

FCC RADIO TEST REPORT

FCC ID: 2AFJZ-97432

Sample : Hornady RAPiD® Keypad Vault

Trade Mark : Hornady RAPiD

Main Model : 97432 RAPiD GUN Keypad Vault

Additional Model : 97430 RAPiD 2-Gun Keypad Vault,
97433 RAPiD 1-Gun Keypad Vault,
97437 RAPiD 4-GUN Keypad Vault

Report No. : UNIA25041701ER-61

Prepared for

Hornady Manufacturing Company

3625 Old Potash Hwy, Grand Island, Nebraska, United States 68803

Prepared by

Shenzhen United Testing Technology Co., Ltd.

D101&D401, No. 107, Kaicheng High-Tech Park, Taoyuan Community,
Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China

TEST RESULT CERTIFICATION

Applicant : Hornady Manufacturing Company

Address : 3625 Old Potash Hwy, Grand Island, Nebraska, United States
68803

Manufacturer : Hornady Manufacturing Company

Address : 3625 Old Potash Hwy, Grand Island, Nebraska, United States
68803

Product description

Product : Hornady RAPiD® Keypad Vault

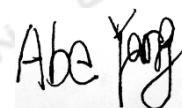
Trade Name : Hornady RAPiD

Model Name : 97432 RAPiD GUN Keypad Vault,
97430 RAPiD 2-Gun Keypad Vault,
97433 RAPiD 1-Gun Keypad Vault,
97437 RAPiD 4-GUN Keypad Vault

Test Methods : FCC Rules and Regulations Part 15 Subpart C Section 15.209
ANSI C63.10: 2013

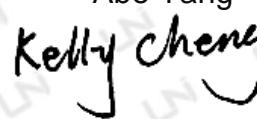
This device described above has been tested by Shenzhen United Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval, this document may be altered or revised by Shenzhen United Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

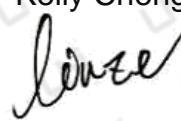

Date of Test

Date (s) of performance of tests : Apr. 19, 2025 ~ Apr. 22, 2025

Date of Issue : Apr. 22, 2025


Test Result : Pass

Edited by:


Abe Yang

Reviewed by:

Kelly Cheng

Approved by:

Liuze

Table of Contents

	Pages
1 TEST SUMMARY	4
1.1 TEST PROCEDURES AND RESULTS	4
1.2 TEST FACILITY	4
1.3 MEASUREMENT UNCERTAINTY	5
2 GENERAL INFORMATION	6
2.1 GENERAL DESCRIPTION OF EUT	6
2.2 CARRIER FREQUENCY OF CHANNELS	7
2.3 TEST MODE	7
2.4 TEST SETUP	7
2.5 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL	7
2.6 MEASUREMENT INSTRUMENTS LIST	8
3 CONDUCTED EMISSION	9
3.1 TEST LIMIT	9
3.2 TEST SETUP	9
3.3 TEST PROCEDURE	10
3.4 TEST RESULT	10
4 RADIATED EMISSION	11
4.1 TEST LIMIT	11
4.2 TEST SETUP	13
4.3 TEST PROCEDURE	14
4.4 TEST RESULT	14
5 ANTENNA REQUIREMENT	17
6 PHOTO OF TEST	18
6.1 RADIATED EMISSION	18

1 TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

Item	FCC Rules	Description Of Test	Result
1	FCC Part 15.207	Conducted Emission	N/A
2	FCC Part 15.209(a)	Radiated Emission	Pass
3	FCC Part 15.203	Antenna Requirement	Pass

Note:

"N/A" denotes test is not applicable in this Test Report.

1.2 TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.
Address : D101&D401, No. 107, Kaicheng High-Tech Park, Taoyuan Community, Dalang Sub-District, Longhua District, Shenzhen, Guangdong, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

A2LA Certificate Number: 4747.01

The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories.

FCC Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission.

IC Registration Number: 31584

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada.

1.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95 %.

