



**Radio Test Report**  
**FEC Heliports Worldwide Limited**  
**915 MHz Zulu dongle**  
**HP0720**

47 CFR Part 15.249 Effective Date 1st October 2015

Test Date: 18th February 2016 to 20th April 2016  
Report Number: 04-8587-1-16 Issue 02

***R.N. Electronics Ltd.***

Arnolds Court  
Arnolds Farm Lane  
Mountnessing  
Essex  
CM13 1UT  
U.K.

[www.RNelectronics.com](http://www.RNelectronics.com)

Telephone: +44 (0) 1277 352219  
Email: [sales@RNelectronics.com](mailto:sales@RNelectronics.com)

This report is not to be reproduced by any means except in full and in any case not without the written approval of R.N. Electronics Ltd.



Arnolds Court, Arnolds Farm Lane, Mountnessing, Brentwood Essex, CM13 1UT  
**Certificate of Test 8587-1**

The equipment noted below has been fully tested by R.N. Electronics Limited and, where appropriate, conforms to the relevant subpart of 47 CFR Part 15C. This is a certificate of test only and should not be confused with an equipment authorisation. Other standards may also apply.

Equipment: 915 MHz Zulu dongle  
Model Number: HP0720  
Unique Serial Number: 720-001  
Applicant: FEC Heliports Worldwide Limited  
1 Mead Business Centre, 176-178 Berkhamstead Road  
Chesham, Buckinghamshire  
HP5 3EE  
Proposed FCC ID 2AFNN-HP0720  
Full measurement results are detailed in Report Number: 04-8587-1-16 Issue 02  
Test Standards: 47 CFR Part 15.249 Effective Date 1st October 2015  
DXT: Low power Transceiver, RX verified

**NOTE:**

Certain tests were not performed based upon manufacturer's declarations. Certain other requirements are subject to manufacturer declaration only and have not been tested/verified. For details refer to section 3 of this report.

**DEVIATIONS:**

Deviations have not been applied.

This certificate relates only to the unit tested as identified by a unique serial number and in the condition at the time it was tested. It does not relate to any other similar equipment and performance of the product before or after the test cannot be guaranteed. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of unit not meeting the intentions of the standard or the requirements of the Federal Regulations, particularly under different conditions to those during testing. Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of  $k=2$ , providing a level of confidence of approximately 95%.

Date Of Test: 18th February 2016 to 20th April 2016

Test Engineer:

Approved By:

Radio Approvals Manager

Customer

Representative:

## 1 Contents

|      |                                                                        |    |
|------|------------------------------------------------------------------------|----|
| 1    | Contents .....                                                         | 3  |
| 2    | Equipment under test (EUT) .....                                       | 4  |
| 2.1  | Equipment specification .....                                          | 4  |
| 2.2  | Configurations for testing .....                                       | 5  |
| 2.3  | Functional description .....                                           | 6  |
| 2.4  | Modes of operation .....                                               | 6  |
| 2.5  | Emissions configuration .....                                          | 7  |
| 3    | Summary of test results .....                                          | 8  |
| 4    | Specifications .....                                                   | 9  |
| 4.1  | Relevant standards .....                                               | 9  |
| 4.2  | Deviations .....                                                       | 9  |
| 5    | Tests, methods and results .....                                       | 10 |
| 5.1  | AC power line conducted emissions .....                                | 10 |
| 5.2  | Radiated emissions 9 - 150 kHz .....                                   | 12 |
| 5.3  | Radiated emissions 150 kHz - 30 MHz .....                              | 12 |
| 5.4  | Radiated emissions 30 MHz -1 GHz .....                                 | 13 |
| 5.5  | Radiated emissions above 1 GHz .....                                   | 15 |
| 5.6  | Intentional radiator field strength .....                              | 17 |
| 5.7  | Band Edge Compliance .....                                             | 18 |
| 5.8  | Occupied bandwidth .....                                               | 19 |
| 5.9  | Duty cycle .....                                                       | 20 |
| 5.10 | Frequency stability .....                                              | 20 |
| 6    | Plots/Graphical results .....                                          | 21 |
| 6.1  | AC power line conducted emissions .....                                | 21 |
| 6.2  | Radiated emissions 30 MHz -1 GHz .....                                 | 23 |
| 6.3  | Radiated emissions above 1 GHz .....                                   | 25 |
| 6.4  | Intentional radiator field strength .....                              | 29 |
| 6.5  | Band Edge Compliance .....                                             | 30 |
| 6.6  | Occupied bandwidth .....                                               | 31 |
| 6.7  | Duty cycle .....                                                       | 32 |
| 7    | Explanatory Notes .....                                                | 33 |
| 7.1  | Explanation of Table of Signals Measured .....                         | 33 |
| 7.2  | Explanation of limit line calculations for radiated measurements ..... | 33 |
| 8    | Photographs .....                                                      | 35 |
| 8.1  | EUT Front View .....                                                   | 35 |
| 8.2  | EUT Reverse Angle .....                                                | 36 |
| 8.3  | EUT Antenna Port .....                                                 | 37 |
| 8.4  | EUT Display & Controls .....                                           | 38 |
| 8.5  | EUT Internal photos .....                                              | 39 |
| 8.6  | EUT ID Label .....                                                     | 40 |
| 8.7  | AC power line conducted emissions .....                                | 41 |
| 8.8  | Radiated emissions 30 MHz -1 GHz .....                                 | 42 |
| 8.9  | Radiated emissions above 1 GHz .....                                   | 43 |
| 8.10 | Radiated emission diagram .....                                        | 44 |
| 8.11 | AC powerline conducted emission diagram .....                          | 45 |
| 9    | Test equipment calibration list .....                                  | 46 |
| 10   | Auxiliary and peripheral equipment .....                               | 47 |
| 10.1 | Customer supplied equipment .....                                      | 47 |
| 10.2 | RN Electronics supplied equipment .....                                | 47 |
| 11   | Condition of the equipment tested .....                                | 48 |
| 11.1 | Modifications before test .....                                        | 48 |
| 11.2 | Modifications during test .....                                        | 48 |
| 12   | Description of test sites .....                                        | 49 |
| 13   | Abbreviations and units .....                                          | 50 |

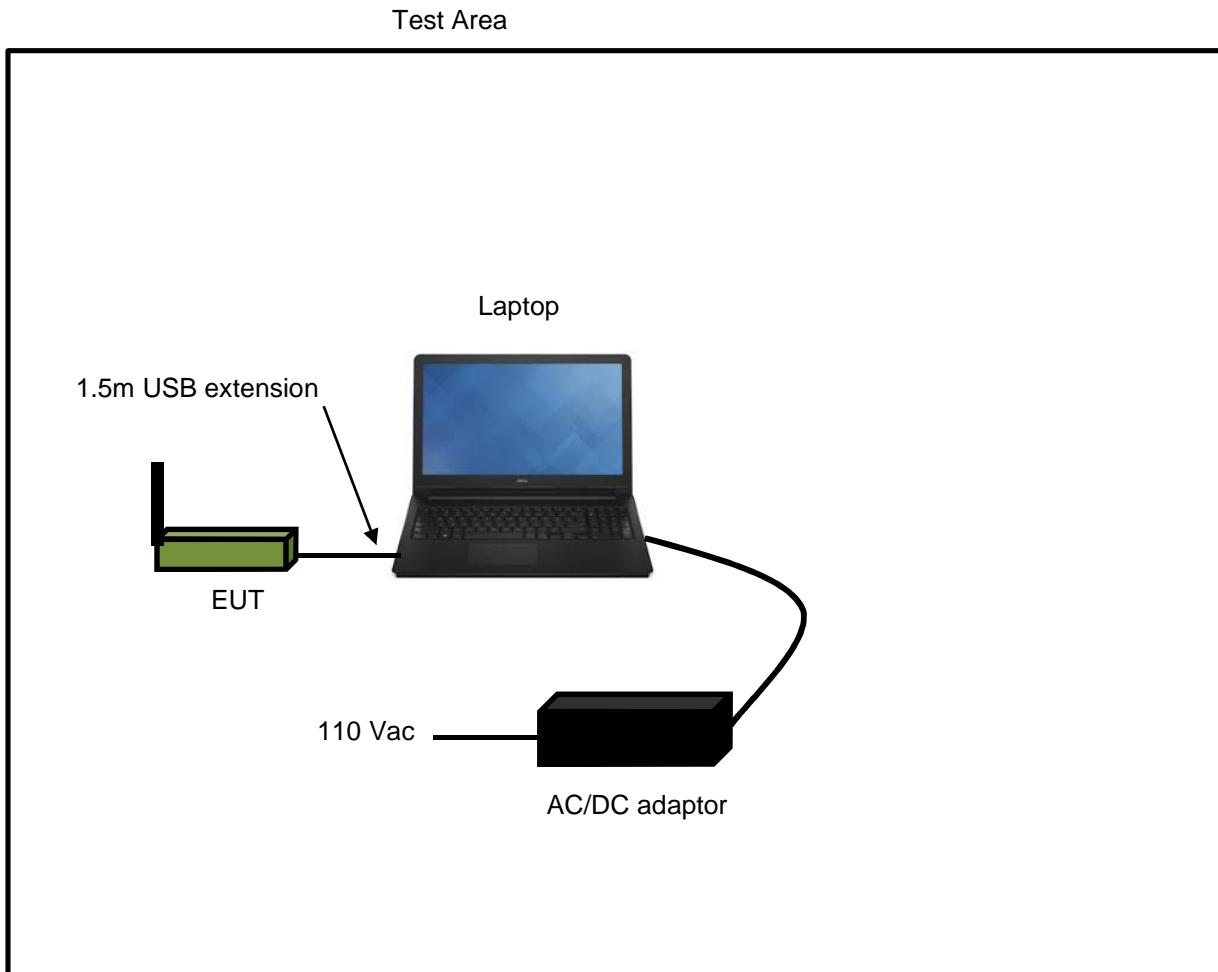
## 2 Equipment under test (EUT)

### 2.1 Equipment specification

|                           |                                                                                                                                 |                           |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Applicant                 | FEC Heliports Worldwide Limited<br>1 Mead Business Centre<br>176-178 Berkhamstead Road<br>Chesham<br>Buckinghamshire<br>HP5 3EE |                           |
| Manufacturer of EUT       | RF Solutions Limited                                                                                                            |                           |
| Full Name of EUT          | 915 MHz Zulu dongle                                                                                                             |                           |
| Model Number of EUT       | HP0720                                                                                                                          |                           |
| Serial Number of EUT      | 720-001                                                                                                                         |                           |
| Date Received             | 18th February 2016                                                                                                              |                           |
| Date of Test:             | 18th February 2016 to 20th April 2016                                                                                           |                           |
| Purpose of Test           | To demonstrate design compliance to the relevant rules of Chapter 47 of the Code of Federal Regulations.                        |                           |
| Date Report Created       | 28th April 2016                                                                                                                 |                           |
| Test Mode Description     | Use terminal program to put unit into continuous transmit whilst hopping by sending "RT" command.                               |                           |
| Main Function             | PC wireless interface to "HEMS-Star" portable battery LED helipad lights.                                                       |                           |
| Information Specification | Height                                                                                                                          | 98 mm (including antenna) |
|                           | Width                                                                                                                           | 20 mm                     |
|                           | Depth                                                                                                                           | 58 mm (including antenna) |
|                           | Weight                                                                                                                          | 0.02 kg                   |
|                           | Voltage                                                                                                                         | 4.75-5.25 VDC             |
|                           | Current                                                                                                                         | 0.2A                      |

## 2.2 Configurations for testing

| General Parameters                 |                                                                                                                                                                                      |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EUT Normal use position            | Inserted directly into a USB port of a (portable) PC.                                                                                                                                |
| Choice of model(s) for type tests  | Production sample                                                                                                                                                                    |
| Antenna details                    | ANT-GHEL2R-SMARP                                                                                                                                                                     |
| Antenna port                       | Reverse SMA                                                                                                                                                                          |
| Baseband Data port (yes/no)?       | No                                                                                                                                                                                   |
| Highest Signal generated in EUT    | 915.27 MHz                                                                                                                                                                           |
| Lowest Signal generated in EUT     | 30 MHz                                                                                                                                                                               |
| Hardware Version                   | Zulu-M-USB rev 2                                                                                                                                                                     |
| Type of Equipment                  | Standalone, single radio                                                                                                                                                             |
| Geo-location (yes/no)              | No                                                                                                                                                                                   |
| TX Parameters                      |                                                                                                                                                                                      |
| Alignment range – transmitter      | 915-915.27MHz                                                                                                                                                                        |
| EUT Declared Modulation Parameters | FSK (max 115.2 kbps)                                                                                                                                                                 |
| EUT Declared Power level           | -1.3dBm                                                                                                                                                                              |
| EUT Declared Signal Bandwidths     | 90 kHz                                                                                                                                                                               |
| EUT Declared Channel Spacings      | 90 kHz                                                                                                                                                                               |
| EUT Declared Duty Cycle            | Maximum of 25 characters sent at 1920 characters/sec giving a maximum transmission time of 14 ms. Transmission cannot be repeated more than once every several hundred milliseconds. |
| Declared frequency stability       | 10 ppm                                                                                                                                                                               |
| RX Parameters                      |                                                                                                                                                                                      |
| Alignment range – receiver         | 915-915.27MHz                                                                                                                                                                        |
| EUT Declared RX Signal Bandwidth   | 100 kHz                                                                                                                                                                              |


## 2.3 Functional description

The Zulu dongle is a UHF transceiver integrated with a USB plug and fitted with a small stub antenna. The dongle appears to the host PC as a modem, the wireless link layer being transparent to the PC.

