

HEADQUARTERS: 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230 • PHONE (410) 354-3300 • FAX (410) 354-3313

July 31, 2019

InVue Security
9201 Baybrooke Ln.
Charlotte, North Carolina 28277

Dear Yasu Tamura,

Enclosed is the EMC test report for limited compliance testing of the InVue Security, Custom Davinci S-Pen Horizontal Recoiler, tested to the requirements of Title 47 of the CFR, Ch. 1 Part 18 for Industrial, Scientific, and Medical (ISM) Equipment, Ultrasonic Devices..

Thank you for using the services of Eurofins MET Labs, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely,

Joel Huna
Documentation Department
Eurofins MET Labs, Inc.

Reference: (InVue Security\EMC102475A-FCC18)

Certificates and reports shall not be reproduced except in full, without the written permission of Eurofins MET Labs, Inc. This letter of transmittal is not a part of the attached report.

Electromagnetic Compatibility Test Report

for

**InVue Security
Custom Davinci S-Pen Horizontal Recoiler**

Tested under

**Title 47 of the CFR, Part 18 for Industrial, Scientific, and Medical (ISM) Equipment,
Ultrasonic Devices**

MET Report: EMC102475A-FCC18

July 31, 2019

Deepak Giri
Test Engineer, EMC Lab

Joel Huna
Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the applicable limits. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Title 47 of the CFR, Part 18 for a Class B Digital Device under normal use and maintenance.

Report Status Sheet

Revision	Report Date	Reason for Revision
Ø	July 31, 2019	Initial Issue.

Table of Contents

1.0 Testing Summary	7
2.0 Equipment Configuration	8
2.1 Overview.....	8
2.2 Test Site	9
2.3 Measurement Uncertainty	9
2.4 Description of Test Sample.....	9
2.5 Equipment Configuration.....	10
2.6 Support Equipment	10
2.7 Ports and Cabling Information	10
2.8 Mode of Operation.....	12
2.9 Method of Monitoring EUT Operation	12
2.10 Modifications	12
2.10.1 Modifications to EUT	12
2.10.2 Modifications to Test Standard.....	12
2.11 Disposition of EUT	12
2.12 Test Software Used	12
3.0 Electromagnetic Compatibility Emission Criteria	13
3.1 Conducted Emission Limits	13
3.2 Radiated Emission: Limits of Electromagnetic Radiation Disturbance	17
4.0 Test Equipment	23

List of Tables

Table 1: List of Abbreviations	6
Table 2: Testing Summary	7
Table 3. EUT Overview	8
Table 4. Uncertainty Calculations Summary	9
Table 5. Equipment Configuration.....	10
Table 6. Support Equipment	10
Table 7. Ports and Cabling Information	10
Table 8. Conducted Limits for ISM (Ultrasonic Equipment) calculated from FCC Part 18 Section 18.307(a).....	13
Table 9: Conducted Emissions at the Mains Terminal (120 VAC/60 Hz) Phase Test Results	14
Table 10: Conducted Emissions at the Mains Terminal (120 VAC/60 Hz) Neutral Test Results.....	14
Table 11: Test Equipment List	23

List of Figures

Figure 1. Block Diagram of Test Configuration	11
---	----

List of Photographs

Photograph 1: Conducted Emissions at the Mains Terminal Test Setup	16
Photograph 2: Radiated Emission, Test Setup, Below 1 GHz	21
Photograph 3: Radiated Emission, Test Setup, Below 30 MHz, 0 degrees.....	22
Photograph 4: Radiated Emission, Test Setup, Below 30 MHz, 90 degrees.....	22

List of Terms and Abbreviations

AC	Alternating Current
ACF	Antenna Correction Factor
Cal	Calibration
<i>d</i>	Measurement Distance
dB	Decibels
dBμA	Decibels above one microamp
dBμV	Decibels above one microvolt
dBμA/m	Decibels above one microamp per meter
dBμV/m	Decibels above one microvolt per meter
DC	Direct Current
E	Electric Field
ESD	Electrostatic Discharge
EUT	Equipment Under Test
<i>f</i>	Frequency
CISPR	Comite International Special des Perturbations Radioelectriques (International Special Committee on Radio Interference)
GRP	Ground Reference Plane
H	Magnetic Field
HCP	Horizontal Coupling Plane
Hz	Hertz
IEC	International Electrotechnical Commission
kHz	kilohertz
kPa	kilopascal
kV	kilovolt
LISN	Line Impedance Stabilization Network
MHz	Megahertz
μH	microhenry
μF	microfarad
μs	microseconds
PRF	Pulse Repetition Frequency
RF	Radio Frequency
RMS	Root-Mean-Square
V/m	Volts per meter
VCP	Vertical Coupling Plane

Table 1: List of Abbreviations

1.0 Testing Summary

The following tests specified below were performed with the following results.