A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
UNI	ANSI	9KHz ~ 150KHz	2.96	
		150KHz ~ 30MHz	2.44	

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
UNI	ANSI	9KHz ~ 30MHz	2.50	
		30MHz ~ 1000MHz	4.80	
		1000MHz ~ 6000MHz	4.13	

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product:	Hornady RAPiD® Keypad Vault
Trade Name:	Hornady RAPiD
Main Model:	97432 RAPiD GUN Keypad Vault
Additional Model:	97430 RAPiD 2-Gun Keypad Vault, 97433 RAPiD 1-Gun Keypad Vault, 97437 RAPiD 4-GUN Keypad Vault
Model Difference:	All model's the function, software and electric circuit are the same, only with a product color and model named different. Test sample model: 97432 RAPiD GUN Keypad Vault.
FCC ID:	2AFJZ-97432
Operation Frequency:	125kHz
Number of Channels:	1CH
Modulation Type:	ASK, PSK, FSK
Antenna Type:	Coil Antenna
Antenna Gain:	0dBi
Battery:	DC 6V
Adapter:	N/A
Power Source:	DC 6V from battery

2.2 CARRIER FREQUENCY OF CHANNELS

Channel List	
Channel	Frequency (kHz)
01	125

2.3 TEST MODE

NO.	TEST MODE DESCRIPTION
1	125kHz

2.4 TEST SETUP

Operation of EUT during Radiation below 1GHz testing:

2.5 DESCRIPTION TEST PERIPHERAL AND EUT PERIPHERAL

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model No.	Cable Length(cm)	Remark
1	Hornady RAPiD® Keypad Vault	97432 RAPiD GUN Keypad Vault	--	EUT
2	access card	--	--	AE

Note:

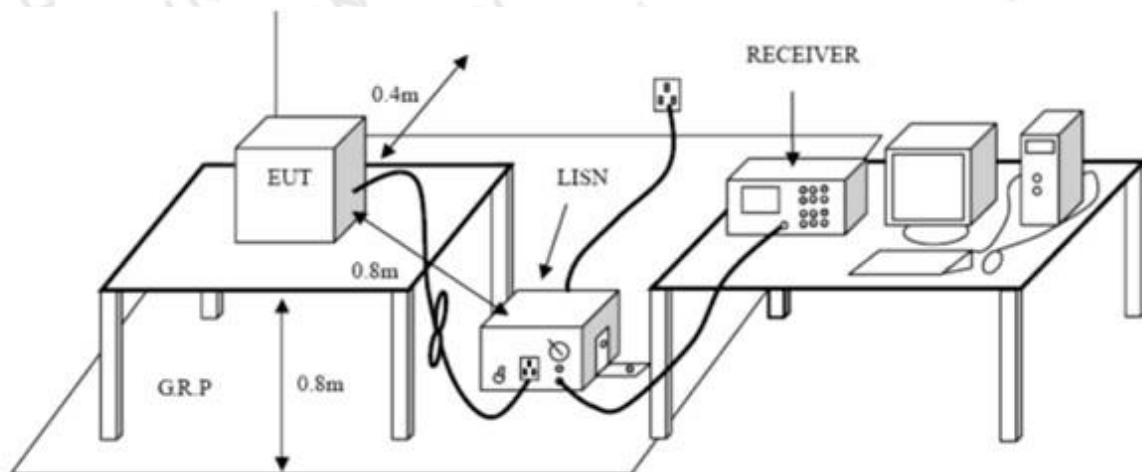
1. The support equipment was authorized by Declaration of Confirmation.
2. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

2.6 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
Radiated Emissions Measurement					
1	Radiated Emission Test Software	EZ-EMC	Ver.CCS-03A1	N/A	N/A
2	Horn Antenna	Sunol	DRH-118	A101415	2025.07.14
3	Broadband Hybrid Antenna	Sunol	JB1	A090215	2025.07.28
4	PREAMP	HP	8449B	3008A00160	2025.06.11
5	PREAMP	HP	8447D	2944A07999	2025.06.11
6	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2025.06.11
7	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2025.06.11
8	Signal Generator	Agilent	E4421B	MY4335105	2025.06.11
9	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2025.06.11
10	MXA Signal Analyzer	Keysight	N9020A	MY51110104	2025.06.11
11	RF Power sensor	DARE	RPR3006W	15I00041SNO88	2025.06.11
12	RF Power sensor	DARE	RPR3006W	15I00041SNO89	2025.06.11
13	RF power divider	Anritsu	K241B	992289	2025.06.11
14	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2025.06.11
15	Active Loop Antenna	Com-Power	AL-130R	10160009	2025.06.11
16	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2025.09.22
17	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2025.07.14
18	Horn Antenna	A-INFOMW	LB-180400-KF	J211060660	2025.07.14
19	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2025.09.22
20	Signal Generator	Agilent	N5183A	MY47420153	2025.09.22
21	Spectrum Analyzer	Rohde&Schwarz	FSP 40	100501	2025.09.22
22	Power Meter	KEYSIGHT	N1911A	MY50520168	2025.09.22
23	Frequency Meter	VICTOR	VC2000	997406086	2025.09.22
24	DC Power Source	HYELEC	HY5020E	055161818	2025.09.22

