SYSTEM VERIFICAION

### T-coil System Check Data


#### Experimental conditions

|                     |            |
|---------------------|------------|
| Grid size (mm x mm) | 70.0, 70.0 |
| Step (mm)           | 5          |
| Band                | -          |
| Channel             | -          |
| Signal              | Audio      |
| Date of measurement | 2015-11-08 |

#### HAC Measurement Results

| Test Description   | Minimum Limit | Location   | Measured |
|--------------------|---------------|------------|----------|
|                    | dBA/m         | -          | dBA/m    |
| Intensity, Axial   | -18           | Max        | -14.35   |
| Intensity, RadialH | -18           | Right side | -19.61   |
|                    | -18           | Left side  | -19.50   |
| Intensity, RadialV | -18           | Upper side | -19.27   |
|                    | -18           | Lower side | -19.10   |

#### T.Coil Scan Overlay Magnetic Field Distributions

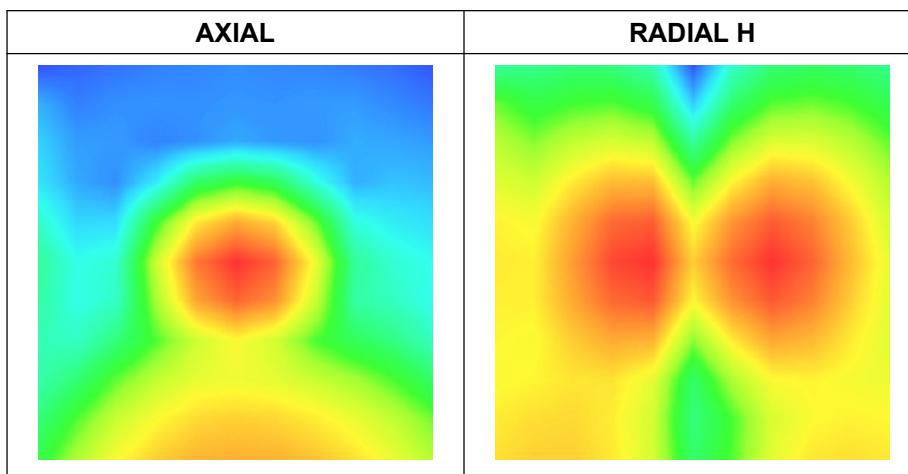


## ANNEX B HAC RF MEASUREMENT RESULT

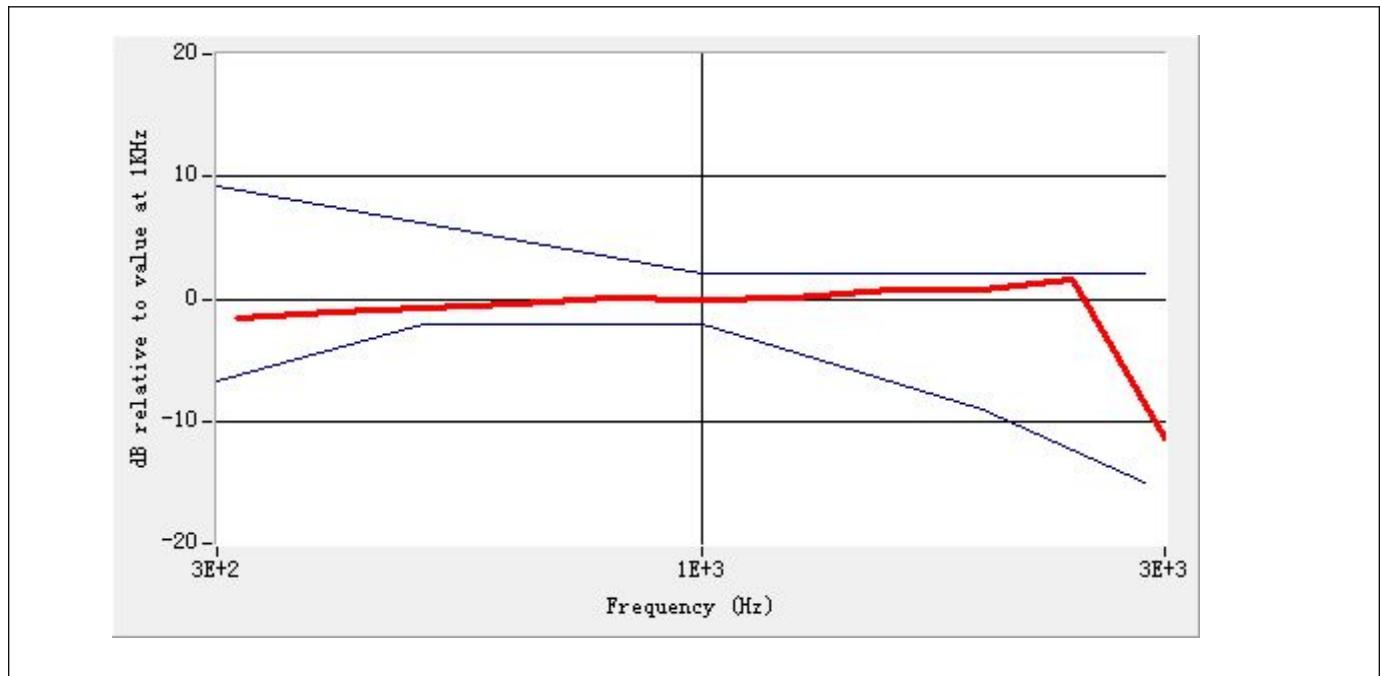
### TABLE OF MEASUREMENT RESULT LIST

| <u>Band</u>  | <u>Mode</u> | <u>PARAMETERS</u>                     |
|--------------|-------------|---------------------------------------|
| GSM 850      | T-Coil      | <u>Measurement 1:</u> Low Channel     |
|              |             | <u>Measurement 2:</u> Middle Channel  |
|              |             | <u>Measurement 3:</u> High Channel    |
| GSM 1900     | T-Coil      | <u>Measurement 4:</u> Low Channel     |
|              |             | <u>Measurement 5:</u> Middle Channel  |
|              |             | <u>Measurement 6:</u> High Channel    |
| WCDMA Band 2 | T-Coil      | <u>Measurement 7:</u> Low Channel     |
|              |             | <u>Measurement 8:</u> Middle Channel  |
|              |             | <u>Measurement 9:</u> High Channel    |
| WCDMA Band 5 | T-Coil      | <u>Measurement 10:</u> Low Channel    |
|              |             | <u>Measurement 11:</u> Middle Channel |
|              |             | <u>Measurement 12:</u> High Channel   |

## MEASUREMENT 1


### Experimental conditions

|                     |            |
|---------------------|------------|
| Grid size (mm x mm) | 50.0, 50.0 |
| Step (mm)           | 5          |
| Band                | GSM 850    |
| Channel             | Low        |
| Signal              | GSM        |
| Date of measurement | 2015-11-08 |


### HAC Measurement Results

| C63.19  | Mode | Band   | Test Description                | Minimum Limit | Location | Measured | Category | Verdict   |
|---------|------|--------|---------------------------------|---------------|----------|----------|----------|-----------|
|         |      |        |                                 | dBA/m         | -        | dBA/m    | -        | Pass/Fail |
| 7.3.1.1 | GSM  | GSM850 | Intensity, Axial                | -18           | Max      | -1.50    | -        | PASS      |
| 7.3.1.2 |      |        | Intensity, Radial H             | -18           | Max      | -3.80    | -        | PASS      |
|         |      |        |                                 | dB            |          | dB       |          |           |
| 7.3.3   |      |        | Signal to noise/noise, Axial    | 20            | Max      | 28.86    | T4       | PASS      |
| 7.3.3   |      |        | Signal to noise/noise, Radial H | 20            | Max      | 21.65    | T4       | PASS      |
| 7.3.2   |      |        | Frequency response, Axial       |               |          | PASS     |          |           |

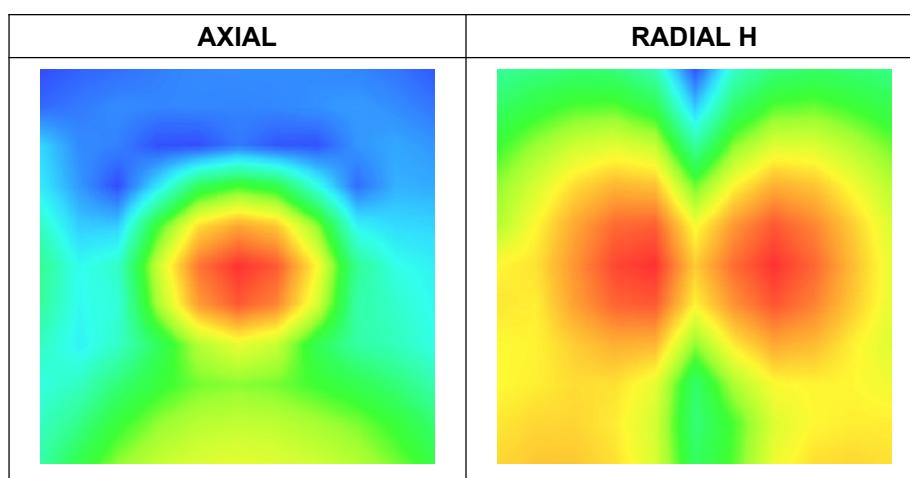
### T.Coil Scan Overlay Magnetic Field Distributions



