

ELECTROMAGNETIC COMPATIBILITY TEST REPORT

PREPARED FOR Intrinsyc Technologies Corporation BY QAI LABORATORIES

CFR 47, Part 15, Subpart E - Unlicensed National Information Infrastructure Devices - 15.407 - NII

Report Reference Number: E10702-1803-NII
Product Tested FCC ID: 2AFDI-ITCOQ626S
Product Tested ISED: 9049A-ITCOQ626S

Total Number of Pages: 53
Date of Issue: 9 May 2019

EMC Test Laboratory: QAI Laboratories Inc.

Address: 3980 North Fraser Way, Burnaby, BC, V5J 5K5 Canada

Phone: (604) 527-8378 Fax: (604) 527-8368

Laboratory Accreditations (per ISO/IEC 17025:2005):

American Association for Laboratory Accreditation Certificate Number: 3657.02

This report has been completed in accordance with the requirements of ISO/IEC 17025. Test results contained in this report are within the scope of QAI Laboratories ISO/IEC 17025 accreditation. QAI Laboratories authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for the use by the company's employees only.

Client: Intrinsyc Technologies Corporation

Address: 885 Dunsmuir Street – Suite 300, Vancouver, BC, Canada V6C 1N5

Phone: (604) 801-6461 Fax: (604) 801-6417

Applicable Test Standards:

CFR 47 FCC Part 15, Subpart E - 15.407 Radio Frequency Devices - Subpart E - Unlicensed National Information Infrastructure Devices - \$15.407 - General technical requirements.

CFR 47 FCC Part 15, Subpart B Radio Frequency Devices - 47 CFR Subpart B - Unintentional Radiators

RSS-247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

RSS-Gen Issue 5 General Requirements for Compliance of Radio Apparatus

ICES-003 Issue 6 Information Technology Equipment (including Digital Apparatus) - Limits and Methods of Measurement.

Equipment Tested: Open- Q^{TM} 626 SOM 802.11a/b/g/n/ac WiFi + BT/BLE

Model Number: Open-QTM 626 SOM

Manufacturer: Intrinsyc Technologies Corporation

REVISION HISTORY

Date	Report Number	Revision	Description	Ву
2019 May 9	E10702-1803-NII	1.2	Changes after TCB Review	BB
2019 Apr 30	E10702-1803	1.1	Added DFS	BB
23 April 2019	E10702-1803	1.0	Initial Release	BB

All previous versions of this report have been superseded by the latest dated revision as listed in the above table. Please dispose of all previous electronic and paper printed revisions accordingly.

REPORT AUTHORIZATION

The data documented in this report is for the equipment 2AFDI-ITCOQ626S/9049A-ITCOQ626S Open-Q 626(TM) SOM 802.11a/b/g/n/ac WiFi + BT/BLE' provided by Intrinsyc Technologies Corporation. Tests were performed on the sample equipment as requested by Intrinsyc Technologies Corporation for the purpose of demonstrating compliance with CFR 47 FCC Part 15, Subpart E - 15.407, CFR 47 FCC Part 15, Subpart B , RSS-247 Issue 2, RSS-Gen Issue 5, ICES-003 Issue 6 as agreed upon by Intrinsyc Technologies Corporation as per quotation 18SH05146R1.

Intrinsyc Technologies Corporation is responsible for the tested product configuration, continued product compliance, and for the appropriate auditing of subsequent products as required. This report may comprise a partial list of tests that are required for FCC, ISED and/or CE Mark Declaration of Conformity and can only be reproduced by the manufacturer.

This is to certify the following report true and correct to the best of our knowledge.

Tested by Bruce Balston EMC Engineer

Approved by Raj Atwal EMC Lab Manager Written by Bruce Balston Technical Writer

Reviewed by Parminder Singh Director of EMC Services

Report: E10702-1803-FDS(Intrinsyc,OpenQ 626 SOM)_Rev1.2

QAI FACILITIES

Founded in 1994 by a group of experienced certification and testing experts, QAI is an independent third-party testing, inspection and certification organization which serves the building industry, government and individuals with cost effective solutions through our in-house capabilities/services, and an established world-wide network of qualified affiliates. To help get your product to market, trust the provider that many leading global manufacturers do: QAI.