Reference and Test Description	Results	Comments
Title 47 of the CFR, Part 18 - 18.309 (a) Conducted Emission Limits for Industrial, Scientific, and Medical (ISM) Equipment, Ultrasonic Devices	Compliant	Measured emissions were within applicable limits.
Title 47 of the CFR, Part 18 - 18.305 (b) Radiated Emission Limits for Industrial, Scientific, and Medical (ISM) Equipment, Ultrasonic Devices	Compliant	Measured emissions were within applicable limits.

Table 2: Testing Summary

2.0 Equipment Configuration

2.1 Overview

Eurofins MET Labs, Inc. was contracted by InVue Security to perform testing on the Custom Davinci S-Pen Horizontal Recoiler, under InVue Security purchase order number 65639.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the InVue Security, Custom Davinci S-Pen Horizontal Recoiler.

In accordance with §2.955(a) (3), the following data is presented in support of the verification of the InVue Security, Custom Davinci S-Pen Horizontal Recoiler. InVue Security should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the Custom Davinci S-Pen Horizontal Recoiler has been **permanently** discontinued, as per §2.955(b).

The results obtained relate only to the item(s) tested.

Model(s) Tested:	Custom Davinci S-Pen Horizontal Recoiler
Model(s) Covered:	Custom Davinci S-Pen Horizontal Recoiler
Primary Power as Tested:	4.75 to 5.25 VDC
Frequency Range:	531 KHz – 562 KHz
Equipment Emissions Class:	B
Highest Clock Frequency:	48MHz
Evaluated by:	Deepak Giri
Report Date:	July 31, 2019

Table 3. EUT Overview

2.2 Test Site

All testing was performed at Eurofins MET Labs, Inc., 914 West Patapsco Avenue, Baltimore, MD 21230. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Eurofins MET Labs is a ISO/IEC 17025 accredited site by A2LA, Baltimore #0591.01.

Radiated Emissions measurements were performed in a semi-anechoic chamber. In accordance with §2.948(a)(3), a complete site description is contained at Eurofins MET Labs.

2.3 Measurement Uncertainty

Test Method	Typical Expanded Uncertainty	K	Confidence Level
RF Frequencies	± 4.52 Hz	2	95%
RF Power Conducted Emissions	± 2.32 dB	2	95%
RF Power Conducted Spurious Emissions	± 2.25 dB	2	95%
RF Power Radiated Emissions	± 3.01 dB	2	95%

Table 4. Uncertainty Calculations Summary

2.4 Description of Test Sample

Custom Davinci S-Pen Vertical Recoiler is a wireless charger for a stylus. It is intended to use in retail store environment. Its main functions are to charge the stylus.

2.5 Equipment Configuration

The EUT was set up as outlined in Figure 1. All equipment incorporated as part of the EUT is included in the following list.

Ref. ID	Slot #	Name / Description	Model Number	Part Number	Serial Number	Revision
A	N/A	Davinci S-Pen Horizontal	F1754	F1754105	N/A	08

Table 5. Equipment Configuration

2.6 Support Equipment

Support equipment necessary for the operation and testing of the EUT is included in the following list.

Ref. ID	Name / Description	Manufacturer	Model Number	*Customer Supplied Calibration Data
B	Power Supply	InVue	PS515-US	Not Available
D	Stylus	Confidential	Confidential	Not Available

Table 6. Support Equipment

2.7 Ports and Cabling Information

Ref. ID	Port Name on EUT	Cable Description	Qty.	Length (m)	Max Length (m)	Shielded (Y/N)	Termination Point
1	DCVin	2 conductor, 22 awg	1	1	1.010	No	B.VBUS
3	RFout	Wireless, no cables	1	N/A	N/A	No	C.RFin

Table 7. Ports and Cabling Information

Product Information			
Product Description:	S PEN HORIZONTAL CRADLE, S PEN HORIZONTAL CRADLE – 18 IN, S PEN HORIZONTAL CRADLE, STANDING S PEN RECOILER	ISED Company Number:	23313
Product Marketing Name (PMN):	S PEN HORIZONTAL CRADLE, S PEN HORIZONTAL CRADLE – 18 IN, S PEN HORIZONTAL CRADLE, STANDING S PEN RECOILER	Unique Product Number (UPN) Number:	F1754A
Hardware Version Identification Number (HVIN) (Model Number):	DNAZ85, DNAZ86, DNAZ85-NP DNAZ90	Firmware Version Identification Number (FVIN):	FW0173 & FW0178