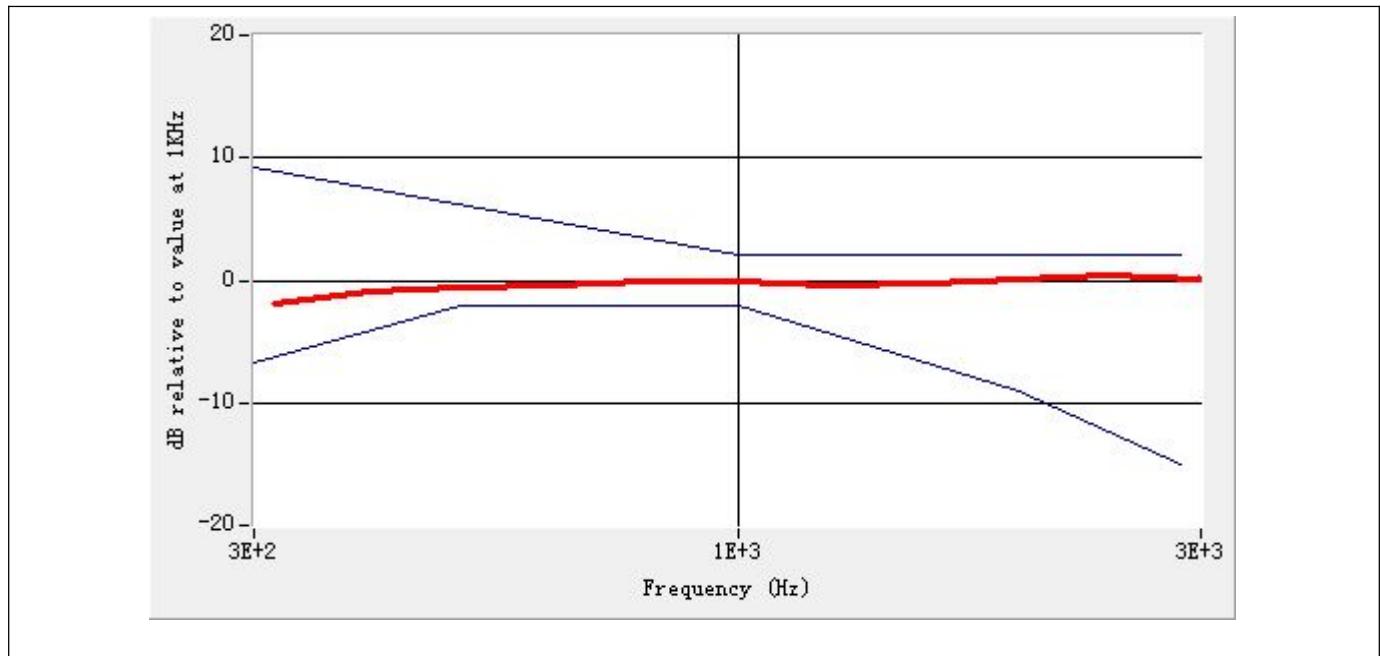
## Frequency response



## MEASUREMENT 2


### Experimental conditions

|                     |            |
|---------------------|------------|
| Grid size (mm x mm) | 50.0, 50.0 |
| Step (mm)           | 5          |
| Band                | GSM        |
| Channel             | Middle     |
| Signal              | GSM 850    |
| Date of measurement | 2015-11-08 |


### HAC Measurement Results

| C63.19  | Mode | Band   | Test Description                | Minimum Limit | Location | Measured | Category | Verdict   |
|---------|------|--------|---------------------------------|---------------|----------|----------|----------|-----------|
|         |      |        |                                 | dBA/m         | -        | dBA/m    | -        | Pass/Fail |
| 7.3.1.1 | GSM  | GSM850 | Intensity, Axial                | -18           | Max      | 4.18     | -        | PASS      |
| 7.3.1.2 |      |        | Intensity, Radial H             | -18           | Max      | -4.07    | -        | PASS      |
|         |      |        |                                 | dB            |          | dB       |          |           |
| 7.3.3   |      |        | Signal to noise/noise, Axial    | 20            | Max      | 28.75    | T3       | PASS      |
| 7.3.3   |      |        | Signal to noise/noise, Radial H | 20            | Max      | 23.68    | T3       | PASS      |
| 7.3.2   |      |        | Frequency response, Axial       |               |          | PASS     |          |           |

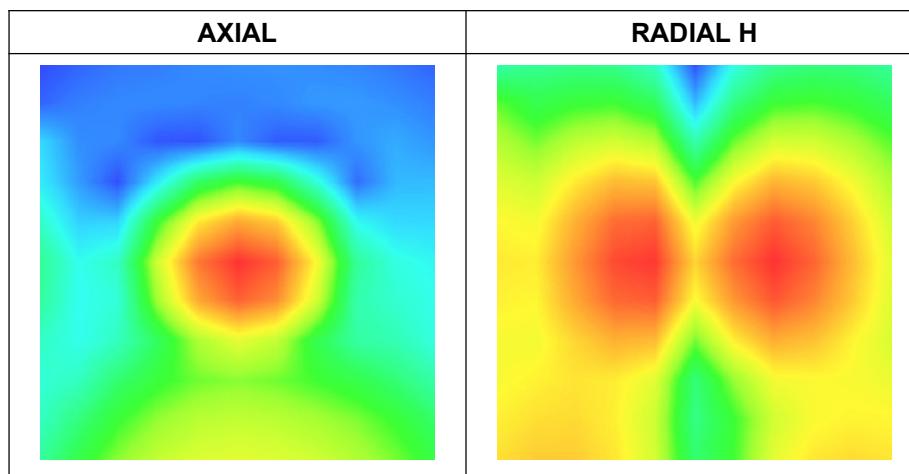
### T.Coil Scan Overlay Magnetic Field Distributions



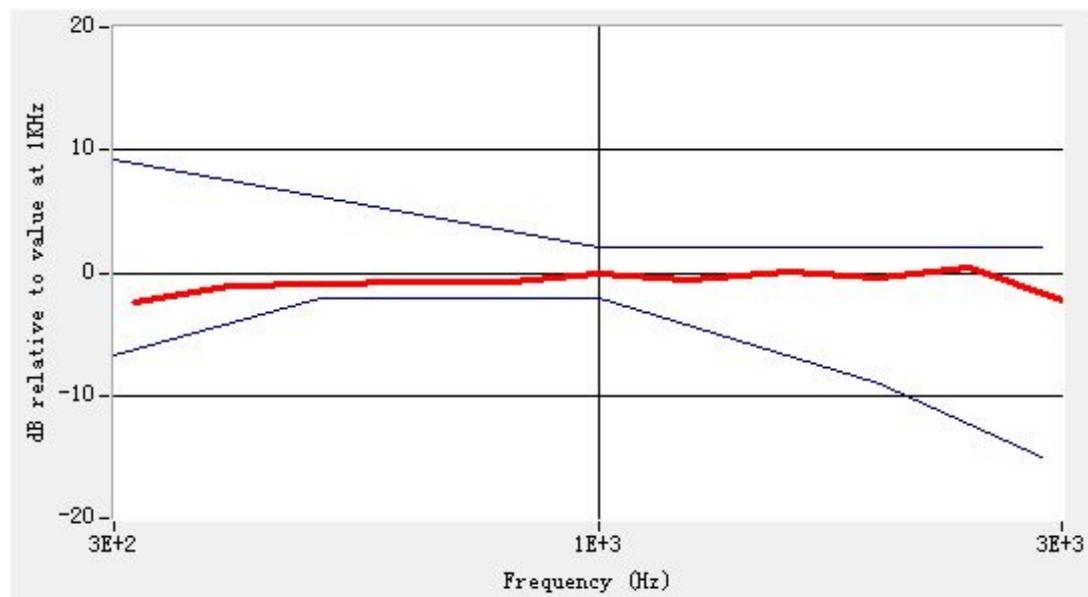
## Frequency response



## MEASUREMENT 3


### Experimental conditions

|                     |            |
|---------------------|------------|
| Grid size (mm x mm) | 50.0, 50.0 |
| Step (mm)           | 5          |
| Band                | GSM 850    |
| Channel             | High       |
| Signal              | GSM        |
| Date of measurement | 2015-11-08 |


### HAC Measurement Results

| C63.19  | Mode | Band   | Test Description                | Minimum Limit | Location | Measured | Category | Verdict   |
|---------|------|--------|---------------------------------|---------------|----------|----------|----------|-----------|
|         |      |        |                                 | dBA/m         | -        | dBA/m    | -        | Pass/Fail |
| 7.3.1.1 | GSM  | GSM850 | Intensity, Axial                | -18           | Max      | 4.42     | -        | PASS      |
| 7.3.1.2 |      |        | Intensity, Radial H             | -18           | Max      | -4.55    | -        | PASS      |
|         |      |        |                                 | dB            |          | dB       |          |           |
| 7.3.3   |      |        | Signal to noise/noise, Axial    | 20            | Max      | 28.65    | T3       | PASS      |
| 7.3.3   |      |        | Signal to noise/noise, Radial H | 20            | Max      | 23.59    | T3       | PASS      |
| 7.3.2   |      |        | Frequency response, Axial       |               |          | PASS     |          |           |

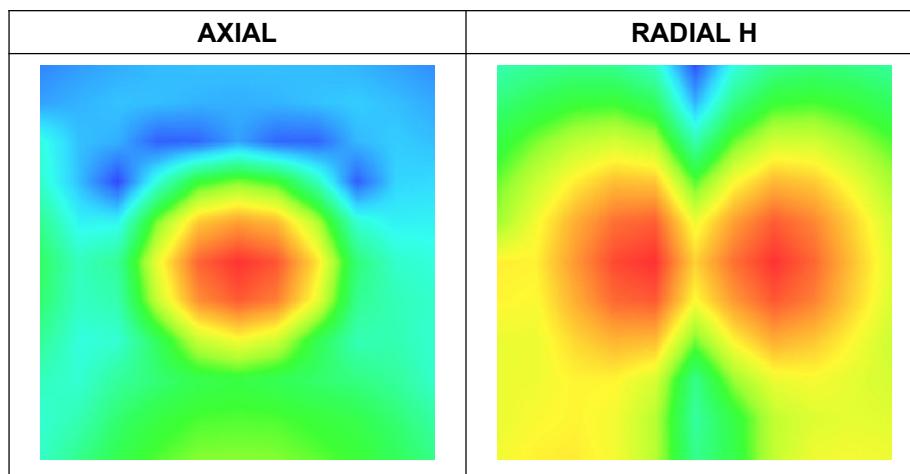
### T.Coil Scan Overlay Magnetic Field Distributions



