

Prediction of MPE Limit
47 CFR § 2.1091

$$S_{20} = \frac{P_A G_N}{4\pi R_{20}^2}$$

$$S_C = \frac{P_A G_N}{4\pi R_C^2}$$

$$R_C = \sqrt{\frac{P_A G_N}{4\pi S_L}}$$

$$S_L = \frac{f}{1500} \text{ (mW/cm}^2\text{)}$$

S₂₀ = Power Density of the Device at 20cm

S_L = Power Density Limit

S_C = Power Density of the Device at the Compliance Distance R_C

R₂₀ = 20cm

R_C = Minimum Distance to the Radiating Element to Meet Compliance

P_T = Power Input to Antenna

P_A = Adjust Power

G_N = Numeric Gain of the Antenna

f = Transmit Frequency

Transmit Duty Cycle = 100%

Use Group = General Population

FCC ID:

2AC7Z-ESPWROOM32UE S₂₀ at 20cm = 0.0895 (mW/cm²) See Page 2

+

2AFJT-11390A (912MHz) S₂₀ at 20cm = 0.0002 (mW/cm²) See Page 3

2AFJT-11390A S₂₀ at 20cm = 0.0897 (mW/cm²)

S_L = 0.6083 (mW/cm²)

Power Density of Host = Sum of all simultaneous Power Densities

Power Density Limit = Lowest Limit Based on Frequency

FCC ID:	2AFJT-11390A	RESULT:	PASS
---------	--------------	---------	------

$$S = \frac{PG}{4\pi R^2} \quad R = \sqrt{\frac{PG}{4\pi S}}$$

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Use Group: General Pop
 Occupational

Transmit Duty Cycle:	100.00	(%)
Tx Frequency:	2412.0000	(MHz)
RF Output Power at Antenna Input Terminal:	263.00	(mW)
Antenna gain:	2.33	(dBi)
Cable or other Loss:	0.00	(dB)
G =	1.71	(numeric)
Duty Cycle/Loss Adjusted Power P =	263.00	(mW)

FCC

S Limit = (mW/cm²)

R = (cm)

S at 20cm: (mW/cm²)

IC

S Limit = (W/m²)

R = (cm)

S at 20cm: (W/m²)

$$S = \frac{PG}{4\pi R^2} \quad R = \sqrt{\frac{PG}{4\pi S}}$$

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Use Group: General Pop
 Occupational

Transmit Duty Cycle:	100.00	(%)
Tx Frequency:	912.0000	(MHz)
RF Output Power at Antenna Input Terminal:	1.00	(mW)
Antenna gain:	0.00	(dBi)
Cable or other Loss:	0.00	(dB)
G =	1.00	(numeric)
Duty Cycle/Loss Adjusted Power P =	1.00	(mW)

FCC

S Limit = (mW/cm²)

R = (cm)

S at 20cm: (mW/cm²)

IC

S Limit = (W/m²)

R = (cm)

S at 20cm: (W/m²)