

Report on the Testing of the InVue Security Products Inc. OneKEY Ecosystem (LBAA0QB1SJ)

FCC ID: 2AFR8-LB1SJ
IC: 23313-LB1SJ

In accordance with:
FCC 47 CFR Part 15.247
ISED RSS-247 Issue 2, February 2017

Prepared for: InVue Security Products Inc.
9201 Baybrook Ln
Charlotte, North Carolina 28277

America

Add value.
Inspire trust.

COMMERCIAL-IN-CONFIDENCE

Document Number: NC72165203.1 | Issue: 1

SIGNATURE

A handwritten signature of Brad A Reasoner.

NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
Brad A Reasoner	EMC Test Engineer	Authorized Signatory	28 April 2021

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD America, Inc. document control rules.

FCC Accreditation
Designation Number US1148 New Brighton, MN Test
Laboratory

Innovation, Science, and Economic Development Canada
Accreditation
Site Number 4512A New Brighton, MN Test Laboratory

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with the standards listed above and the tests shown in Table 1.3.1 of this report.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD America with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD America. No part of this document may be reproduced without the prior written approval of TÜV SÜD America.
© TÜV SÜD.

ACCREDITATION

Our A2LA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our A2LA Accreditation.

TÜV SÜD America Inc
141 14th Street NW
New Brighton, MN 55112

Phone: 651-631-2487
www.tuv-sud-america.com

TÜV SÜD

TÜV®

Contents

1	Report Summary	3
1.1	Report Modification Record.....	3
1.2	Introduction.....	3
1.3	Scope of Testing	4
1.4	Summary of Results	4
1.5	Product Information	5
1.6	Deviations from the Standard.....	7
1.7	EUT Modification Record	7
1.8	Test Location	7
2	Test Details	8
2.1	Antenna Requirements.....	8
2.2	Conducted Emissions.....	9
2.3	Radiated Spurious Emissions	10
3	Diagram of Test Set-ups	21
4	Accreditation, Disclaimers and Copyright.....	23

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Table 1.1-1 – Modification Record

Issue	Description of Change	Date of Issue
1	First Issue	28 April 2021

1.2 Introduction

Manufacturer	InVue Security Products Inc.
Applicant's Email Address	DanHepka@invue.com
Model Number(s)	LBAA0QB1SJ
Serial Number(s)	0006-001122
Number of Samples Tested	1
Test Specification/Issue/Date	FCC 47 CFR Part 15.247 ISED RSS-247 Issue 2, February 2017
Order Number	72165203
Date of Receipt of EUT	29 March 2021
Start of Test	19 April 2021
Finish of Test	20 April 2021
Related Document(s)	KDB 996369 D04
Manufacturer	InVue Security Products Inc.

1.3 Scope of Testing

To perform testing for an FCC Class II Permissive Change to accommodate an antenna change. To perform investigation testing to confirm that the integration of host and wireless device(s) meet the requirements for radiated spurious emissions as per the Modular Transmitter Integration Guide (KDB 996369 D04).

1.4 Summary of Results

A summary of the tests carried out in accordance with the specifications shown below.

Table 1.4-1 – Summary of Results

Section	Specification Clause		Test Description	Accreditation	Base Standard
2.1	15.203	RSS-GEN	Antenna Requirements	A2LA	FCC Sub Part C 15.203
2.2	15.207	RSS-GEN	Conducted Emissions	A2LA	ANSI C63.10:2013
2.3	15.247(d)	RSS-GEN	Radiated Spurious Emissions	A2LA	ANSI C63.10:2013

Table 1.4-2 – Test Accreditation

Test Name	Name of Tester(s)	Results / Comments
Antenna Requirements	Sean Sellergren	Pass
Conducted Emissions	N/A	N/A
Radiated Spurious Emissions	Sean Sellergren	Pass

Note: Tests marked with N/A were not tested due to EUT not meeting the full requirements for test applicability and therefore are not required.

1.5 Product Information

1.5.1 Technical Description

The Equipment Under Test (EUT):
A remote Key equipped with a LoRa wireless module.

Table 1.5-1 – Wireless Module Technical Information

Detail	Description
FCC ID	2AFR8-LB1SJ
IC	23313-LB1SJ
Transceiver Model #	LBAA0QB1SJ-295
Operating Frequency	902.3 – 914.9MHz
Modulation Format	LoRa
Antenna Type / Gain:	Ceramic Antenna / Gain of 1.8 dBi @ 902 MHz

A full description and detailed product specification details are available from the manufacturer.

Photo 1.5-1 – View of the EUT (1)

Photo 1.5-2 – View of the EUT (1)

Note: cutout into enclosure was for connection to control the radio and test purposes only and was made by InVue Security Products prior to arrival at test facility.

Table 1.5-2 – Cable Descriptions

Cable/Port	Description
USB to 3 pin connectors	Support cable used for LoRa programming

Table 1.5-3 – Support Equipment Descriptions

Make/Model	Description
Charging base station	Support equipment used for charging and maintaining continual operation of the device during testing.

1.5.2 Modes of Operation

The tested mode of operation was:

The EUT was placed in transmit mode using the radios applicable low, middle and high channels.