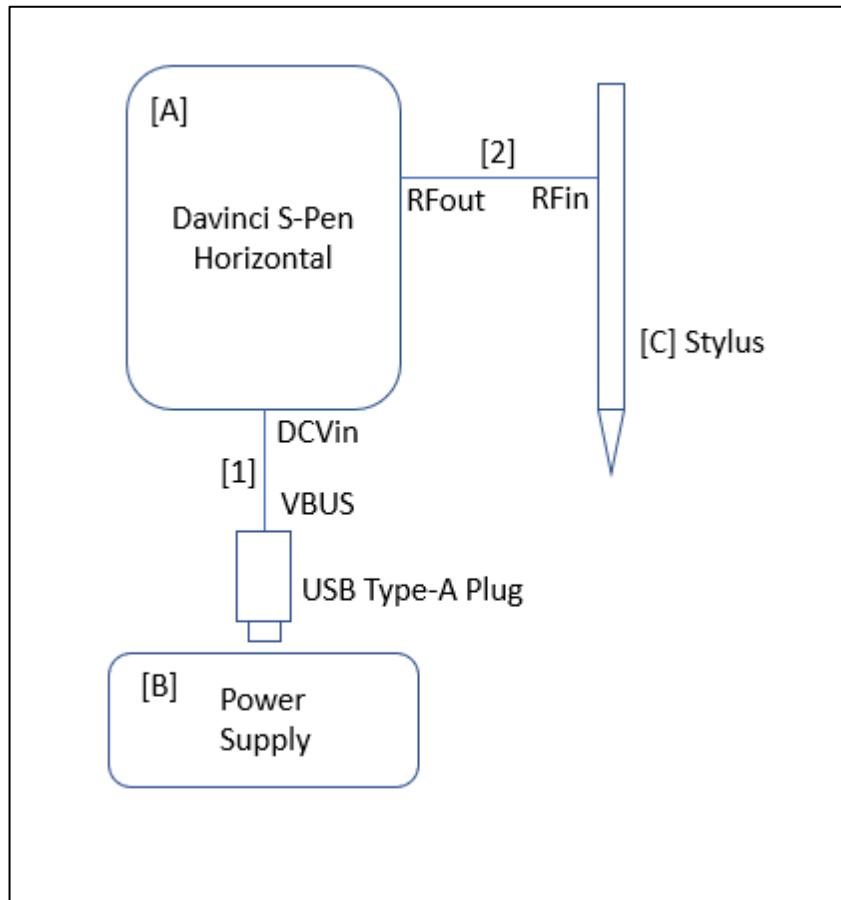


Figure 1. Block Diagram of Test Configuration

2.8 Mode of Operation

The EUT is simulated normal operation by inserting (for a vertical unit) the stylus or putting on top (for a horizontal unit) stylus. Other normal operation is to remove the stylus from the EUT.

2.9 Method of Monitoring EUT Operation

When the stylus is in the correction location for charging, a LED will turn on BLUE. If the wrong location, the LED will turn on RED.

2.10 Modifications

2.10.1 Modifications to the EUT

No modifications were made to the EUT.

2.10.2 Modifications to the Test Standard

No modifications were made to the test standard.

2.11 Disposition of EUT

The test sample including all support equipment (if any), submitted to the Electro-Magnetic Compatibility Lab for testing was returned to InVue Security upon completion of testing.

2.12 Test Software Used

Conducted Emissions - Trace Data Grabber version 01/26/2016

Radiated Emissions- EMC-REG-TDS-11, Radiated Emissions Prescan.xls version 06/29/11

3.0 Electromagnetic Compatibility Emission Criteria

3.1 Conducted Emission Limits

Test Requirement(s): **18.307** For the following equipment, when designed to be connected to the public utility (AC) power line the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies shall not exceed the limits in the following tables. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal using a 50 μ H/50 Ohms Line Impedance Stabilization Network (LISN).

(b) All other part 18 consumer devices:

Frequency of Emission (MHz)	18.307(a) ISM Conducted Limits (dB μ V)	
	Quasi-Peak	Average
0.15 - 0.5	66 to 56*	56 to 46*
0.5 - 5	56	46
5 - 30	60	50

Note 1 — The lower limit shall apply at the transition frequencies.

Note 2 — *The limit decreases linearly with the logarithm if the frequency in the range 0.05 MHz to 0.5 MHz.

Table 8. Conducted Limits for ISM (Ultrasonic Equipment) calculated from FCC Part 18 Section 18.307(a)

18.311 The measurement techniques which will be used by the FCC to determine compliance with the technical requirements of this part are set out in FCC Measurement Procedure MP-5, ‘‘Methods of Measurements of Radio Noise Emissions from ISM equipment’’. Although the procedures in MP-5 are not mandated, manufacturers are encouraged to follow the same techniques which will be used by the FCC.