British Columbia

QAI Laboratories Inc. Headquarters/Main Laboratory 3980 North Fraser Way, Burnaby, BC V5J 5K5 Canada

Virginia

QAI Laboratories Ltd. 1047 Zachary Taylor Hwy, Suite A Huntly, VA 22640 USA

Ontario

QAI Laboratories Inc. 1081 Meyerside Drive, Unit ∦14 Mississauga, ON L5T lM4 Canada

California

QAI Laboratories Ltd. 8385 White Oak Avenue Rancho Cucamonga, CA 91730 USA

Washington

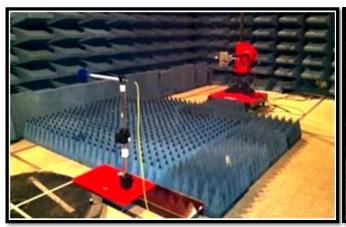
QAI Laboratories Ltd. 834 80TH Street SW, Suite 200, Everett, WA 98203-7008 USA

Oklahoma

QAI Laboratories Ltd. 108th East Avenue, Tulsa, OK 74116 USA

QAI EMC ACCREDITATION

Ī	EMC Laboratory	FCC Designator	FCC Registration	FCC Registration	IC Registration	A2LA
ı	Location		3m SAC	3m/10m OATS	3m SAC	Certificate
Ī	Burnaby, BC Canada	CA9543	9543A	9543C-1	21146-1	3657.02



Corporate Headquarters & EMC Laboratory Burnaby, BC

10m Open Area Test Site (OATS) Malcom Knapp Research Forest, Maple Ridge, BC

3m Semi-Anechoic Chamber (SAC) Burnaby, BC

3m Semi-Anechoic Chamber (SAC) Burnaby, BC

TABLE OF CONTENTS

RE'	VISION HISTORY	2
RE	PORT AUTHORIZATION	2
QA	AI FACILITIES	3
QA	AI EMC ACCREDITATION	3
TA	BLE OF CONTENTS	5
LIS	ST OF FIGURES	6
LIS	ST OF TABLES	7
Section	n I: EXECUTIVE SUMMARY	8
1.1	Scope	8
1.2	Applicable Standards	8
1.3	Reference Standards	8
1.4	Summary of Results	8
Section	n II: GENERAL INFORMATION	10
2.1	Product Description	10
	2.1.1 Test Configuration	10
	2.1.2 Modifications	11
	2.1.4 Description of Antenna	12
	2.1.5 Directional Gain (Beamforming)	12
	2.1.6 RF Output Power Tune-up Tolerance	12
2.2	Environmental Conditions	12
	Measurement Uncertainty	12
	Worst-Case	13
	Sample Calculations of Emissions Data	14
2.6	List of Test Equipment	15
	n III: REQUIREMENTS FOR THE US MARKET (FCC) & THE CANADIAN MARKET (ISED)	16
	AC Mains Conducted Emissions	16
	Radiated Spurious Emissions	17
	Conducted Spurious Emissions	18
	Antenna Requirement	18
	RF Peak Power Output	19
	Occupied Bandwidth	20
	Mask, Out-of-Band Emissions (Band Edge)	20
	7 Frequency Hopping Requirements	21
	l RF Exposure Evaluation	21
	2 Modular Transmitters	21
	3 Dynamic Frequency Selection Requirements	21
3.14	4 Transmit Power Control Requirements	22

Client: Intrinsyc Technologies Corporation Report: El0702-1803-FDS(Intrinsyc,OpenQ 626 SOM)_Revl.2	QAI	QAI Laboratories 3980 North Fraser Way Burnaby, BC V5J 5K5 Canada
Appendix A: CONDUCTED EMISSIONS DATA		22
Appendix B: RADIATED EMISSIONS DATA		26
Appendix C: SPURIOUS CONDUCTED EMISSIONS DATA		29
Appendix D: CONDUCTED RF OUTPUT POWER & EIRP DATA		31
Appendix E: DUTY CYCLE CORRECTION DATA		34
Appendix F: OBW, MASK & BANDEDGE, PSD DATA		35
Appendix G: FREQUENCY STABILITY DATA		42
Appendix I: DYNAMIC FREQUENCY SELECTION DATA		42
Appendix R: TEST SETUP PHOTOS		42
Appendix S: ABBREVIATIONS		43

Section I: EXECUTIVE SUMMARY

Scope

This report demonstrates and documents compliance of Open-Q 626(TM) SOM 802.11a/b/g/n/ac WiFi + BT/BLE Model 2AFDI-ITCOQ626S/9049A-ITCOQ626S to the applicable standards listed below for as described.