Transmit settings:

LoRa Tx mode (per module firmware command specification)

Power Level: 18dBm

Data Rate: SF10

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test program. The modifications incorporated during each test are recorded on the appropriate test pages.

Table 1.7-1 – Modification Record

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
0	Initial State	N/A	N/A

1.8 Test Location

TÜV SÜD conducted the following tests at our New Brighton, MN Test Laboratory.

Office address:

TÜV SÜD America
141 14th Street NW
New Brighton, MN 55112 USA

2 Test Details

2.1 Antenna Requirements

2.1.1 Specification Reference

FCC 47 CFR Part 15 Subpart C, 15.203
RSS-GEN Issue 5

2.1.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.1.3 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Note: Above statement is taken from FCC Part 15 Subpart C §15.203

Table 2.1-1 – Antenna Used In EUT

Antenna Type	Connection Type	Antenna Gain
Ceramic	On-board	1.8 dBi

2.2 Conducted Emissions

2.2.1 Specification Reference

FCC 47 CFR Part 15 Subpart C, 15.207
RSS-GEN Issue 5

2.2.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.2.3 Date of Test

N/A

2.2.4 Test Results

Test Summary: EUT was evaluated as a stand-alone product that is battery powered. This test is not applicable.

Test Result: N/A

2.3 Radiated Spurious Emissions

2.3.1 Specification Reference

FCC 47 CFR Part 15 Subpart C, 15.247
RSS-GEN Issue 5

2.3.2 Equipment Under Test and Modification State

As shown in §1.4 with modification state "0", as noted in §1.6.

2.3.3 Date of Test

19 - 20 April 2021

2.3.4 Test Method

The EUT was set up in a semi-anechoic chamber on a remotely controlled turntable and placed on a non-conductive table 0.8 m above a reference ground plane for 30-1000 MHz and 1.5m above the ground plane for above 1 GHz.

For 30-1000 MHz a pre-scan of the EUT emissions profile was made while varying the antenna-to-EUT azimuth and antenna-to-EUT polarization using a peak detector; measurements were taken at a 3m distance.

For above 1 GHz a pre-scan of the EUT emissions profile was made while varying the antenna-to-EUT azimuth and antenna-to-EUT polarization using peak and average detectors; measurements were taken at a 3m distance.

For all frequency ranges the final readings were maximized by adjusting the antenna height, polarization and turntable azimuth, in accordance with the specification. For below 1 GHz final measurements were taken with a quasi-peak detector and above 1 GHz final measurements were re-measured with peak and average detectors.

The EUT was assessed against the limits specified in FCC 47 CFR Part 15C §15.209.

2.3.5 Environmental Conditions

The EUT was evaluated within the climatic range of the EUT as specified by the manufacturer. When the manufacturer does not specify climatic parameters for the EUT, all tests are performed within the ambient climatic conditions of the laboratory.

2.3.6 Additional Observations

The highest frequency to which the DUT was measured was determined in accordance with §15.33(a)(1).

Automated measurements used BAT-EMC (v3.18) software. All measurements were done at a 3m distance. Reported level is the actual level with all the correction factors factored in. Correction Factor column is for informational purposes only.

2.3.7 Sample Computation (Radiated Emissions)

Measuring equipment raw measurement (dB μ V) @ 30 MHz		20.0
Correction Factor (dB/m)	Cable 2	0.24
	TEMCO00011 (antenna)	18.70
	Reported Quasi-peak Final Measurement (dB μ V/m) @ 30 MHz	38.94

2.3.8 Test Results

Test Summary: The EUT was set to transmit in the low, mid and high channels. In the transmit range measurements attenuation in front of the pre-amp to prevent overloading.


Test Result: Pass

See data below for detailed results.

Spurious Emissions 30M-1GHz - Low Ch 902.3MHz

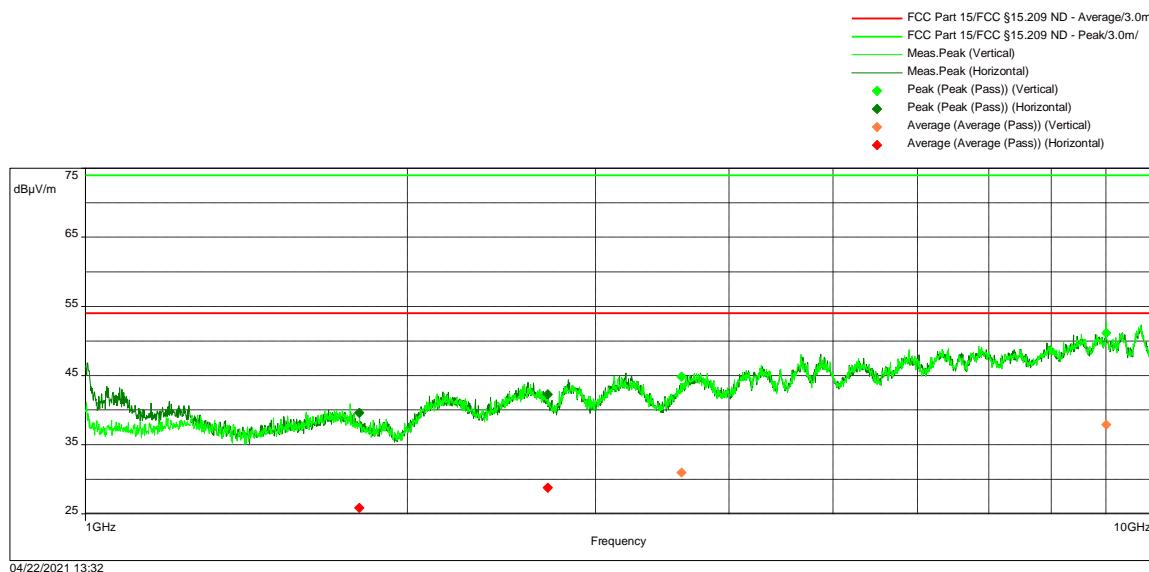
Frequency Range	Polarity	Antenna Distance	RBW	Step Size	Sweep Time
30MHz- 1GHz	Vertical	3m	100kHz	18001 Pts	Auto
30MHz- 1GHz	Horizontal	3m	100kHz	18001 Pts	Auto

