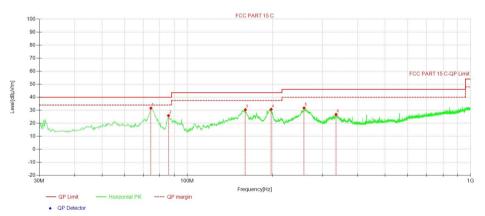
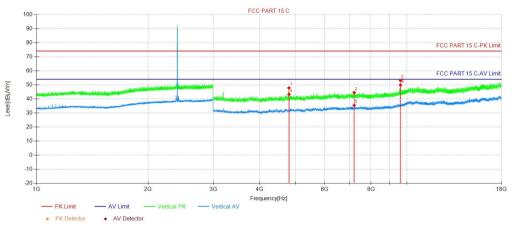
Report No.: DN7	Г2504110249R3504-04126	Date: April 29, 2025	Page: 23 / 66
Test Configuration:	Measurements Below 1000MHz RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold		
	Peak Measurements Above 100 • RBW = 1 MHz • VBW ≥ 3 MHz	0 MHz	
	Detector = PeakSweep time = autoTrace mode = max hold		
	Average Measurements Above • RBW = 1 MHz • VBW = 10 Hz, when duty cycle • VBW ≥ 1/T, when duty cycle transmission duration over which	e is no less than 98 percent. is less than 98 percent where T n the transmitter is on and is tran	_
Exploratory Test Mode:	maximum power control level for Transmitting with all kind of mod Charge+Transmitting mode.		0,0
Final Test Mode:	Pretest the EUT at Transmitting Through Pre-scan, find the DH5 type.		All modulation
Instruments Used:	Refer to section 2.9 for details	, , ,	,
Test Results:	Pass		


Date: April 29, 2025 Page: 24 / 66

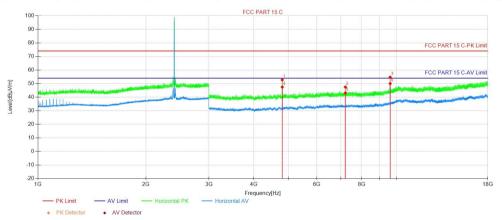
Test data

For 30-1000MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	31.75	39.82	-9.78	30.04	40.00	9.96	100	89	PK	Vertical
2	55.42	40.66	-8.31	32.35	40.00	7.65	100	226	PK	Vertical
3	74.43	44.47	-11.06	33.41	40.00	6.59	100	110	PK	Vertical
4	95.78	42.90	-13.25	29.65	43.50	13.85	100	0	PK	Vertical
5	191.63	44.60	-10.67	33.93	43.50	9.57	100	270	PK	Vertical
6	258.58	39.28	-8.67	30.61	46.00	15.39	100	244	PK	Vertical



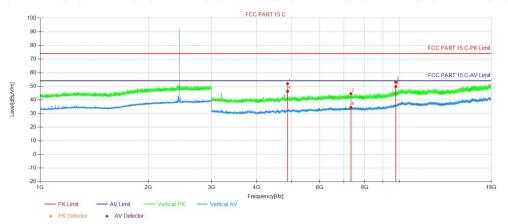
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	74.43	42.73	-11.06	31.67	40.00	8.33	200	356	PK	Horizontal
2	85.88	39.63	-13.70	25.93	40.00	14.07	200	350	PK	Horizontal
3	160.39	38.24	-7.81	30.43	43.50	13.07	200	28	PK	Horizontal
4	197.84	41.81	-11.06	30.75	43.50	12.75	200	241	PK	Horizontal
5	258.58	40.44	-8.67	31.77	46.00	14.23	100	54	PK	Horizontal
6	335.22	32.73	-5.92	26.81	46.00	19.19	100	358	PK	Horizontal



Date: April 29, 2025 Page: 25 / 66

For above 1GHz DH5 2402MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Heigh t [cm]	Angle [°]	Remark	Polarity
1	4803.84	52.46	-4.61	47.85	74.00	26.15	150	74	Peak	Vertical
2	7206.21	46.28	-1.76	44.52	74.00	29.48	150	58	Peak	Vertical
3	9607.83	52.28	0.87	53.15	74.00	20.85	150	22	Peak	Vertical
4	4804.59	47.88	-4.61	43.27	54.00	10.73	150	74	AV	Vertical
5	7206.21	37.28	-1.76	35.52	54.00	18.48	150	74	AV	Vertical
6	9608.58	49.02	0.88	49.90	54.00	4.10	150	22	AV	Vertical