## 2.4 Modes of operation

| Mode Reference | Description                                     | Used for testing |
|----------------|-------------------------------------------------|------------------|
| TX1            | Hopping, continuous transmit, power level 01    | Yes              |
| TX2            | 915.27 MHz, continuous transmit, power level 01 | Yes              |

## 2.5 Emissions configuration



The unit was powered from the USB port of a laptop via a 1.5m extension. The laptop in turn was powered from the dedicated AC/DC adapter. Two units were used for testing. One to allow transmit on four channels in succession and one to allow permanent transmission on a single channel only as stated within section 2.4 of this report. Power levels were set using the engineering mode provided within the unit to level 01 (this is the setting for -1.3dBm ERP). No other power settings were used for testing.

### 2.5.1 Signal leads

| Port Name | Cable Type  | Connected |
|-----------|-------------|-----------|
| PC        | USB-B       | Yes       |
| Aerial    | Reverse SMA | Yes       |

### 3 Summary of test results

The 915 MHz Zulu dongle, HP0720 was tested for compliance to the following standard(s) :

47 CFR Part 15.249 Effective Date 1st October 2015  
DXT: Low power Transceiver, RX verified

Any compliance statements are made reliant on (a) the application of the product and use of the assigned band being acceptable to the FCC and (b) the modes of operation as instructed to us by the Customer based on their specific knowledge of the application and functionality of the EUT. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of equipment not meeting the intentions of the standard or the essential requirements of the directive, particularly under different conditions to those during testing. Statements of compliance, where measurements were made, do not include the measurement uncertainty. The measurement uncertainty, where stated, is the expanded uncertainty based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

| Title                                  | References                               | Results                     |
|----------------------------------------|------------------------------------------|-----------------------------|
| <b>Transmitter Tests</b>               |                                          |                             |
| 1. AC power line conducted emissions   | 47 CFR Part 15C Part 15.207              | PASSED                      |
| 2. Radiated emissions 9 - 150 kHz      | 47 CFR Part 15C Part 15.209              | NOT APPLICABLE <sup>1</sup> |
| 3. Radiated emissions 150 kHz - 30 MHz | 47 CFR Part 15C Part 15.209              | NOT APPLICABLE <sup>1</sup> |
| 4. Radiated emissions 30 MHz - 1 GHz   | 47 CFR Part 15C Part 15.209              | PASSED                      |
| 5. Radiated emissions above 1 GHz      | 47 CFR Part 15C Part 15.209              | PASSED <sup>2</sup>         |
| 6. Intentional radiator field strength | 47 CFR Part 15C Part 15.249a             | PASSED                      |
| 7. Band Edge Compliance                | 47 CFR Part 15C Part (15.215 and 15.249) | PASSED                      |
| 8. Occupied bandwidth                  | 47 CFR Part 15C Part 15.215              | PASSED                      |
| 9. Duty cycle                          | 47 CFR Part 15C Part 15.35 & 15.249(e)   | NOT APPLICABLE <sup>3</sup> |
| 10. Frequency stability                | 47 CFR Part 15C Part 15.249(b)(2)        | NOT APPLICABLE <sup>4</sup> |

<sup>1</sup> Manufacturer declares lowest generated frequency to be 30 MHz.

<sup>2</sup> Spectrum investigated up to a frequency of 10 GHz based on 10 times the highest channel/signal generated in equipment of 915.27 MHz.

<sup>3</sup> Test performed to confirm manufacturer declaration.

<sup>4</sup> Test only applies to equipment intended for fixed, point-to-point operation.

## 4 Specifications

The tests were performed and operated in accordance with R.N. Electronics Ltd procedures and the relevant standards listed below.

### 4.1 Relevant standards

| Ref.  | Standard Number | Version | Description                                                                                                                                                         |
|-------|-----------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.1.1 | 47 CFR Part 15C | 2015    | Federal Communications Commission PART 15 – RADIO FREQUENCY DEVICES                                                                                                 |
| 4.1.2 | ANSI C63.10     | 2013    | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices                                                                      |
| 4.1.3 | ANSI C63.4      | 2014    | American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz |

### 4.2 Deviations

No deviations to the standards have been applied.

## 5 Tests, methods and results

### 5.1 AC power line conducted emissions

#### 5.1.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.207 [Reference 4.1.1 of this report]

Test Method: ANSI C63.10 Clause 6.2 [Reference 4.1.2 of this report]

Limits: 47 CFR Part 15C Part 15.207 [Reference 4.1.1 of this report]

#### 5.1.2 Configuration of EUT

The EUT was placed on a wooden table 0.8 m above the ground plane and connected to the USB port of a laptop which was powered from an AC/DC adaptor connected to a LISN via a 1m mains cable.

Details of the Peripheral and Ancillary Equipment connected for this test are listed in section 10.

For final test the EUT was operated in mode TX1.

#### 5.1.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment listed in the 'Test Equipment' Section. Measurements were made on the live and neutral conductors using both average and quasi-peak detection.

At least 6 signals within 20dB and/or all signals within 10dB of the limit were investigated.

Tests were performed in Test Site F.

#### 5.1.4 Test equipment

E150, E035, ZSW1, E412, E411, E410, E624, E465

See Section 9 for more details

#### 5.1.5 Test results

Temperature of test environment 20 - 22°C

Humidity of test environment 24 - 34%

Pressure of test environment 102kPa

|                      |                                                 |
|----------------------|-------------------------------------------------|
| Band                 | 902-928 MHz                                     |
| Power Level declared | -1.3 dBm                                        |
| Channel Spacing      | 4 channels                                      |
| Mod Scheme           | FSK                                             |
| Channels             | Cycling through each channel (normal operation) |

| Plot refs                                    |
|----------------------------------------------|
| 8587-1 Cond 2 AC Live 150k-30M Average       |
| 8587-1 Cond 2 AC Live 150k-30M Quasi-Peak    |
| 8587-1 Cond 2 AC Neutral 150k-30M Average    |
| 8587-1 Cond 2 AC Neutral 150k-30M Quasi-Peak |

**Table of signals measured for Cond 1 AC Live 150k-30M**

| Signal No. | Freq (MHz) | Peak Amp (dBuV) | QP Amp (dBuV) | QP Lim (dB) | AV Amp (dBuV) | AV Lim (dB) |
|------------|------------|-----------------|---------------|-------------|---------------|-------------|
| 1          | 0.169      | 61.5            | 55.8          | -9.2        | 24.8          | -30.2       |
| 2          | 0.185      | 59.3            | 53.5          | -10.8       | 23.0          | -31.3       |
| 3          | 0.226      | 55.3            | 49.2          | -13.4       | 20.8          | -31.8       |
| 4          | 0.276      | 52.9            | 46.5          | -14.4       | 32.7          | -18.2       |
| 5          | 0.321      | 47.4            | 41.6          | -18.1       | 14.6          | -35.1       |
| 6          | 0.345      | 47.3            | 41.1          | -18.0       | 28.0          | -21.1       |
| 7          | 0.480      | 40.2            | 34.3          | -22.0       | 23.9          | -22.4       |
| 8          | 1.379      | 33.3            | 32.6          | -23.4       | 31.1          | -14.9       |
| 9          | 1.448      | 33.6            | 32.9          | -23.1       | 31.3          | -14.7       |
| 10         | 1.517      | 33.5            | 32.6          | -23.4       | 31.3          | -14.7       |

**Table of signals measured for Cond 1 AC Neutral 150k-30M**

| Signal No. | Freq (MHz) | Peak Amp (dBuV) | QP Amp (dBuV) | QP Lim (dB) | AV Amp (dBuV) | AV Lim (dB) |
|------------|------------|-----------------|---------------|-------------|---------------|-------------|
| 1          | 0.151      | 64.1            | 57.7          | -8.2        | 26.5          | -29.4       |
| 2          | 0.178      | 59.9            | 54.0          | -10.6       | 23.1          | -31.5       |
| 3          | 0.276      | 52.2            | 44.9          | -16.0       | 28.3          | -22.6       |
| 4          | 0.345      | 46.8            | 40.5          | -18.6       | 25.3          | -23.8       |
| 5          | 0.500      | 37.2            | 31.3          | -24.7       | 7.4           | -38.6       |
| 6          | 0.554      | 37.3            | 31.5          | -24.5       | 20.0          | -26.0       |
| 7          | 0.963      | 27.6            | 24.7          | -31.3       | 20.5          | -25.5       |
| 8          | 1.447      | 32.2            | 29.5          | -26.5       | 24.5          | -21.5       |
| 9          | 1.587      | 31.8            | 29.9          | -26.1       | 28.7          | -17.3       |
| 10         | 1.862      | 31.5            | 29.1          | -26.9       | 23.2          | -22.8       |

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

**LIMITS:**

15.207: as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:

150 kHz to 30 MHz  $\pm 3.6$  dB

## 5.2 Radiated emissions 9 - 150 kHz

NOT APPLICABLE: Manufacturer declares lowest frequency generated to be 30 MHz.

## 5.3 Radiated emissions 150 kHz - 30 MHz

NOT APPLICABLE: Manufacturer declares lowest generated frequency to be 30 MHz.

## 5.4 Radiated emissions 30 MHz -1 GHz

### 5.4.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.209 [Reference 4.1.1 of this report]  
Test Method: ANSI C63.10 Clause 6.3 & 6.5 [Reference 4.1.2 of this report]  
Limits: 47 CFR Part 15C Part 15.209/15.249(d) [Reference 4.1.1 of this report]

### 5.4.2 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was rotated in all three orthogonal planes. The EUT was operated in TX1 mode.

### 5.4.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment listed below.

Measurements were made on a site listed with the FCC. The equipment was rotated 360° and the antenna scanned 1 – 4 metres in both horizontal and vertical polarisations to record the worst case emissions.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using Test Sites H and M.