Applicable Standards

The information documented in this report is based on the test methods and levels as per quotation 18SH05146R1.

 $\label{eq:cfr} CFR~47~FCC~Part~15, Subpart~E~15.407~Radio~Frequency~Devices~Subpart~E~Unlicensed~National~Information~Infrastructure~Devices~\$15.407~General~technical~requirements.$

CFR 47 FCC Part 15, Subpart B Radio Frequency Devices - 47 CFR Subpart B - Unintentional Radiators

 $RSS-247\ Issue\ 2\ \frac{\text{Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs)}}{\text{Exempt Local Area Network (LE-LAN) Devices}}$

RSS-Gen Issue 5 General Requirements for Compliance of Radio Apparatus

ICES-003 Issue 6 Information Technology Equipment (including Digital Apparatus) - Limits and Methods of Measurement.

1.3 Reference Standards

The following standards are included as normative references.

ANSI C63.4(2014) - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz

ANSI C63.4:2014 - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz

1.3 Reference Standards

The following standards are included as a normative reference.

ANSI C63.4(2014) - American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz

KDB 789033 D02 v02r01 - General UNII Test Procedures New Rules

KDB 905462 D02 v02 - UNII DFS Compliance Procedures New Rules

KDB 905462 D04 v01 - Operational Modes for DFS Testing New Rules

KDB 905462 D06 v02 - 802 11 Channel Plans New Rules

KDB 905462 D07 v02 - UNII Overview

Summary of Results

This report demonstrates and documents compliance of Open-Q 626(TM) SOM 802.11a/b/g/n/ac WiFi + BT/BLE 2AFDI-ITCOQ626S/9049A-ITCOQ626S manufactured by Intrinsyc Technologies Corporation to , CFR 47 FCC Part 15, Subpart E - 15.407, CFR 47 FCC Part 15, Subpart B , RSS-247 Issue 2, RSS-Gen Issue 5, ICES-003 Issue 6.

The following testing was performed pursuant to CFR 47 FCC Part 15, Subpart B $\scriptstyle \cdot$ Emissions

Test or Measurement	Applicable Standard	Description	Result
Conducted Emissions AC Mains	15 107 (Jass B	Conducted emissions measured on the AC power input (Mains) 150K - 30M Hz.	Complies
Radiated Emissions Enclosure	15 100 (1acc R	Radiated emissions of the enclosure measured 30M - 1G Hz (quasi-peak) and 1G - 40G Hz (average) as applicable.	Complies

The following testing was performed pursuant to CFR 47 FCC Part 15, Subpart E, 15.407 - Emissions

Test or Measurement	Applicable Standard	Description	Result
Conducted Emissions AC Mains	15.207 Class B	Conducted emissions measured on the AC power input (Mains) 150k - 30M Hz.	Complies
Radiated Emissions Enclosure	15.209 Class B	Radiated emissions of the enclosure measured 30M - 1G Hz (quasi-peak) and 1G Hz - 10th harmonic of fundamental or 40G Hz (average) as applicable.	Complies
Antenna Requirement	15.203	The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator.	Complies
RF Peak Output Power	15.407(a)(1)(2)(3)(4)	For 5.15-5.25, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.	Complies
6dB Bandwidth	15.407(e)	Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth shall be at least 500 kHz.	Complies
Out of Band Emisisons (Bandedge)	15.407(b)(1)(2)(3)(4), 15.205(c)	All emissions outside of the specified band shall not exceed an EIRP of -27 dBm/MHz or 68.2 dBuV/m at 3m. For 15.407(b)(4) limit is -17 dBm/MHz within 10 MHz of band edge. Radiated emissions which fall in the restricted bands, as defined in \$ 15.205(a), must also comply with the radiated emission limits specified in \$ 15.209(a).	Complies
Power Spectral Density	15.407(a)(1)(2)(3)(4)	The maximum power spectral density shall not exceed +11 dBm in any 1 MHz band. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band.	Complies
Conducted Spurious Emissions	15.407(b)(1)(2)(3)(4), 15.205, 15.209(a)	Conducted emissions requirements as stated in the standard.	Complies
Radiated Spurious Emissions	15.407(b)(1)(2)(3)(4), 15.205, 15.209(a)	Radiated emissions requirements as stated in the standard.	Complies
Frequency Stability	2.1055	Ensure the normal frequency stability during temperature and input voltage fluctuations such as to remain in band.	Complies
RF Exposure	15.407(b)(1)(2)(3)(4), 15.205, 15.209(a)	RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm.	Complies
Dynamic Frequency Selection	15.407	Dynamic Frequency Selection requirements as stated in the standard.	Complies
Transmit Power Control	15.407(h) 1	U-NII devices operating in 5.25-5.35 GHz and 5.47-5.725 GHz shall employ a TPC mechanism to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for devices with an EIRP of less than 500 mW.	Not Applicable

