

SAR evaluation

MPE Calculation Method

$$E \text{ (V/m)} = (30 \cdot P \cdot G)^{0.5} / d$$

$$\text{Power Density: } Pd \text{ (W/m}^2\text{)} = E^2 / 377$$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = (30 \cdot P \cdot G) / (377 \cdot d^2)$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well

as the gain of the used antenna, the RF power density can be obtained.

Calculated Result and Limit (WORSE CASE IS AS BELOW)

WIFI

Directional AntennaGain (Numeric)	Peak Output Power (mW)	Power Density (S)(mW/cm ²)	Limit of Power Density (S)(mW/cm ²)	Test Result
1.55 (1.91dBi)	147.231 (21.68dBm)	0.045	1	Compiles

ZIGBEE

Directional AntennaGain (Numeric)	Peak Output Power (mW)	Power Density (S)(mW/cm ²)	Limit of Power Density (S)(mW/cm ²)	Test Result
1.585 (2dBi)	2.972 (4.73dBm)	0.000938	1	Compiles

$$0.045 + 0.000938 = 0.045938 < 1$$