### 5.4.4 Test equipment

LPE364, TMS45, ZSW1, E534, E535,

See Section 9 for more details

### 5.4.5 Test results

|                                 |          |
|---------------------------------|----------|
| Temperature of test environment | 19°C     |
| Humidity of test environment    | 38 - 41% |
| Pressure of test environment    | 102kPa   |

|                      |                                                 |
|----------------------|-------------------------------------------------|
| Band                 | 902-928 MHz                                     |
| Power Level declared | -1.3 dBm                                        |
| Channel Spacing      | 4 channels                                      |
| Mod Scheme           | FSK                                             |
| Channel              | Cycling through each channel (normal operation) |

|                        |
|------------------------|
| Plot refs              |
| 8587-1 Rad 2 VHF Horiz |
| 8587-1 Rad 2 VHF Vert  |
| 8587-1 Rad 2 UHF Horiz |
| 8587-1 Rad 2 UHF Vert  |

**Table of signals measured for Rad 1 Horizontal Sig List**

| Signal No. | Freq (MHz) | Peak Amp (dBuV/m) | QP Amp (dBuV/m) | QP Lim (dB) |
|------------|------------|-------------------|-----------------|-------------|
| 1          | 36.005     | 37.4              | 34.4            | -5.6        |
| 2          | 37.328     | 34.4              | 30.9            | -9.1        |
| 3          | 166.039    | 46.4              | 32.6            | -10.9       |
| 4          | 498.439    | 31.9              | 25.5            | -20.5       |
| 5          | 664.910    | 47.1              | 36.6            | -9.4        |

**Table of signals measured for Rad 1 Vertical Sig List**

| Signal No. | Freq (MHz) | Peak Amp (dBuV/m) | QP Amp (dBuV/m) | QP Lim (dB) |
|------------|------------|-------------------|-----------------|-------------|
| 1          | 36.011     | 38.8              | 36.1            | -3.9        |
| 2          | 37.342     | 35.7              | 32.2            | -7.8        |
| 3          | 57.820     | 19.4              | 13.4            | -26.6       |
| 4          | 72.025     | 22.6              | 18.3            | -21.7       |
| 5          | 93.160     | 27.8              | 23.3            | -20.2       |
| 6          | 99.485     | 29.0              | 24.4            | -19.1       |
| 7          | 161.628    | 31.1              | 26.6            | -16.9       |
| 8          | 166.140    | 47.2              | 34.0            | -9.5        |
| 9          | 166.237    | 42.9              | 33.9            | -9.6        |
| 10         | 166.496    | 50.5              | 35.1            | -8.4        |
| 11         | 169.329    | 34.8              | 27.6            | -15.9       |
| 12         | 170.135    | 37.2              | 28.2            | -15.3       |
| 13         | 175.101    | 33.2              | 29.9            | -13.6       |
| 14         | 186.210    | 30.9              | 26.9            | -16.6       |
| 15         | 187.530    | 30.7              | 26.7            | -16.8       |
| 16         | 232.001    | 36.7              | 32.5            | -13.5       |
| 17         | 240.067    | 34.7              | 31.2            | -14.8       |
| 18         | 664.060    | 44.2              | 33.8            | -12.2       |
| 19         | 666.539    | 34.5              | 28.1            | -17.9       |

Peak detector "Max held" Analyser plots against the Quasi-Peak / Average limit line(s) can be found in Section 6 of this report.

Test performed with EUT using all available channels in turn.

**LIMITS:**

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

15.249(d) other emissions, outside the intentional band, must be attenuated by at least 50dB from the level of the fundamental or meet the general limits of 15.209 whichever is the lesser attenuation.

The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:

30 MHz – 1000 MHz  $\pm$ 5.1 dB

## 5.5 Radiated emissions above 1 GHz

### 5.5.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.209 [Reference 4.1.1 of this report]  
Test Method: ANSI C63.10 Clause 6.3 & 6.6 [Reference 4.1.2 of this report]  
Limits: 47 CFR Part 15C Part 15.209/15.249(d) [Reference 4.1.1 of this report]

### 5.5.2 Configuration of EUT

The EUT was placed on a 1.5 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was rotated in all three orthogonal planes. The EUT was operated in TX1 mode.

### 5.5.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment listed below.

Measurements were made in a semi-anechoic chamber with appropriate absorbing material for use in this range. Horn antennas were used at heights where the whole of the EUT was contained within the main beam. The EUT was rotated through 360° to record the worst case emissions. A measurement distance of 3m was used between the test range 1 – 6 GHz and 1.2 m was used in the test range 6 – 10 GHz.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

Tests were performed using test Site M.

### 5.5.4 Test equipment

E268, TMS82, E411, E410, E624

See Section 9 for more details

### 5.5.5 Test results

|                                 |        |
|---------------------------------|--------|
| Temperature of test environment | 22°C   |
| Humidity of test environment    | 24%    |
| Pressure of test environment    | 102kPa |

Setup Table

|                      |                                                 |
|----------------------|-------------------------------------------------|
| Band                 | 902-928 MHz                                     |
| Power Level declared | -1.3 dBm                                        |
| Channel Spacing      | 4 channels                                      |
| Mod Scheme           | FSK                                             |
| Channel              | Cycling through each channel (normal operation) |

| Spurious Frequency (MHz) | Measured Peak Level (dB $\mu$ V/m) | Difference to Peak Limit (dB) | Calculated Average Level (dB $\mu$ V/m) | Difference to Average Limit (dB) | Antenna Polarisation | EUT Polarisation |
|--------------------------|------------------------------------|-------------------------------|-----------------------------------------|----------------------------------|----------------------|------------------|
| 2745                     | 62.3                               | -11.7                         | 45.8                                    | -8.2                             | Flat                 | Vertical         |
| 2745                     | 64.0                               | -10.0                         | 47.5                                    | -6.5                             | Flat                 | Horizontal       |
| 3660                     | 48.0                               | -26.0                         | 31.5                                    | -22.5                            | Flat                 | Vertical         |
| 3660                     | 55.5                               | -18.5                         | 39.0                                    | -15.0                            | Flat                 | Horizontal       |
| 4575                     | 46.4                               | -27.6                         | 29.9                                    | -24.1                            | Flat                 | Vertical         |
| 4575                     | 49.4                               | -24.6                         | 32.9                                    | -21.1                            | Flat                 | Horizontal       |
| 7320                     | 49.8                               | -24.2                         | 33.3                                    | -20.7                            | Flat                 | Horizontal       |
| 8235                     | 46.9                               | -27.1                         | 30.4                                    | -23.6                            | Flat                 | Horizontal       |

Note: Duty cycle correction factor of -16.5 dB applied to peak level measurements in order to obtain Average levels.

| Plots                         |
|-------------------------------|
| 8587-1 Rad 1 1-2GHz Horiz     |
| 8587-1 Rad 1 1-2GHz Vert      |
| 8587-1 Rad 1 2-5GHz Horiz     |
| 8587-1 Rad 1 2-5GHz Vert      |
| 8587-1 Rad 1 5-6GHz Horiz     |
| 8587-1 Rad 1 5-6GHz Vert      |
| 8587-1 Rad 1 6upto10GHz Horiz |
| 8587-1 Rad 1 6upto10GHz Vert  |

Peak detector "Max held" Analyser plots against the Average limit line can be found in Section 6 of this report.

Test performed with EUT using all available channels in turn.

**LIMITS:**

15.209 limits are applicable in the restricted bands of 15.205 with the relevant detector.

15.249(d) other emissions, outside the intentional band, must be attenuated by at least 50dB from the level of the fundamental or meet the general limits of 15.209 whichever is the lesser attenuation.

The general limits of 15.209 are as drawn on the respective plots.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  
1 – 18 GHz  $\pm$ 3.5 dB.

## 5.6 Intentional radiator field strength

### 5.6.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.249a [Reference 4.1.1 of this report]  
Test Method: ANSI C63.10 Clause 6.3/6.5/6.6 [Reference 4.1.2 of this report]  
Limits: 47 CFR Part 15C Part 15.249a [Reference 4.1.1 of this report]

### 5.6.2 Configuration of EUT

The EUT was placed on a 0.8 metre high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The antenna was scanned 1-4m in height in both Horizontal and Vertical polarisations. The EUT was rotated in all three orthogonal planes. The EUT was operated in TX1 mode.

### 5.6.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment listed below.

Maximum field strength was measured using a spectrum analyser set with the appropriate RBW/span in conjunction with a PK detector.

Measurements were made in a semi-anechoic chamber. This site is listed with the FCC. Measurements were made at Site H.

### 5.6.4 Test equipment

E533, E534, E535, LPE364, TMS45, LPE351

See Section 9 for more details

### 5.6.5 Test results

|                                 |          |
|---------------------------------|----------|
| Temperature of test environment | 16°C     |
| Humidity of test environment    | 42%      |
| Pressure of test environment    | 101.5kPa |

|                      |                                                 |
|----------------------|-------------------------------------------------|
| Band                 | 902-928 MHz                                     |
| Power Level declared | -1.3 dBm                                        |
| Channel Spacing      | 4 channels                                      |
| Mod Scheme           | FSK                                             |
| Channel              | Cycling through each channel (normal operation) |

|                         |                               |
|-------------------------|-------------------------------|
|                         | Single                        |
| PK Level (dB $\mu$ V/m) | 90.70                         |
| Plot reference          | 8587-1 J8587-1 ERP horiz flat |
| Antenna Polarisation    | Horiz                         |
| EUT Polarisation        | Flat                          |

Analyser plots can be found in Section 6 of this report.

#### LIMITS:

15.249(a) 50 mV/m @ 3m (94 dB $\mu$ V/m @ 3m).

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  
<math>\pm 5.1 \text{ dB} (30 - 1000 \text{ MHz})</math>

## 5.7 Band Edge Compliance

### 5.7.1 Test methods

Test Requirements: 47 CFR Part 15C Part (15.215 and 15.249) [Reference 4.1.1 of this report]  
Test Method: ANSI C63.10 Clause 6.10 [Reference 4.1.2 of this report]  
Limits: 47 CFR Part 15C Part 15.209 [Reference 4.1.1 of this report]

### 5.7.2 Configuration of EUT

The EUT was placed on a 0.8 metre high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The EUT was operated in TX1 mode.

### 5.7.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment listed below. The emission from the EUT was maximised before taking the plots.

Tests were performed using Test Site M.

### 5.7.4 Test equipment

E410, E412, TMS933, E624

See Section 9 for more details

### 5.7.5 Test results

|                                 |        |
|---------------------------------|--------|
| Temperature of test environment | 23°C   |
| Humidity of test environment    | 34%    |
| Pressure of test environment    | 102kPa |

|                      |                                       |
|----------------------|---------------------------------------|
| Band                 | 902-928 MHz                           |
| Power Level declared | -1.3 dBm                              |
| Channel Spacing      | 4 channels                            |
| Mod Scheme           | FSK                                   |
| Channel              | Cycling through each channel (normal) |

|                                  | All Channels                          |
|----------------------------------|---------------------------------------|
| Peak Level (dB <sub>μ</sub> V/m) | 90.6                                  |
| Peak Plot reference              | J8587-1 Band Edge (all four channels) |

Analyser plots for the Band Edge Compliance can be found in Section 6 of this report. These show the 50dBc requirement of 15.249(d) and generic 15.209 limits are met at the band edges of 902 and 928 MHz.

#### LIMITS:

Emissions radiated outside of the specified frequency bands, shall be attenuated by 50dB below the level of the fundamental field strength or to the general emissions limits of 15.209, whichever is the lesser attenuation.

The restricted band edges closest to the EUT frequency of 902-928MHz are 614 & 960MHz and are covered under radiated emissions 30 MHz – 1GHz (refer to section 5.4).

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  
<± 5.1 dB (30 - 1000 MHz)

## 5.8 Occupied bandwidth

### 5.8.1 Test methods

Test Requirements: 47 CFR Part 15C Part 15.215 [Reference 4.1.1 of this report]  
Test Method: ANSI C63.10 Clause 6.9 [Reference 4.1.2 of this report]  
Limits: 47 CFR Part 15C Part 15.215(c) [Reference 4.1.1 of this report]

### 5.8.2 Configuration of EUT

The EUT was connected to the spectrum analyser. The EUT was tested whilst powered via USB from the laptop which in turn was powered from an AC/DC adaptor. The EUT was operated in TX2 mode.

### 5.8.3 Test procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment listed below. A 3 kHz RBW, 3x VBW, auto sweep time and max hold settings were used for measuring the 20 dB bandwidth.

Tests were performed using test Site A.

### 5.8.4 Test equipment

E412

See Section 9 for more details

### 5.8.5 Test results

|                                 |        |
|---------------------------------|--------|
| Temperature of test environment | 22°C   |
| Humidity of test environment    | 42%    |
| Pressure of test environment    | 103kPa |

|                      |                |
|----------------------|----------------|
| Band                 | 902-928 MHz    |
| Power Level declared | -1.3 dBm       |
| Channel Spacing      | Single channel |
| Mod Scheme           | FSK            |
| Channel              | 915.27 MHz     |

| 20 dB Bandwidth (kHz) | Mid        |
|-----------------------|------------|
|                       | 128        |
| Plot reference        | 8587-1 OBW |

Analyser plots for the 20dB bandwidth can be found in Section 6 of this report.

#### LIMITS:

15.215(c) The 20dB bandwidth of the emission must be contained within the designated frequency band.

