

# RF Report

Manufacturer: Ypsomed AG

Model: Smartpilot



## Antenna Gain Measurements

Prepared for: Ypsomed AG.  
Brunnmattstrasse 6,  
Burgdorf  
Switzerland

**COMMERCIAL-IN-CONFIDENCE**

Document 75964883-01 Issue 01

### SIGNATURE

A handwritten signature in black ink, appearing to read "S. Marshall".

| NAME           | JOB TITLE       | RESPONSIBLE FOR      | ISSUE DATE     |
|----------------|-----------------|----------------------|----------------|
| Steve Marshall | Senior Engineer | Authorised Signatory | 11 August 2025 |

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

TÜV SÜD  
is a trading name of TUV SUD Ltd  
Registered in Scotland at East Kilbride,  
Glasgow G75 0QF, United Kingdom  
Registered number: SC215164

TUV SUD Ltd is a  
TÜV SÜD Group Company

Phone: +44 (0) 1489 558100  
Fax: +44 (0) 1489 558101  
[www.tuvsud.com/en](http://www.tuvsud.com/en)

TÜV SÜD  
Octagon House  
Concorde Way  
Fareham  
Hampshire PO15 5RL  
United Kingdom



## Contents

|          |                                      |           |
|----------|--------------------------------------|-----------|
| <b>1</b> | <b>Report Summary</b> .....          | <b>3</b>  |
| 1.1      | Report Modification Record.....      | 3         |
| 1.2      | Introduction.....                    | 3         |
| 1.3      | Brief Summary of Results .....       | 4         |
| 1.4      | Product Information .....            | 5         |
| 1.5      | EUT Modification Record .....        | 5         |
| 1.6      | Test Location .....                  | 6         |
| <b>2</b> | <b>Test Details</b> .....            | <b>7</b>  |
| 2.1      | Antenna Gain Measurements .....      | 7         |
| <b>3</b> | <b>Photographs</b> .....             | <b>14</b> |
| 3.1      | Test Setup Photographs .....         | 14        |
| <b>4</b> | <b>Measurement Uncertainty</b> ..... | <b>16</b> |



## 1 Report Summary

### 1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

| Issue | Description of Change | Date of Issue  |
|-------|-----------------------|----------------|
| 1     | First Issue           | 11 August 2025 |

**Table 1**

### 1.2 Introduction

|                          |              |
|--------------------------|--------------|
| Applicant                | Ypsomed AG   |
| Manufacturer             | Ypsomed AG   |
| Model Number(s)          | SmartPilot   |
| Serial Number(s)         | 20007667     |
| Hardware Version(s)      | 1.1.0        |
| Software Version(s)      | 7.0.0        |
| Number of Samples Tested | 1            |
| Order Number             | 198552:R0    |
| Date                     | 28-July-2025 |
| Date of Receipt of EUT   | 24-July-2025 |
| Start of Test            | 24-July-2025 |
| Finish of Test           | 24-July-2025 |
| Name of Engineer(s)      | Hugo Petty   |



### 1.3 Brief Summary of Results

A brief summary of the tests carried out are shown below.

| Section                 | Specification Clause | Test Description          | Result | Comments/Base Standard |
|-------------------------|----------------------|---------------------------|--------|------------------------|
| Configuration and Mode: |                      |                           |        |                        |
| 2.1                     | Bluetooth Low Energy | Antenna Gain Measurements | -      | For information only   |

**Table 2**



## 1.4 Product Information

### 1.4.1 Technical Description

The device contains a 2.4 GHz BLE functionality using a PCB antenna. The 2.4 GHz signal is modulated by the micro controller of type nRF52840.