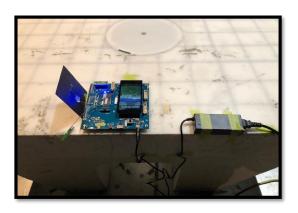
The following testing was performed pursuant to ICES-003 Issue 6 - RX Emissions

Test or Measurement	Applicable Standard	Description	Result
Conducted Emissions AC Mains	L 1(ES-003 Issue 6 (Jass B	Conducted emissions measured on the AC power input (Mains) 150K - 30M Hz.	Complies
Radiated Emissions Enclosure	L 10.ES-003 Issue 6 Class B	Radiated emissions of the enclosure measured 30M \cdot 1G Hz (quasi-peak) and 1G \cdot 6 GHz (average).	Complies

The following testing was performed pursuant to RSS-210 Issue 8 and RSS-247 Issue 2 - Emissions

Test or Measurement	Applicable Standard	Description	Result
Conducted Emissions AC Mains	RSS-Gen Issue 5	Conducted emissions measured on the AC power input (Mains) 150K - 30M Hz.	Complies
Radiated Emissions Enclosure	RSS 247 Issue 2	Radiated emissions of the enclosure measured 30M - 1G Hz (quasi-peak) and 1G Hz - 10th harmonic of fundamental or 40G Hz (average) as applicable.	Complies
Antenna Requirement	RSS-Gen Issue 5	The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator.	Complies
RF Peak Output Power	RSS 247 Issue 2	Maximum peak conducted output power shall not exceed 1 W. The EIRP shall not exceed 4 W.	Complies
Occupied Bandwidth	RSS 247 Issue 2	Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth shall be at least 500 kHz.	Complies
Out of Band Emisisons (Bandedge)	RSS 247 Issue 2	All emissions outside of the specified band shall not exceed an EIRP of -27 dBm/MHz or 68.2 dBuV/m at 3m. For $15.407(b)(4)$ limit is -17 dBm/MHz within 10 MHz of band edge. Radiated emissions which fall in the restricted bands, as defined in § $15.205(a)$, must also comply with the radiated emission limits specified in § $15.209(a)$.	Complies
Power Spectral Density	RSS 247 Issue 2	The maximum power spectral density shall not exceed +11 dBm in any 1 MHz band. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band.	Complies
Conducted Spurious Emissions	RSS 247 Issue 2	Conducted emissions requirements as stated in the standard.	Complies
Radiated Spurious Emissions	RSS 247 Issue 2	Radiated emissions requirements as stated in the standard.	Complies
Frequency Stability	RSS-Gen Issue 5	Ensure the normal frequency stability during temperature and input voltage fluctuations such as to remain in band.	Complies
RF Exposure	RSS-Gen Issue 5	RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm	Complies
Dynamic Frequency Selection	15.407	Dynamic Frequency Selection requirements as stated in the standard.	Complies
Transmit Power Control	15.407(h) 1	U-NII devices operating in 5.25-5.35 GHz and 5.47-5.725 GHz shall employ a TPC mechanism to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for devices with an EIRP of less than 500 mW.	Not Applicable

Section II: GENERAL INFORMATION


2.1 Product Description

The information provided in this section describes the Equipment Under Test (EUT) and the corresponding Auxiliary Equipment (AE) required to perform the tests as complete system.

EUT Information

Equipment	Manufacturer		Description
EUT	Intrinsyc Technologies Corporation		626 SOM - 802.11a/b/g/n/ac WiFi + Bluetooth Module
		FCC ID:	2AFDI-ITCOQ626S
		IC#:	9049A-ITCOQ626S
Auxiliary 1	IBM		Notebook PC
Auxiliary 2	Qualcomm		Qualcomm Radio Control Toolkit
Auxiliary 3	Taoglas ALA.01.07.0095A		1575MHz GPS-GALILEO Ceramic Active Loop Antenna
Auxiliary 4	-		USB cable
Auxiliary 5	LINKSYS - WRT3200ACM - 1.0.	6.186168	DFS compliant router

Figure 1: Equipment Under Test

2.1.1 Test Configuration

The EUT was configured for 'normal operation' at maximum rate load unless otherwise specified. All accessory cables were attached unless defined as 'craftsman' port used for diagnostic and configuration. Auxiliary Equipment (AE) (notebook computer and USB cable) was present during compliance testing.