Limit:
FCC §15.209

Test Results:
Pass

Test Notes: Low CH 902.3MHz. Frequency shown above the limit corresponds to the transmit frequency of the device and is not part of the scope of this test.

Figure 2.3-1 – RE Spurious Emissions 30-1000 MHz – Low Channel


Table 2.3-1 – RE Spurious Emissions 30-1000 MHz – Low Channel

Frequency	QP Level (dB μ V/m)	QP Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Polarity	Result
608.75031MHz	39.28	46.00	-6.72	58.00	1.00	Vertical	Pass
806.82767MHz	30.62	46.00	-15.38	90.00	3.02	Horizontal	Pass
807.81336MHz	34.42	46.00	-11.58	145.00	1.00	Vertical	Pass
996.03859MHz	38.00	53.97	-15.97	357.00	1.00	Vertical	Pass

Spurious Emissions 1 - 10GHz - Low Ch 902.3

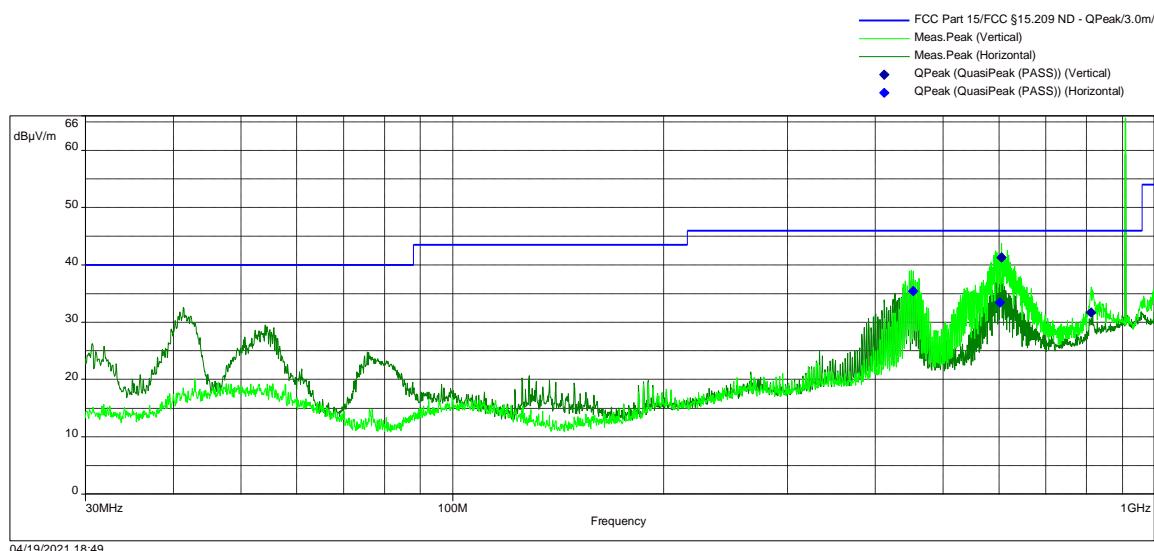
Frequency Range	Polarity	Antenna Distance	RBW	Step Size	Sweep Time
1GHz- 10GHz	Vertical	3m	1MHz	18001 Pts	Auto
1GHz- 10GHz	Horizontal	3m	1MHz	18001 Pts	Auto

Limit:
FCC §15.209

Test Results:
Pass

Test Notes: Low Ch. 902.3MHz Hybrid Mode

Figure 2.3-2 – RE Spurious Emissions 1 – 10 GHz – Low Channel


Table 2.3-2 – RE Spurious Emissions 1 – 10 GHz – Low Channel

Frequency	Peak Level (dB μ V/m)	Peak Limit (dB μ V/m)	Peak Margin (dB)	Average Level (dB μ V/m)	Average Limit (dB μ V/m)	Average Margin (dB)	Azimuth (°)	Height (m)	Polarity	Peak Result	Average Result
1.804GHz	39.58	74.00	-34.42	25.87	54.00	-28.13	61.00	2.21	Horizontal	Pass	Pass
2.706GHz	42.26	74.00	-31.74	28.78	54.00	-25.22	226.00	2.15	Horizontal	Pass	Pass
3.609GHz	44.82	74.00	-29.18	30.95	54.00	-23.05	313.00	3.53	Vertical	Pass	Pass
9.01GHz	51.16	74.00	-22.84	37.88	54.00	-16.12	332.00	2.31	Vertical	Pass	Pass