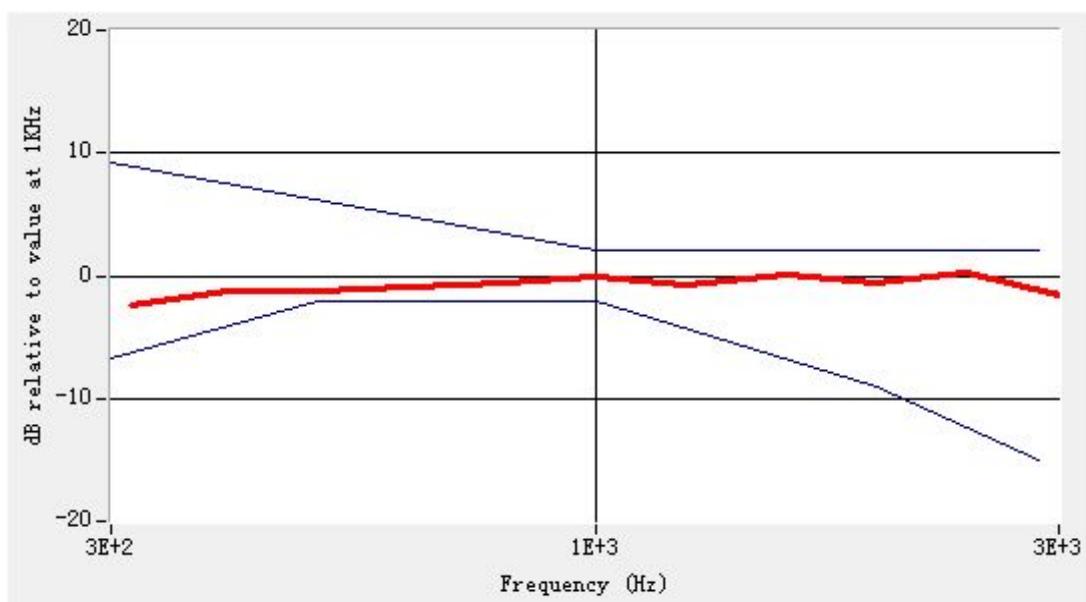
## Frequency response



## MEASUREMENT 4


### Experimental conditions

|                     |            |
|---------------------|------------|
| Grid size (mm x mm) | 50.0, 50.0 |
| Step (mm)           | 5          |
| Band                | GSM1900    |
| Channel             | Low        |
| Signal              | GSM        |
| Date of measurement | 2015-11-08 |


### HAC Measurement Results

| C63.19  | Mode | Band    | Test Description                | Minimum Limit | Location | Measured | Category | Verdict   |
|---------|------|---------|---------------------------------|---------------|----------|----------|----------|-----------|
|         |      |         |                                 | dBA/m         | -        | dBA/m    | -        | Pass/Fail |
| 7.3.1.1 | GSM  | GSM1900 | Intensity, Axial                | -18           | Max      | 3.93     | -        | PASS      |
| 7.3.1.2 |      |         | Intensity, Radial H             | -18           | Max      | -8.44    | -        | PASS      |
|         |      |         |                                 | dB            |          | dB       |          |           |
| 7.3.3   |      |         | Signal to noise/noise, Axial    | 20            | Max      | 33.78    | T4       | PASS      |
| 7.3.3   |      |         | Signal to noise/noise, Radial H | 20            | Max      | 26.27    | T3       | PASS      |
| 7.3.2   |      |         | Frequency response, Axial       |               |          | PASS     |          |           |

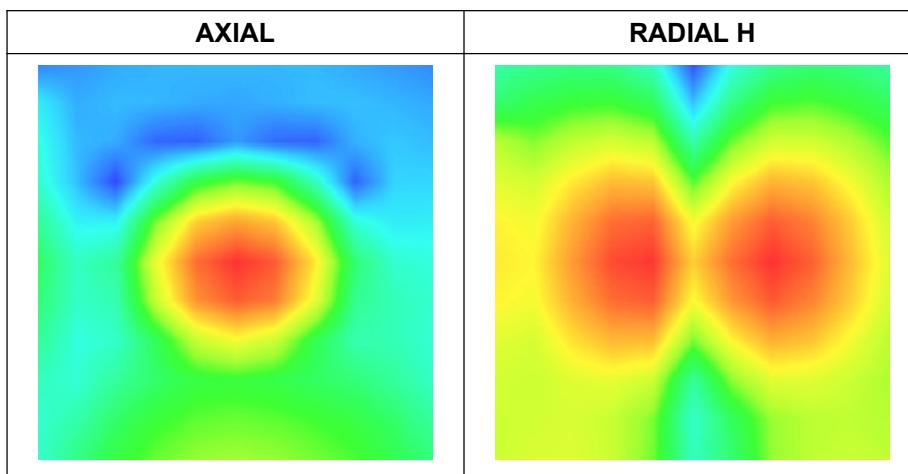
### T.Coil Scan Overlay Magnetic Field Distributions



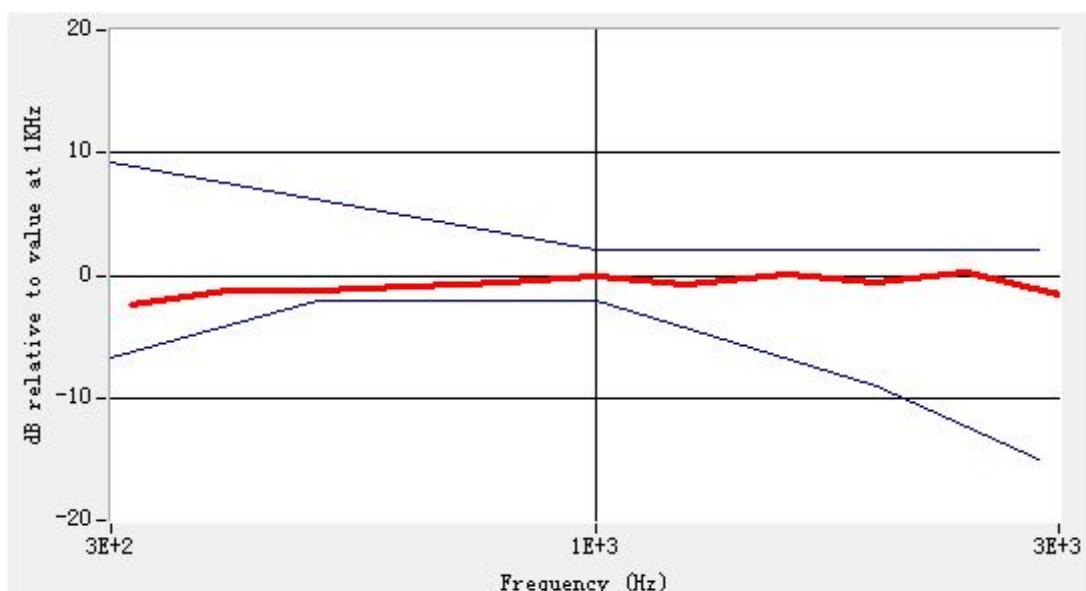
## Frequency response



## MEASUREMENT 5


### Experimental conditions

|                     |            |
|---------------------|------------|
| Grid size (mm x mm) | 50.0, 50.0 |
| Step (mm)           | 5          |
| Band                | GSM1900    |
| Channel             | Middle     |
| Signal              | GSM        |
| Date of measurement | 2015-11-08 |


### HAC Measurement Results

| C63.19  | Mode | Band    | Test Description                | Minimum Limit | Location | Measured | Category | Verdict   |
|---------|------|---------|---------------------------------|---------------|----------|----------|----------|-----------|
|         |      |         |                                 | dBA/m         | -        | dBA/m    | -        | Pass/Fail |
| 7.3.1.1 | GSM  | GSM1900 | Intensity, Axial                | -18           | Max      | 4.21     | -        | PASS      |
| 7.3.1.2 |      |         | Intensity, Radial H             | -18           | Max      | -4.33    | -        | PASS      |
|         |      |         |                                 | dB            |          | dB       |          |           |
| 7.3.3   |      |         | Signal to noise/noise, Axial    | 20            | Max      | 32.86    | T4       | PASS      |
| 7.3.3   |      |         | Signal to noise/noise, Radial H | 20            | Max      | 25.38    | T3       | PASS      |
| 7.3.2   |      |         | Frequency response, Axial       |               |          | PASS     |          |           |

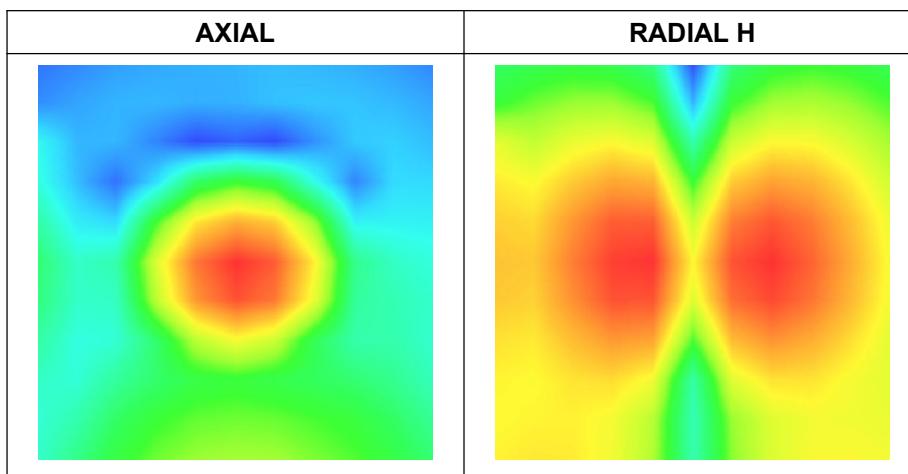
### T.Coil Scan Overlay Magnetic Field Distributions



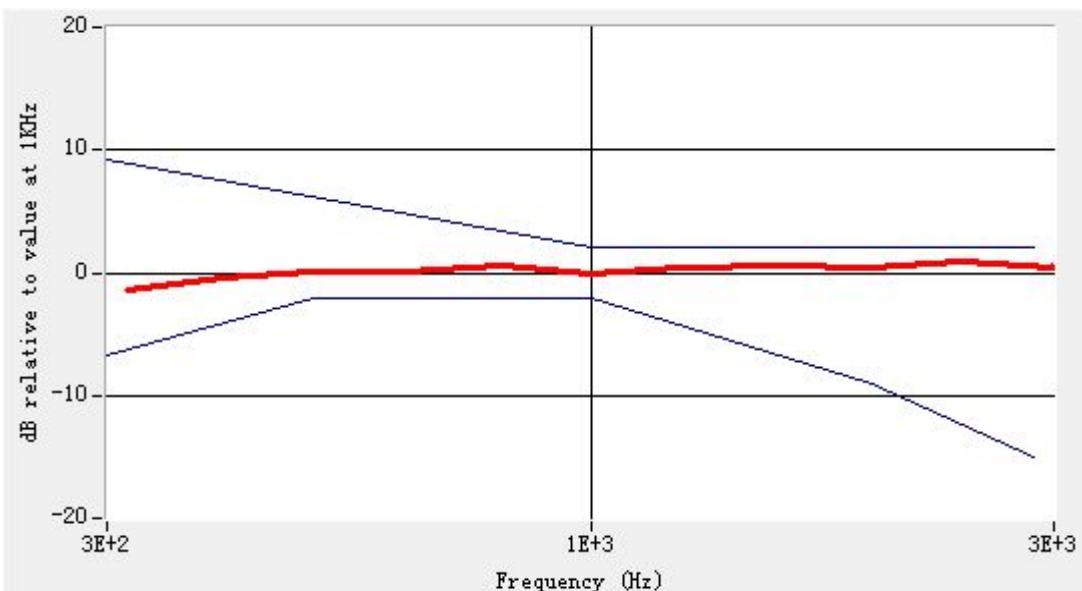
## Frequency response



## MEASUREMENT 6


### Experimental conditions

|                     |            |
|---------------------|------------|
| Grid size (mm x mm) | 50.0, 50.0 |
| Step (mm)           | 5          |
| Band                | GSM1900    |
| Channel             | High       |
| Signal              | GSM        |
| Date of measurement | 2015-11-08 |