The EUT was configured for test using the internal test mode provided by the manufacturer to simulate data transmission. This utility includes all modulation modes, transmit frequencies and power levels and all other configuration options required for testing.

Refer to manufacturers documentation for additional details of modulation types, technology, applicable data transfer rates, channels and other information. Multiple antenna output (beamforming) does not apply.

Usage case (test modes) are defined in the following table. Specific configuration is listed for TX0 and TX1 for each case if applicable. Test cases may be omitted based on results, due diligence is performed on all of the modes listed in the table. Modulation modes for each case are also listed.

The manufacturer has declared EUT as Client Device for UNII-1A/UNII-2A/UNII-2C limits and other requirements such as DFS and (automated) Transmit Power Control (TPC). TPC is not required for devices with maximum EIRP < 500mW (27dBm) within UNII-2A/UNII-2C bands. TPC is required for devices with maximum EIRP < 500mW (27dBm) within UNII-2A/UNII-2C bands to reduce EIRP to less than 24dBm.

Co-location of transmitters is limited to BT with WiFi (2G4/5G/5G8) operation only. BT information is provided in the context of co-location testing only.

Test Modes

		TX0				
Test Mode Band		Frequency MHz	Frequency MHz			
5G.lla		UN	III-1	5180		
5G.lla		UN.	II-2A	5320		
5G.lla		UN	II-2C	5500		
5G.lla		UN	III-3	5825		
5G.lln		UN	III-1	5180		
5G.lln		UN	II-2A	5320		
5G.lln		UN:	II-2C	5500		
5G.lln		UN	III-3	5825		
5G.lla		UN	III-1	5180		
5G.lla		UN	II-2A	5320		
5G.lla		UN:	II-2C	5500		
5G.lla		UN	III-3	5825		
5G.lln		UN	III-1	5180		
5G.lln		UN:	II-2A	5320		
5G.lln		UN:	II-2C	5500		
5G.lln		UN	III-3	5825		
The following	configurations	represent co-le	ocation of trans	smitters.		
BT	5G.lla	2G4	UNII-1	2402, 2480	5180	
BT	5G.lla	2G4	UNII-2A	2402, 2480	5320	
BT	5G.lla	2G4	UNII-2C	2402, 2480	5500	
BT	5G.lla	2G4	UNII-3	2402, 2480	5825	
BT	5G.lln	2G4	UNII-1	2402, 2480	5180	
BT	5G.lln	2G4	UNII-2A	2402, 2480	5320	
BT	5G.lln	2G4	UNII-2C	2402, 2480	5500	
BT	5G.lln	2G4	UNII-3	2402, 2480	5825	
BT	5G.lla	2G4	UNII-1	2402, 2480	5180	
BT	5G.lla	2G4	UNII-2A	2402, 2480	5320	
BT	5G.lla	2G4	UNII-2C	2402, 2480	5500	
BT	5G.lla	2G4	UNII-3	2402, 2480	5825	
BT	5G.lln	2G4	UNII-1	2402, 2480	5180	
BT	5G.lln	2G4	UNII-2A	2402, 2480	5320	
BT	5G.lln	2G4	UNII-2C	2402, 2480	5500	
BT	5G.lln	2G4	UNII-3	2402, 2480	5825	

Test Modulations

Band	Frequency MHz	Modulation	Modulation
2G4-BT	2402, 2480	BT_DH5	BT2_DH5
2G4-BT	2402, 2480	BT3_DH5	
5G-lla	5180, 5320, 5500, 5825	xHT6M	xHT54M
5G-lln	5180, 5320, 5500, 5825	HT20M0S(6M5)	HT20M0N(7M2)
5G-lln	5180, 5320, 5500, 5825	HT20M7S(65M)	HT20M7N(72M)
5G-lln	5180, 5320, 5500, 5825	HT40M0S(13M5)	HT40M0N(15M)
5G-lln	5180, 5320, 5500, 5825	HT40M7S(135M)	HT40M7N(150M)
5G-llac	5180, 5320, 5500, 5825	VHT20M0S	VHT20M0S
5G-llac	5180, 5320, 5500, 5825	VHT20M19S	VHT20M19S
5G-llac	5180, 5320, 5500, 5825	VHT40M0S	VHT40M0S
5G-llac	5180, 5320, 5500, 5825	VHT40M19S	VHT40M19S
5G-llac	5180, 5320, 5500, 5825	VHT80M0N	VHT80M0N
5G-llac	5180, 5320, 5500, 5825	VHT80M19N	VHT80M19N

2.1.2 Modifications

The following modifications were made to the EUT.