These results show that the EUT has PASSED this test.

The uncertainty gives a 95% confidence interval in the measurement. Expanded uncertainty (K=2) is as follows:  
± 1.9 %

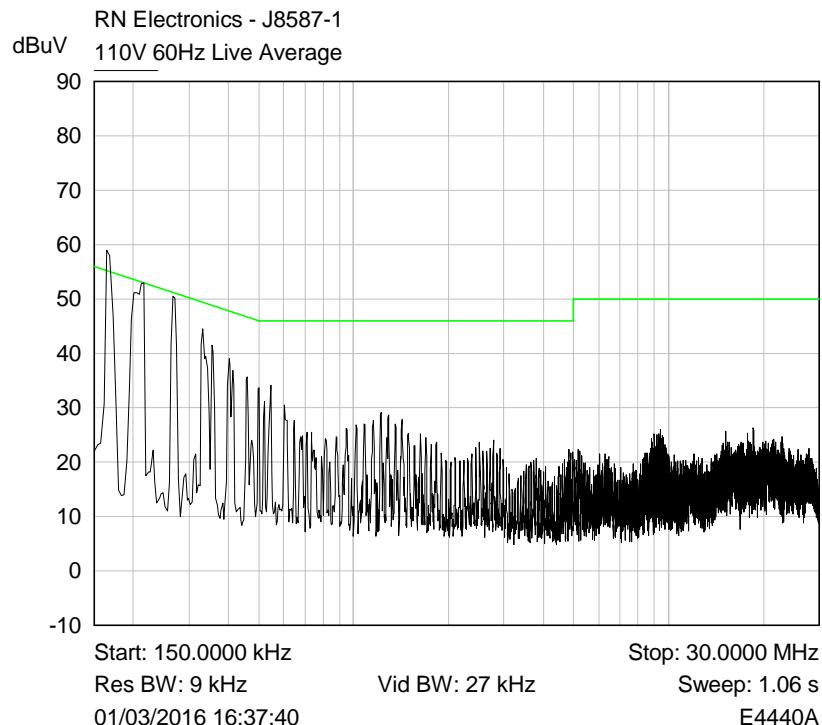
## 5.9 Duty cycle

NOT APPLICABLE: No limits apply, however duty cycle measurement performed to verify any possible correction factors for average emissions.

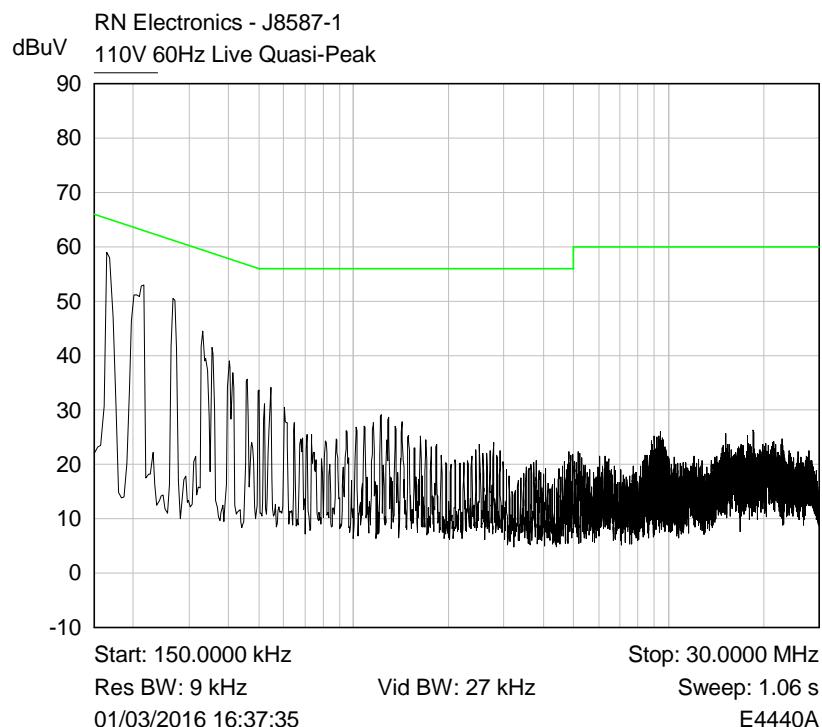
|                      |                |
|----------------------|----------------|
| Band                 | 902-928 MHz    |
| Power Level declared | -1.3 dBm       |
| Channel Spacing      | Single channel |
| Mod Scheme           | FSK            |
| Single channel       | 915.275 MHz    |

|                              |                              |
|------------------------------|------------------------------|
| TX on time (mS)              | Single<br>14.95              |
| TX on Plot filename          | 8587-1 duty cycle correction |
| TX repetition time (S)       | 0.1                          |
| Calculated TX Duty cycle (%) | 14.95                        |

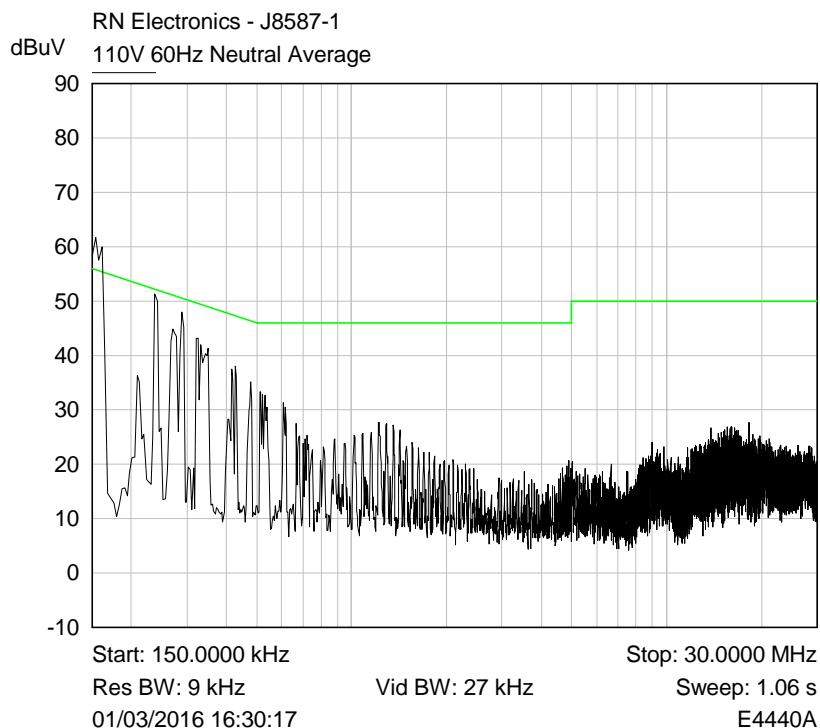
These results show that the duty cycle correction factor for peak to average emissions is therefore  $20\log(0.01495/0.1) = -16.5$  dB.


## 5.10 Frequency stability

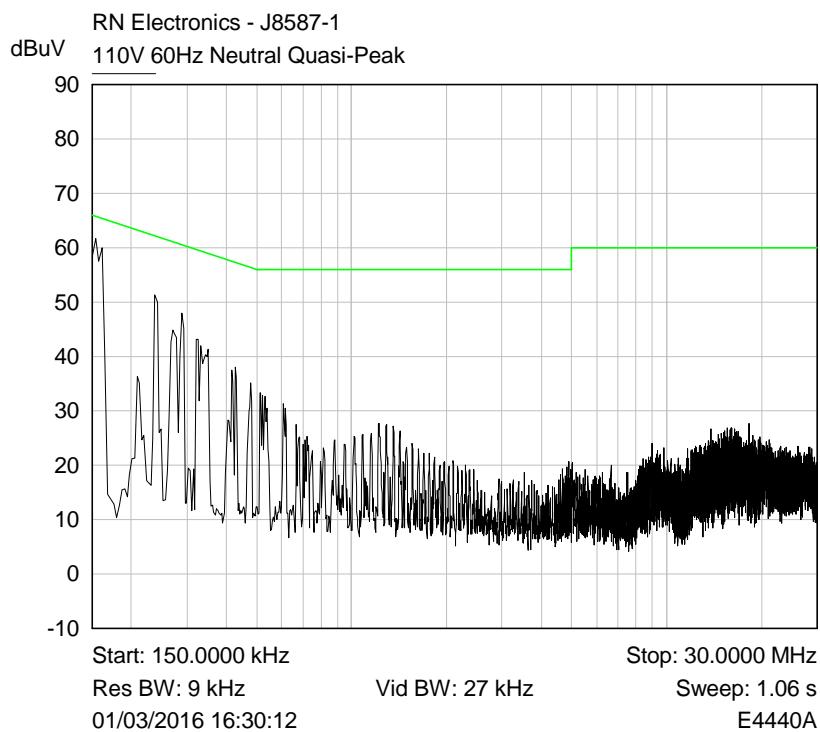
NOT APPLICABLE: Test only applies to equipment intended for fixed, point-to-point operation.


## 6 Plots/Graphical results

### 6.1 AC power line conducted emissions


RF Parameters: Band 902-928 MHz, Power -1.3 dBm, Channel Spacing 4 channels,  
Modulation FSK, Normal operation 4 channels cycling