### HAC Measurement Results

| C63.19  | Mode | Band    | Test Description                | Minimum Limit | Location | Measured | Category | Verdict   |
|---------|------|---------|---------------------------------|---------------|----------|----------|----------|-----------|
|         |      |         |                                 | dBA/m         | -        | dBA/m    | -        | Pass/Fail |
| 7.3.1.1 | GSM  | GSM1900 | Intensity, Axial                | -18           | Max      | 4.70     | -        | PASS      |
| 7.3.1.2 |      |         | Intensity, Radial H             | -18           | Max      | -4.35    | -        | PASS      |
|         |      |         |                                 | dB            |          | dB       |          |           |
| 7.3.3   |      |         | Signal to noise/noise, Axial    | 20            | Max      | 33.86    | T4       | PASS      |
| 7.3.3   |      |         | Signal to noise/noise, Radial H | 20            | Max      | 24.84    | T3       | PASS      |
| 7.3.2   |      |         | Frequency response, Axial       |               |          | PASS     |          |           |

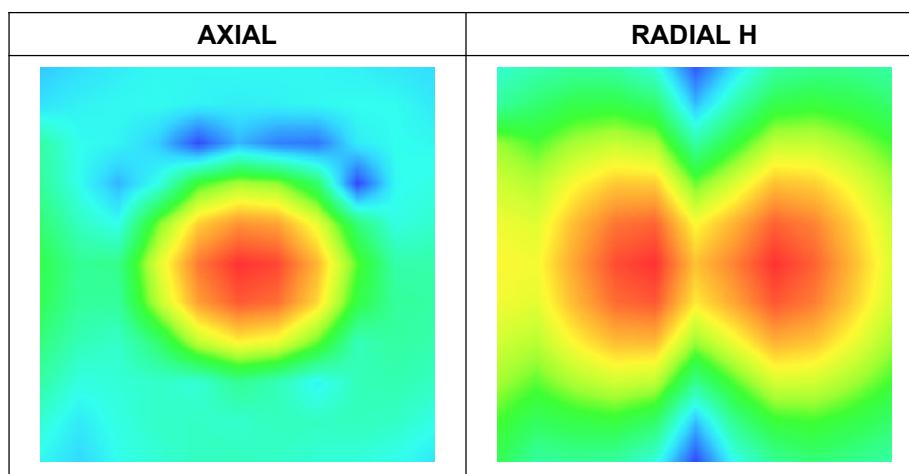
### T.Coil Scan Overlay Magnetic Field Distributions



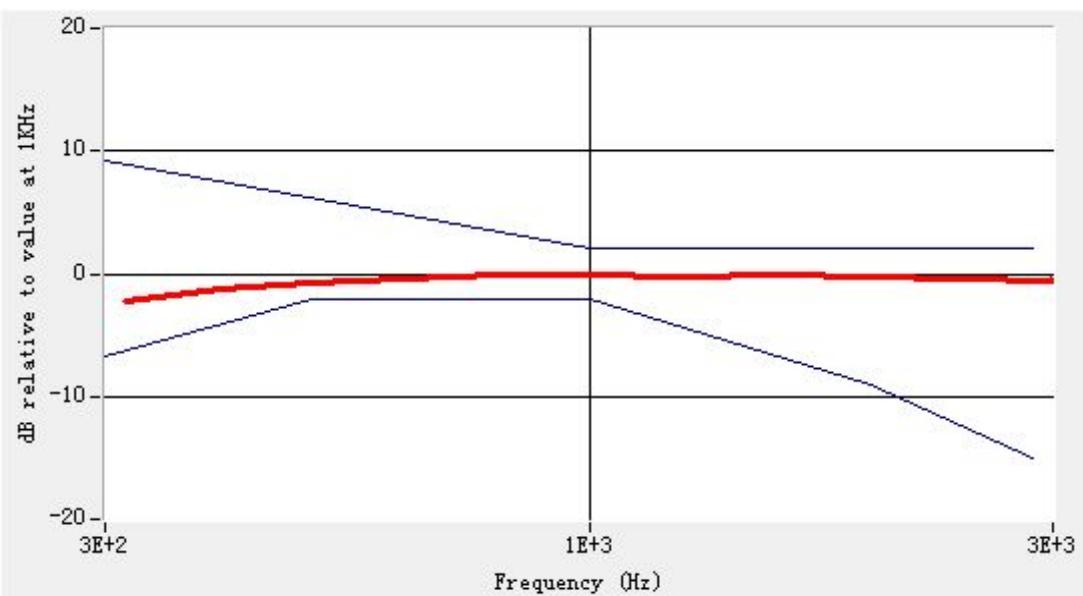
## Frequency response



## MEASUREMENT 7


### Experimental conditions

|                     |            |
|---------------------|------------|
| Grid size (mm x mm) | 50.0, 50.0 |
| Step (mm)           | 5          |
| Band                | WCDMA 1900 |
| Channel             | Low        |
| Signal              | WCDMA      |
| Date of measurement | 2015-11-08 |


### HAC Measurement Results

| C63.19  | Mode  | Band   | Test Description                | Minimum Limit | Location | Measured | Category | Verdict   |
|---------|-------|--------|---------------------------------|---------------|----------|----------|----------|-----------|
|         |       |        |                                 | dBA/m         | -        | dBA/m    | -        | Pass/Fail |
| 7.3.1.1 | WCDMA | Band 2 | Intensity, Axial                | -18           | Max      | -3.43    | -        | PASS      |
| 7.3.1.2 |       |        | Intensity, Radial H             | -18           | Max      | -11.67   | -        | PASS      |
|         |       |        |                                 |               |          | dB       |          |           |
| 7.3.3   |       |        | Signal to noise/noise, Axial    | 20            | Max      | 33.28    | T4       | PASS      |
| 7.3.3   |       |        | Signal to noise/noise, Radial H | 20            | Max      | 31.33    | T4       | PASS      |
| 7.3.2   |       |        | Frequency response, Axial       |               |          | PASS     |          |           |
|         |       |        |                                 |               |          |          |          |           |

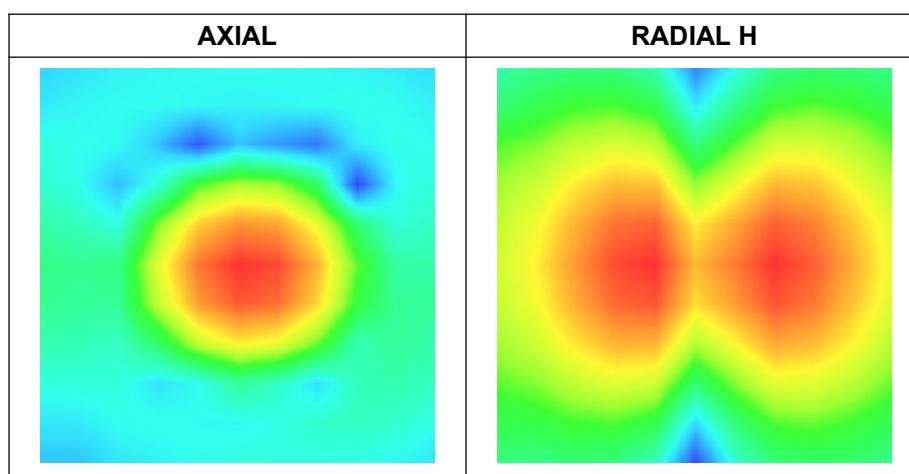
### T.Coil Scan Overlay Magnetic Field Distributions



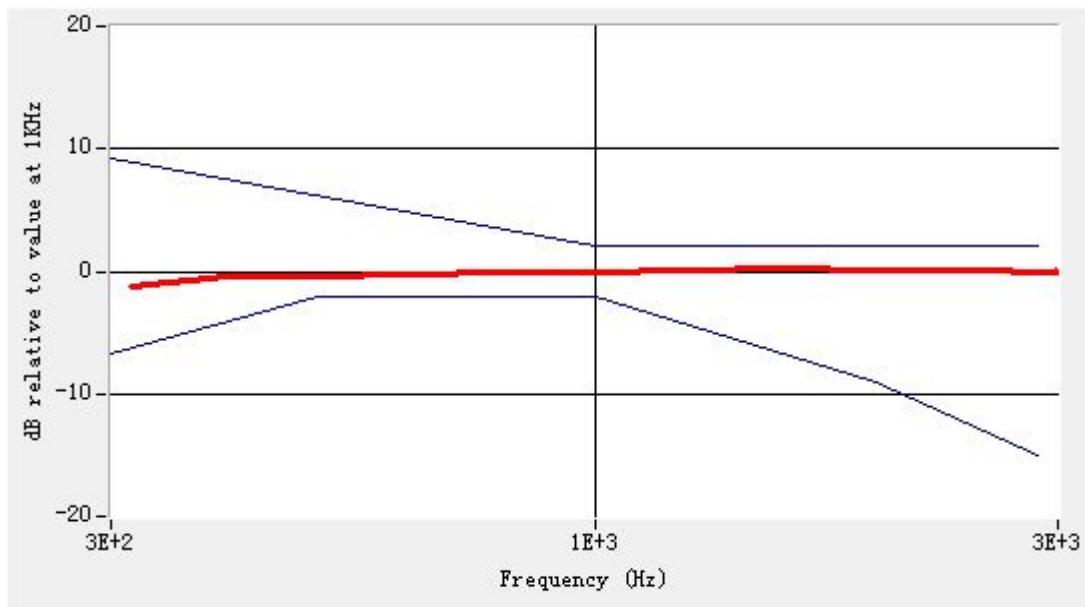
## Frequency response



## MEASUREMENT 8


### Experimental conditions

|                     |            |
|---------------------|------------|
| Grid size (mm x mm) | 50.0, 50.0 |
| Step (mm)           | 5          |
| Band                | WCDMA 1900 |
| Channel             | Middle     |
| Signal              | WCDMA      |
| Date of measurement | 2015-11-08 |