3 CONDUCTED EMISSION

3.1 TEST LIMIT


For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following

Frequency (MHz)	Maximum RF Line Voltage (dB μ V)			
	CLASS A		CLASS B	
	Q.P.	Ave.	Q.P.	Ave.
0.15~0.50	79	66	66~56*	56~46*
0.50~5.00	73	60	56	46
5.00~30.0	73	60	60	50

* Decreasing linearly with the logarithm of the frequency.

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 TEST SETUP

3.3 TEST PROCEDURE

1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is placed on a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
2. Support equipment, if needed, was placed as per ANSI C63.10.
3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
5. All support equipments received AC power from a second LISN, if any.
6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 TEST RESULT

N/A

Remark:

The EUT is powered by DC 6V battery.

4 RADIATED EMISSION

4.1 TEST LIMIT

CFR 47 Part 15, section 15.205

Only spurious emissions are permitted in any of the frequency bands listed the tables in these sections:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2\)
13.36-13.41			

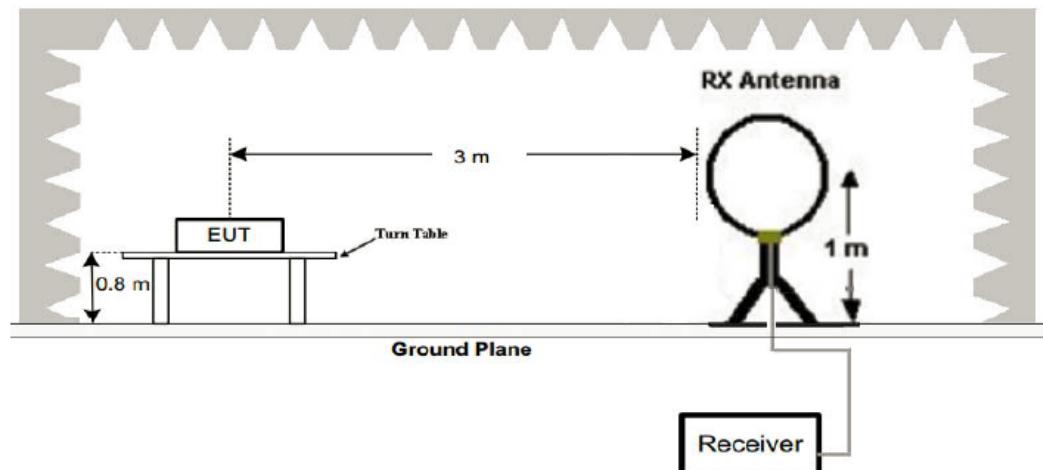
CFR 47 Part 15, section 15.209

The emissions from an intentional radiator shall not exceed the limits in the tables in these sections using an average detector:

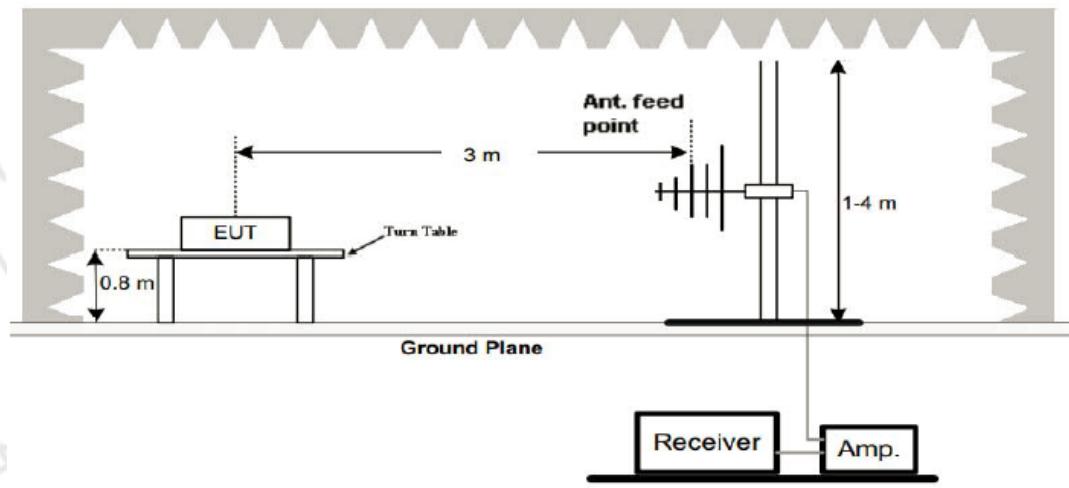
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Limit calculation and transfer to 3m distance as showed in the following table:

Frequency (MHz)	Limit (dB _{UV} /m)	Distance (m)
0.009-0.490	$20\log(2400/F(\text{KHz}))+40\log(300/3)$	3
0.490-1.705	$20\log(24000/F(\text{KHz}))+40\log(30/3)$	3
1.705-30.0	69.5	3
30-88	40.0	3
88-216	43.5	3
216-960	46.0	3
Above 960	54.0	3


CFR 47 Part 15, section 15.35

When average radiated emission measurements are specified, the limit on the peak level of the radio Frequency emission is 20dB above the maximum permitted average emission limit.


Transmitter Spurious Emissions 9KHz-30MHz			
	9-150KHz	150-490KHz	490KHz-30MHz
Resolution Bandwidth	200Hz	9KHz	9KHz
Video Bandwidth	2KHz	100KHz	100KHz
Detector	Peak	Peak	Peak
Trace Mode	Max Hold	Max Hold	Max Hold
Sweep Time	Auto	Auto	Auto