Test Procedure:

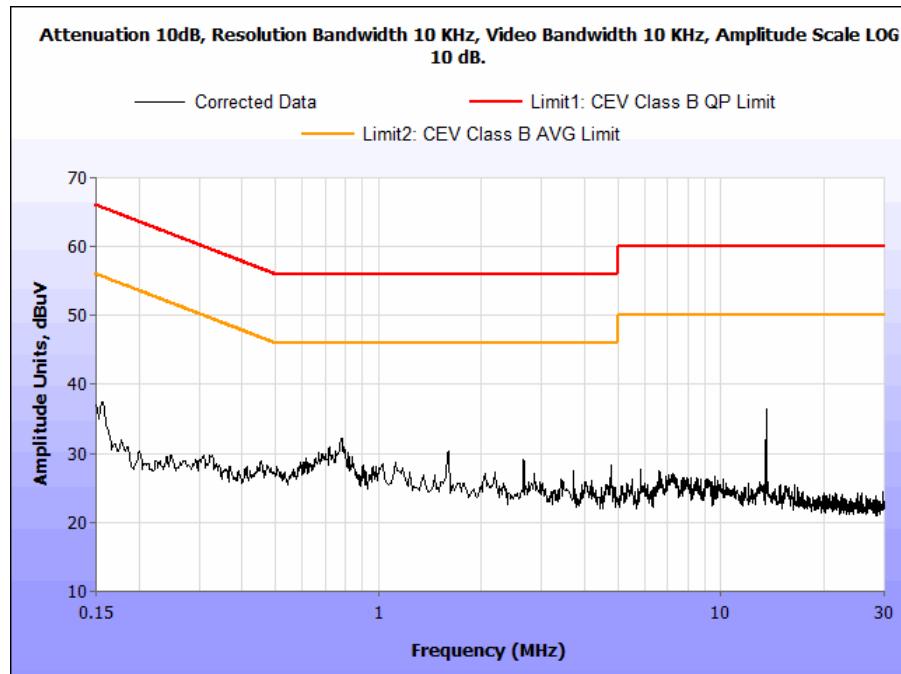
The EUT was setup on a wooden table, 80cm above the ground plane. The method of testing, test conditions, and test procedures of ANSI C63.4 2014 were used. The EUT was powered through a 50 Ω /50 μ H LISN. An EMI receiver, connected to the measurement port of the LISN, scanned the frequency range from 150 kHz to 30 MHz in order to find the peak conducted emissions. All peak emissions within 20 dB of the limit, six highest peaks were re-measured, along with emission close to the limit line by 6 dB were also evaluated using a quasi-peak and average detector.

Environmental Conditions for Conducted Emissions	
Ambient Temperature (°C)	21
Relative Humidity (%)	49

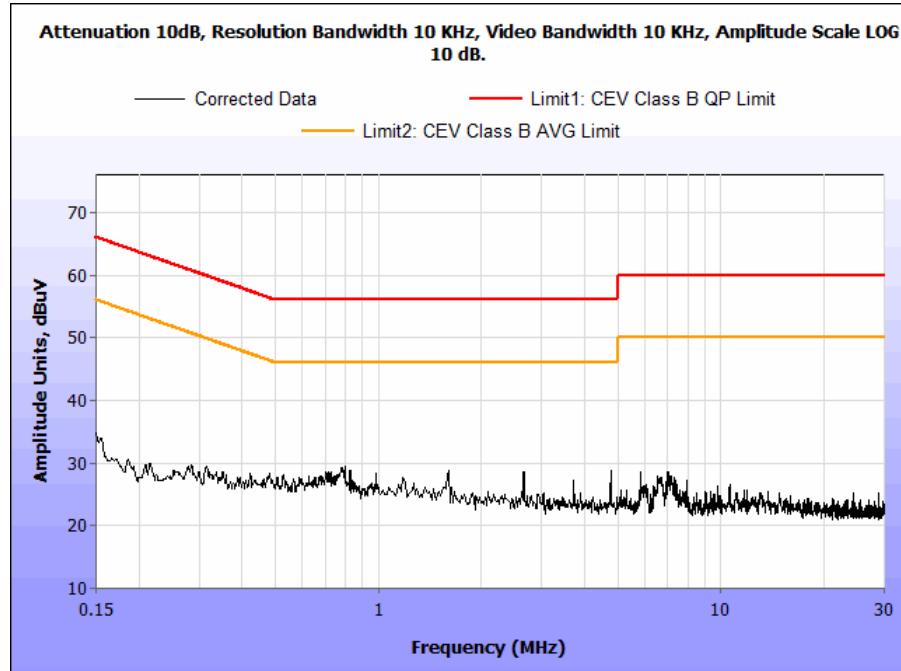
Test Results: The EUT was **compliant** with the of this section. Measured emissions were within applicable limits.

Test Technician(s): Deepak Giri

Test Date(s): June 26, 2019


Conducted Emissions at the Mains Terminal Test Data:

Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) QP	Limit (dBuV) QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) AVG	Limit (dBuV) AVG	Margin (dB) AVG
0.168	27.91	0	10	37.91	65.06	-27.15	11.94	0	10	21.94	55.06	-33.12
0.2695	13.55	0	10	23.55	61.13	-37.58	8.12	0	10	18.12	51.13	-33.01
0.779	15.59	0	10	25.59	56	-30.41	9.46	0	10	19.46	46	-26.54
1.594	15.57	0	10	25.57	56	-30.43	7.16	0	10	17.16	46	-28.84
6.906	11.89	0	10	21.89	60	-38.11	4.11	0	10	14.11	50	-35.89
15.603	6.18	0	10	16.18	60	-43.82	1.93	0	10	11.93	50	-38.07


