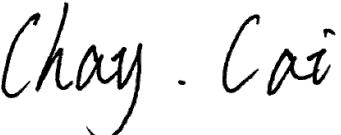


FCC RF EXPOSURE REPORT

FCC ID: 2AFENXK10T

Project No. : 2503C105
Equipment : Projector
Brand Name : XGIMI
Test Model : XK10T
Series Model : N/A
Applicant : XGIMI Technology Co., Ltd.
Address : No. 4, Zone A, No. 1129, Shijicheng Road, Chengdu Hi-tech Zone, Sichuan Pilot Free Trade Zone, 610041 China
Manufacturer : XGIMI Technology Co., Ltd.
Address : No. 4, Zone A, No. 1129, Shijicheng Road, Chengdu Hi-tech Zone, Sichuan Pilot Free Trade Zone, 610041 China
Factory1 : XGIMI VIETNAM TECHNOLOGY COMPANY LIMITED
Address : Lot CN 4-1, My Thuan Industria I Zone, My Thuan Commune, Nam Dinh City, Nam Dinh Province, Vietnam
Factory2 : Yibin XGIMI Optoelectronic Co., Ltd.
Address : No. 2, West Section 4, Changjiang North Road, Lingang Economic Development Zone, Yibin City, Sichuan P.R. China
Date of Receipt : Mar. 11, 2025
Date of Test : Mar. 13, 2025 ~ Apr. 24, 2025
Issued Date : Jun. 25, 2025
Report Version : R02
Test Sample : Engineering Sample No.: DG20250311146
Standard(s) : FCC Guidelines for Human Exposure IEEE C95.1 & FCC Part 2.1091
FCC Title 47 Part 2.1091 & KDB 447498 D01 v06

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc. (Dongguan)


Prepared by

Sheldon Ou

Sheldon Ou

Approved by

Chay Cai

Chay Cai

No.3, Jinshagang 1st Road, Dalang, Dongguan, Guangdong People's Republic of China.

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-6-2503C105	R00	Original Report.	May 15, 2025	Invalid
BTL-FCCP-6-2503C105	R01	Removed the series model.	May 28, 2025	Invalid
BTL-FCCP-6-2503C105	R02	Added the P/N code of antenna for the BT/LE.	Jun. 25, 2025	Valid

1. MPE CALCULATION METHOD

Calculation Method of RF Safety Distance:

$$S = \frac{PG}{4\pi r^2} = \frac{EIRP}{4\pi r^2}$$

where:

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

2. ANTENNA SPECIFICATION

For BT/LE:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	XGIMI	BT-XK10T	PIFA	N/A	0.33

Note: The antenna gain is provided by the manufacturer.

For 2.4GHz:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	XGIMI	409-00236-001	Dipole	I-pex	1.16
2	XGIMI	409-00237-001	Dipole	I-pex	1.68

Note:

- 1) This EUT supports CDD, and all antenna gains are not equal, Directional gain = G_{ANT} +Array Gain.
For power measurements, Array Gain=0dB ($N_{ANT} \leq 4$), so the Directional gain=1.68.
For power spectral density measurements, $N_{ANT}=2$, $N_{SS} = 1$.
So the Directional gain= G_{ANT} +Array Gain= $G_{ANT}+10\log(N_{ANT}/ N_{SS})$ dBi=1.68+10log(2/1)dBi=4.69.
- 2) The antenna gain is provided by the manufacturer.

For 5GHz:

Ant.	Brand	P/N	Antenna Type	Connector	Gain (dBi)
1	XGIMI	409-00236-001	Dipole	I-pex	8.03
2	XGIMI	409-00237-001	Dipole	I-pex	7.17

Note:

- 1) This EUT supports CDD, and all antenna gains are not equal, Directional gain = G_{ANT} +Array Gain.
For power measurements, Array Gain=0dB ($N_{ANT} \leq 4$), so the Directional gain=8.03.
So, the UNII-1, UNII-2A and UNII-2C output power limit is $23.98-(8.03-6)=21.95$, the UNII-3 output power limit is $30-(8.03-6)=27.97$.
For power spectral density measurements, $N_{ANT}=2$, $N_{SS} = 1$.
So the Directional gain= G_{ANT} +Array Gain= $G_{ANT}+10\log(N_{ANT}/ N_{SS})$ dBi=8.03+10log(2/1)dBi=11.04.
Then, The UNII-1, UNII-2A and UNII-2C power spectral density limit is $11-(11.04-6)=5.96$, the UNII-3 power spectral density limit is $30-(11.04-6)=24.96$.
- 2) The antenna gain is provided by the manufacturer.

3. CALCULATED RESULT

For BT:

Directional gain (dBi)	Directional gain (numeric)	Max. Peak Output Power (dBm)	Max. Peak Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
0.33	1.0789	9.33	8.5704	0.00184	1	Complies

For LE:

Directional gain (dBi)	Directional gain (numeric)	Max. Peak Output Power (dBm)	Max. Peak Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
0.33	1.0789	9.19	8.2985	0.00178	1	Complies

For 2.4GHz:

Directional gain (dBi)	Directional gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
1.68	1.4723	27.68	586.1382	0.17177	1	Complies

For 5GHz:

Directional gain (dBi)	Directional gain (numeric)	Max. Output Power (dBm)	Max. Output Power (mW)	Power Density (S) (mW/cm ²)	Limit of Power Density (S) (mW/cm ²)	Test Result
8.03	6.3533	24.99	315.5005	0.39898	1	Complies

For the max simultaneous transmission MPE:

Ratio			Total	Limit of Ratio	Test Result
BT	2.4GHz	5GHz			
0.00184	0.17177	0.39898	0.57259	1	Complies

Note:

- (1) The calculated distance is 20 cm.
- (2) Ratio=Power Density (S) (mW/cm²)/Limit of Power Density (S) (mW/cm²)