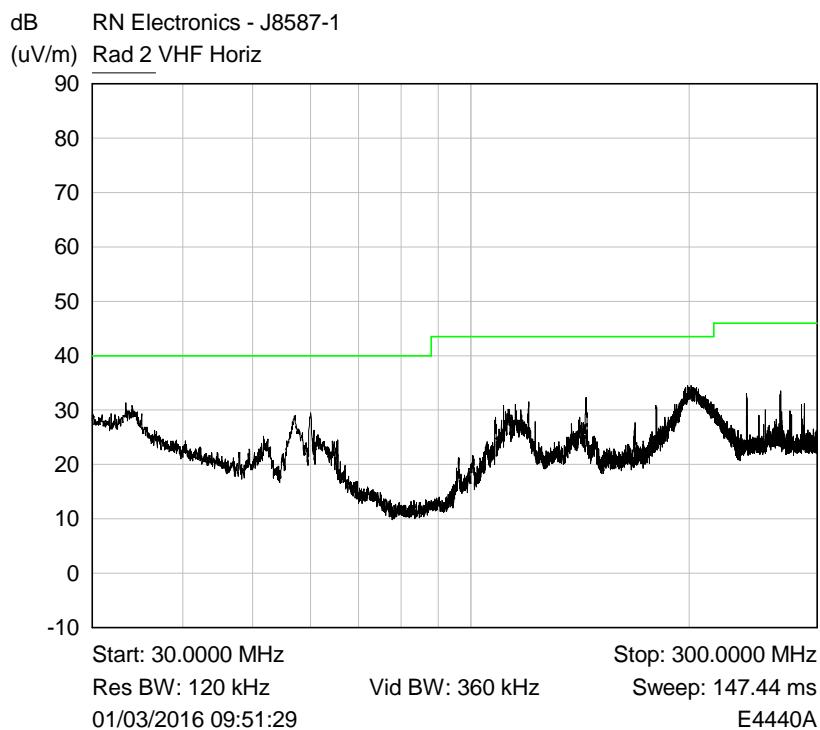



Plot of Live150k-30M Average

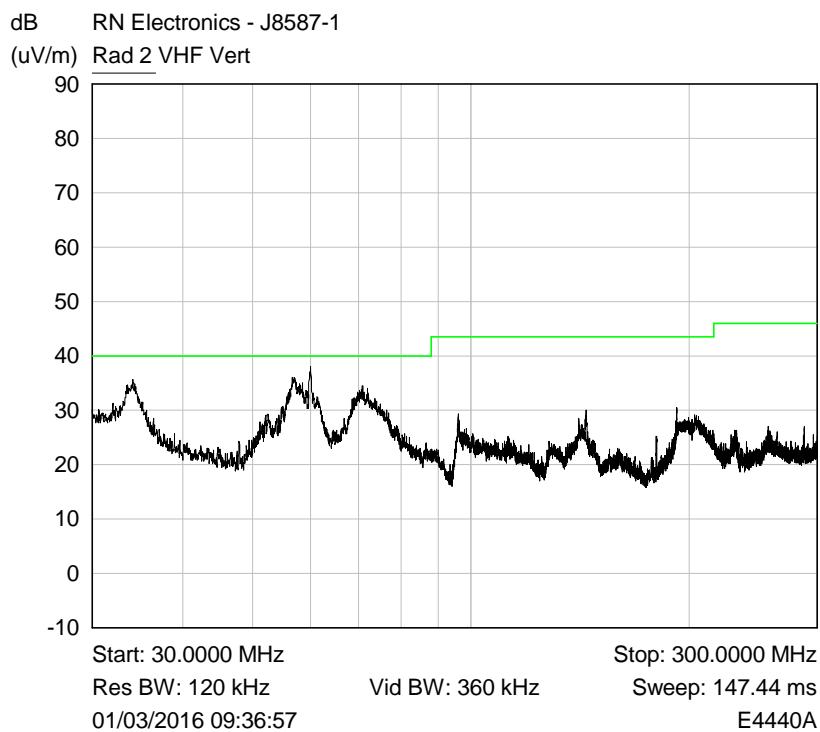


Plot of Live150k-30M Quasi-Peak




Plot of Neutral150k-30M Average

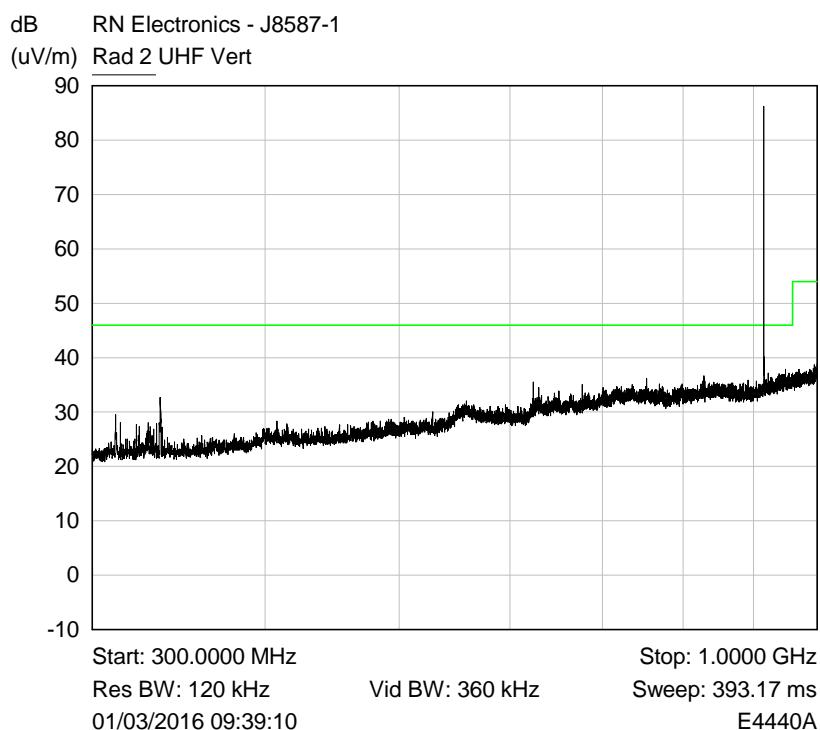



Plot of Neutral150k-30M Quasi-Peak

## 6.2 Radiated emissions 30 MHz -1 GHz

RF Parameters: Band 902-928 MHz, Power -1.3 dBm, Channel Spacing 4 channels,  
Modulation FSK, Normal operation 4 channels cycling




Plot of Peak emissions for VHF Horizontal against the QP limit line.

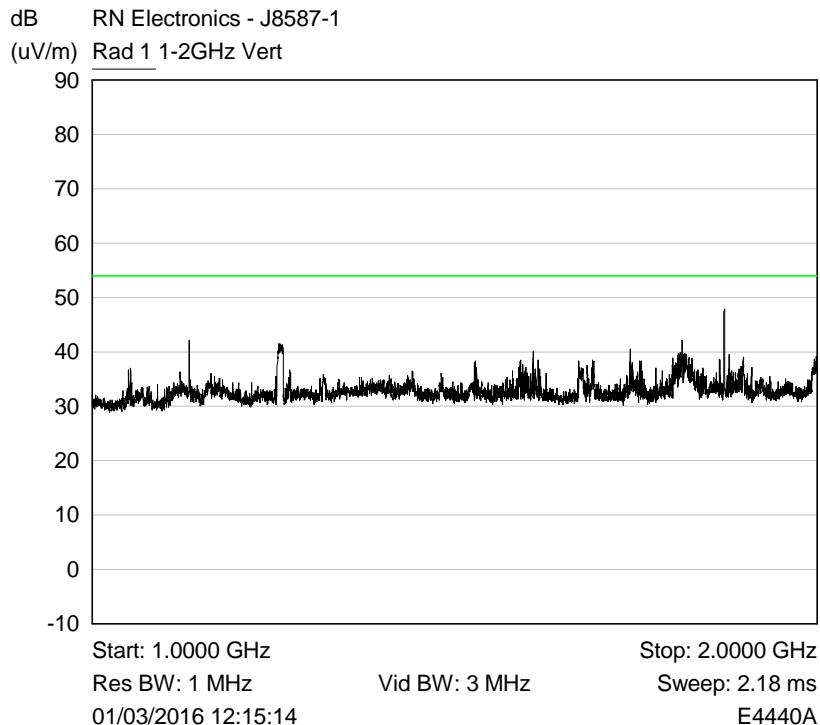


Plot of Peak emissions for VHF Vertical against the QP limit line.

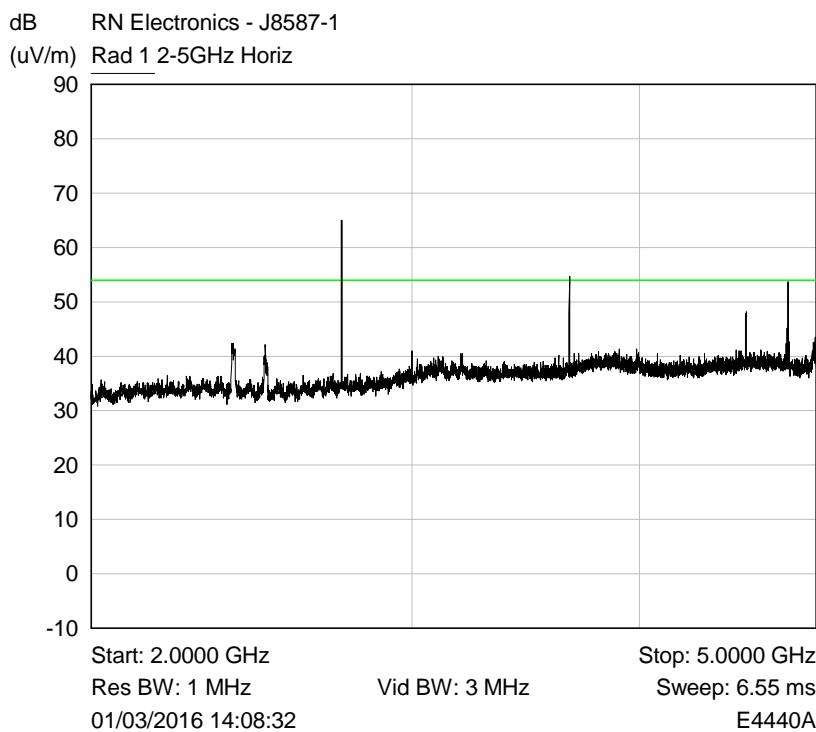



Plot of Peak emissions for UHF Horizontal against the QP limit line.  
Note: plot shows fundamental emission.

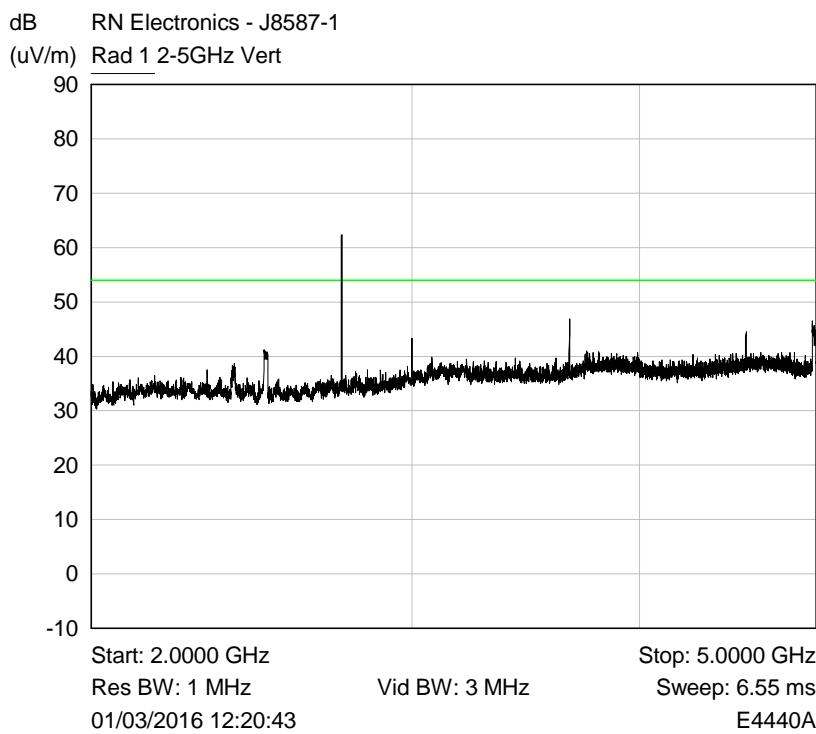



Plot of Peak emissions for UHF Vertical against the QP limit line.  
Note: plot shows fundamental emission.

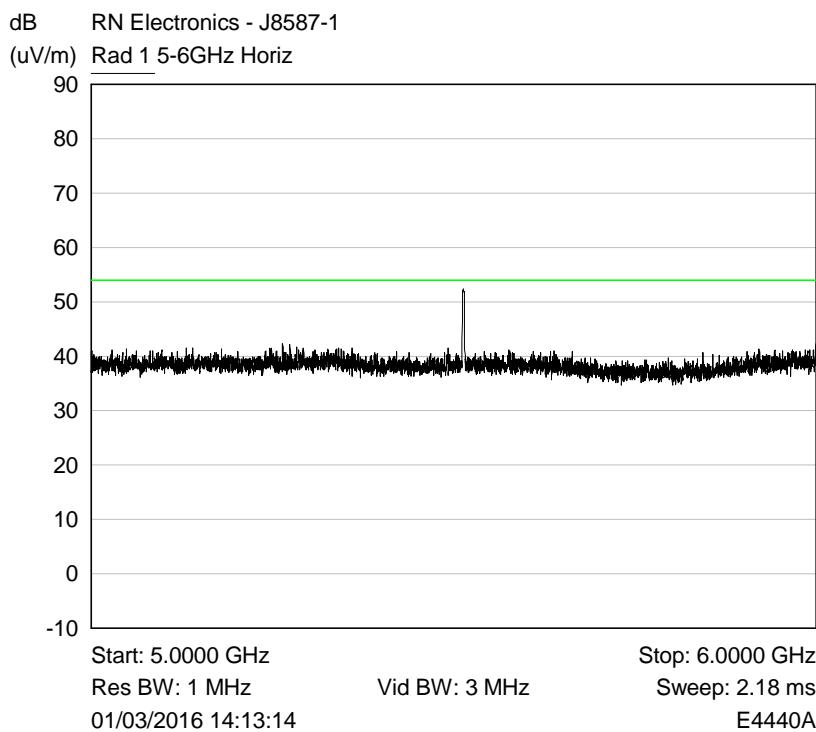
## 6.3 Radiated emissions above 1 GHz


RF Parameters: Band 902-928 MHz, Power -1.3 dBm, Channel Spacing 4 channels,  
Modulation FSK, Normal operation 4 channels cycling