Table 9: Conducted Emissions at the Mains Terminal (120 VAC/60 Hz) Phase Test Results

Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) QP	Limit (dBuV) QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	External Attenuation (dB)	Corrected Measurement (dBuV) AVG	Limit (dBuV) AVG	Margin (dB) AVG
0.1502	14.22	0	10	24.22	65.99	-41.77	8.63	0	10	18.63	55.99	-37.36
0.7757	10.33	0	10	20.33	56	-35.67	4.22	0	10	14.22	46	-31.78
2.656	14.82	0	10	24.82	56	-31.18	6.11	0	10	16.11	46	-29.89
5.8432	13.33	0	10	23.33	60	-36.67	4.02	0	10	14.02	50	-35.98
10.625	10.61	0	10	20.61	60	-39.39	1.43	0	10	11.43	50	-38.57
22.416	8.21	0	10	18.21	60	-41.79	1.78	0	10	11.78	50	-38.22

Table 10: Conducted Emissions at the Mains Terminal (120 VAC/60 Hz) Neutral Test Results

Plots 1. Conducted Emissions at the Mains Terminal Test Data – (120VAC) Line Plot

Plots 2. Conducted Emissions at the Mains Terminal Test Data – (120VAC) Neutral Plot

Photograph 1: Conducted Emissions at the Mains Terminal Test Setup

3.2 Radiated Emission: Limits of Electromagnetic Radiation Disturbance

Test Standard: Title 47 of the Code of Federal Regulations (CFR), Part 18 Subpart C

Test Requirement(s): 18.305 Field strength limits:
 (a) ISM equipment operating on a frequency specified in § 18.301 is permitted unlimited radiated energy in the band specified for that frequency.
 (b) The field strength levels of emissions which lie outside the bands specified in § 18.301, unless otherwise indicated, shall not exceed the following:

Equipment	Operating frequency	RF Power generated by equipment (watts)	Field strength limit (uV/m)	Distance (meters)
Any type unless otherwise specified (miscellaneous)	Any ISM frequency	Below 500 500 or more	25 $25 \times \text{SQRT}(\text{power}/500)$	300 ¹ 300
	Any non-ISM frequency	Below 500 500 or more	15 $15 \times \text{SQRT}(\text{power}/500)$	300 ¹ 300
Industrial heaters and RF stabilized arc welders	On or below 5,725 MHz Above 5,725 MHz	Any Any	10 ²	1,600 ²
Medical diathermy	Any ISM frequency Any non-ISM frequency	Any Any	25 15	300 300
Ultrasonic	Below 490 kHz	Below 500 500 or more	$2,400/F(\text{kHz})$ $2,400/F(\text{kHz}) \times \text{SQRT}(\text{power}/500)$	300 ³ 300
	490 to 1,600 kHz Above 1,600 kHz	Any Any	$24,000/F(\text{kHz})$ 15	30 30
Induction cooking ranges	Below 90 kHz On or above 90 kHz	Any Any	1,500 300	⁴ 30 ⁴ 30

¹ Field strength may not exceed 10 $\mu\text{V}/\text{m}$ at 1600 meters. Consumer equipment operating below 1000 MHz is not permitted the increase in field strength otherwise permitted here for power over 500 watts.

² Reduced to the greatest extent possible.

³ Field strength may not exceed 10 $\mu\text{V}/\text{m}$ at 1600 meters. Consumer equipment is not permitted the increase in field strength otherwise permitted here for over 500 watts.

⁴ Induction cooking ranges manufactured prior to February 1, 1980, shall be subject to the field strength limits for miscellaneous ISM equipment.

18.311 The measurement techniques which will be used by the FCC to determine compliance with the technical requirements of this part are set out in FCC Measurement Procedure MP-5, ‘‘Methods of Measurements of Radio Noise Emissions from ISM equipment’’. Although the procedures in MP-5 are not mandated, manufacturers are encouraged to follow the same techniques which will be used by the FCC.

Test Procedures:

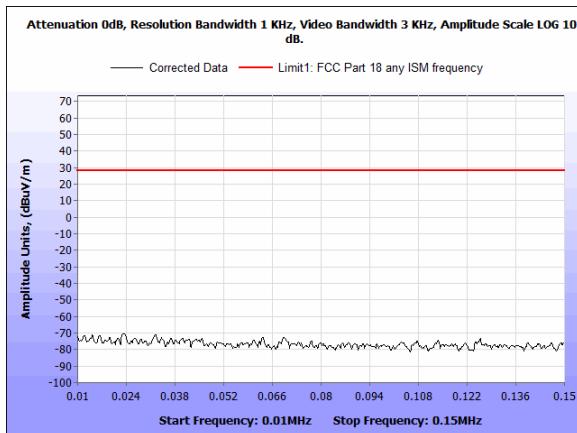
The EUT was placed on a non-metallic table, 80 cm above the ground plane (See Photograph 2 - 5) inside a semi-anechoic chamber. Measurements were made with a loop antenna.