Spurious Emissions 30M-1GHz - Mid Ch 908.7MHz

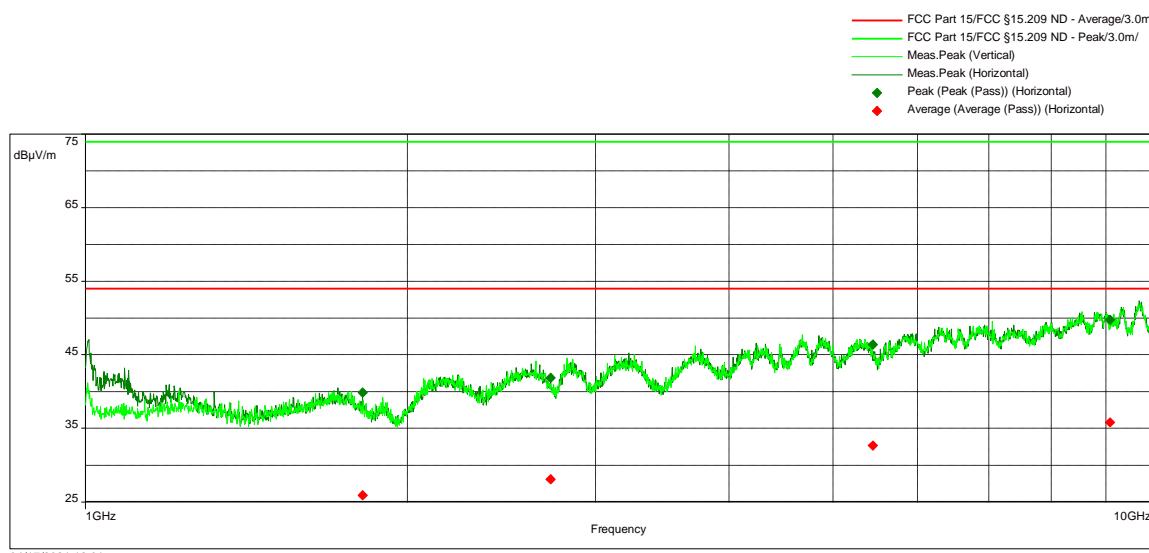
Frequency Range	Polarity	Antenna Distance	RBW	Step Size	Sweep Time
30MHz- 1GHz	Vertical	3m	100kHz	18001 Pts	Auto
30MHz- 1GHz	Horizontal	3m	100kHz	18001 Pts	Auto

Limit:
FCC §15.209

Test Results:
Pass

Test Notes: Mid CH 908.7MHz. Frequency shown above the limit corresponds to the transmit frequency of the device and is not part of the scope of this test.

Figure 2.3-3 – RE Spurious Emissions 30-1000 MHz – Mid Channel


Table 2.3-3 – RE Spurious Emissions 30-1000 MHz – Mid Channel

Frequency	QP Level (dB μ V/m)	QP Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Polarity	Result
453.21867MHz	35.44	46.00	-10.56	344.00	1.90	Horizontal	Pass
602.19149MHz	33.42	46.00	-12.58	105.00	1.00	Horizontal	Pass
605.12432MHz	41.28	46.00	-4.72	35.00	1.00	Vertical	Pass
811.8745MHz	31.69	46.00	-14.31	160.00	1.04	Vertical	Pass

Spurious Emissions 1 - 10GHz - Mid Ch 908.7

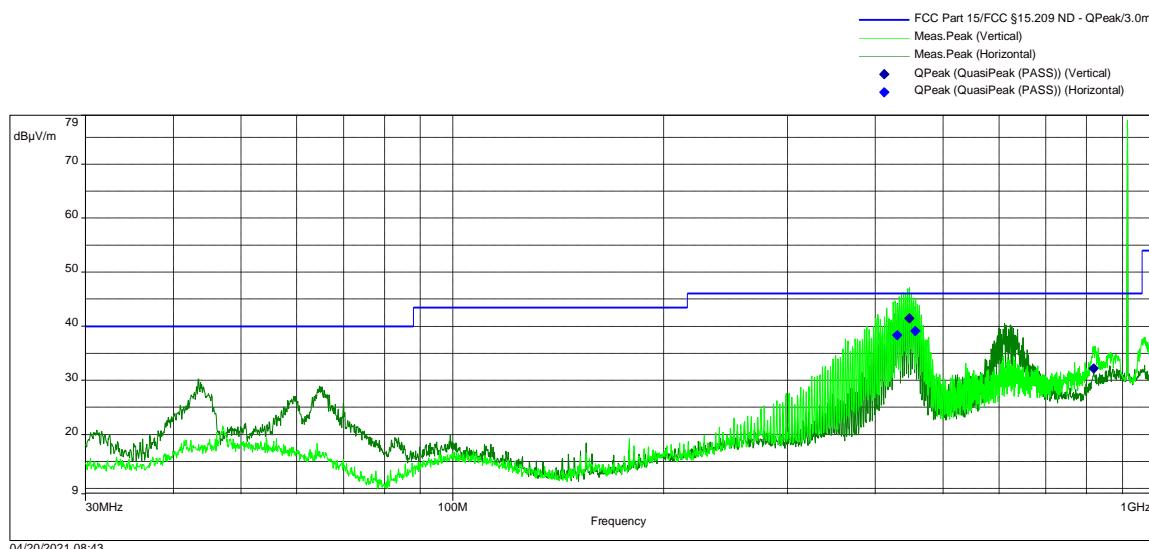
Frequency Range	Polarity	Antenna Distance	RBW	Step Size	Sweep Time
1GHz- 10GHz	Vertical	3m	1MHz	18001 Pts	Auto
1GHz- 10GHz	Horizontal	3m	1MHz	18001 Pts	Auto