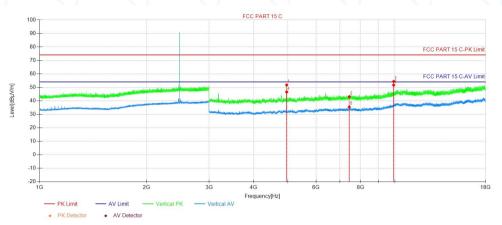


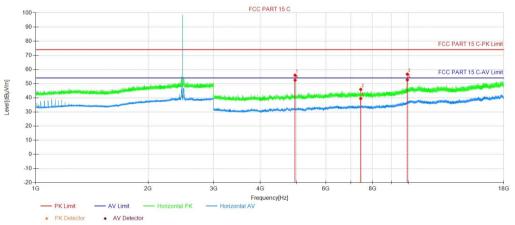
	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
Ī	1	4803.84	57.34	-4.61	52.73	74.00	21.27	150	77	Peak	Horizon
Ī	2	7206.21	49.21	-1.76	47.45	74.00	26.55	150	284	Peak	Horizon
	3	9609.33	53.81	0.88	54.69	74.00	19.31	150	6	Peak	Horizon
Ī	4	4804.59	52.07	-4.61	47.46	54.00	6.54	150	77	AV	Horizon
Ī	5	7206.96	44.88	-1.76	43.12	54.00	10.88	150	284	AV	Horizon
	6	9608.58	49.13	0.88	50.01	54.00	3.99	150	6	AV	Horizon

Date: April 29, 2025 Page: 26 / 66

DH5 2441MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4881.84	56.59	-4.72	51.87	74.00	22.13	150	65	Peak	Vertical
2	7323.22	46.00	-1.49	44.51	74.00	29.49	150	65	Peak	Vertical
3	9763.84	51.40	1.64	53.04	74.00	20.96	150	205	Peak	Vertical
4	4882.59	51.08	-4.72	46.36	54.00	7.64	150	81	AV	Vertical
5	7323.22	35.99	-1.49	34.50	54.00	19.50	150	49	AV	Vertical
6	9764.59	48.03	1.64	49.67	54.00	4.33	150	205	AV	Vertical


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4881.84	61.46	-4.72	56.74	74.00	17.26	150	82	Peak	Horizon
2	7323.22	50.83	-1.49	49.34	74.00	24.66	150	273	Peak	Horizon
3	9763.84	54.79	1.64	56.43	74.00	17.57	150	10	Peak	Horizon
4	4882.59	55.68	-4.72	50.96	54.00	3.04	150	82	AV	Horizon
5	7323.97	45.71	-1.49	44.22	54.00	9.78	150	273	AV	Horizon
6	9764.59	50.44	1.64	52.08	54.00	1.92	150	10	AV	Horizon


Date: April 29, 2025

Page: 27 / 66

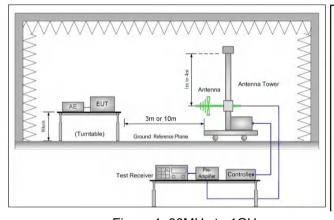
DH5 2480MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4960.60	56.62	-4.86	51.76	74.00	22.24	150	80	Peak	Vertical
2	7440.22	44.34	-1.34	43.00	74.00	31.00	150	63	Peak	Vertical
3	9920.60	52.06	2.27	54.33	74.00	19.67	150	216	Peak	Vertical
4	4960.60	51.42	-4.86	46.56	54.00	7.44	150	80	AV	Vertical
5	7440.22	36.77	-1.34	35.43	54.00	18.57	150	63	AV	Vertical
6	9920.60	49.42	2.27	51.69	54.00	2.31	150	216	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	4959.85	60.81	-4.86	55.95	74.00	18.05	150	78	Peak	Horizon
2	7440.22	47.26	-1.34	45.92	74.00	28.08	150	323	Peak	Horizon
3	9919.85	54.42	2.26	56.68	74.00	17.32	150	9	Peak	Horizon
4	4960.60	57.29	-4.86	52.43	54.00	1.57	150	78	AV	Horizon
5	7440.97	40.79	-1.34	39.45	54.00	14.55	150	286	AV	Horizon
6	9920.60	50.38	2.27	52.65	54.00	1.35	150	9	AV	Horizon

Report No.: DNT2504110249R3504-04126 Date: April 29, 2025 Page: 28 / 66

Note:


- 1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:
 - Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)
- 2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.
- 3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.
- 4. All channels had been pre-test, DH5 is the worst case, only the worst case was reported.