## 1.5 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

| Modification State                         | Description of Modification still fitted to EUT                                                                                                                                                                                                           | Modification Fitted By | Date Modification Fitted |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------|
| Model: SmartPilot, Serial Number: 20007667 |                                                                                                                                                                                                                                                           |                        |                          |
| 0                                          | As supplied by the customer                                                                                                                                                                                                                               | Not Applicable         | Not Applicable           |
| 1                                          | The device was programmed with the special test firmware "integrationtest_maxemission_merged" of the firmware release 7.0.0.<br>A coaxial connector (X100, normally not assembled) was assembled and connected to the antenna path between C106 and L100. | Konstantin Sieler      | 24-July-2025             |

**Table 3**



## 1.6 Test Location

TÜV SÜD conducted the following tests at our Octagon House Test Laboratory.

| Test Name                                    | Name of Engineer(s) | Accreditation |
|----------------------------------------------|---------------------|---------------|
| Configuration and Mode: Bluetooth Low Energy |                     |               |
| Antenna Gain Measurements                    | Hugo Petty          | None          |

**Table 4**

Office Address:

TÜV SÜD  
Octagon House  
Concorde Way  
Fareham  
Hampshire  
PO15 5RL  
United Kingdom



## 2 Test Details

### 2.1 Antenna Gain Measurements

#### 2.1.1 Equipment Under Test and Modification State

SmartPilot, S/N: 20007667, Modification State 0 (Radiated)  
SmartPilot, S/N: 20007667, Modification State 1 (Conducted)

#### 2.1.2 Date of Test

24-July-2025

#### 2.1.3 Test Method

The manufacturer provided a modified sample with a temporary 50 ohm SMA connector in place of the antenna which was used to perform a conducted power measurement in accordance with ANSI C63.10 clause 11.9.1.1.

The non-modified sample was then placed in a fully anechoic chamber on a turntable at 1.5m height at a measurement distance of 1m. The equipment under test (EUT) was placed in 3 orientations (X, Y, Z) to establish which plane provided the maximum EIRP, this was found to be the X-Orientation, and this orientation can be seen in the test setup photo in section 3 of this report.

The chamber is calibrated to make EIRP measurements thus for each frequency point the total loss from the centre of the turntable is determined using the substitution method and set as a correction factor on the measuring equipment. The EUT was oriented for maximum EIRP and rotated in azimuth in 15 degree steps and the EIRP recorded as shown on the polar plots in the test result section below.

Conducted measurements were made using a Siretta I-PEX MHF4 To SMA Female Bulkhead Jack 1.13 Coaxial cable connected to a temporary antenna connector. The loss across this connector was calculated as 0.34dB for 2402 MHz and 0.35dB for 2440 MHz and 2480 MHz. The conducted power results were corrected for these adaptor losses.

#### 2.1.4 Environmental Conditions

|                     |         |
|---------------------|---------|
| Ambient Temperature | 20.2 °C |
| Relative Humidity   | 63.5 %  |