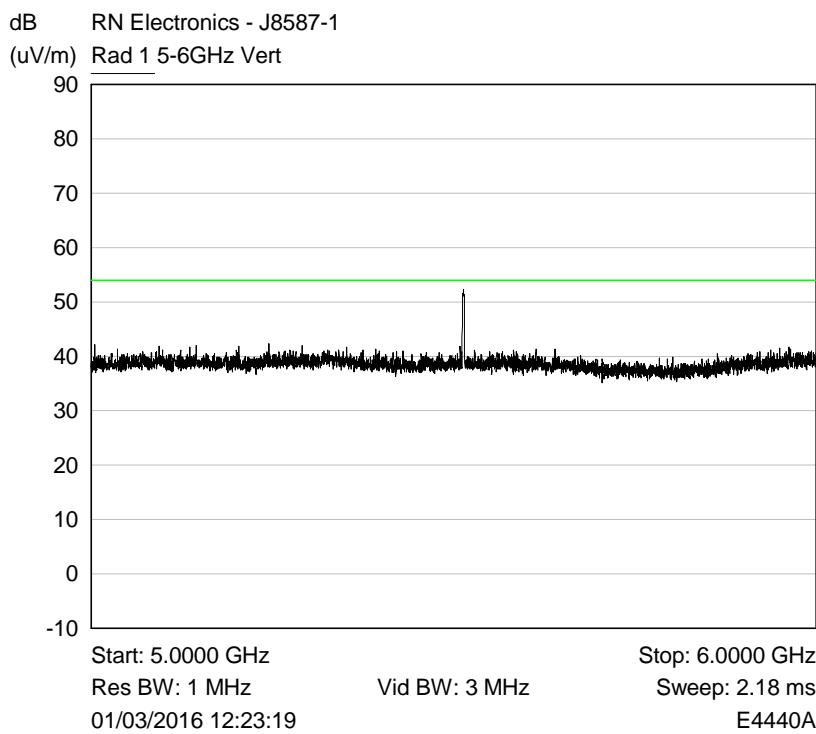



Plot of Peak Horizontal emissions 1 – 2 GHz against the AV limit line

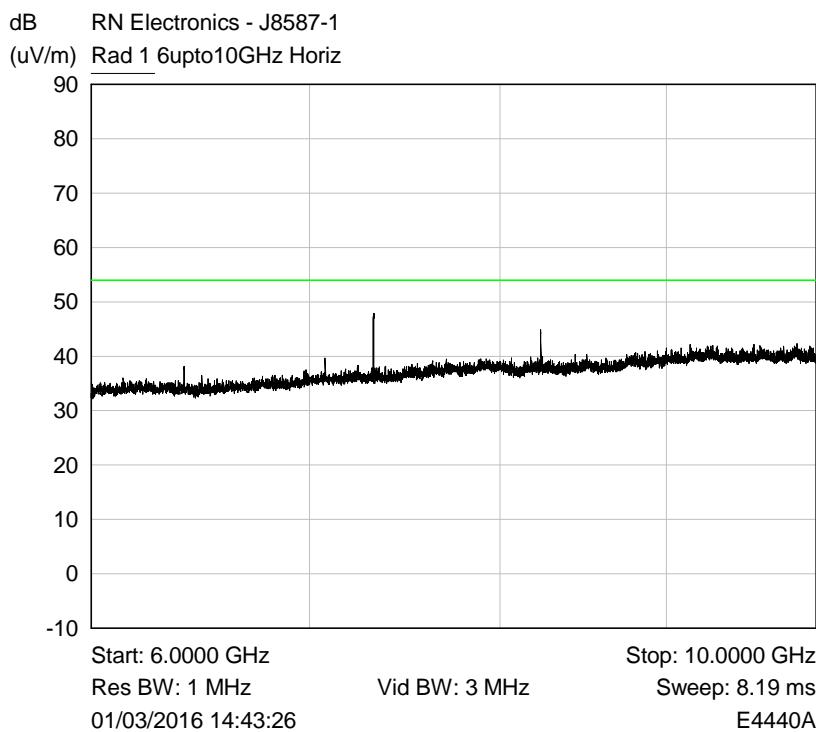



Plot of Peak Vertical emissions 1 – 2 GHz against the AV limit line

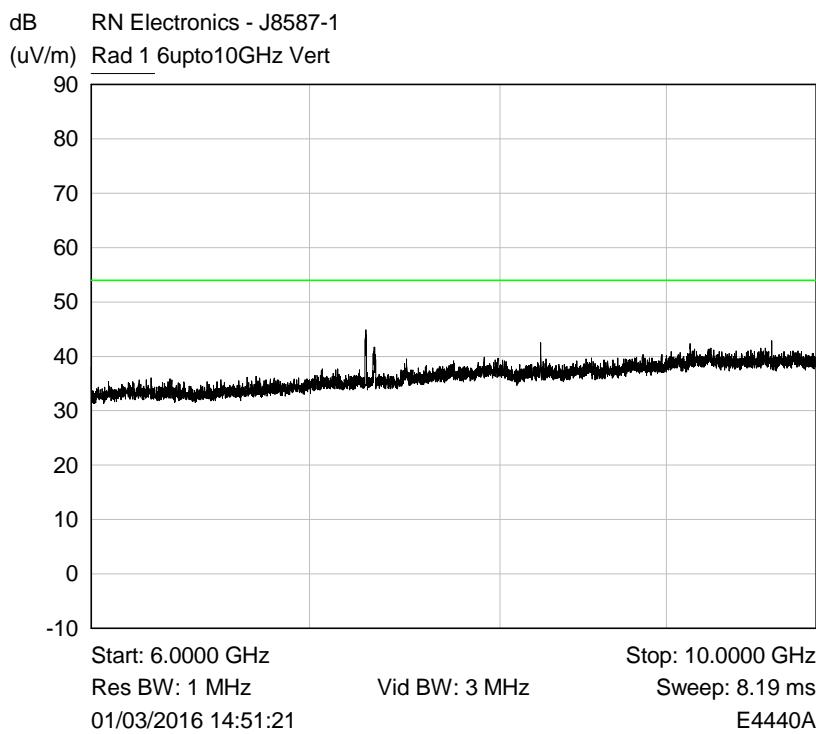



Plot of Peak Horizontal emissions 2 – 5 GHz against the AV limit line




Plot of Peak Vertical emissions 2 – 5 GHz against the AV limit line

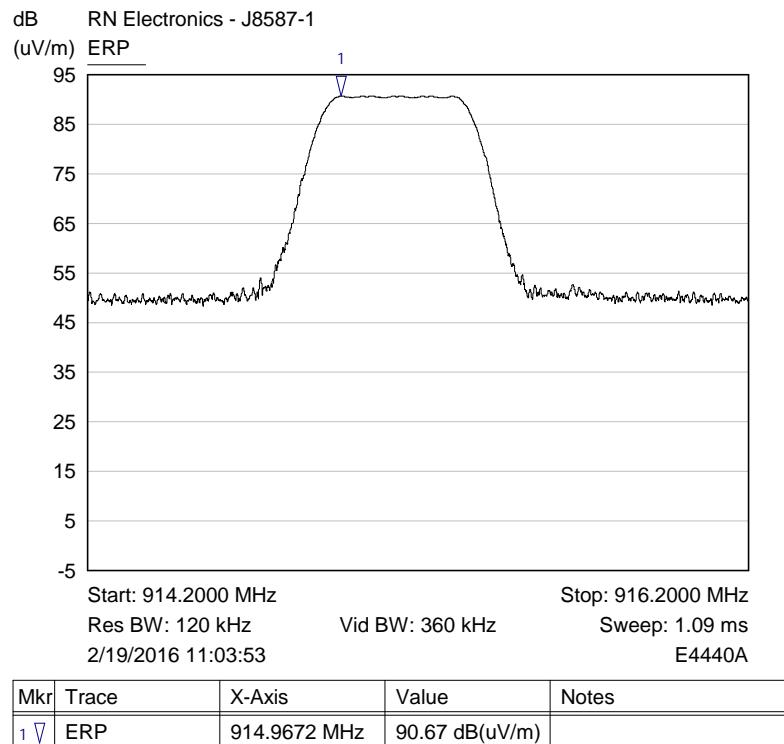



Plot of Peak Horizontal emissions 5 – 6 GHz against the AV limit line



Plot of Peak Vertical emissions 5 – 6 GHz against the AV limit line

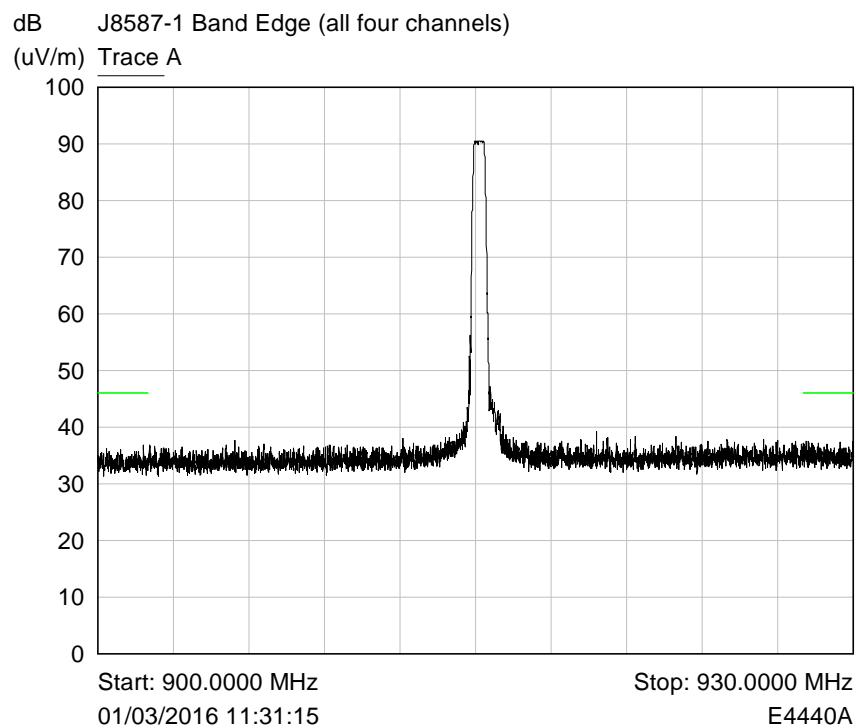



Plot of Peak Horizontal emissions 6 – 10 GHz against the AV limit line



Plot of Peak Vertical emissions 6 – 10 GHz against the AV limit line

## 6.4 Intentional radiator field strength


RF Parameters: Band 902-928 MHz, Power -1.3 dBm, Channel Spacing 4 channels,  
Modulation FSK, Normal operation 4 channels cycling



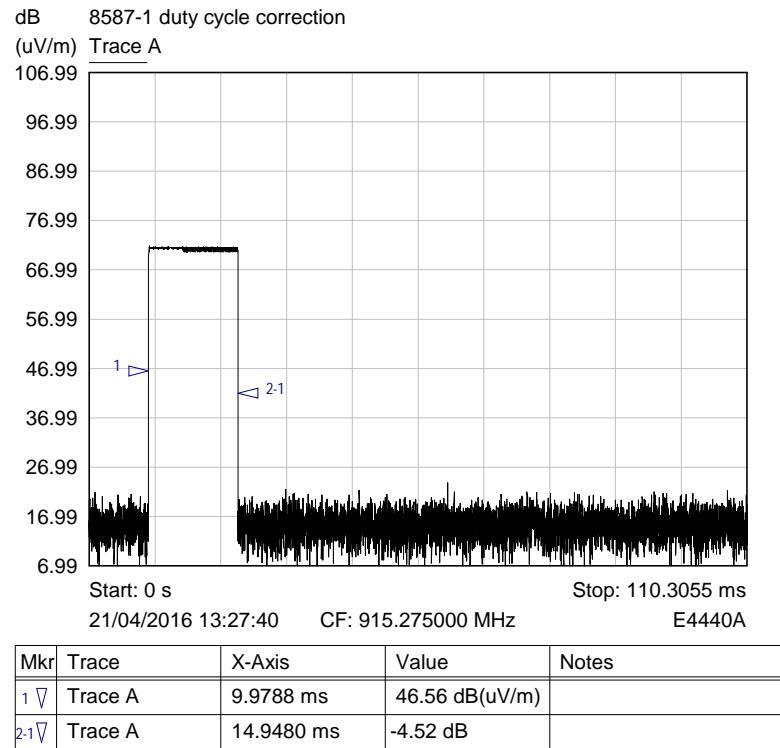
Plot of Horiz polarisation and EUT in Flat position

## 6.5 Band Edge Compliance

RF Parameters: Band 902-928 MHz, Power -1.3 dBm, Channel Spacing 4 channels,  
Modulation FSK, Normal operation 4 channels cycling



Peak Band edge Plot (shows 902 – 928MHz band edges)


## 6.6 Occupied bandwidth

RF Parameters: Band 902-928 MHz, Power -1.3 dBm, Channel Spacing 4 channels MHz,  
Modulation FSK, Channel 915.275 MHz



## 6.7 Duty cycle

RF Parameters: Band 902-928 MHz, Power -1.3 dBm, high channel, Modulation FSK



TX on time (mS)

## 7 Explanatory Notes

### 7.1 Explanation of Table of Signals Measured

Measurements are made as required by the standard. These measurements are made and recorded using detectors, either peak, quasi peak or average dependant on the test. A table of results has been given following the relevant plots. This table looks similar to the one illustrated below dependant on the measurements required by the test: -

| Signal No. | Freq (MHz) | Peak Amp (dB $\mu$ V) | Pk - Lim 1 (dB) | QP Amp (dB $\mu$ V) | QP - Lim1 (dB) | Av Amp (dB $\mu$ V) | Av - Lim1 (dB) |
|------------|------------|-----------------------|-----------------|---------------------|----------------|---------------------|----------------|
| 1          | 12345      | 54.9                  | -10.5           | 48                  | -12.6          | 37.6                | -14.4          |

Column One - Labelled Signal No. is an incremental number that the receiver has given to each signal that has been measured.

