

Certification Exhibit

FCC ID: 2AFWA-UMR-2

FCC Rule Part: 47 CFR Part 2.1091

ACS Project Number: 15-3040

Manufacturer: ILS Technology LLC

Model: UMR-2

RF Exposure

Model: UMR-2 FCC ID: 2AFWA-UMR-2

General Information:
Applicant: ILS Technology LLC

Device Category: Mobile

Environment: General Population/Uncontrolled Exposure

The UMR-2 is collocated and transmits simultaneously with the UMR-1 radio.

Technical Information:

Table 1: Technical Information

	ILSTechnology, LLC 802.11g Model UMR-1 FCC ID: 2AFWA-UMR-1	ILSTechnology, LLC 906MHz Model UMR-2 FCC ID: 2AFWA-UMR-2		
Frequency Bands (MHz)	2405	906		
Antenna Type(s)	Vertical Dipole 5/8 Wave over 5/8 W Collinear			
Antenna Gain (dBi)	3 5			
Conducted Power dBm	18.63	23.8		

Model: UMR-2 FCC ID: 2AFWA-UMR-2

MPE Calculation:

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Table 2: MPE Calculation (Including Collocated Devices)

Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/cm²)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm²)	Radio
2405	18.63	1	72.95	3	1.995	20	0.029	Α
906	23.8	0.6	239.88	5	3.162	20	0.151	В

<u>Summation of MPE ratios – Simultaneous Transmissions</u>

This device contains multiple transmitters which can operate simultaneously; therefore the maximum RF exposure is determined by the summation of MPE ratios. The limit is such that the summation of MPE ratios is ≤ 1.0 .

Table 3: Summation of MPE Ratios

	Scenario 1		
Radio A (UMR-1)	Х		
Radio B (UMR-2)	х		
Radio A MPE Ratio	0.0290		
Radio B MPE Ratio	0.250		
MPE Ratio Summation:	0.279		