Limit:
FCC §15.209

Test Results:
Pass

Test Notes: Mid Ch. 908.7MHz Hybrid Mode.

Figure 2.3-4 – RE Spurious Emissions 1 – 10 GHz – Mid Channel


Table 2.3-4 – RE Spurious Emissions 1 – 10 GHz – Mid Channel

Frequency	Peak Level (dB _µ V/m)	Peak Limit (dB _µ V/m)	Peak Margin (dB)	Average Level (dB _µ V/m)	Average Limit (dB _µ V/m)	Average Margin (dB)	Azimuth (°)	Height (m)	Polarity	Peak Result	Average Result
1.817GHz	39.88	74.00	-34.12	25.90	54.00	-28.10	79.00	3.17	Horizontal	Pass	Pass
2.7235GHz	41.89	74.00	-32.11	28.10	54.00	-25.90	35.00	2.05	Horizontal	Pass	Pass
5.45GHz	46.39	74.00	-27.61	32.67	54.00	-21.33	226.00	1.34	Horizontal	Pass	Pass
9.087GHz	49.75	74.00	-24.25	35.80	54.00	-18.20	83.00	2.36	Horizontal	Pass	Pass

Spurious Emissions 30M-1GHz - High Ch 914.9MHz

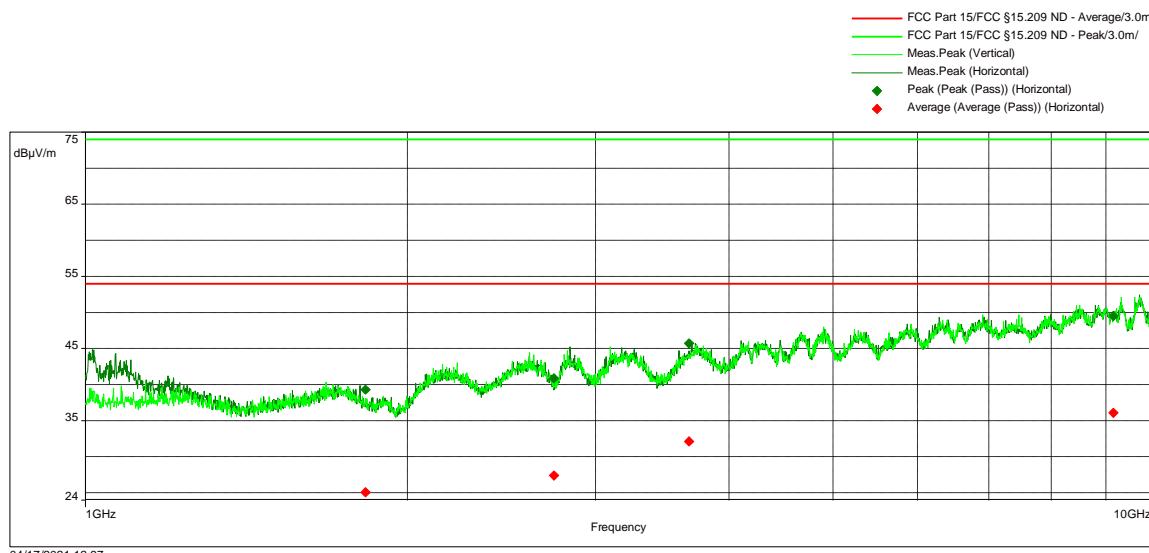
Frequency Range	Polarity	Antenna Distance	RBW	Step Size	Sweep Time
30MHz- 1GHz	Vertical	3m	100kHz	18001Pts	Auto
30MHz- 1GHz	Horizontal	3m	100kHz	18001Pts	Auto

Limit:
FCC §15.209

Test Results:
Pass

Test Notes: High CH 914.9MHz. Frequency shown above the limit corresponds to the transmit frequency of the device and is not part of the scope of this test.