Report No.: DNT2504110249R3504-04126 Date: April 29, 2025 Page: 29 / 66

3.10 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15	5.209 and 15.205	\bigcirc
Test Method:	ANSI C63.10: 2013 Section	11.12	, ,
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anechoic 0	Chamber)
Limit:	Frequency	Limit (dBuV/m)	Remark
	30MHz-88MHz	40.0	Quasi-peak
	88MHz-216MHz	43.5	Quasi-peak
	216MHz-960MHz	46.0	Quasi-peak
	960MHz-1GHz	54.0	Quasi-peak
	Ab 4011-	54.0	Average Value
	Above 1GHz	74.0	Peak Value
Test Setup:			0, 0, (

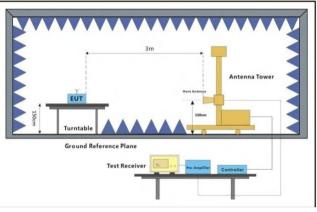


Figure 1. 30MHz to 1GHz

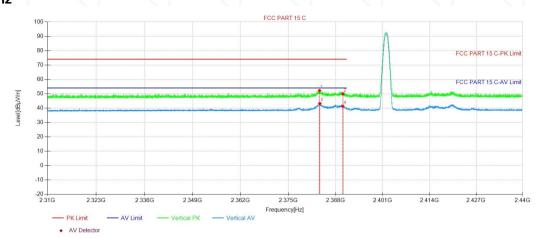
Figure 2. Above 1 GHz

Test Procedure:

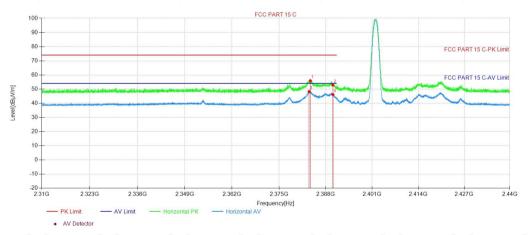
- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
- h. Test the EUT in the lowest channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
- . Repeat above procedures until all frequencies measured was complete.

Test Configuration:

Measurements Below 1000MHz


Dongguan DN Testing Co., Ltd.

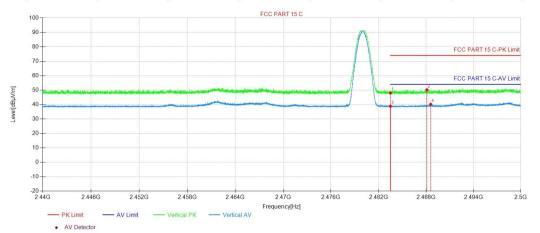
Repo	ort No.: DNT2504	1110249R3504-04126	Date: April 29, 2025	Page: 3	80 / 66
Repo	ort No.: DN 12504	 RBW = 120 kHz VBW = 300 kHz Detector = Peak Trace mode = max hold Peak Measurements Above RBW = 1 MHz VBW ≥ 3 MHz Detector = Peak Sweep time = auto Trace mode = max hold Average Measurements Above RBW = 1 MHz VBW = 10 Hz, when duty 	e 1000 MHz	nt.	30 / 66
		smission duration over which t imum power control level for tl	the transmitter is on and is trans he tested mode of operation.	smitting at its	
Exploratory T		smitting with all kind of modulnsmitting mode.	ations, data rates.		
Final Test Mo	Thro type		of data type is the worst case of	all modulatior	1
Instruments L	Ised: Ref	er to section 2.9 for details	<u> </u>		
Test Results:	Pas	s	B. B. B.		