 \boldsymbol{A}

The output power of the Bluetooth (BT) transmitter shall be reduced by to 2.5 dB during co-location operation. Operation of BT transmitter during standalone operation (BT only) is not affected.

2.1.3 List of Ports

Craftsman ports are defined by the manufacturer and used for diagnostic and configuration by the manufacturer or installer.

2.1.4 Description of Antenna

The manufacturer's specified antenna gain in excess of 6dBi is used to reduce the overall conducted power limit as applicable in each specified frequency band.

Band	Manu.	Model/PN	Gain	Antenna Type	Connector
2G4	Taoglas	FXP.830.07.0100C	3.32	dipole	IPEX MHF1 (U.FL compatible)
5G/5G8	Taoglas	FXP.830.07.0100C	6.11	dipole	IPEX MHF1 (U.FL compatible)

2.1.5 Directional Gain (Beamforming)

The manufacturer's specified beamforming antenna gain in excess of 6dBi reduces the overall conducted power limit as applicable in each specified frequency band with a corresponding reduction of transmit power. For WiFi devices, beamforming if applicable, transmit signals are assumed to be correlated and the number of independent spatial streams (Nss) is assumed to be 1.

2.1.6 RF Output Power Tune-up Tolerance

The manufacturer has declared tune-up tolerance for the RF output power according to the following table. All measurements have been collected with a calibrated production unit with the RF power adjusted to the maximum output power including tune-up tolerance.

Frequency Band MHz	Manufacturer Declared Tune-up Tolerance dB	Maximum Setpoint Output Power dBm	Adjusted Maximum Output Power including Tune-up Tolerance dBm
2G4(BT)	2.5	13.0	15.5
5G/5G8	1.1	19.0	20.1

Notes: 1. Maximum output power measured reflects data in Appendix D.

^{2.} Output power is adjusted to include tune-up tolerance for all measurements.

2.2 Environmental Conditions

The EUT was operated and tested under the following environmental conditions.

Parameter	Condition
Location	Indoors
Temperature	22 - 28 C
Relative Humidity	39.8 - 54.5%

2.3 Measurement Uncertainty

Parameter	Uncertainty
Radiated Emissions 30MHz-1GHz	±2.40 dB
Radiated Emissions 1GHz-40GHz	±2.48 dB
Radio Frequency	±15 Hz
Total RF Power Conducted	±1.36 dB
Spurious Emissions, Conducted	±1.36 dB
RF Power Density, Conducted	±1.36 dB
Temperature	±1 C
Humidity	±5 %
DC and low frequency voltages	±3 %

2.4 Worst-Case

When appropriate during radiated emissions and/or other testing, worst-case orientation or configuration was determined during exploratory investigation phase. The final radiated emissions or other measurements were then performed in the worst-case orientation or configuration.

Report: E10702-1803-FDS(Intrinsyc,OpenQ 626 SOM) Rev1.2

2.5 Sample Calculations of Emissions Data

Radiated and conducted emissions may be performed using automated measurement software. Correction factors for antenna factor, cable loss, amplifier gain, and other transducer factors are stored in the test templates used to perform measurements. Sample data generated from the automated software consisting of product details, emission plots and final data tables is shown below.