### HAC Measurement Results

| C63.19  | Mode | Band   | Test Description                | Minimum Limit | Location | Measured | Category | Verdict   |
|---------|------|--------|---------------------------------|---------------|----------|----------|----------|-----------|
|         |      |        |                                 | dBA/m         | -        | dBA/m    | -        | Pass/Fail |
| 7.3.1.1 |      |        | Intensity, Axial                | -18           | Max      | 3.56     | -        | PASS      |
| 7.3.1.2 |      |        | Intensity, Radial H             | -18           | Max      | -4.78    | -        | PASS      |
|         |      |        |                                 |               |          | dB       |          |           |
| 7.3.3   |      | Band 2 | Signal to noise/noise, Axial    | 20            | Max      | 36.39    | T4       | PASS      |
| 7.3.3   |      |        | Signal to noise/noise, Radial H | 20            | Max      | 32.92    | T4       | PASS      |
| 7.3.2   |      |        | Frequency response, Axial       |               |          | PASS     |          |           |
|         |      |        |                                 |               |          |          |          |           |

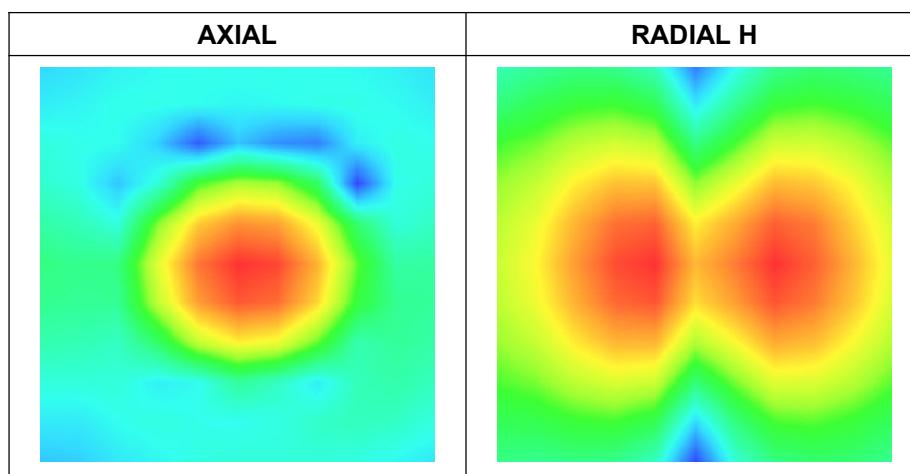
### T.Coil Scan Overlay Magnetic Field Distributions



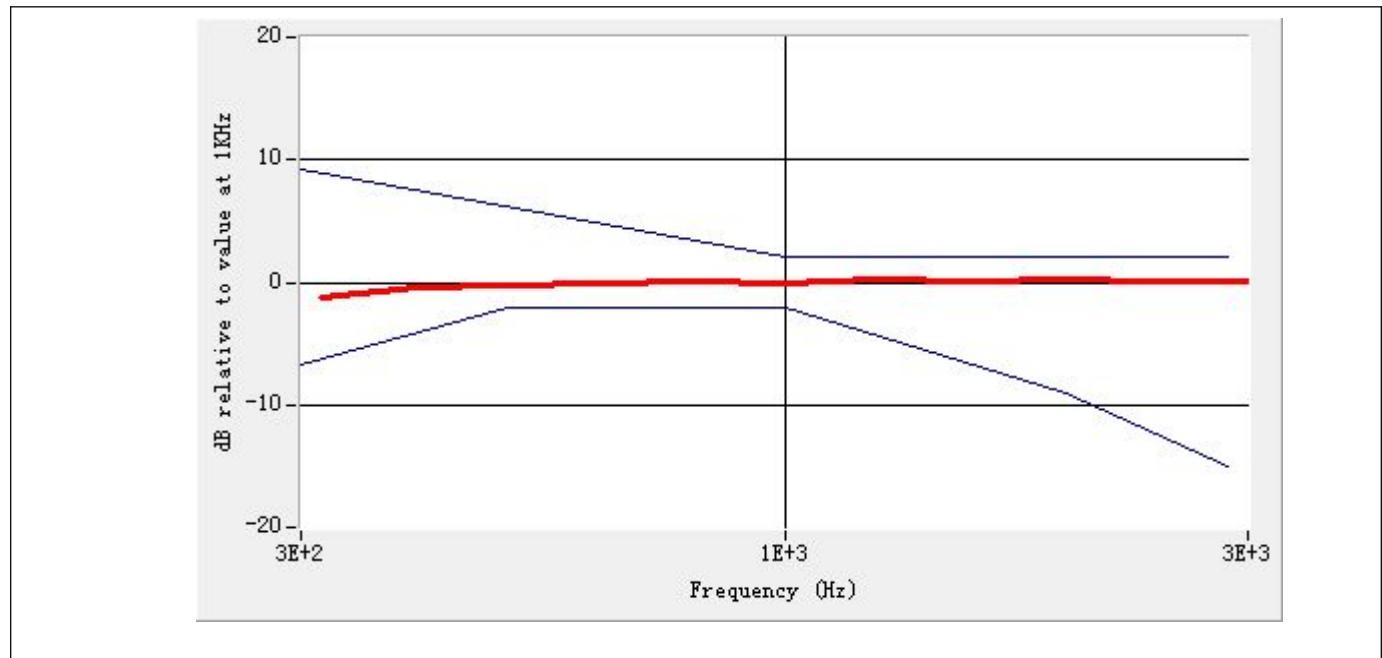
## Frequency reponse



## MEASUREMENT 9


### Experimental conditions

|                     |            |
|---------------------|------------|
| Grid size (mm x mm) | 50.0, 50.0 |
| Step (mm)           | 5          |
| Band                | WCDMA 1900 |
| Channel             | High       |
| Signal              | WCDMA      |
| Date of measurement | 2015-11-08 |


### HAC Measurement Results

| C63.19  | Mode  | Band   | Test Description                | Minimum Limit | Location | Measured | Category | Verdict   |
|---------|-------|--------|---------------------------------|---------------|----------|----------|----------|-----------|
|         |       |        |                                 | dBA/m         | -        | dBA/m    | -        | Pass/Fail |
| 7.3.1.1 | WCDMA | Band 2 | Intensity, Axial                | -18           | Max      | 3.57     | -        | PASS      |
| 7.3.1.2 |       |        | Intensity, RadialH              | -18           | Max      | -4.72    | -        | PASS      |
|         |       |        |                                 |               |          | dB       |          |           |
| 7.3.3   |       |        | Signal to noise/noise, Axial    | 20            | Max      | 34.80    | T4       | PASS      |
| 7.3.3   |       |        | Signal to noise/noise, Radial H | 20            | Max      | 33.04    | T4       | PASS      |
| 7.3.2   |       |        | Frequency reponse, Axial        |               |          | PASS     |          |           |

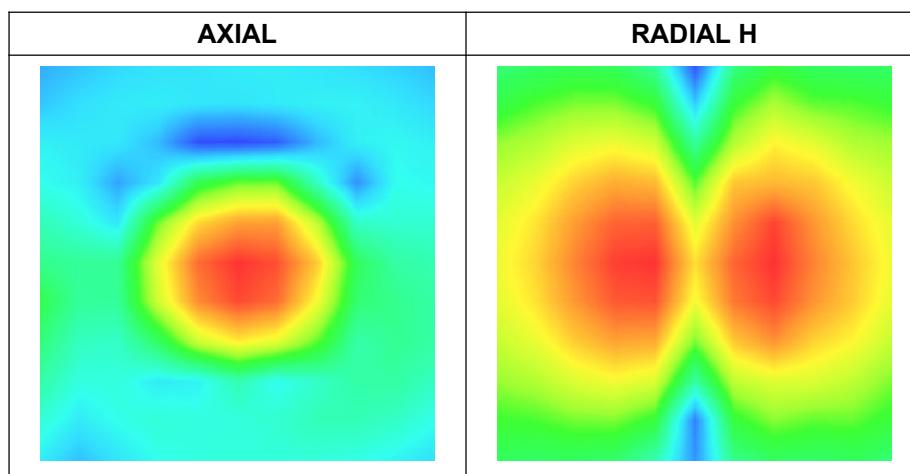
### T.Coil Scan Overlay Magnetic Field Distributions



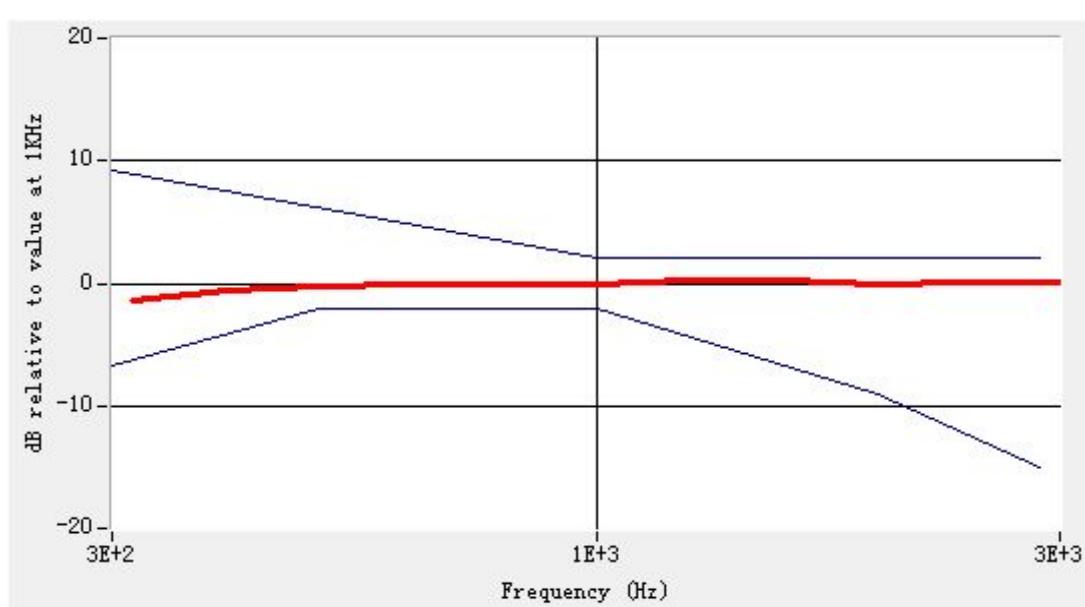
## Frequency reponse



## MEASUREMENT 10


### Experimental conditions

|                     |            |
|---------------------|------------|
| Grid size (mm x mm) | 50.0, 50.0 |
| Step (mm)           | 5          |
| Band                | WCDMA 850  |
| Channel             | Low        |
| Signal              | WCDMA      |
| Date of measurement | 2015-11-08 |