Figure 2.3-5 – RE Spurious Emissions 30-1000 MHz – High Channel


Table 2.3-5 – RE Spurious Emissions 30-1000 MHz – High Channel

Frequency	QP Level (dB μ V/m)	QP Limit (dB μ V/m)	Margin (dB)	Azimuth (°)	Height (m)	Polarity	Result
430.01991MHz	38.31	46.00	-7.69	259.00	1.29	Horizontal	Pass
447.72586MHz	41.43	46.00	-4.57	196.00	1.04	Vertical	Pass
456.35644MHz	39.13	46.00	-6.87	237.00	1.00	Horizontal	Pass
819.22835MHz	32.19	46.00	-13.81	200.00	1.04	Vertical	Pass

Spurious Emissions 1 - 10GHz - High Ch 914.9MHz

Frequency Range	Polarity	Antenna Distance	RBW	Step Size	Sweep Time
1GHz- 10GHz	Vertical	3m	1MHz	18001 Pts	Auto
1GHz- 10GHz	Horizontal	3m	1MHz	18001 Pts	Auto

Limit:
FCC §15.209

Test Results:
Pass

Test Notes: High Ch. 914.9MHz Hybrid Mode

Figure 2.3-6 – RE Spurious Emissions 1 – 10 GHz – High Channel

Table 2.3-6 – RE Spurious Emissions 1 – 10 GHz – High Channel

Frequency	Peak Level (dBµV/m)	Peak Limit (dBµV/m)	Peak Margin (dB)	Average Level (dBµV/m)	Average Limit (dBµV/m)	Average Margin (dB)	Azimuth (°)	Height (m)	Polarity	Peak Result	Average Result
1.829GHz	39.28	74.00	-34.72	25.07	54.00	-28.93	328.00	3.73	Horizontal	Pass	Pass
2.744GHz	40.85	74.00	-33.15	27.36	54.00	-26.64	200.00	3.22	Horizontal	Pass	Pass
3.669GHz	45.69	74.00	-28.31	32.11	54.00	-21.89	141.00	3.78	Horizontal	Pass	Pass
9.149GHz	49.53	74.00	-24.47	36.06	54.00	-17.94	174.00	1.04	Horizontal	Pass	Pass

2.3.9 Radiated Emissions photos

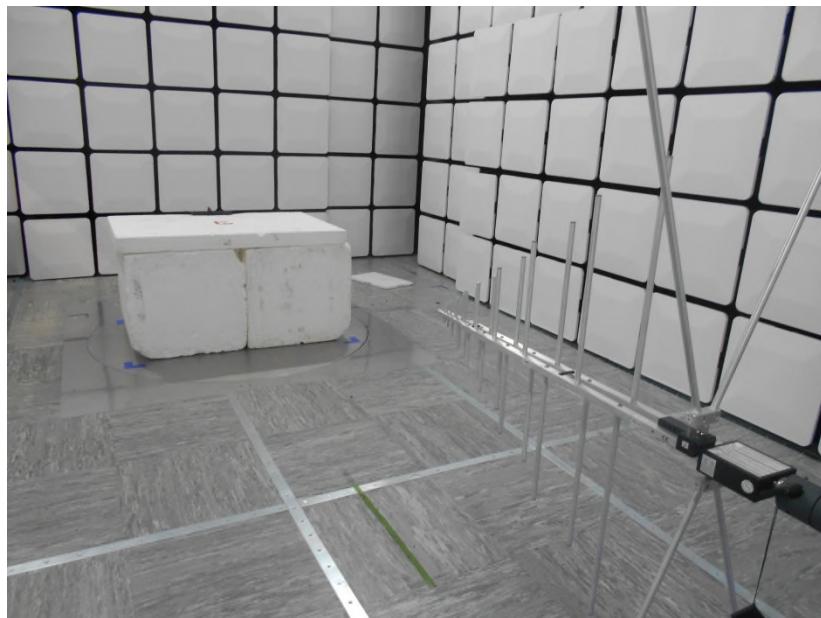
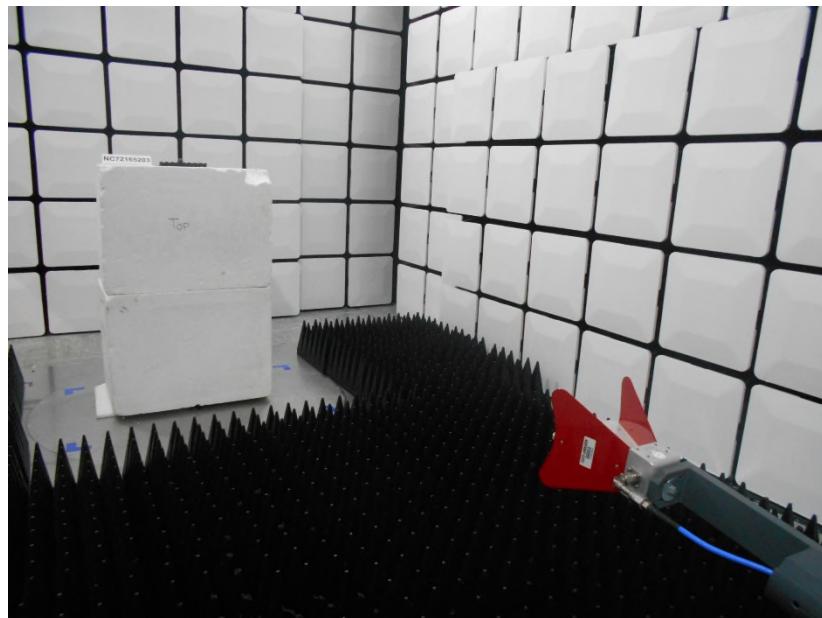



Photo 2.3-1 – RE Spurious Emissions 30-1000 MHz – Front Side

Photo 2.3-2 – RE Spurious Emissions 30-1000 MHz – Back Side

Photo 2.3-3 – RE Spurious Emissions 1-10 GHz – Front Side

Photo 2.3-4 – RE Spurious Emissions 1-10 GHz – Back Side

2.3.10 Test Location and Test Equipment Used

The tests were carried out in New Brighton, MN.