Sample Radiated Emission Table:

Frequency MHz	Quasi-Peak dBµV/m	Meas. Time ms	Bandwidth KHz	Antenna Height cm	Polarity	Turntable position deg	Correction dB	Margin dB	Limit dBµV/m
42.6639	33	1000	120	100	Н	70	13.2	7.5	40.5

The Quasi-Peak/Average reading shown in the table above is corrected by the software using the correction factor shown. An amplifier may be used when required. The correction factor listed is calculated as:

Correction(dB) = Antenna Factor + Cable Loss - Amplifier Gain

The final Quasi-Peak/Average value for radiated emissions is calculated by the automated software using the following equation:

Corrected Quasi-Peak/Average(dBµV/m) = Raw Quasi-Peak/Average + Antenna Factor + Cable Loss - Amplifier Gain Sample Conducted Emission Calculation:

Frequency MHz	Quasi-Peak dBµV	Meas. Time ms	Bandwidth KHz	Correction dB	Margin dB	Limit dBµV
0.15	44.3	1000	9	0.6	21.7	66
Frequency MHz	Average dBµV	Meas. Time ms	Bandwidth KHz	Correction dB	Margin dB	Limit dBµV
0.15	27.2	1000	9	0.6	28.8	56

The Quasi-Peak/Average reading shown in the table above is corrected by the software using the correction factor shown. The correction factor listed is calculated as:

Correction(dB) = Transducer Factor + Cable Loss

The final Quasi-Peak/Average value for radiated emissions is calculated by the automated software using following equation:

Corrected Quasi-Peak/Average(dBµV) = Raw Quasi-Peak/Average + Transducer Factor + Cable Loss

The margin, defined as the distance to the limit specified in the applicable standard is calculated as shown below for both radiated and conducted emissions.

Margin(dB) = Limit - Quasi-Peak/Average Measurement

2.6 List of Test Equipment

The tables below list the equipment used by QAI Laboratories in performing the tests on the Equipment Under Test (EUT). The calibration interval is 3 years or less as defined in the Quality Manual.

Emissions Test Equipment

Manufacturer	Model	Description	Serial No. / Asset	Calibration Due Date
Sunol Sciences	SM46C	Turntable	051204-2	N/A
Sunol Sciences	TWR95	Mast	TREML0001	N/A
Sunol Sciences	JB3	Biconilog Antenna 30M-3G Hz	A120106	2020 Aug 16
ETS Lindgren	2165	Turntable	43677	N/A
ETS Lindgren	2125	Mast	77487	N/A
Rohde & Schwarz	ESU40	EMI Receiver	100011	2019 Dec 1
Fischer	FCC-LISN-50-25-2-08	LISN 150k-30M Hz	2041	2018 Nov 19
ETS Lindgren	S201	5-meter Semi-Anechoic Chamber	1030	N/A
ETS Lindgren	DRH 3117	Horn Antenna lG-18G Hz	75944	2019 Mar 10
AH Systems	PAM118	Amplifier 10k-18G Hz	189	Conditional Use
California Instruments	PACS-1	Harmonics and flicker analyzer	72569	2019 May 23
California Instruments	OMNI 1-18	Programmable Impedance Flicker Analyzer	317113	2017 Oct 19
California Instruments	300lix	Programmable Power Supply	HK52117	2019 May 23

Measurement Software

Manufacturer	Model	Description	Serial No.
Rhode & Schwarz	EMC 32	Emissions Measurement	6.20.0

Report: E10702-1803-FDS(Intrinsyc,OpenQ 626 SOM) Rev1.2

Section III: REQUIREMENTS FOR THE US MARKET (FCC) & THE CANADIAN MARKET (ISED)

3.1 AC Mains Conducted Emissions

This test ensures unintentional RF energy from the Equipment Under Test (EUT) conducted to its power source does not exceed the limits defined in the table below as specified in 15.107 and 15.207, Class B. This prevents the EUT from causing unwanted interference to other electronic devices.

This test is performed in accordance with ANSI C63.4(2014). A Line Impedance Stabilizing Network (LISN) was used to make conducted emissions measurements. Measurements were made by using instrumentation with 9 kHz measurement bandwidth, CISPR quasi-peak and average detector capabilities; measurement instrumentation requirements, including the measurement bandwidths used, are specified in CISPR 16-1-1.

The EUT was operated 120V/60Hz while in 'Continuous Mode' of operation.

Limit		
Quasi-Peak dBµV	Average dBµV	
66 - 56 *	56 - 46 *	
56	46	
60	50	
	Quasi-Peak dBμV 66 - 56 *	

Notes: 1, The lower limit shall apply at the transition frequencies.

*Decreases linearly with the logarithm of the frequency.

 $The EUT was tested without modification on March 10, 2019 \ and complies with Class B of 15.107 \ and 15.207.$

Refer to Appendix A for AC Mains Conducted Emissions data.