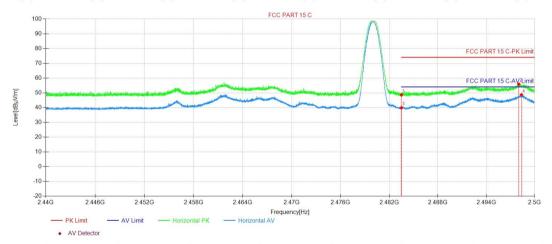
Date: April 29, 2025 Page: 31 / 66

Test Date DH5 2402MHz

\ \ \	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBμV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
	1	2383.60	52.99	-0.82	52.17	74.00	21.83	150	40	Peak	Vertical
	2	2390.01	50.67	-0.80	49.87	74.00	24.13	150	94	Peak	Vertical
	3	2383.69	44.03	-0.82	43.21	54.00	10.79	150	53	AV	Vertical
	4	2390.01	42.09	-0.80	41.29	54.00	12.71	150	53	AV	Vertical



NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2383.73	56.70	-0.82	55.88	74.00	18.12	150	295	Peak	Horizon
2	2390.01	53.64	-0.80	52.84	74.00	21.16	150	56	Peak	Horizon
3	2383.39	49.08	-0.83	48.25	54.00	5.75	150	285	AV	Horizon
4	2390.01	46.92	-0.80	46.12	54.00	7.88	150	285	AV	Horizon



Date: April 29, 2025 Page: 32 / 66

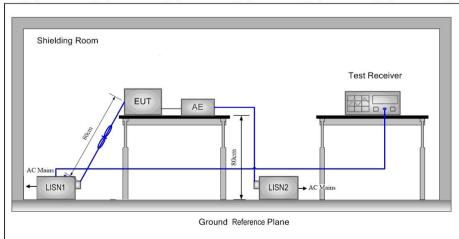
DH5 2480MHz

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.50	48.29	-0.29	48.00	74.00	26.00	150	205	Peak	Vertical
2	2488.10	50.43	-0.26	50.17	74.00	23.83	150	334	Peak	Vertical
3	2483.50	39.07	-0.29	38.78	54.00	15.22	150	228	AV	Vertical
4	2488.59	40.43	-0.25	40.18	54.00	13.82	150	91	AV	Vertical

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark	Polarity
1	2483.50	48.87	-0.29	48.58	74.00	25.42	150	333	Peak	Horizon
2	2498.04	56.05	-0.19	55.86	74.00	18.14	150	270	Peak	Horizon
3	2483.50	40.11	-0.29	39.82	54.00	14.18	150	270	AV	Horizon
4	2498.37	48.84	-0.19	48.65	54.00	5.35	150	270	AV	Horizon

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:


Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.

2.All channels had been pre-test, DH5 is the worst case, only the worst case was reported.

3.11 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207							
Test Method:	ANSI C63.10: 2013	L L						
Test Frequency Range:	150kHz to 30MHz							
Limit:	[(1411)	Limit (dBuV)						
	Frequency range (MHz)	Quasi-peak	Average					
	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	* Decreases with the logarit	hm of the frequency.						
Test Procedure:	1) The mains terminal disturoom. 2) The EUT was connected Impedance Stabilization Ne impedance. The power cab a second LISN 2, which wa plane in the same way as the multiple socket outlet strip was ingle LISN provided the ration of the tabletop EUT was provided on the horizontal ground reference plane. An placed on the horizontal ground free EUT shall be 0.4 m frowertical ground reference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated equipment and all of the interval of the int	I to AC power source threfitwork) which provides a ses of all other units of the bonded to the ground research to connect multing of the LISN was not laced upon a non-metalled for floor-standing arranded reference plane, with a vertical ground reson the vertical ground reson the vertical ground reson to a ground reference plane. This of the LISN 1 and the EU suipment was at least 0.8 in emission, the relative perface cables must be chemostories.	rough a LISN 1 (Line 50Ω/50μH + 5Ω linear e EUT were connected to reference ng measured. A tiple power cables to a exceeded. ic table 0.8m above the agement, the EUT was ference plane. The rear eference plane. The norizontal ground the boundary of the ane for LISNs distance was JT. All other units of m from the LISN 2. positions of					

Page: 33 / 66

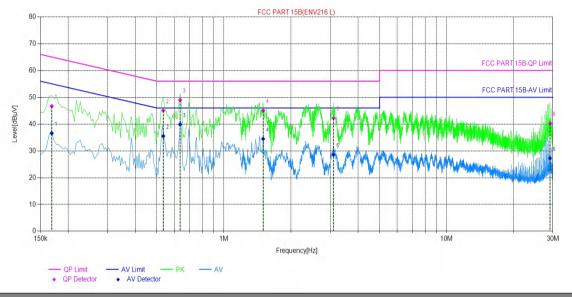
Date: April 29, 2025

Exploratory Test Mode:

Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.

Charge + Transmitting mode.