Test Area: 3mSAC

Table 2.3-7 – Radiated Emissions Equipment List

Device #	Manufacturer	Description	Model	Serial #	Cal Code	Cal Date	Cal Due
NBLE11141	Hewlett-Packard	Preamplifier, 100 kHz-1300 MHz	8447D	2944A08773	B	01/08/2021	01/08/2022
WRLE10517	Mini-Circuits Lab	Filter, 900-950 MHz Notch	N03915M1	138901	G	03/31/2021	03/31/2022
NBLE11555	Rohde & Schwarz	Receiver, 2 Hz-44 GHz	ESW44	101537	G	12/31/2020	12/31/2021
NBLE11607	Pasternack	Attenuator, 10 dB	PE7017-10	11607	G	11/03/2020	11/03/2021
NBLE11630	ETS-Lindgren	Antenna, 1-18 GHz	3117	00218816	B	09/04/2020	09/04/2022
NBLE11645	SCHWARZBECK MESS-ELEKTRONIK	Antenna, Trilog Broadband, 30-7000 MHz	VULB 9162	0254	G	04/09/2021	04/09/2023

Cal Code G = Calibration performed by an accredited outside source.

Cal Code B = Calibration verification performed internally.

Cal Code Y = Passive Device, or Calibration not required when used with other calibrated equipment.