### HAC Measurement Results

| C63.19  | Mode  | Band   | Test Description                | Minimum Limit | Location | Measured | Category | Verdict   |
|---------|-------|--------|---------------------------------|---------------|----------|----------|----------|-----------|
|         |       |        |                                 | dBA/m         | -        | dBA/m    | -        | Pass/Fail |
| 7.3.1.1 | WCDMA | Band 5 | Intensity, Axial                | -18           | Max      | 4.10     | -        | PASS      |
| 7.3.1.2 |       |        | Intensity, Radial H             | -18           | Max      | -4.76    | -        | PASS      |
| 7.3.3   |       |        |                                 |               |          | dB       |          |           |
| 7.3.3   |       |        | Signal to noise/noise, Axial    | 20            | Max      | 35.43    | T4       | PASS      |
| 7.3.2   |       |        | Signal to noise/noise, Radial H | 20            | Max      | 34.32    | T4       | PASS      |
|         |       |        | Frequency response, Axial       |               |          | PASS     |          |           |

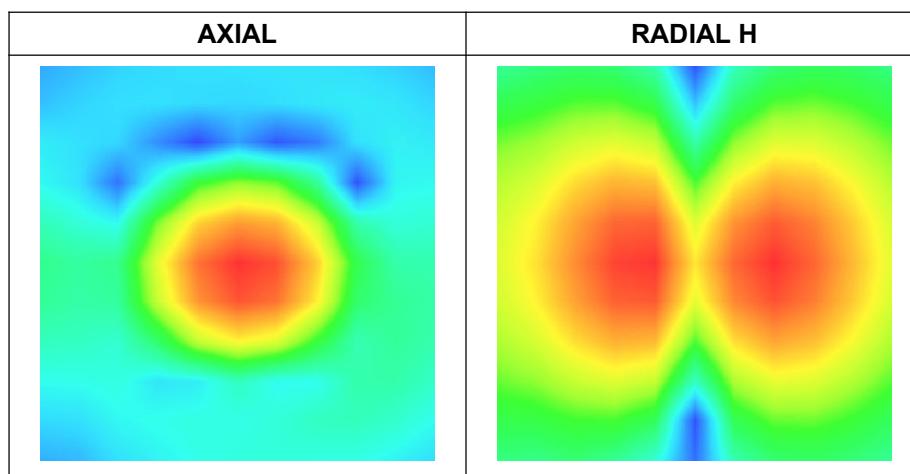
### T.Coil Scan Overlay Magnetic Field Distributions



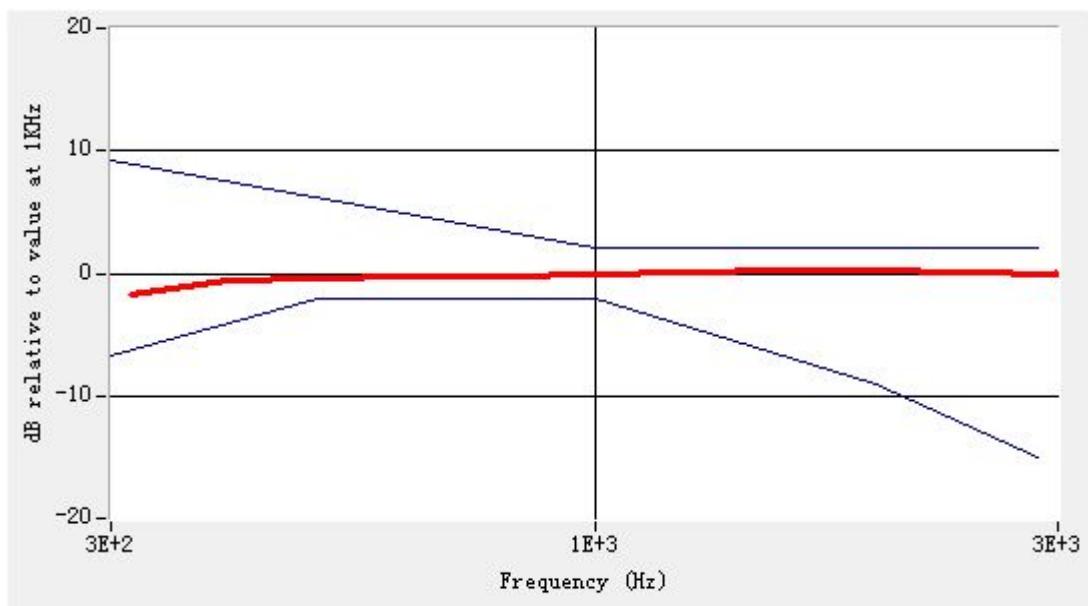
## Frequency response



## MEASUREMENT 11


### Experimental conditions

|                     |            |
|---------------------|------------|
| Grid size (mm x mm) | 50.0, 50.0 |
| Step (mm)           | 5          |
| Band                | WCDMA 850  |
| Channel             | Middle     |
| Signal              | WCDMA      |
| Date of measurement | 2015-11-08 |


### HAC Measurement Results

| C63.19  | Mode  | Band   | Test Description                | Minimum Limit | Location | Measured | Category | Verdict   |
|---------|-------|--------|---------------------------------|---------------|----------|----------|----------|-----------|
|         |       |        |                                 | dBA/m         | -        | dBA/m    | -        | Pass/Fail |
| 7.3.1.1 | WCDMA | Band 5 | Intensity, Axial                | -18           | Max      | 3.87     | -        | PASS      |
| 7.3.1.2 |       |        | Intensity, Radial H             | -18           | Max      | -4.87    | -        | PASS      |
|         |       |        |                                 |               |          | dB       | -        |           |
| 7.3.3   |       |        | Signal to noise/noise, Axial    | 20            | Max      | 36.75    | T4       | PASS      |
| 7.3.3   |       |        | Signal to noise/noise, Radial H | 20            | Max      | 32.24    | T4       | PASS      |
| 7.3.2   |       |        | Frequency response, Axial       |               |          | PASS     |          |           |
|         |       |        |                                 |               |          |          |          |           |

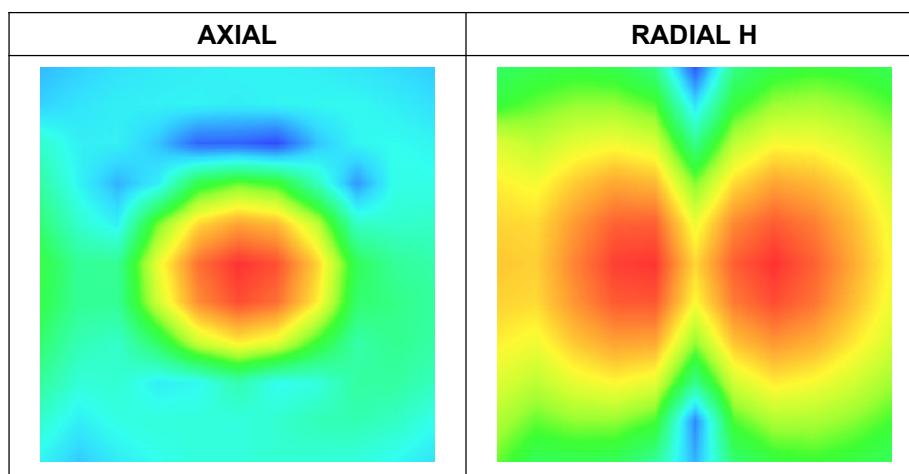
### T.Coil Scan Overlay Magnetic Field Distributions



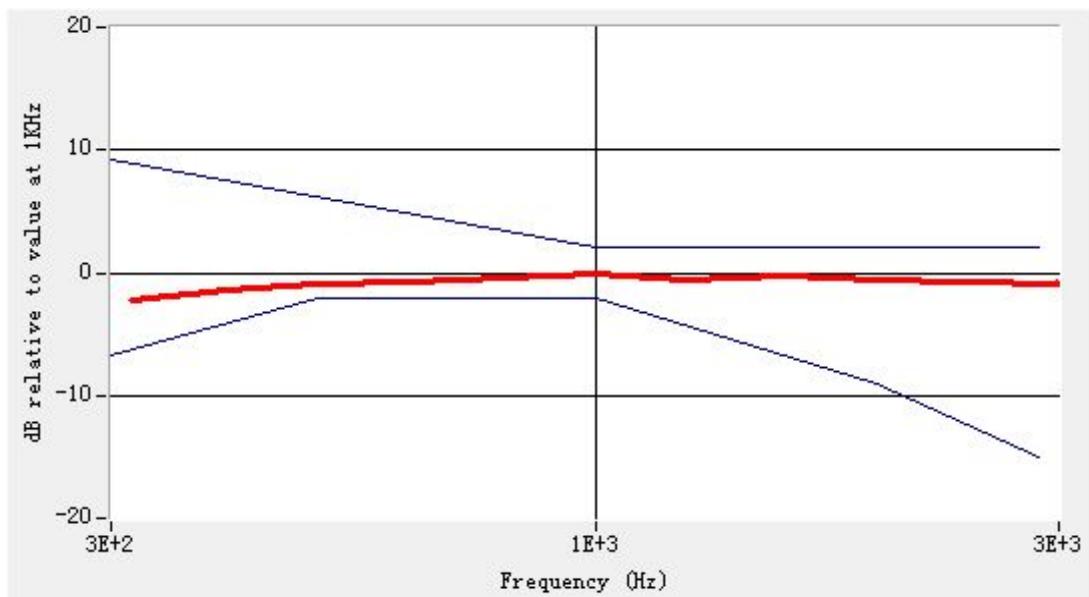
## Frequency response



## MEASUREMENT 12


### Experimental conditions

|                     |            |
|---------------------|------------|
| Grid size (mm x mm) | 50.0, 50.0 |
| Step (mm)           | 5          |
| Band                | WCDMA 850  |
| Channel             | High       |
| Signal              | WCDMA      |
| Date of measurement | 2015-11-08 |


### HAC Measurement Results

| C63.19  | Mode  | Band   | Test Description                | Minimum Limit | Location | Measured | Category | Verdict   |
|---------|-------|--------|---------------------------------|---------------|----------|----------|----------|-----------|
|         |       |        |                                 | dBA/m         | -        | dBA/m    | -        | Pass/Fail |
| 7.3.1.1 | WCDMA | Band 5 | Intensity, Axial                | -18           | Max      | 4.38     | -        | PASS      |
| 7.3.1.2 |       |        | Intensity, Radial H             | -18           | Max      | -4.50    | -        | PASS      |
|         |       |        |                                 |               |          | dB       | -        |           |
| 7.3.3   |       |        | Signal to noise/noise, Axial    | 20            | Max      | 41.05    | T4       | PASS      |
| 7.3.3   |       |        | Signal to noise/noise, Radial H | 20            | Max      | 38.95    | T4       | PASS      |
| 7.3.2   |       |        | Frequency response, Axial       |               |          | PASS     |          |           |

### T.Coil Scan Overlay Magnetic Field Distributions



## Frequency response



## ANNEX C EUT EXTERNAL PHOTOS

Please refer the document “ BL-SZ1590187-AW. PDF”.