### 2.1.5 Test Equipment Diagram



Figure 1 – Conducted Test Setup

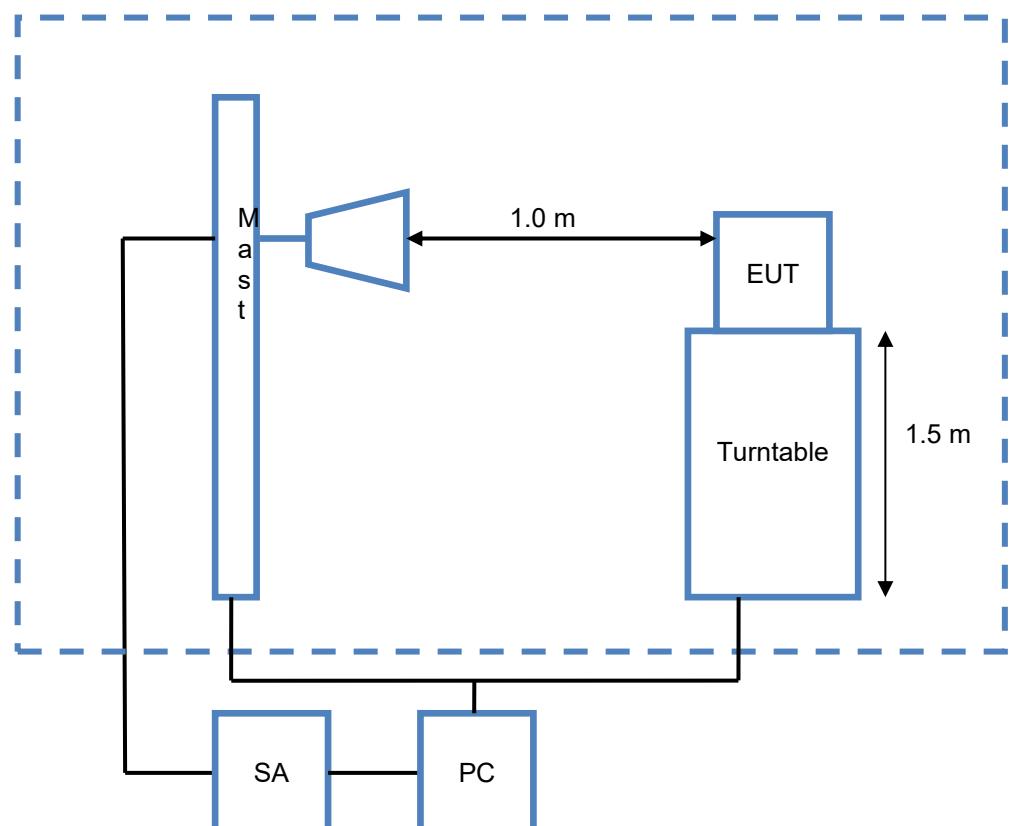



Figure 1 – Radiated Test Setup



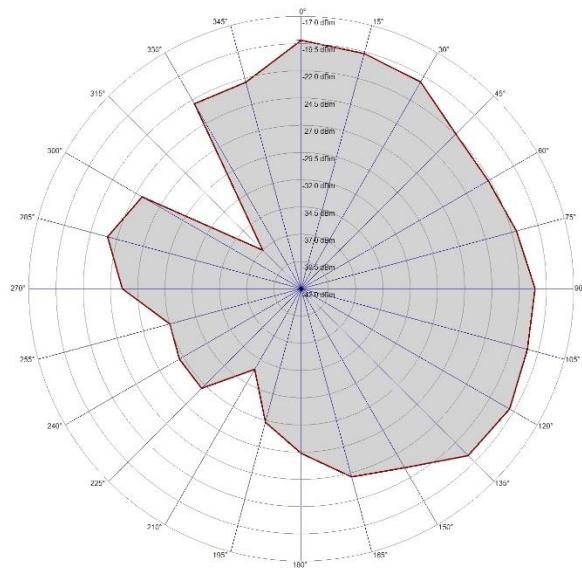
## 2.1.6 Test Results

### Summary of Results

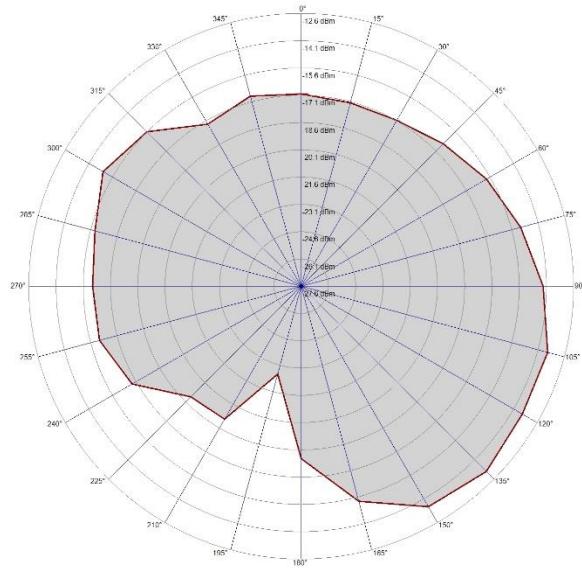
| Frequency (MHz) | Antenna Gain (dBi) |
|-----------------|--------------------|
| 2402            | -2.53              |
| 2440            | -3.98              |
| 2480            | -6.45              |