Radiated Emission measurements were made in accordance with the procedures delineated in FCC Measurement Procedure MP-5, ‘‘Methods of Measurements of Radio Noise Emissions from ISM equipment’’.

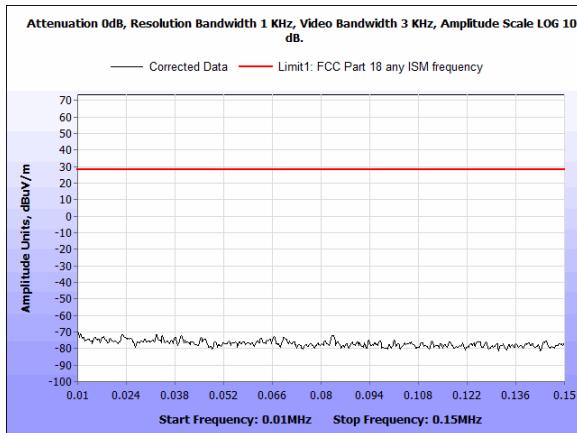
For each point of measurement, the turntable was rotated, and the antenna height was varied in order to find the maximum radiated emissions. Plots were captured at both planar and co-axial mode with loop antenna, and horizontal and vertical polarity with biconical antenna. Emission were measured cumulatively by rotating EUT in its 3 axis.

Final measurements were made at 3m. Multiple measurements were performed. The distance factor was corrected for 3m using $40 \log(\frac{d_1}{d_2})$ from 300m.

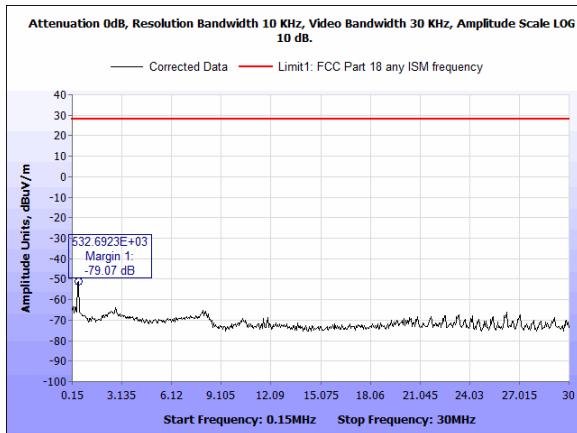
Environmental Conditions for Radiated Emissions	
Ambient Temperature (°C)	21
Relative Humidity (%)	49

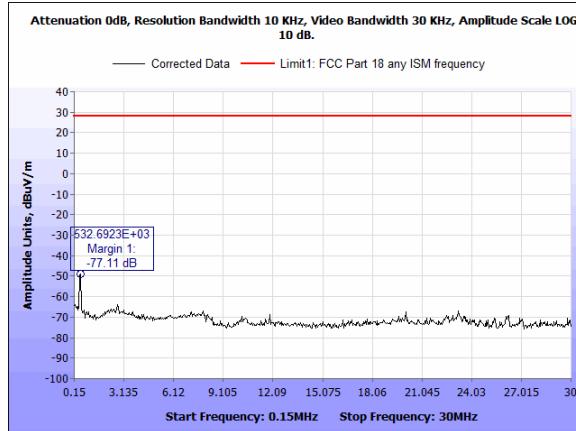

Test Results: The EUT was **compliant** with the requirements of this section. Measured emissions were within applicable limits.