4.2 TEST SETUP

1. Radiated Emission Test-Up Frequency Below 30MHz

2. Radiated Emission Test-Up Frequency 30MHz~1GHz

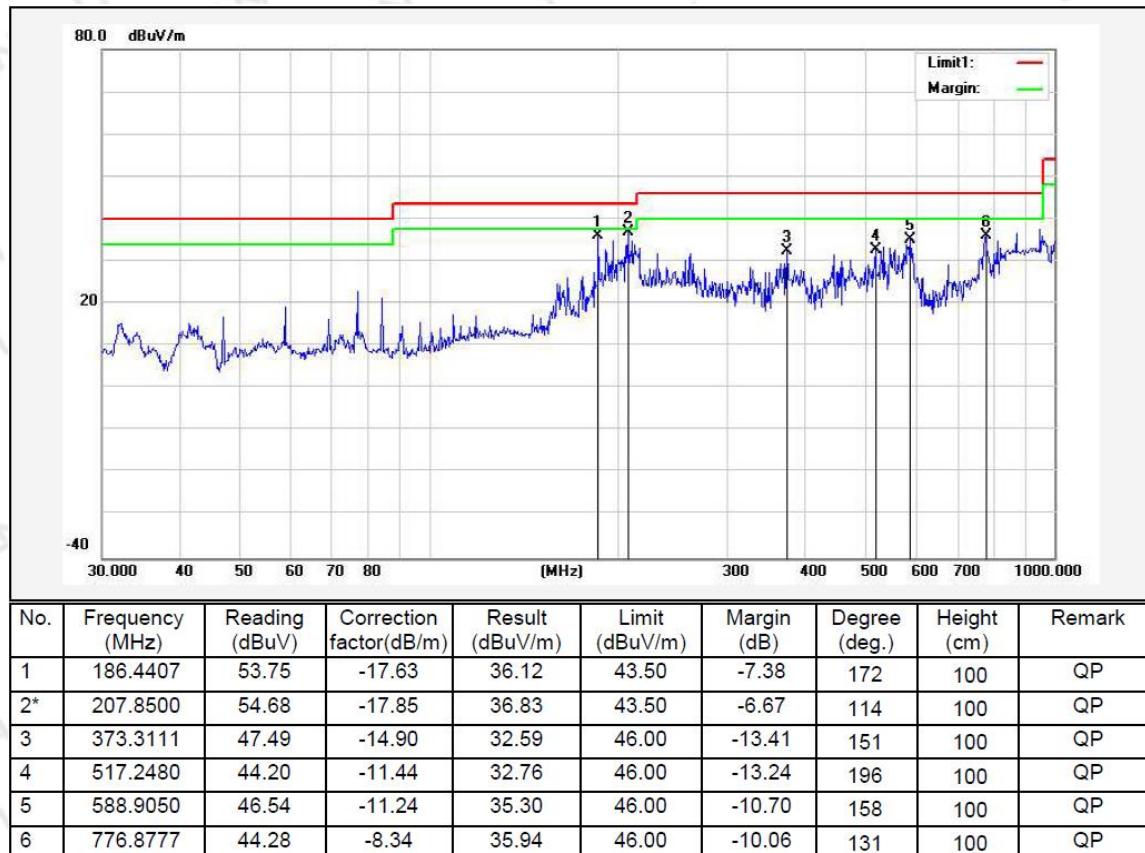
4.3 TEST PROCEDURE

1. Measurement distance is 3m.
2. For the measurement range up to 30MHz in the following plots the field strength result from 3m.
3. Distance measurement are extrapolated to 300m and 30m distance respectively, by 40dB/decade. According to part 15.31(f)(2), per antenna factor scaling.
4. Measurements below 1000MHz are performed with a peak detector and compared to average limits. Measurements with an average detector are not required.

Note:

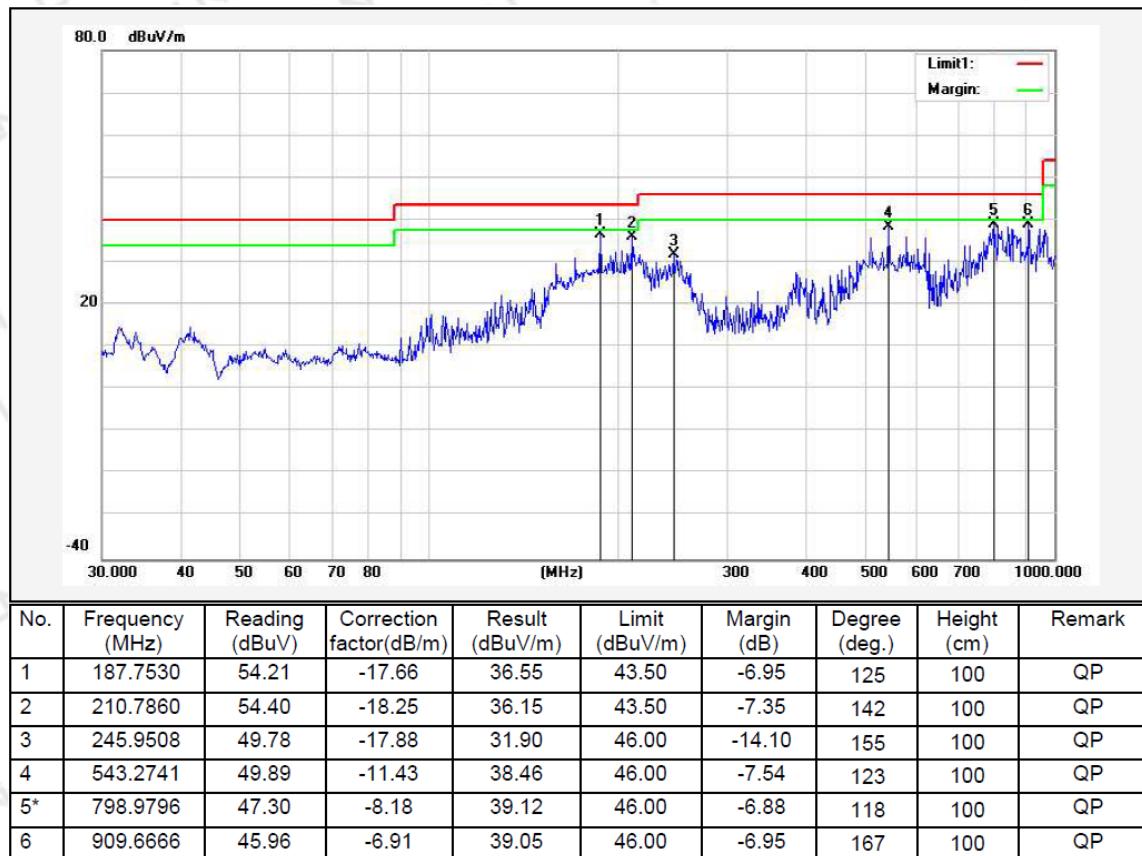
For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 TEST RESULT