**Table 5 – Antenna Gain Results**

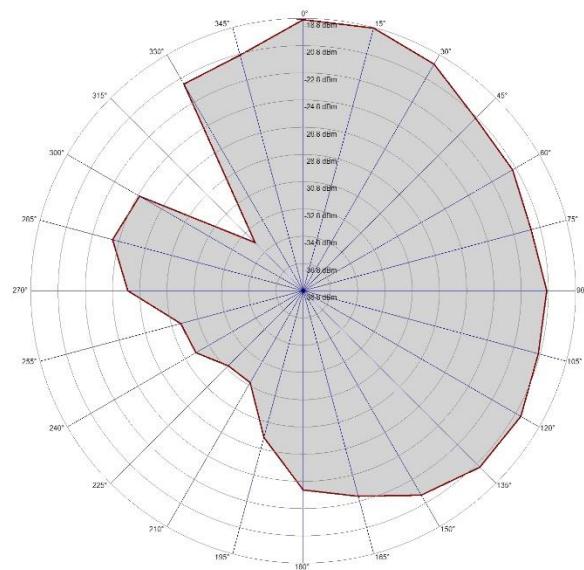
### Conducted Results


| Frequency (MHz) | Result (dBm) |
|-----------------|--------------|
| 2402            | -10.61       |
| 2440            | -9.24        |
| 2480            | -8.45        |

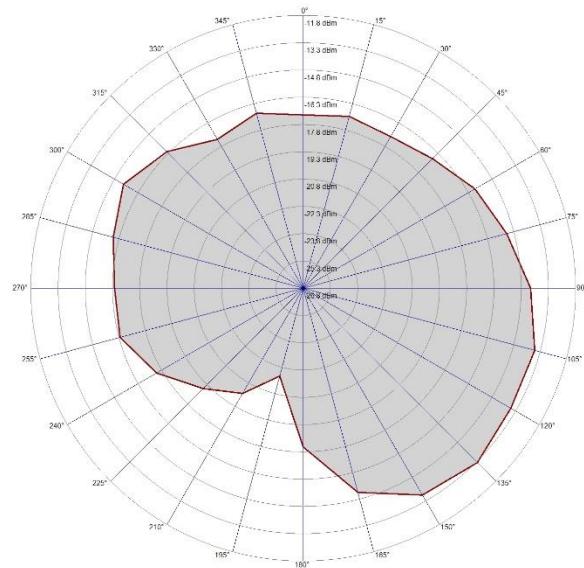
**Table 6 – Maximum Conducted Output Power Results**


### Radiated Results

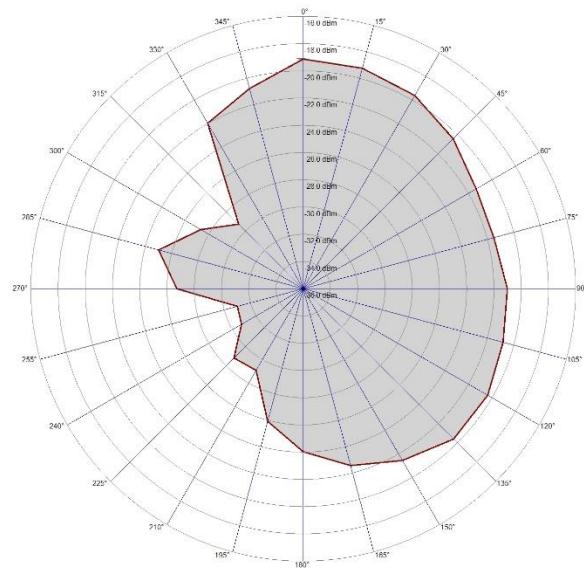
| Frequency (MHz) | Result (dBm EIRP) |
|-----------------|-------------------|
| 2402            | -13.14            |
| 2440            | -13.22            |
| 2480            | -14.90            |