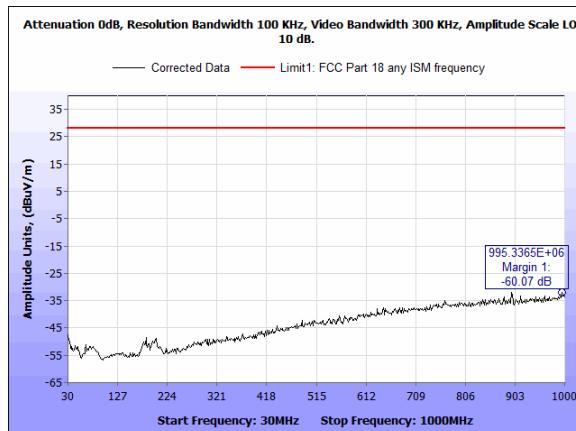
Test Technician(s): Deepak Giri

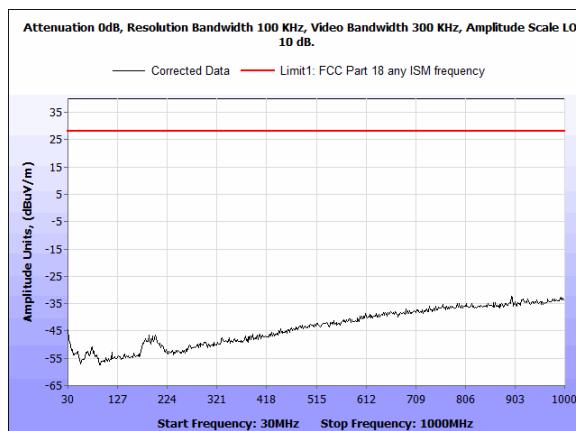

Test Date(s): July 11, 2019

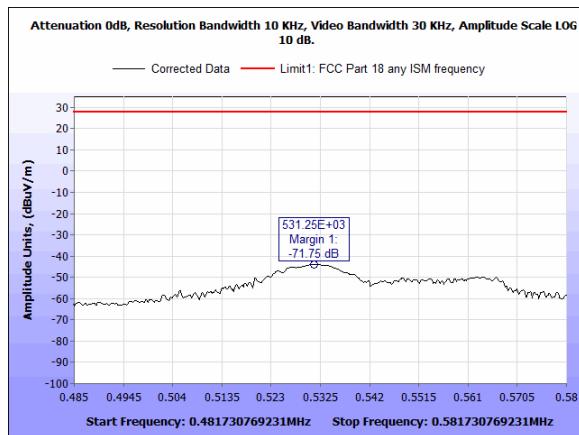
Radiated Emissions Limits Test Results:

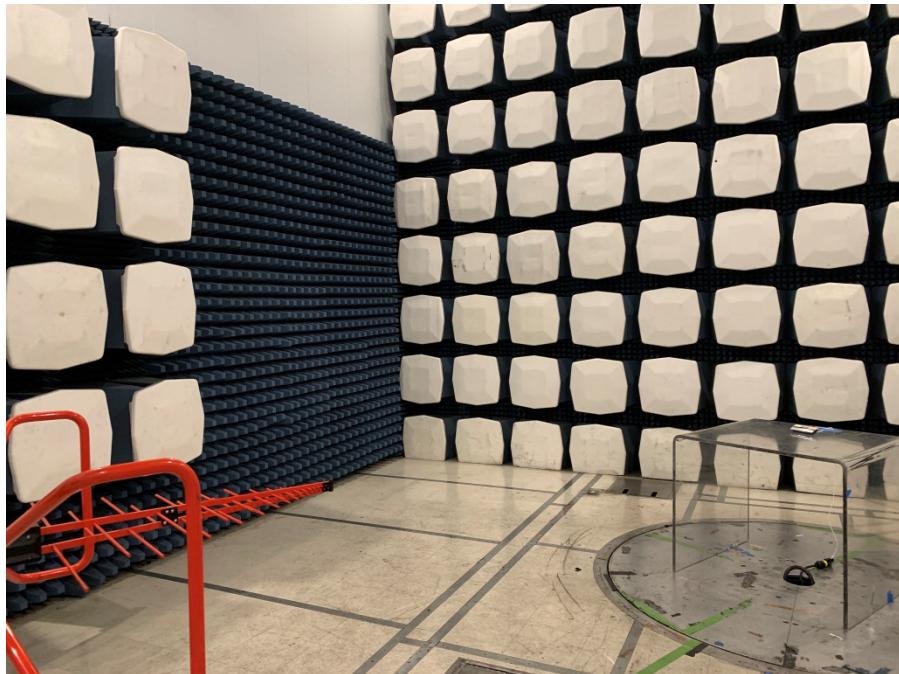

Note 1: The following sample calculation was used to correct the amplitude (Corrected Amplitude (dBuV/m) = Uncorrected Data+ACF+Cable Loss-Distance Correction Factor).