## ANNEX D HAC T-Coil TEST SETUP PHOTOS

Please refer the document “ BL-SZ1590187-T-Coil. PDF”.

## ANNEX E CALIBRATION REPORT

### F.1 T-coil Probe Calibration Report



### COMOHAC T-coil Probe Calibration Report

Ref : ACR.75.18.15.SATU.A

**SHENZHEN BALUN TECHNOLOGY CO.,LTD.**  
**BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY**  
**PARK, SHAHE XI ROAD,**  
**NANSHAN DISTRICT, SHENZHEN, GUANGDONG**  
**PROVINCE, P.R. CHINA 518055**  
**MVG COMOHAC T-COIL PROBE**  
**SERIAL NO.: SN 22/12 TCP26**

Calibrated at MVG US  
2105 Barrett Park Dr. - Kennesaw, GA 30144



03/16/2015

#### Summary:

This document presents the method and results from an accredited COMOHAC T-coil Probe calibration performed in MVG USA using the COMOHAC test bench, for use with a MVG COMOHAC system only. All calibration results are traceable to national metrology institutions.



## COMOHAC T-COIL PROBE CALIBRATION REPORT

Ref: ACR.75.18.15.SATU.A

|               | Name          | Function        | Date      | Signature                                                                           |
|---------------|---------------|-----------------|-----------|-------------------------------------------------------------------------------------|
| Prepared by : | Jérôme LUC    | Product Manager | 3/16/2015 |  |
| Checked by :  | Jérôme LUC    | Product Manager | 3/16/2015 |  |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 3/16/2015 |  |

|                | Customer Name                               |
|----------------|---------------------------------------------|
| Distribution : | SHENZHEN<br>BALUN<br>TECHNOLOGY<br>Co.,Ltd. |

| Issue | Date      | Modifications   |
|-------|-----------|-----------------|
| A     | 3/16/2015 | Initial release |
|       |           |                 |
|       |           |                 |
|       |           |                 |

Page: 2/7

*This document shall not be reproduced, except in full or in part, without the written approval of MVG.  
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.*



## TABLE OF CONTENTS

|     |                                                             |   |
|-----|-------------------------------------------------------------|---|
| 1   | Device Under Test .....                                     | 4 |
| 2   | Product Description .....                                   | 4 |
| 2.1 | General Information .....                                   | 4 |
| 3   | Measurement Method .....                                    | 4 |
| 3.1 | Sensitivity .....                                           | 4 |
| 3.2 | Linearity .....                                             | 4 |
| 3.3 | Signal to Noise Measurement of the Calibration System ..... | 5 |
| 4   | Measurement Uncertainty.....                                | 5 |
| 5   | Calibration Measurement Results.....                        | 5 |
| 5.1 | Sensitivity .....                                           | 6 |
| 5.2 | Linearity .....                                             | 6 |
| 5.3 | Signal to Noise measurement of the Calibration System ..... | 6 |
| 6   | List of Equipment .....                                     | 7 |

Page: 3/7

*This document shall not be reproduced, except in full or in part, without the written approval of MVG.  
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.*



## COMOHAC T-COIL PROBE CALIBRATION REPORT

Ref: ACR.75.18.15.SATU.A

**1 DEVICE UNDER TEST**

| Device Under Test              |                      |
|--------------------------------|----------------------|
| Device Type                    | COMOHAC T-COIL PROBE |
| Manufacturer                   | MVG                  |
| Model                          | STCOIL               |
| Serial Number                  | SN 22/12 TCP26       |
| Product Condition (new / used) | Used                 |
| Frequency Range of Probe       | 200-5000 Hz          |

A yearly calibration interval is recommended.

**2 PRODUCT DESCRIPTION****2.1 GENERAL INFORMATION**

MVG's COMOHAC T-coil Probes are built in accordance to the ANSI C63.19 and IEEE 1027 standards.



**Figure 1 – MVG COMOHAC T-coil Probe**

|                     |                                   |
|---------------------|-----------------------------------|
| Coil Dimension      | 6.55 mm length * 2.29 mm diameter |
| DC resistance       | 860.6 Ω                           |
| Wire size           | 51AWG                             |
| Inductance at 1 kHz | 132.1 mH at 1 kHz                 |

**3 MEASUREMENT METHOD**

All methods used to perform the measurements and calibrations comply with the ANSI C63.19 and IEEE 1027 standards. All measurements were performed using a Helmholtz coil built according to the specifications outlined in ANSI C63.19 and IEEE 1027.

**3.1 SENSITIVITY**

The T-coil was positioned within the Helmholtz coil in axial orientation. Using an audio generator connected to the input of the Helmholtz coil, a known field (1 A/m) was generated within the coil and the T-coil probe reading recorded over the frequency range of 100 Hz to 1000 Hz.

**3.2 LINEARITY**

The T-coil probe was positioned within the Helmholtz coil in axial orientation. The audio generator connected to the input of the Helmholtz coil was adjusted to obtain a field within the coil from 0 dB A/m to -50 dB A/m and the T-coil reading recorded at each power level (10 dB steps).

Page: 4/7

*This document shall not be reproduced, except in full or in part, without the written approval of MVG.  
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.*



## COMOHAC T-COIL PROBE CALIBRATION REPORT

Ref: ACR.75.18.15.SATU.A

**3.3 SIGNAL TO NOISE MEASUREMENT OF THE CALIBRATION SYSTEM**

The T-coil probe was positioned within the Helmholtz coil in axial orientation. The audio generator connected to the input of the Helmholtz coil was adjusted to obtain a field of -50 dB A/m. The T-coil reading was recorded. The audio generator is then turned off and the T-coil reading recorded.

**4 MEASUREMENT UNCERTAINTY**

The guideline outlined in the IEEE ANSI C63.19 standard was followed to generate the measurement uncertainty for validation measurements. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of  $k=2$ , traceable to the Internationally Accepted Guides to Measurement Uncertainty.

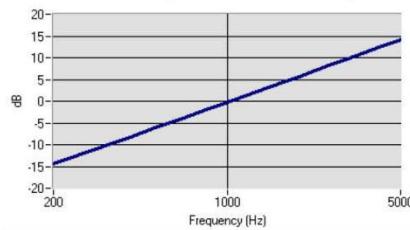
| Uncertainty analysis of the T-coil probe calibration                      |                  |             |            |                  |                 |
|---------------------------------------------------------------------------|------------------|-------------|------------|------------------|-----------------|
| Uncertainty Component                                                     | Tol. ( $\pm$ dB) | Prob. Dist. | Div.       | Uncertainty (dB) | Uncertainty (%) |
| Current/Voltage Accuracy                                                  | 0.224            | R           | $\sqrt{3}$ | 0.13             |                 |
| Acoustic/ Signal Source drift                                             | 0.008            | R           | $\sqrt{3}$ | 0.00             |                 |
| Probe coil sensitivity                                                    | 0.2              | R           | $\sqrt{3}$ | 0.12             |                 |
| Positioning accuracy                                                      | 0.4              | R           | $\sqrt{3}$ | 0.23             |                 |
| Acoustic Signal Receive Accuracy                                          | 0.03             | R           | $\sqrt{3}$ | 0.02             |                 |
| Acoustic Signal Receive Linearity                                         | 0.006            | R           | $\sqrt{3}$ | 0.00             |                 |
| System repeatability                                                      | 0.4              | N           | 1          | 0.40             |                 |
| <b>Combined Standard Uncertainty</b>                                      |                  | N           | 1          | 0.49             |                 |
| <b>Expanded uncertainty (confidence level of 95%, <math>k = 2</math>)</b> |                  | N           | $k=2$      | 1.00             | 12.0            |

**5 CALIBRATION MEASUREMENT RESULTS**

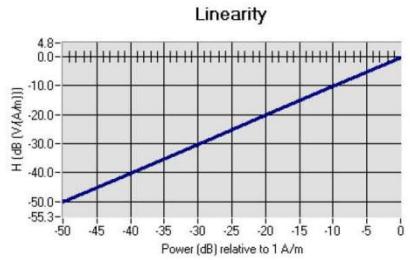
| Calibration Parameters |      |
|------------------------|------|
| Lab Temperature        | 21°C |
| Lab Humidity           | 45%  |

Page: 5/7

*This document shall not be reproduced, except in full or in part, without the written approval of MVG.  
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.*




## COMOHAC T-COIL PROBE CALIBRATION REPORT


Ref: ACR.75.18.15.SATU.A

5.1 SENSITIVITY

Probe coil sensitivity relative to sensitivity at 1000 Hz



|                                 | Measured          | Required                 |
|---------------------------------|-------------------|--------------------------|
| Sensitivity at 1 kHz            | -60.04 dB (V/A/m) | -60.5 +/- 0.5 dB (V/A/m) |
| Max. deviation from Sensitivity | 0.46 dB           | +/- 0.5 dB               |

5.2 LINEARITY

|                 | Measured | Required   |
|-----------------|----------|------------|
| Linearity Slope | 0.10 dB  | +/- 0.5 dB |

5.3 SIGNAL TO NOISE MEASUREMENT OF THE CALIBRATION SYSTEM

|                 | Measured      | Required                                                           |
|-----------------|---------------|--------------------------------------------------------------------|
| Signal to Noise | -72.92 dB A/m | 'Reading with -50 dB A/m in coil' –<br>'no signal applied' > 10 dB |

Page: 6/7

*This document shall not be reproduced, except in full or in part, without the written approval of MVG.  
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.*