Column Two - Labelled Freq (MHz) is the approximate frequency of the signal received.

Column Three - Labelled Peak Amp (dB $\mu$ V) is the level of received signal that was measured in dB above 1 $\mu$ V using the peak detector.

Column Four - Labelled Pk - Lim1 (dB) is the difference in level from the peak signal given to the active limit line. If this column appears in the table the peak detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Column Five - Labelled QP Amp (dB $\mu$ V) is the level of received signal that was measured in dB above 1 $\mu$ V using the quasi-peak detector.

Column Six - Labelled QP - Lim1 (dB) is the difference in level from the quasi-peak signal given to the active limit line. If this column appears in the table the quasi-peak detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Column Seven - Labelled Av Amp (dB $\mu$ V) is the level of received signal that was measured in dB above 1 $\mu$ V using the average detector.

Column Eight - Labelled Av - Lim1 (dB) is the difference in level from the average signal given to the active limit line. If this column appears in the table the average detector measurement is required by the standard for this test. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

Only signals highlighted in red are deemed to exceed the limit of the detector required.

### 7.2 Explanation of limit line calculations for radiated measurements

The limits given in the test standard are normally expressed as absolute values (e.g. in  $\mu$ V/m at a specified distance), whereas the measured values are expressed as peak, quasi peak or average values in dB $\mu$ V/m referenced to the measuring instrument inputs. RN Electronics calibrate the test set-up to account for any path losses, antenna gains, etc. so that the value read at the receiver relates directly to the absolute value required, except that it is expressed in dB relative to one microVolt and may need to take account of any alternative measuring distance used. Examples:

(a) limit of 500  $\mu$ V/m equates to  $20 \log (500) = 54$  dB  $\mu$ V/m.

(b) limit of 300  $\mu$ V/m at 10m equates to  $20 \cdot \log(300 \cdot 10/3) = 60$  dB  $\mu$ V/m at 3m  
(c) limit of 30  $\mu$ V/m at 30m, but below 30MHz, equates to  $20 \cdot \log(30) + 40 \cdot \log(30/3) = 69.5$  dB $\mu$ V/m at 3m, as extrapolation factor below 30MHz is 40dB/decade per 15.31(f)(2).

The measurement receiver used for emissions testing, performs the field strength (FS) calculations automatically. The receiver combines the signal amplitude (RA), Antenna Factor (AF) and Cable Loss (CL) factors for the frequency to be measured.

Example calculation: - FS = RA + AF + CL.

| Receiver amplitude (RA) | Antenna factor (3m)<br>(AF) | Cable loss (CL) | Field strength result (3m) (FS) |
|-------------------------|-----------------------------|-----------------|---------------------------------|
| 20dBuV                  | 25 dB                       | 3 dB            | 48dBuV/m                        |