**Table 7 – Maximum Radiated Output Power Results**

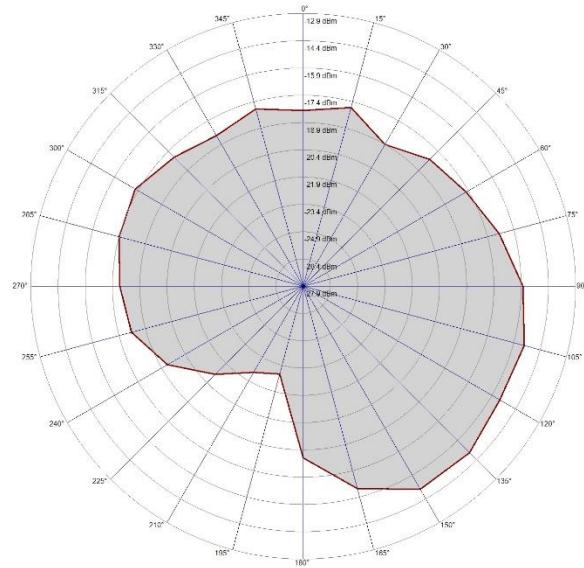



**Figure 2 – 2402 MHz, Horizontal, X-Orientation**




**Figure 3 – 2402 MHz, Vertical, X-Orientation**




**Figure 4 – 2440 MHz, Horizontal, X-Orientation**



**Figure 5 – 2440 MHz, Vertical, X-Orientation**



**Figure 6 – 2480 MHz, Horizontal, X-Orientation**



**Figure 7 – 2480 MHz, Vertical, X-Orientation**

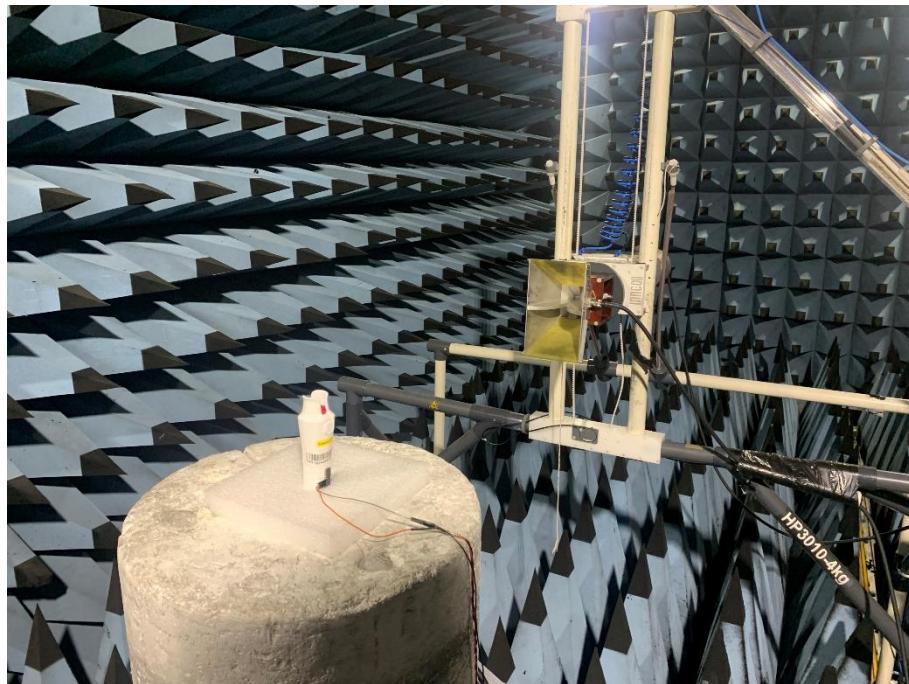


### 2.1.7 Test Location and Test Equipment Used

This test was carried out in RF Chamber 8.