Dongguan DN Testing Co., Ltd.

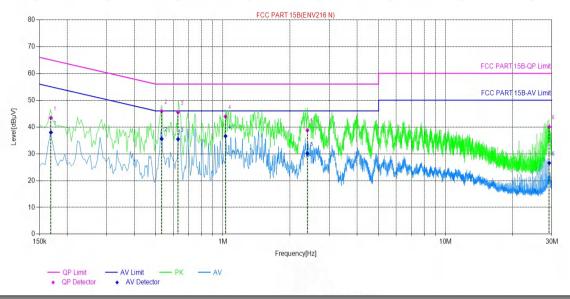

Report No.: DNT2504110249R3504-04126 Date: April 29, 2025 Page: 34 / 66

Final Test Mode:	Through Pre-scan, find the the worst case.
Instruments Used:	Refer to section 2.9 for details
Test Results:	PASS

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:



Final	Final Data List										
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBμV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict		
1	0.1685	9.90	46.68	65.03	18.35	36.56	55.03	18.47	PASS		
2	0.5339	9.86	45.05	56.00	10.95	35.52	46.00	10.48	PASS		
3	0.6356	9.80	48.98	56.00	7.02	39.89	46.00	6.11	PASS		
4	1.4993	9.73	45.09	56.00	10.91	34.46	46.00	11.54	PASS		
5	3.1073	9.74	42.27	56.00	13.73	28.59	46.00	17.41	PASS		
6	29.1404	10.29	40.33	60.00	19.67	27.24	50.00	22.76	PASS		

Date: April 29, 2025 Page: 35 / 66

Neutral Line:

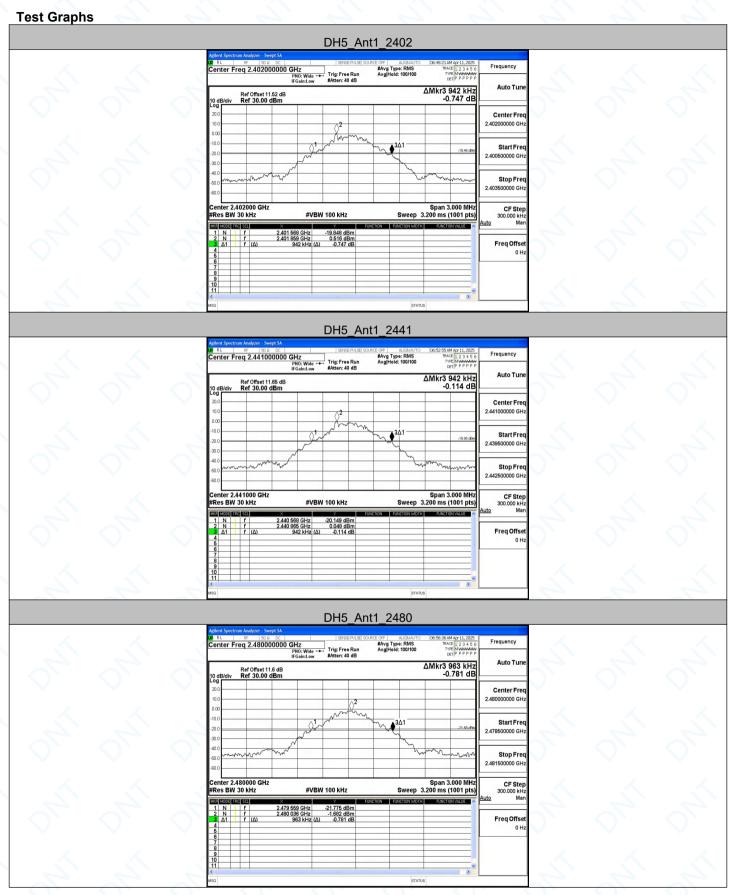
Final	Final Data List									
NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
1	0.1688	9.82	43.41	65.02	21.61	37.98	55.02	17.04	PASS	
2	0.5306	9.73	45.90	56.00	10.10	35.58	46.00	10.42	PASS	
3	0.6285	9.81	45.51	56.00	10.49	35.47	46.00	10.53	PASS	
4	1.0265	9.68	43.95	56.00	12.05	36.62	46.00	9.38	PASS	
5	2.3943	9.81	38.78	56.00	17.22	30.16	46.00	15.84	PASS	
6	29.1843	10.21	40.06	60.00	19.94	26.56	50.00	23.44	PASS	

