

FCC Maximum Permissible Exposure (MPE) Estimation Report

Report Number : 60.790.23.023.01S01 Date of Issue: September 12, 2023

Model / HVIN : AURORA V2.2

Product Type : Retail IoT Sensor

Applicant : RetailNext Inc.

Address : 60 S Market St, 3rd Floor, Suite 310, San Jose, California 95113,

United States

Manufacturer : Altek Coroporation

Address : No.12, Lixing Road, East District, Hsinchu City, Taiwan

Test Result : n Positive o Negative

Total pages including

Appendices : 9

Any use for advertising purposes must be granted in writing. This technical report may only be quoted in full. This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production. For further details, please see testing and certification regulation, chapter A-3.4.

Table of Contents

1	Table of	f Contents	2
2	Details	about the Test Laboratory	3
3	Descrip	tion of the Equipment Under Test	4
4	Test Sp	ecifications	5
5	Genera	I Information	6
		osure Requirements	
7	FCC MI	PE Limits	8
8 RF Exposure Evaluation (FCC)			
	8.1.1	Calculation of Power Density for Single Chain Transmitters	9
	8.1.2	Calculation of Simultaneous Transmission	9
	8.1.3	Conclusion	9

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint

Road 2, Nanshan District

Shenzhen 518052

P.R. China

Telephone: 86 755 8828 6998

Fax: 86 755 8828 5299

FCC Registration

No.:

514049

FCC Designation

Number:

CA5009

IC Registration

10320A

No.:

3 Description of the Equipment Under Test

Product: Retail IoT Sensor

Model no.: AURORA V2.2

Hardware Version Identification

NI. (LIVIAL)

AURORA V2.2

No. (HVIN)

FCC ID: 2AFSV-AURORA-V2-2

Options and accessories: N/A

Rating: 36 – 57 VDC, 15.4W (POE802.3af)

RF Transmission Frequency: 2402MHz-2480MHz (BLE)

2412MHz-2462MHz for 802.11b/g/n20 (WiFi) 2422MHz-2452MHz for 802.11n40 (WiFi)

5.180GHz~5.240GHz 5.260GHz~5.320GHz 5.500GHz~5.700GHz 5.745GHz~5.825GHz

Antenna Type: FPC PIFA

Antenna Gain: 4.06 dBi max (2.4GHz)

Gain: 5.53 dBi max (5GHz)

Description of the EUT: The Equipment Under Test (EUT) is a Retail IoT Sensor which support

Bluetooth function and Wi-Fi operated at 5GHz and 2.4GHz.

NOTE 1: The above EUT's information is declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

NOTE 2: This report contains a FPC PIFA antenna, and the testing only performed at the antenna support higher gain.

4 Test Specifications

Test Standards				
ANSI Std C95.1-1992	Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.(IEEE Std C95.1-1991)			
KDB 447498 D01	General RF Exposure Guidance v06			

General Information

Any use for advertising purposes must be granted in writing. This technical report may only be quoted in full. This report is the result of a single examination of the object in question and is not generally applicable evaluation of the quality of other products in regular production. For further details, please see testing and certification regulation, chapter A-3.4.

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Reviewed by:

Prepared by:

Tested by:

Eric LI Section Managei

Kevin DU EMC Project Engineer

Louise LIU **EMC Test Engineer**

6 RF Exposure Requirements

An estimation of MPE in this application for product is used to ensure if it complies with the rules of the standard in the regulation list above.

Maximum permissible exposure (MPE) refers to the RF energy that is acceptable for human exposure. It is broken down into two categories, Occupational/controlled and General population/uncontrolled.

Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or cannot exercise control over their exposure.

A rough estimation of the expected exposure in power flux density on a given point can be made with the following equation:

$$S = \frac{P \times G}{4 \times \pi \times R^2}$$

Where:

S = power density

P = power input to the antenna

G = numeric gain of the antenna in the direction of interest relative to an isotropic radiator

R= distance to the centre of radiation of the antenna

EIRP = P*G

The antenna of the product, under normal use condition is at least 20 cm away from the body of the user. Warning statement to the user for keeping at least 20cm separation distance and the prohibition of operating to a person has been printed on the user's manual. Therefore, the S of the device is calculated with R=20cm, and if it is below the limit S, then we can conclude the device complies with the rules.

7 FCC MPE Limits

We analysis if it comply with the limits for General population/uncontrolled exposure. The FCC MPE limits for field strength and power density are given in 47CFR 1.1310(Table below). These limits are generally based on recommended exposure guidelines published by the National Council on Radiation Protection and Measurements (NCRP), and also partly based on guidelines recommended by the American National Standards Institute (ANSI) in Section 4.1 of ANSI/IEEE C95.1.

(A) Limits for Occupational/controlled Exposure					
Frequency Range(MHz)	Electric Field Strength(E)(V/m)	Magnetic Field Strength(H)(A/m)	Power Density (S)(mW/cm²)	Averaging Time (minute) E ² , H ² or S	
0.3-3.0	614	1.63	(100)*	6	
3.0-30	1842/f	4.89/f	(900/f ²)*	6	
30-300	61.4	0.163	1.0	6	
300-1500	(f/300	6	
1500-100,000	(1 2 - 1 2)	5 -1 .	5	6	
(B) Limits for General Population/uncontrolled Exposure					
Frequency Range(MHz)	Electric Field Strength(E)(V/m)	Magnetic Field Strength(H)(A/m)	Power Density (S)(mW/cm²)	Averaging Time (minute) E ² , H ² or S	
0.3-1.34	614	1.63	(100)*	30	
1.34-30	824/f	2.19/f	(180/f)*	30	
30-300	27.5	0.073	0.2	30	
300-1500	1	1	f/1500	30	
1500-100,000	1	1	1.0	30	
f=frequency in MHz *Plane-wave equivalent power density					

8 RF Exposure Evaluation (FCC)

8.1.1 Calculation of Power Density for Single Chain Transmitters

Mode	EIRP (dBm)	EIRP (mW)	R (m)	S (W/m²)	Limit (W/m²)	% of limit
BLE	8.20	6.61	0.2	0.013	1.0	1.3%
2.4GWiFi	19.86	96.82	0.2	0.193	1.0	19.3%
5GWiFi	10.66	11.64	0.2	0.023	1.0	2.3%

8.1.2 Calculation of Simultaneous Transmission

In order to ensure compliance with the EMF for a controlled environment, the sum of the ratios of the power density to the corresponding EMF should not exceed unity. That is

$$\mathring{\mathbf{a}} \, \frac{S_i}{S_{\textit{Limit},i}} \, \pounds \, 1$$

The product also has multiple transmitters. The simultaneous transmission possibilities are as below:

No.	Simultaneous Tx Combination	S (W/m²)	Limit (W/m²)
1	BLE+2.4GWiFi	0.206	1.0
2	BLE+5GWiFi	0.036	1.0

8.1.3 Conclusion

According to the table above, we can conclude that the limit percentage of above supporting frequency bands calculation results are less than 1, therefore, the product meets the requirements.