3 Diagram of Test Set-ups

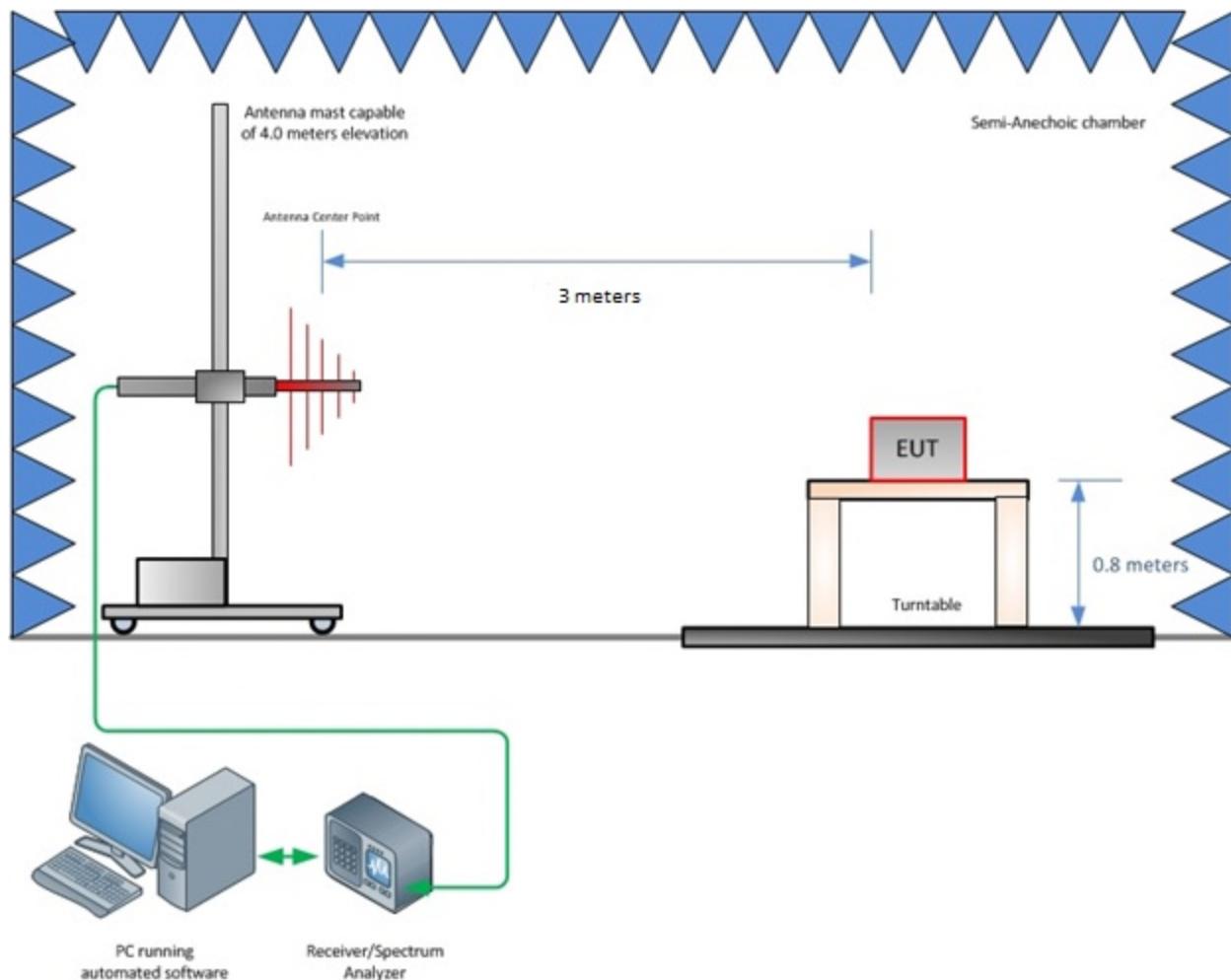
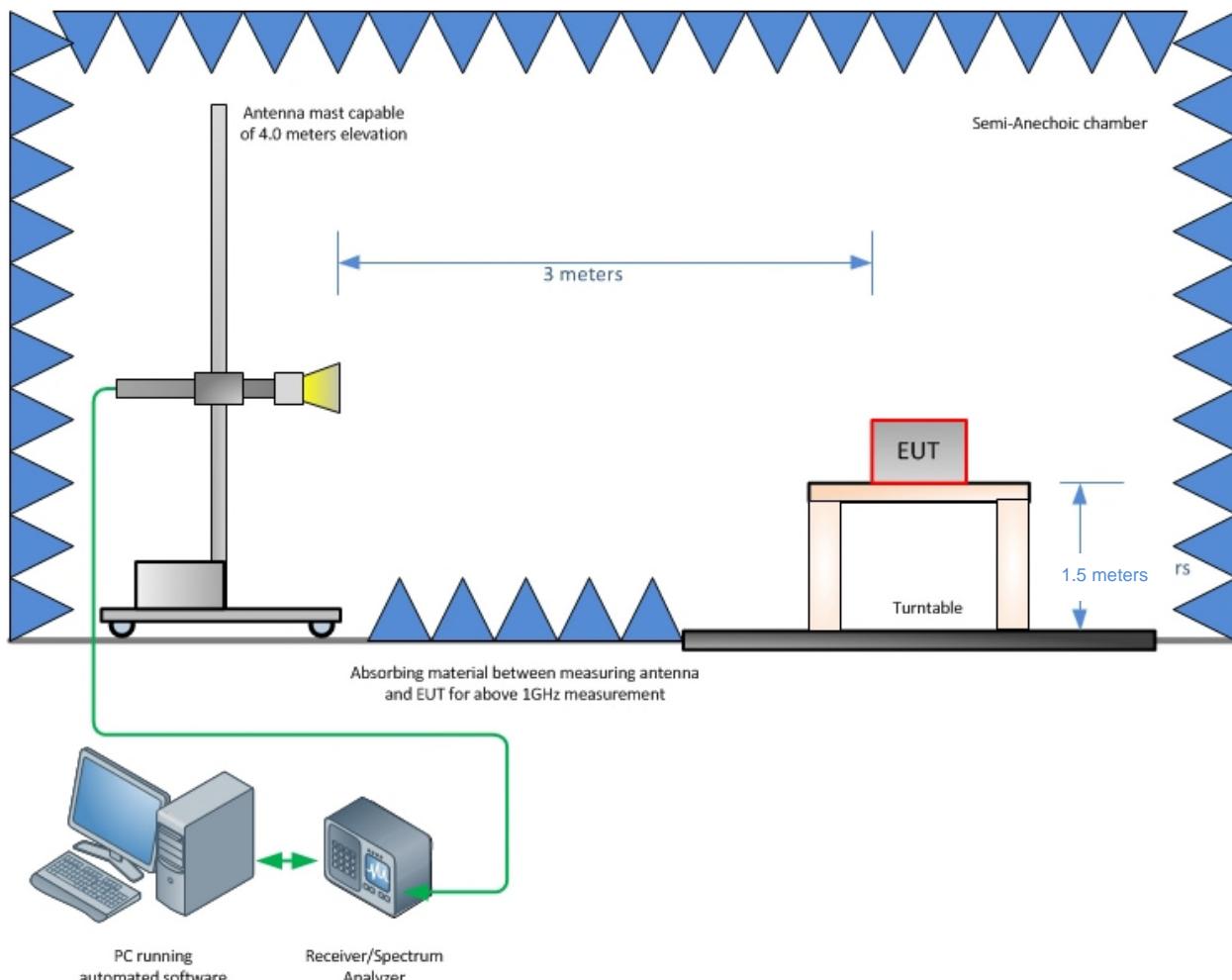



Figure 3-1 – Radiated Emissions Test Setup up to 1 GHz

Figure 3-2 – Radiated Emissions Test Setup above 1 GHz

4 Accreditation, Disclaimers and Copyright

TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government.

STATEMENT OF MEASUREMENT UNCERTAINTY – Emissions

The test system for conducted emissions is defined as the LISN, tuned receiver or spectrum analyzer, and coaxial cable. This test system has a measurement uncertainty of ± 3.30 dB. The test system for radiated emissions is defined as the antenna, the pre-amplifier, the spectrum analyzer and the coaxial cable. This test system for 30 MHz-1000 MHz has a measurement uncertainty of ± 5.88 dB and above 1 GHz a measurement uncertainty of ± 4.47 dB. The measurement uncertainty values for conducted and radiated emissions meet the requirements as expressed in CISPR 16-4-2. The equipment comprising the test systems is calibrated on an annual basis.

TEST EQUIPMENT

All measurement instrumentation is traceable to the National Institute of Standards and Technology and is calibrated to meet test method standard requirements and/or manufacturer's specifications