| Instrument                                | Manufacturer         | Type No.             | TE No. | Calibration Period (months) | Calibration Expiry Date |
|-------------------------------------------|----------------------|----------------------|--------|-----------------------------|-------------------------|
| 3m Fully-Anechoic Chamber                 | Rainford             | RF Chamber 8         | 1548   | 12                          | 16-May-2026             |
| Filter                                    | Daden Anthony Ass    | MH-1500-7SS          | 2778   | 12                          | 12-May-2026             |
| Antenna (DRG, 1 GHz to 18 GHz)            | ETS-Lindgren         | 3115                 | 3125   | 12                          | 12-Oct-2025             |
| PXA Signal Analyser                       | Agilent Technologies | N9030A PXA           | 4409   | 12                          | 23-Jan-2026             |
| 1 - 8 GHz pre amp                         | Wright Technologies  | PS06-0060            | 4972   | 12                          | 12-May-2026             |
| 3.5 mm 1m Cable                           | Junkosha             | MWX221-01000DMS      | 5417   | 12                          | 06-Jun-2026             |
| Coaxial Fixed Attenuator DC-18GHz 5W 10dB | RF-Lambda            | RFS5G18B10SMP        | 6175   | 12                          | 21-Jul-2026             |
| Humidity and Temperature meter            | R.S Components       | 1364                 | 6347   | 12                          | 13-Mar-2026             |
| 1m Coaxial Cable Assy                     | Junkosha             | MWX221-01000DMSDMS/A | 6409   | -                           | O/P Mon                 |
| 4m Coaxial Cable Assy                     | Junkosha             | MWX221-04000NMSNMS/A | 6411   | -                           | O/P Mon                 |
| 2m Coaxial Cable Assy                     | Junkosha             | MWX221-02000NMSNMS/A | 6414   | -                           | O/P Mon                 |

O/P Mon – Output Monitored using calibrated equipment




## 3 Photographs

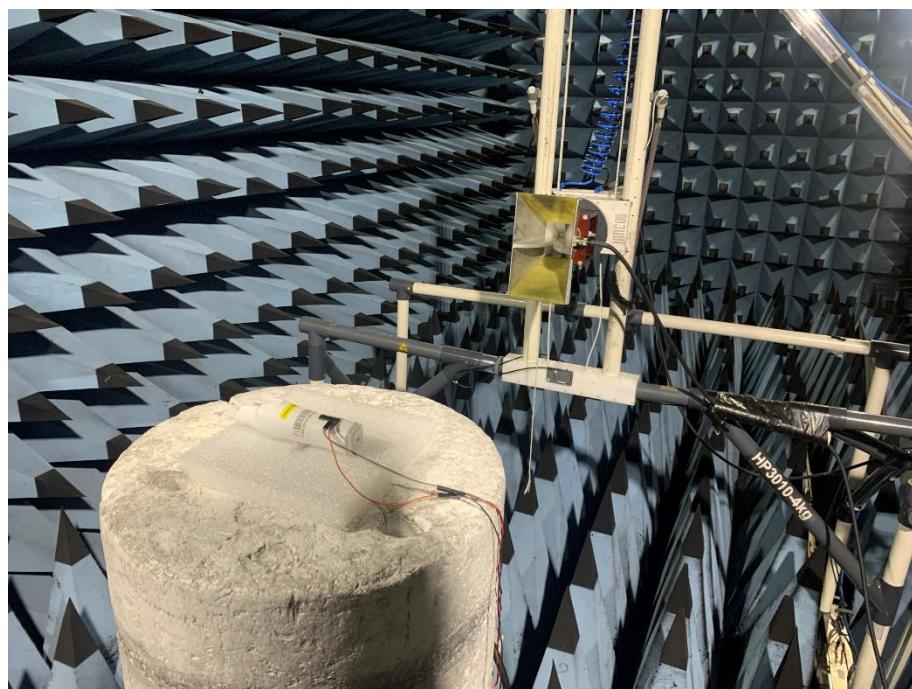

### 3.1 Test Setup Photographs



Figure 8 – Test Setup Photo BLE (Radiated), X-Orientation, 0 Degrees



**Figure 9 – Test Setup Photo BLE (Radiated), Y-Orientation, 0 Degrees**



**Figure 10 – Test Setup Photo BLE (Radiated), Z-Orientation, 0 Degrees**



## 4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

| Test Name                 | Measurement Uncertainty                             |
|---------------------------|-----------------------------------------------------|
| Antenna Gain Measurements | Conducted: $\pm 0.96$ dB<br>Radiated: $\pm 3.08$ dB |

**Table 8**

### Measurement Uncertainty Decision Rule – Accuracy Method

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.