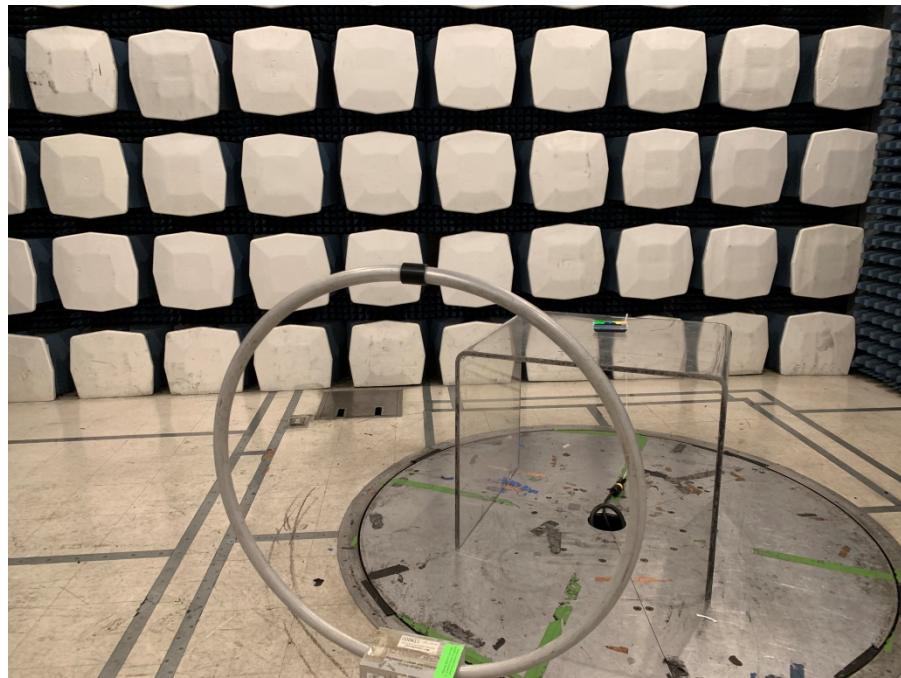

Plots 3. Radiated Emission – (10 kHz – 150 kHz) 0 degree

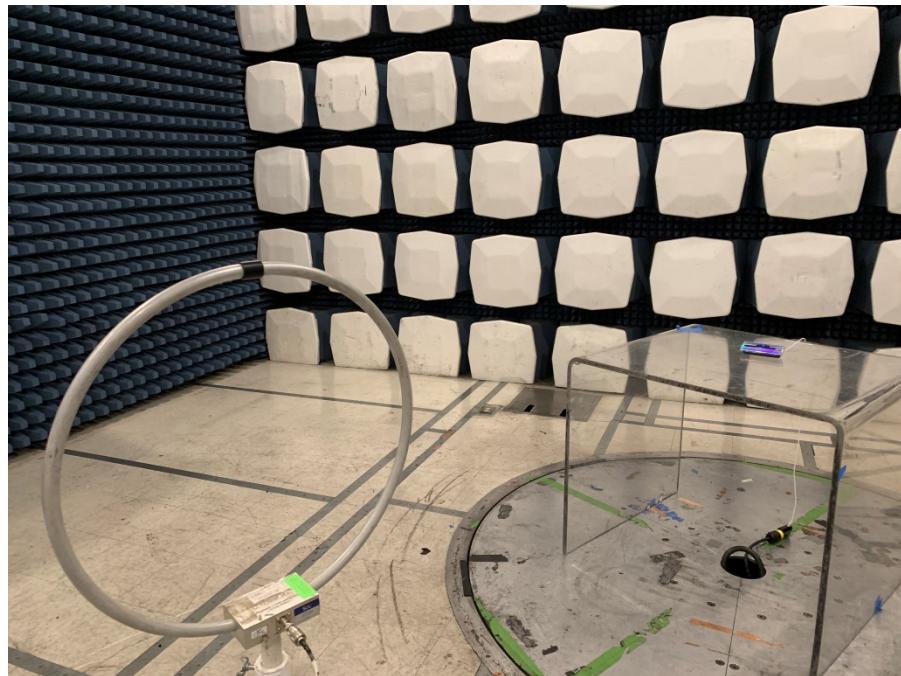

Plots 4. Radiated Emission – (10 kHz – 150 kHz) 90 degree


Plots 5. Radiated Emission – (150 kHz – 30 MHz) 0 degree


Plots 6. Radiated Emission – (150 kHz – 30 MHz) 90 degree


Plots 7. Radiated Emission – (30 MHz - 1 GHz) Horizontal


Plots 8. Radiated Emission – (30 MHz - 1 GHz) Vertical


Plots 9. Radiated Emission – Field strength of Operational Band 531 KHz – 562 KHz

Photograph 2: Radiated Emission, Test Setup, Below 1 GHz

Photograph 3: Radiated Emission, Test Setup, Below 30 MHz, 0 degrees

Photograph 4: Radiated Emission, Test Setup, Below 30 MHz, 90 degrees

4.0 Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ISO/IEC 17025:2005.

Test Name: Conducted Emissions (AC Power)				Test Date(s): June 26, 2019	
MET Asset #	Nomenclature	Manufacturer	Model	Last Cal Date	Cal Due Date
1T4771	PSA Spectrum Analyzer	Agilent Technologies	E4446A	05/16/2018	11/16/2019
1T2947	LISN	Solar Electronics Company	8028-50-TS-24-BNC	08/31/2018	02/29/2020
1T2948	LISN	Solar Electronics Company	8028-50-TS-24-BNC	08/31/2018	02/29/2020

Test Name: Radiated Emissions				Test Date(s): July 11, 2019	
MET Asset #	Nomenclature	Manufacturer	Model	Last Cal Date	Cal Due Date
1S2501	EMI Test Receiver 20Hz-40GHz	Rohde & Schwarz	ESU40	3/26/2019	3/26/2020
1T4300	SEMI-ANECHOIC CHAMBER (NSA)	EMC TEST SYSTEMS	NONE	6/30/2019	6/30/2020
1T4753	Antenna - Bilog	Sunol Sciences	JB6	8/30/2018	2/29/2020
1T4800	Antenna, Loop	EMCO	6512	05/02/2019	11/02/2020

Note: Functionally verified test equipment is verified using calibrated instrumentation at the time of testing.

Table 11: Test Equipment List