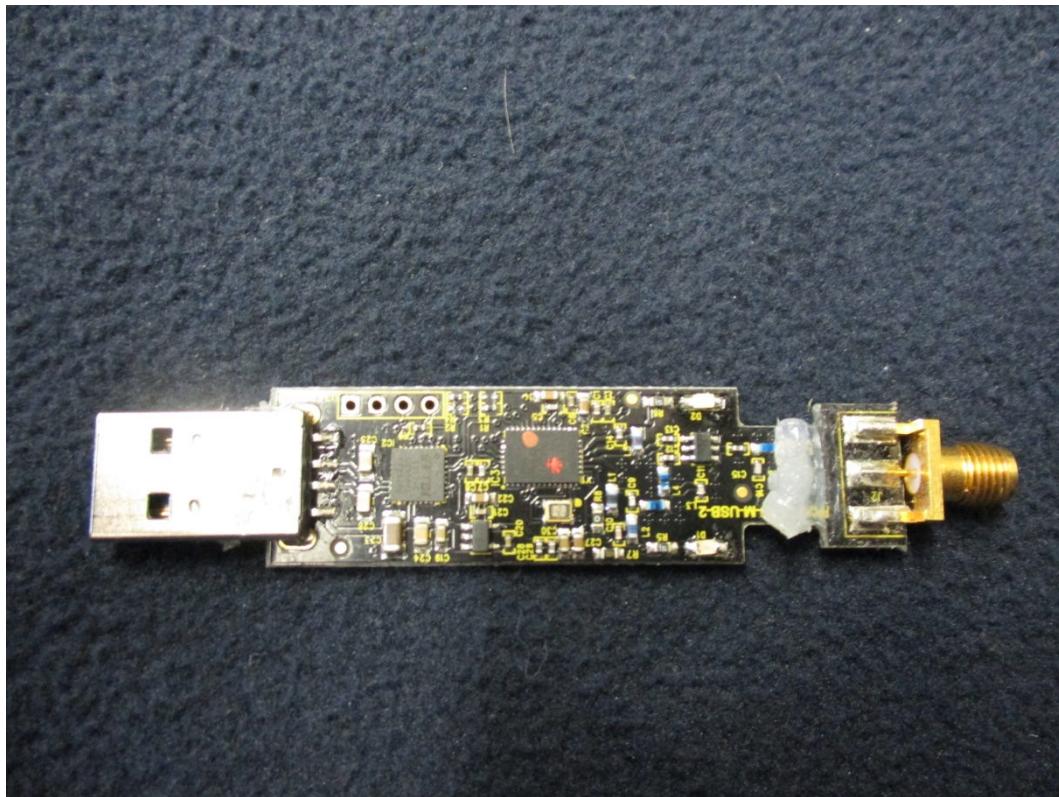
## 8 Photographs

### 8.1 EUT Front View



## 8.2 EUT Reverse Angle

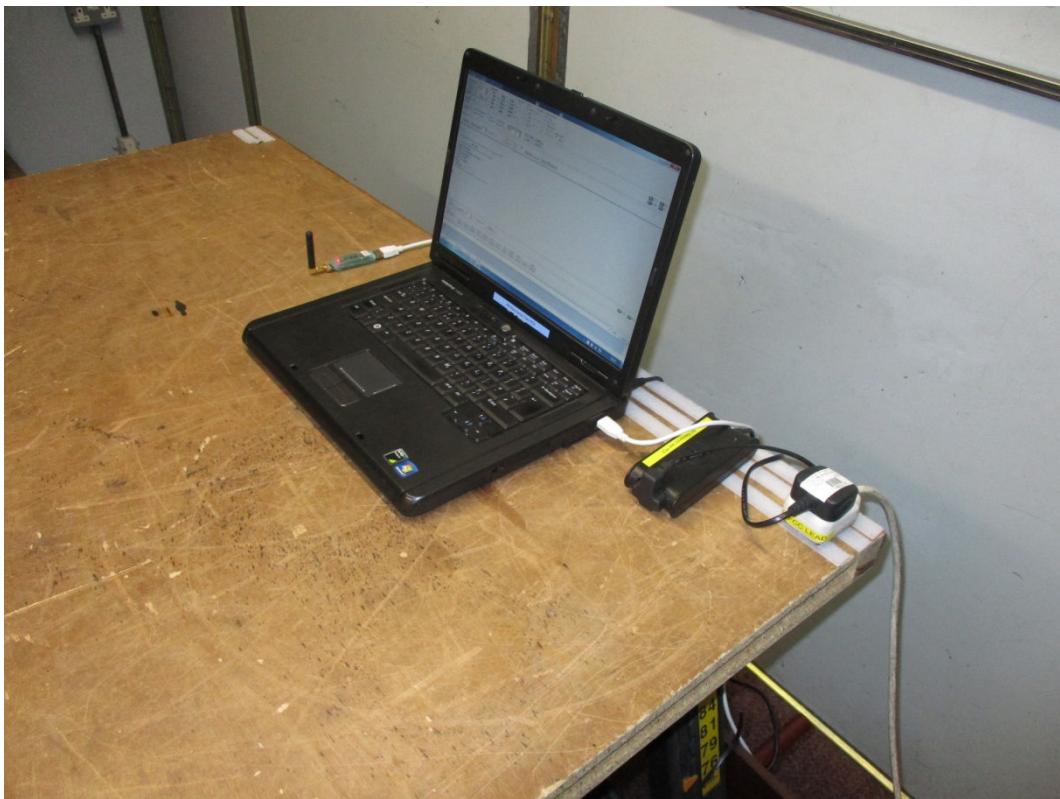



### 8.3 EUT Antenna Port

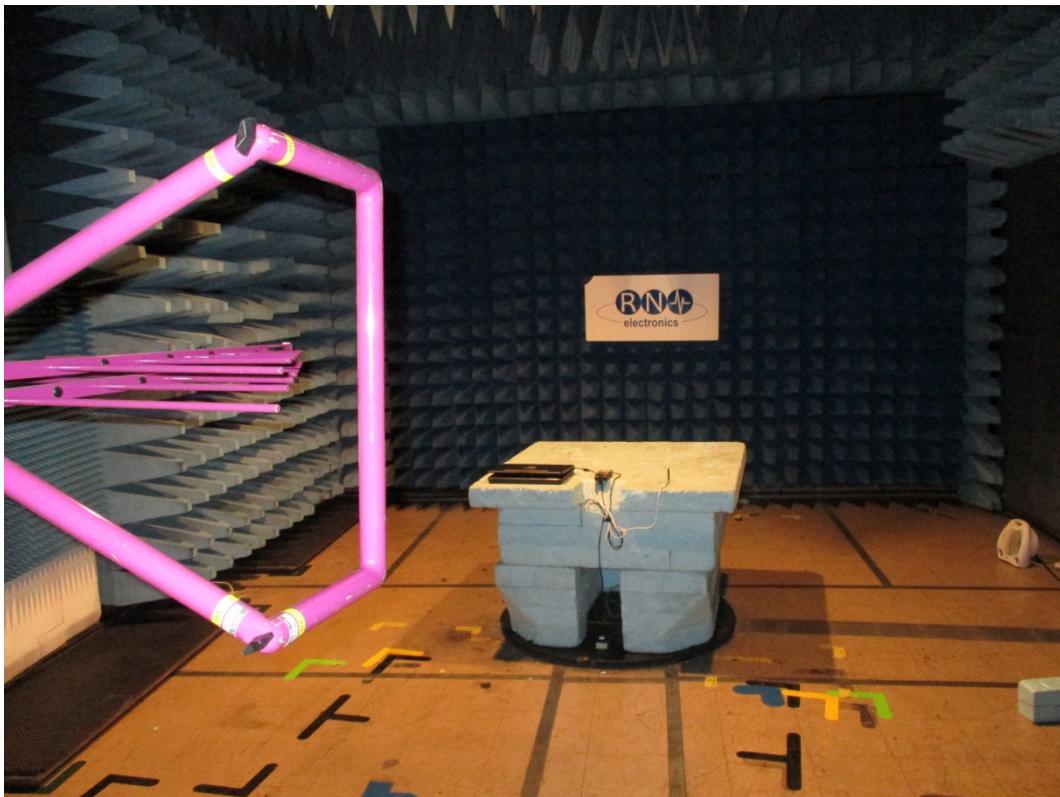


## 8.4 EUT Display & Controls

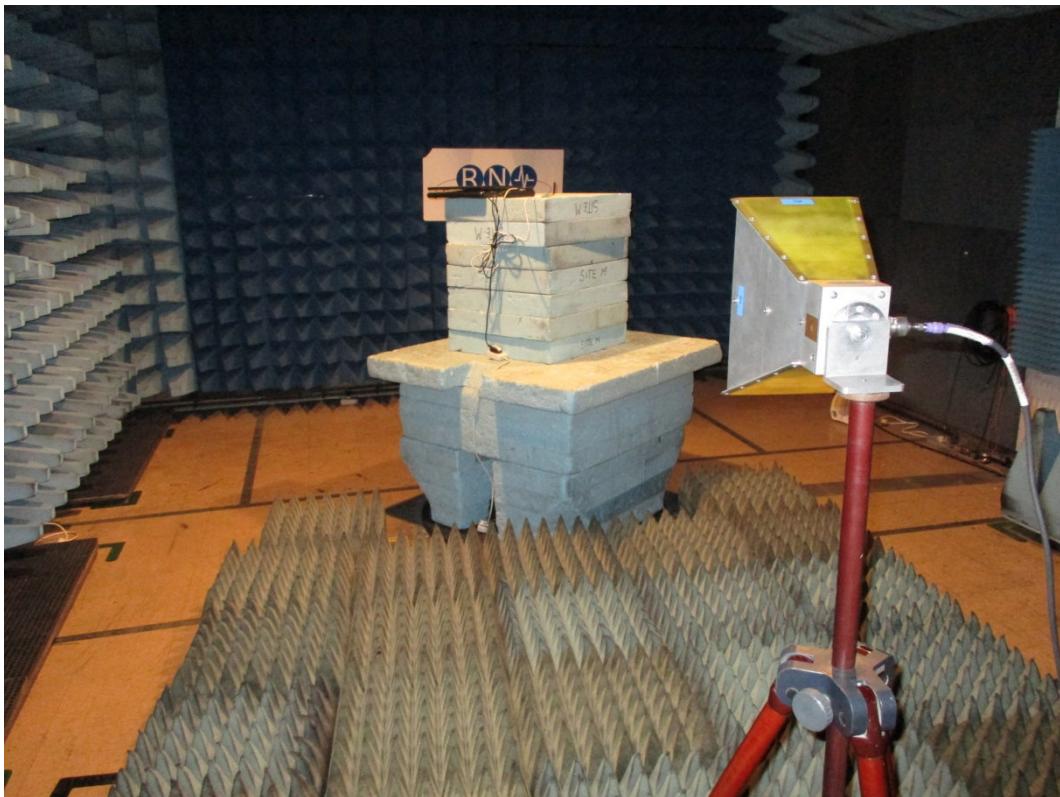
The EUT has no displays or controls



## 8.5 EUT Internal photos




## 8.6 EUT ID Label




## 8.7 AC power line conducted emissions



## 8.8 Radiated emissions 30 MHz -1 GHz



## 8.9 Radiated emissions above 1 GHz



## 8.10 Radiated emission diagram




Diagram of the radiated emissions test setup 30 - 1000 MHz

## 8.11 AC powerline conducted emission diagram

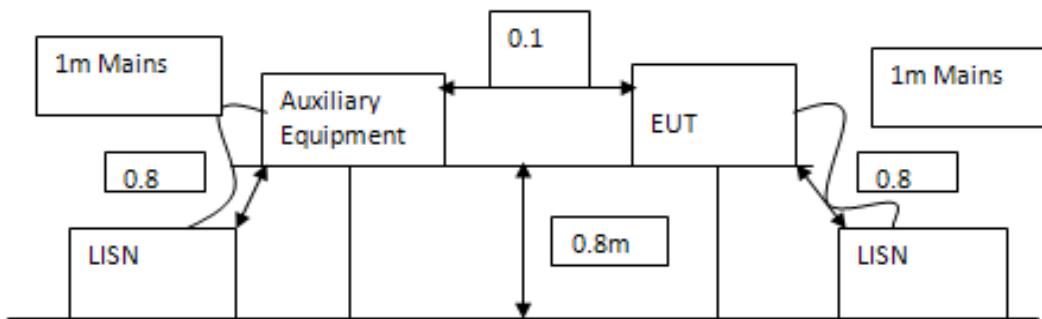



Diagram of the AC conducted emissions test setup

## 9 Test equipment calibration list

The following is a list of the test equipment used by R.N. Electronics Ltd to test the unit detailed within this report. In line with our procedures, the equipment was within calibration for the period during which testing was carried out.

| RN No. | Model No. | Description                     | Manufacturer          | Calibration date | Cal period |
|--------|-----------|---------------------------------|-----------------------|------------------|------------|
| E035   | 11947A    | Transient Limiter + 10dB Atten. | Hewlett Packard       | 14-Dec-2015      | 6 months   |
| E150   | MN2050    | LISN 13A                        | Chase                 | 08-Oct-2015      | 12 months  |
| E268   | BHA 9118  | 1-18 GHz Horn Antenna           | Schaffner             | 08-Apr-2015      | 24 months  |
| E301   | 8493C     | Attenuator 20dB 26.5GHz         | Hewlett Packard       | *17-May-2016     | 12 months  |
| E410   | N5181A    | Signal Generator 3 GHz MXG      | Agilent Technologies  | 30-Apr-2015      | 36 months  |
| E411   | N9039A    | 9 kHz - 1 GHz RF Filter Section | Agilent Technologies  | 29-Apr-2015      | 12 months  |
| E412   | E4440A    | PSA 3 Hz - 26.5 GHz             | Agilent Technologies  | 29-Apr-2015      | 24 months  |
| E465   | PCR2000LA | AC Power Supply                 | Kikusui               | 15-May-2015      | 12 months  |
| E533   | N5182A    | Signal Generator 6 GHz MXG      | Agilent Technologies  | *26-Feb-2016     | 36 months  |
| E534   | E4440A    | PSA 3 Hz - 26.5 GHz             | Agilent Technologies  | 26-Feb-2015      | 24 months  |
| E535   | N9039A    | 9 kHz - 1 GHz RF Filter Section | Agilent Technologies  | *25-Feb-2016     | 12 months  |
| E624   | E4440A    | PSA 3 Hz - 26.5 GHz             | Agilent Technologies  | 22-Dec-2015      | 24 months  |
| LPE351 | PAS 5000  | 5kV Power Source                | SPITZENBERGER + SPIES | 30-Apr-2015      | 12 months  |
| LPE364 | CBL6112A  | 30MHz - 2GHz Bilog Antenna      | Chase Electronics Ltd | 22-Jan-2016      | 24 months  |
| TMS45  | Model1    | Attenuator                      | Weinschel             | 07-Jul-2015      | 12 months  |
| TMS82  | 8449B     | Pre Amplifier 1 - 26 GHz        | Agilent Technologies  | 17-Dec-2015      | 12 months  |
| TMS933 | CBL6141A  | Bilog Antenna 30MHz - 2GHz      | York EMC              | 29-Sep-2014      | 24 months  |
| ZSW1   | V2.0      | Measurement Software Suite      | RN Electronics        | N/A              | N/A        |

\*Equipment was in calibration dates for tests and has since been re-calibrated during/ after tests.

## 10 Auxiliary and peripheral equipment

### 10.1 Customer supplied equipment

No customer supplied equipment.

### 10.2 RN Electronics supplied equipment

| RN No. | Model No.   | Description | Manufacturer | Serial No |
|--------|-------------|-------------|--------------|-----------|
| N524   | Vostro 1000 | DELL Laptop | DELL         | J2XPW3J   |

## 11 Condition of the equipment tested

In order for the EUT to produce the results shown within this report the following modifications, if any, were implemented.

### 11.1 Modifications before test

No modifications were made before test by RN Electronics Ltd.

### 11.2 Modifications during test

No modifications were made during test by RN Electronics Ltd.

## 12 Description of test sites

Site A Radio / Calibration Laboratory and anechoic chamber

Site B Semi-anechoic chamber

Site B1 Control Room for Site B

Site C Transient Laboratory

Site D Screened Room (Conducted Immunity)

Site E Screened Room (Control Room for Site D)

Site F Screened Room (Conducted Emissions)  
VCCI Registration No. C-2823

Site G Screened Room (Control Room for Site H)

Site H 3m Semi-anechoic chamber (indoor OATS)  
FCC Registration No. 293246  
IC Registration No. 5612A-2

Site J Screened Room

Site K Screened Room (Control Room for Site M)

Site M 3m Semi-anechoic chamber (indoor OATS)  
FCC Registration No. 293246

Site Q Fully-anechoic chamber

Site OATS 3m and 10m Open Area Test Site  
FCC Registration No. 293246  
IC Registration No. 5612A-1  
VCCI Registration No. R-2580

Site R Screened Room (Conducted Immunity)

Site S Safety Laboratory

Site T Transient Laboratory

## 13 Abbreviations and units

|                                 |                                                                      |        |                                                |
|---------------------------------|----------------------------------------------------------------------|--------|------------------------------------------------|
| %                               | Percent                                                              | LBT    | Listen Before Talk                             |
| $\mu\text{A}/\text{m}$          | microAmps per metre                                                  | LO     | Local Oscillator                               |
| $\mu\text{V}$                   | microVolts                                                           | mA     | milliAmps                                      |
| $\mu\text{W}$                   | microWatts                                                           | max    | maximum                                        |
| AC                              | Alternating Current                                                  | kPa    | Kilopascal                                     |
| ALSE                            | Absorber Lined Screened Enclosure                                    | Mbit/s | MegaBits per second                            |
| AM                              | Amplitude Modulation                                                 | MHz    | MegaHertz                                      |
| Amb                             | Ambient                                                              | mic    | Microphone                                     |
| ATPC                            | Automatic Transmit Power Control                                     | min    | minimum                                        |
| BER                             | Bit Error Rate                                                       | mm     | milliMetres                                    |
| $^{\circ}\text{C}$              | Degrees Celsius                                                      | ms     | milliSeconds                                   |
| C/I                             | Carrier / Interferer                                                 | mW     | milliWatts                                     |
| CEPT                            | European Conference of Postal and Telecommunications Administrations | NA     | Not Applicable                                 |
| COFDM                           | Coherent OFDM                                                        | nom    | Nominal                                        |
| CS                              | Channel Spacing                                                      | nW     | nanoWatt                                       |
| CW                              | Continuous Wave                                                      | OATS   | Open Area Test Site                            |
| dB                              | deciBels                                                             | OFDM   | Orthogonal Frequency Division Multiplexing     |
| $\text{dB}\mu\text{A}/\text{m}$ | deciBels relative to $1\mu\text{A}/\text{m}$                         | ppm    | Parts per million                              |
| $\text{dB}\mu\text{V}$          | deciBels relative to $1\mu\text{V}$                                  | PRBS   | Pseudo Random Bit Sequence                     |
| dBc                             | deciBels relative to Carrier                                         | QAM    | Quadrature Amplitude Modulation                |
| dBm                             | deciBels relative to $1\text{mW}$                                    | QPSK   | Quadrature Phase Shift Keying                  |
| DC                              | Direct Current                                                       | R&TTE  | Radio and Telecommunication Terminal Equipment |
| DTA                             | Digital Transmission Analyser                                        | Ref    | Reference                                      |
| EIRP                            | Equivalent Isotropic Radiated Power                                  | RF     | Radio Frequency                                |
| ERP                             | Effective Radiated Power                                             | RFC    | Remote Frequency Control                       |
| EU                              | European Union                                                       | RSL    | Received Signal Level                          |
| EUT                             | Equipment Under Test                                                 | RTP    | Room Temperature and Pressure                  |
| FM                              | Frequency Modulation                                                 | RTPC   | Remote Transmit Power Control                  |
| FSK                             | Frequency Shift Keying                                               | Rx     | Receiver                                       |
| g                               | Grams                                                                | s      | Seconds                                        |
| GHz                             | GigaHertz                                                            | SINAD  | Signal to Noise And Distortion                 |
| Hz                              | Hertz                                                                | Tx     | Transmitter                                    |
| IF                              | Intermediate Frequency                                               | V      | Volts                                          |
| kHz                             | kiloHertz                                                            |        |                                                |