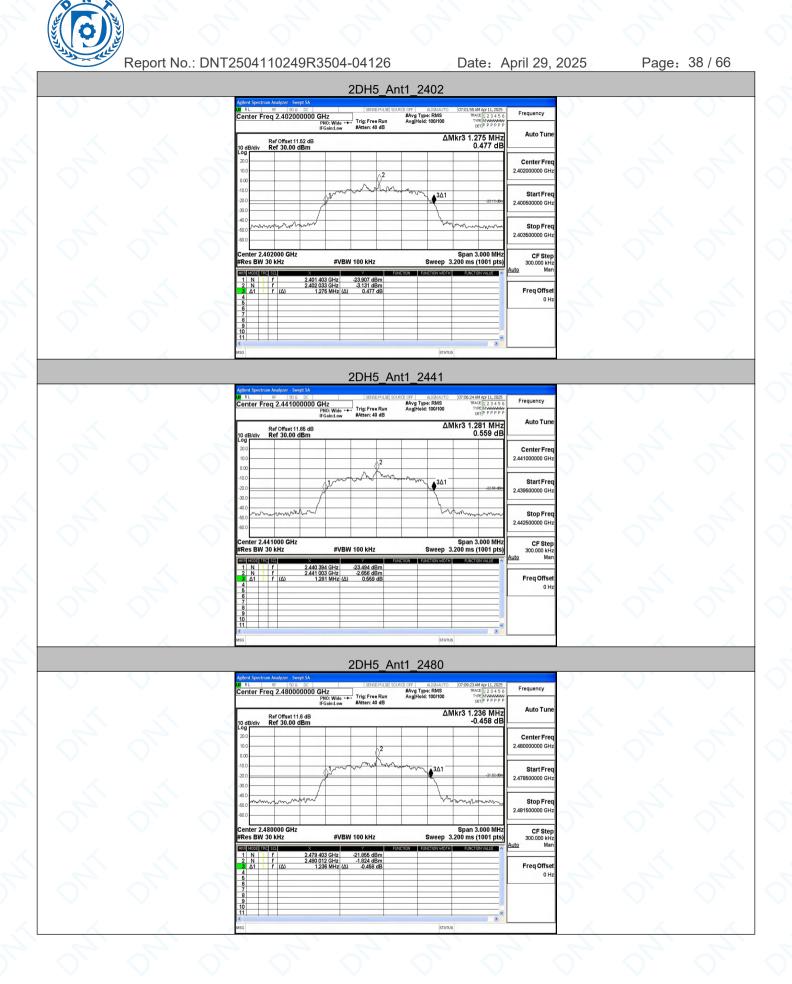
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc

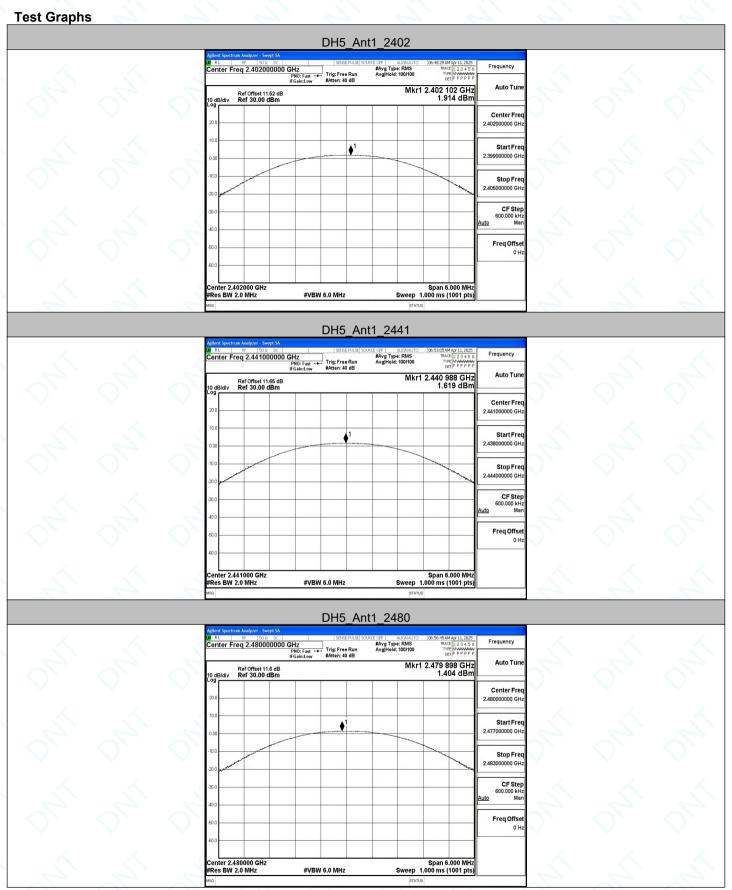
4 Appendix


Appendix A: 20dB Emission Bandwidth


Test Result

rest itesuit							
TestMode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.942	2401.568	2402.510	/	
DH5	Ant1	2441	0.942	2440.568	2441.510		
		2480	0.963	2479.559	2480.522		
		2402	1.275	2401.403	2402.678		
2DH5	Ant1	2441	1.281	2440.394	2441.675		
		2480	1.236	2479.403	2480.639		
		2402	1.245	2401.394	2402.639		
3DH5	Ant1	2441	1.248	2440.391	2441.639		
		2480	1.242	2479.394	2480.636		

Report No.: DNT2504110249R3504-04126 Date: April 29, 2025 Page: 37 / 66


Appendix B: Maximum conducted output power

Test Result

1 Oot 1 toodit					
Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
		2402	1.91	≤20.97	PASS
DH5	Ant1	2441	1.62	≤20.97	PASS
		2480	1.40	≤20.97	PASS
		2402	2.25	≤20.97	PASS
2DH5	Ant1	2441	2.04	≤20.97	PASS
		2480	1.83	≤20.97	PASS
		2402	2.43	≤20.97	PASS
3DH5	Ant1	2441	2.25	≤20.97	PASS
		2480	1.86	≤20.97	PASS

Report No.: DNT2504110249R3504-04126 Date: April 29, 2025 Page: 41 / 66

Report No.: DNT2504110249R3504-04126 Page: 42 / 66 Date: April 29, 2025 2DH5_Ant1_2402 #Avg Type: RMS AvgIHold: 100/100 Auto Tur Mkr1 2.401 874 GHz 2.254 dBm Center Fre 402000000 GH Start Fre Freq Offs enter 2.402000 GHz les BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts #VBW 6.0 MHz 2DH5 Ant1 2441 #Avg Type: RMS Avg|Hold: 100/100 Mkr1 2.441 000 GHz 2.042 dBm Center Free 2.441000000 GH: Start Fre Span 6.000 MHz Sweep 1.000 ms (1001 pts enter 2.441000 GHz Res BW 2.0 MHz #VBW 6.0 MHz 2DH5_Ant1_2480 Frequency #Avg Type: RMS Avg|Hold: 100/100 Mkr1 2.479 874 GHz 1.834 dBm Center Fre Start Fre 2.477000000 GH Stop Fre CF Ste 600.000 kH Freq Offse nter 2.480000 GHz es BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts

#VBW 6.0 MHz

Report No.: DNT2504110249R3504-04126 Page: 43 / 66 Date: April 29, 2025 3DH5_Ant1_2402 #Avg Type: RMS AvalHold: 100/100 Auto Tur Mkr1 2.401 976 GHz 2.430 dBm Center Fre 402000000 GH Start Fre Freq Offs enter 2.402000 GHz les BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts #VBW 6.0 MHz 3DH5 Ant1 2441 #Avg Type: RMS Avg|Hold: 100/100 Mkr1 2.441 036 GHz 2.252 dBm Center Free 2.441000000 GH: Start Fre Span 6.000 MHz Sweep 1.000 ms (1001 pts enter 2.441000 GHz Res BW 2.0 MHz #VBW 6.0 MHz 3DH5_Ant1_2480 Frequency #Avg Type: RMS Avg|Hold: 100/100 Mkr1 2.480 270 GHz 1.857 dBm Center Fre Start Fre 2.477000000 GH Stop Fre CF Ste 600.000 kH Freq Offse nter 2.480000 GHz es BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts #VBW 6.0 MHz

Date: April 29, 2025

Page: 44 / 66

Appendix C: Carrier frequency separation

Test Result

TestMode	Antenna	Freq(MHz)	Result[MHz]	Limit[MHz]	Verdict
DH5	Ant1	Нор	0.998	≥0.963	PASS
2DH5	Ant1	Нор	1.168	≥0.854	PASS
3DH5	Ant1	Нор	0.994	≥0.832	PASS