PASS

For 9KHz-30MHz Test Results:

Frequency (MHz)	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limits 3m (dBuV/m)	Margin (dBuV/m)
0.1037	PK	53.58	15.48	69.06	106.83	-37.77
0.1250	PK	67.94	15.98	83.92	105.05	-21.13
0.1469	PK	55.32	16.20	71.52	103.74	-32.22
2.568	PK	26.46	15.20	41.66	69.5	-27.84
6.979	PK	21.27	15.68	36.95	69.5	-32.55
9.834	PK	26.55	15.60	42.15	69.5	-27.35


For 30MHz-1GHz Test Results:

Temperature:	24°C	Relative Humidity:	48%
Test Date:	Apr. 19, 2025	Pressure:	1010hPa
Test Voltage:	DC 6V	Phase:	Horizontal
Test Mode:	Transmitting mode 125kHz		

Remark: Result = Reading Level + Factor, Margin = Result – Limit
 Factor = Ant. Factor + Cable Loss – Pre-amplifier

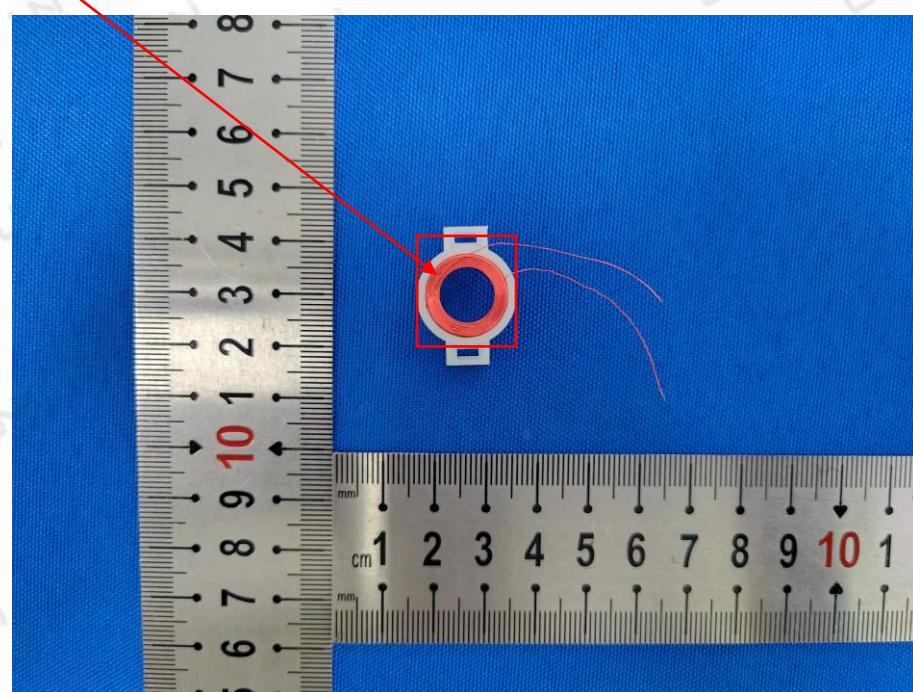
Temperature:	24°C	Relative Humidity:	48%
Test Date:	Apr. 19, 2025	Pressure:	1010hPa
Test Voltage:	DC 6V	Phase:	Vertical
Test Mode:	Transmitting mode 125kHz		

Remark: Result = Reading Level + Factor, Margin = Result – Limit
Factor = Ant. Factor + Cable Loss – Pre-amplifier

Remark:

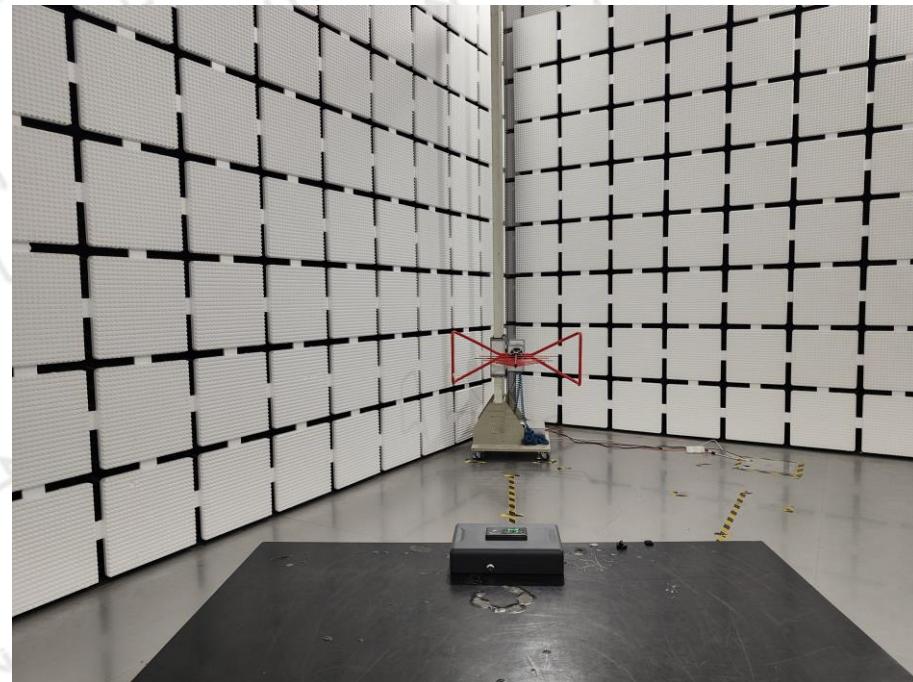
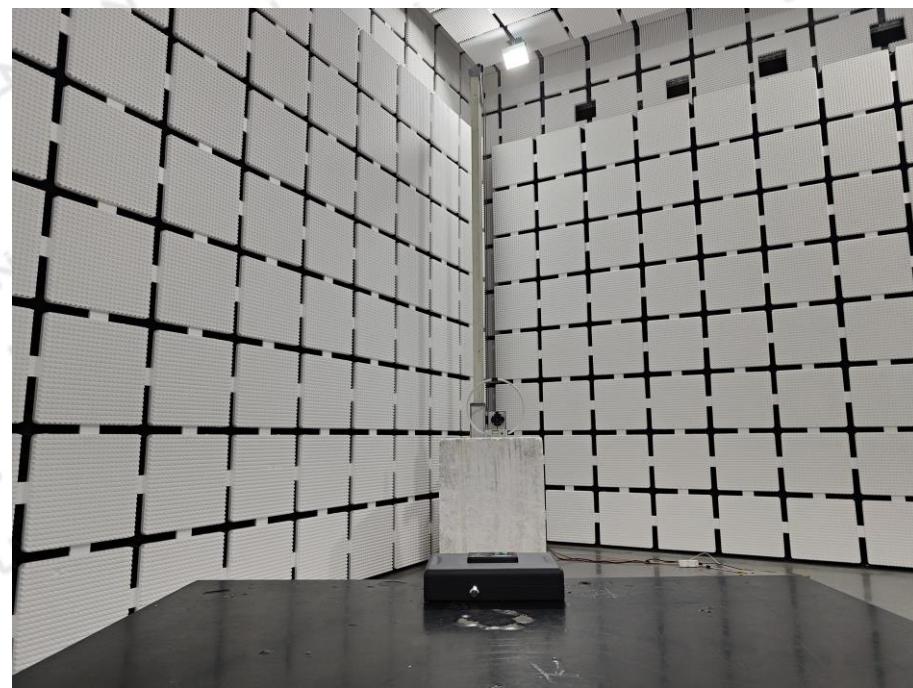
1. * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

5 ANTENNA REQUIREMENT


Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction:



The antenna used in this product is Coil Antenna.

ANTENNA:

6 PHOTO OF TEST

6.1 RADIATED EMISSION

End of Report