## COMOHAC T-COIL PROBE CALIBRATION REPORT

Ref: ACR.75.18.15.SATU.A

**6 LIST OF EQUIPMENT**

| Equipment Summary Sheet       |                      |                    |                             |                             |
|-------------------------------|----------------------|--------------------|-----------------------------|-----------------------------|
| Equipment Description         | Manufacturer / Model | Identification No. | Current Calibration Date    | Next Calibration Date       |
| COMOHAC Test Bench            | Version 2            | NA                 | Validated. No cal required. | Validated. No cal required. |
| Audio Generator               | National Instruments | 15222AE            | 01/2014                     | 01/2017                     |
| Reference Probe               | MVG                  | TCP 18 SN 47/10    | 10/2014                     | 10/2015                     |
| Multimeter                    | Keithley 2000        | 1188656            | 12/2013                     | 12/2016                     |
| Helmholtz Coil                | MVG                  | HC07 SN47/10       | Validated. No cal required. | Validated. No cal required. |
| Temperature / Humidity Sensor | Control Company      | 11-661-9           | 8/2012                      | 8/2015                      |

Page: 7/7

*This document shall not be reproduced, except in full or in part, without the written approval of MVG.  
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.*

## F.2 TMFS Calibration Report

**COMOHAC TMFS Calibration Report**

Ref : ACR.91.15.1.SATU.A

**SHENZHEN BALUN TECHNOLOGY CO.,LTD.**  
**BLOCK B, FL 1, BAISHA SCIENCE AND TECHNOLOGY**  
**PARK, SHAHE XI ROAD,**  
**NANSAN DISTRICT, SHENZHEN, GUANGDONG PROVINCE, P.R.**  
**CHINA 518055**

**MVG COMOHAC MAGNETIC FIELD SIMULATOR**  
**SERIAL NO.: SN 22/12 TMFS18**

Calibrated at MVG US

2105 Barrett Park Dr. - Kennesaw, GA 30144



03/30/2015

**Summary:**

This document presents the method and results from an accredited COMOHAC TMFS calibration performed in MVG USA using the COMOHAC test bench, for use with a MVG COMOHAC system only. All calibration results are traceable to national metrology institutions.



## COMOHAC TMFS' PROBE CALIBRATION REPORT

Ref: ACR.91.1.15.SATU.A

|               | Name          | Function        | Date     | Signature                                                                           |
|---------------|---------------|-----------------|----------|-------------------------------------------------------------------------------------|
| Prepared by : | Jérôme LUC    | Product Manager | 4/1/2015 |  |
| Checked by :  | Jérôme LUC    | Product Manager | 4/1/2015 |  |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 4/1/2015 |  |

|                | Customer Name                               |
|----------------|---------------------------------------------|
| Distribution : | SHENZHEN<br>BALUN<br>TECHNOLOGY<br>Co.,Ltd. |

| Issue | Date     | Modifications   |
|-------|----------|-----------------|
| A     | 4/1/2015 | Initial release |
|       |          |                 |
|       |          |                 |
|       |          |                 |

Page: 2/7

*This document shall not be reproduced, except in full or in part, without the written approval of MVG.  
The information contained herein is to be used only for the purpose for which it is submitted and is not to  
be released in whole or part without written approval of MVG.*

**TABLE OF CONTENTS**

|     |                                                      |   |
|-----|------------------------------------------------------|---|
| 1   | Device Under Test .....                              | 4 |
| 2   | Product Description .....                            | 4 |
| 2.1 | General Information .....                            | 4 |
| 3   | Measurement Method .....                             | 4 |
| 3.1 | Maximum Axial and Radial Magnetic Field Values ..... | 4 |
| 4   | Measurement Uncertainty .....                        | 4 |
| 5   | Calibration Measurement Results .....                | 5 |
| 5.1 | Maximum Axial and Radial Magnetic Field Values ..... | 6 |
| 6   | List of Equipment .....                              | 7 |

Page: 3/7

*This document shall not be reproduced, except in full or in part, without the written approval of MVG.  
The information contained herein is to be used only for the purpose for which it is submitted and is not to  
be released in whole or part without written approval of MVG.*



## COMOHAC TMFS® PROBE CALIBRATION REPORT

Ref: ACR.91.1.15.SATU.A

**1 DEVICE UNDER TEST**

| Device Under Test              |                                  |
|--------------------------------|----------------------------------|
| Device Type                    | COMOHAC Magnetic Field Simulator |
| Manufacturer                   | MVG                              |
| Model                          | STMFS                            |
| Serial Number                  | SN 22/12 TMFS18                  |
| Product Condition (new / used) | Used                             |
| Frequency Range                | 200-5000 Hz                      |

A yearly calibration interval is recommended.

**2 PRODUCT DESCRIPTION****2.1 GENERAL INFORMATION**

MVG's COMOHAC T-coil Probes are built in accordance to the ANSI C63.19 and ANSI S3.22-2003 standards.



**Figure 1 – MVG COMOHAC Magnetic Field Simulator**

**3 MEASUREMENT METHOD**

All methods used to perform the measurements and calibrations comply with the ANSI C63.19. All measurements were performed with the TMFS in the standard device test configuration, with the TMFS in free space, 10 mm below the coil center.

**3.1 MAXIMUM AXIAL AND RADIAL MAGNETIC FIELD VALUES**

An audio signal was fed into the TMFS and the magnetic field measured and recorded over an area scan with the T-coil probe in three orientations; axial and two radial. The maximum magnetic field is recorded for all three T-coil orientations.

**4 MEASUREMENT UNCERTAINTY**

The guideline outlined in the IEEE ANSI C63.19 standard was followed to generate the measurement uncertainty for validation measurements. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of  $k=2$ , traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Page: 4/7

*This document shall not be reproduced, except in full or in part, without the written approval of MVG.  
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.*



## COMOHAC TMFS® PROBE CALIBRATION REPORT

Ref: ACR.91.1.15.SATU.A

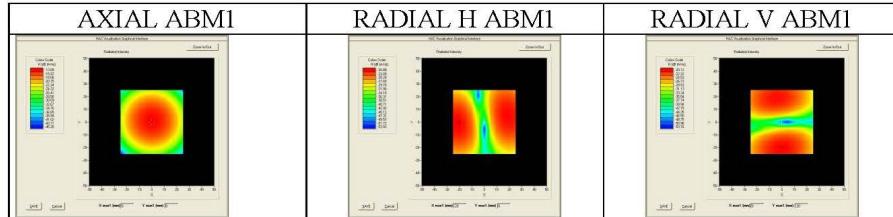
| Uncertainty analysis of the probe calibration in Helmholtz Coil |             |             |            |                  |                 |
|-----------------------------------------------------------------|-------------|-------------|------------|------------------|-----------------|
| Uncertainty Component                                           | Tol. (± dB) | Prob. Dist. | Div.       | Uncertainty (dB) | Uncertainty (%) |
| Reflections                                                     | 0.1         | R           | $\sqrt{3}$ | 0.06             |                 |
| Acoustic noise                                                  | 0.1         | R           | $\sqrt{3}$ | 0.06             |                 |
| Probe coil sensitivity                                          | 0.49        | R           | $\sqrt{3}$ | 0.28             |                 |
| Reference signal level                                          | 0.25        | R           | $\sqrt{3}$ | 0.14             |                 |
| Positioning accuracy                                            | 0.2         | R           | $\sqrt{3}$ | 0.12             |                 |
| Cable loss                                                      | 0.1         | N           | 1          | 0.05             |                 |
| Frequency analyzer                                              | 0.15        | R           | $\sqrt{3}$ | 0.09             |                 |
| System repeatability                                            | 0.2         | N           | 1          | 0.20             |                 |
| Repeatability of the WD                                         | 0.1         | N           | 1          | 0.10             |                 |
| <b>Combined standard uncertainty</b>                            |             | N           | 1          | 0.43             |                 |
| <b>Expanded uncertainty</b><br>95 % confidence level k = 2      |             | N           | 2          | 0.85             | 10.3%           |

## 5 CALIBRATION MEASUREMENT RESULTS

| Calibration Parameters                |                 |
|---------------------------------------|-----------------|
| Software                              | OpenHAC V2      |
| HAC positioning ruler                 | SN 42/09 TABH12 |
| T-Coil probe                          | SN 47/10 TCP18  |
| Distance between TMFS and coil center | 10 mm           |
| Frequency                             | 1025 Hz         |
| Scan Size                             | X=70mm/Y=70mm   |
| Scan Resolution                       | dx=5mm/dy=5mm   |
| Output level                          | 0.5 VAC         |
| Lab Temperature                       | 21°C            |
| Lab Humidity                          | 45%             |

Page: 5/7

*This document shall not be reproduced, except in full or in part, without the written approval of MVG.  
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.*




## COMOHAC TMFS® PROBE CALIBRATION REPORT

Ref: ACR.91.1.15.SATU.A

5.1 MAXIMUM AXIAL AND RADIAL MAGNETIC FIELD VALUES

| Test Description | Measured Magnetic Field |                    |
|------------------|-------------------------|--------------------|
|                  | Location                | Intensity (dB A/m) |
| Axial            | Max                     | -13.68             |
| Radial H         | Right side              | -20.68             |
|                  | Left side               | -20.85             |
| Radial V         | Upper side              | -19.92             |
|                  | Lower side              | -20.34             |



Page: 6/7

This document shall not be reproduced, except in full or in part, without the written approval of MVG.  
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



## COMOHAC TMFS' PROBE CALIBRATION REPORT

Ref: ACR.91.1.15.SATU.A

**6 LIST OF EQUIPMENT**

| Equipment Summary Sheet       |                      |                    |                             |                             |
|-------------------------------|----------------------|--------------------|-----------------------------|-----------------------------|
| Equipment Description         | Manufacturer / Model | Identification No. | Current Calibration Date    | Next Calibration Date       |
| COMOHAC Test Bench            | Version 2            | NA                 | Validated. No cal required. | Validated. No cal required. |
| HAC positioning ruler         | MVG                  | TABH12 SN 42/09    | Validated. No cal required. | Validated. No cal required. |
| Audio Generator               | National Instruments | 15222AE            | 01/2014                     | 01/2017                     |
| Reference Probe               | MVG                  | TCP 18 SN 47/10    | 10/2014                     | 10/2015                     |
| Multimeter                    | Keithley 2000        | 1188656            | 12/2013                     | 12/2016                     |
| Temperature / Humidity Sensor | Control Company      | 11-661-9           | 8/2012                      | 8/2015                      |

Page: 7/7

*This document shall not be reproduced, except in full or in part, without the written approval of MVG.  
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.*

--END OF REPORT--