Report: E10702-1803-FDS(Intrinsyc,OpenQ 626 SOM) Rev1.2

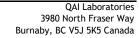
3.2 Radiated Spurious Emissions

This test ensures the unintentional RF energy emitted (radiated) from the Equipment Under Test (EUT) does not exceed the limits defined in the table below as specified in 15.109 and 15.209, Class B. This prevents the EUT from causing unwanted interference to other electronic devices.

This test is performed in accordance with ANSI C63.4(2014).

The EUT was operated at 120V/60Hz while in 'Continuous Mode' of operation. All cables over 1 meter length were bundled and retained from the floor. Preliminary measurements were performed in the 3m Semi Anechoic Chamber (SAC) while final measurements were performed at the 10m Open Air Test Site (OATS) if required.

The device incorporates a "digital device" and applicable receive mode (RX) limits also apply.


The device includes co-location of transmitters, transmit mode (TX) limits are applicable while all transmitters are operating unless RF transmission of each device is exclusive. Preliminary investigation of intermodulation of transmitters to determine worst-case has been performed and final measurements for transmit mode have been performed independently and during simultaneous worst-case transmission of all devices.

	Field Strength Limit at 3m		
Frequency MHz	Quasi-Peak µV/m	Quasi-Peak dBuV/m	
0.009 - 0.490	2400/F(kHz) (*1)	128.5 - 93.8	
0.490 - 1.705	24000/F(kHz) (*1)	73.8 - 63.0	
1.705 - 30	30 (*2)	69.5	
30 - 88	100	40.0	
88 - 216	150	43.5	
216 - 960	200	46.0	
Above 960	500	54.0	

Notes:

- 1. Measurement distance of 300m.
- 2. Measurement distance of 30m.
- 3. The lower limit shall apply at the transition frequencies.
- 4. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector of 200Hz for 9k-150k Hz, 9kHz for 150k-30M Hz, and 120kHz for 30M-1G Hz except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000M Hz. Radiated emission limits in these three bands are based on measurements employing an average detector. CISPR average detector of 300Hz for 9k-150k Hz, and 30kHz for 150k-30M Hz, 300kHz for above 1G Hz.

#

	Field Strengt	Field Strength Limit at 3m		
Frequency MHz	Quasi-Peak μV/m	Quasi-Peak dΒμV/m		
30 - 88	100	40.0		
88 - 216	150	43.5		
216 - 960	200	46.0		
Above 960	500	54.0		

Emissions in both horizontal and vertical planes (polarizations) were measured while rotating the EUT on the turntable to maximize signal strength. In the case of high ambient noises, the measurements are performed at a closer distance and the limit is adjusted using the equation below to ensure compliance.

20 Log (d1/d2);

Where d1 = New distance d2 = Required distance

The EUT was tested with the following modification on March 10, 2019 and complies with Class B of 15.109 and 15.209. MODIFICATION:

Á

The output power of the Bluetooth (BT) transmitter shall be reduced by to 2.5 dB during co-location operation. Operation of BT transmitter during standalone operation (BT only) is not affected.

Refer to Appendix B for Radiated Spurious Emissions data.

QAI Laboratories 3980 North Fraser Way Burnaby, BC V5J 5K5 Canada

3.3 Conducted Spurious Emissions

This test ensures the RF peak power output of the Equipment Under Test (EUT) does not exceed the limits as specified in 15.407(a)(1)(2)(3)(4), RSS-247 for unlicensed National Information Infrastructure (U-NII) devices operating in the 5.15-5.35 GHz, 5.47-5.725 GHz and 5.725-5.850 GHz bands.

The EUT was operated at 120V/60Hz while in 'continuous transmit mode'. The test was performed as defined by the standards above with the antenna port of the EUT directly connected to a spectrum analyzer or power meter.

For transmitters operating in the 5.15-5.25 GHz, 5.25-5.35 GHz, 5.47-5.725 bands, all emissions outside of the specified band EIRP shall be less than -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band, all emissions shall be less than -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

The device includes co-location of transmitters and transmit mode (TX) limits are applicable while all transmitters are operating unless RF transmission of each device is exclusive. Preliminary investigation of intermodulation of transmitters to determine worst-case has been performed and final measurements for transmit mode have been performed independently and during simultaneous worst-case transmission of all devices.

The EUT was tested without modification on March 1, 2019 and complies.

Refer to Appendix C for Conducted Spurious Emissions data.

QAI Laboratories 3980 North Fraser Way Burnaby, BC V5J 5K5 Canada

3.4 Antenna Requirement

This requirement ensures no other antenna except as provided by the manufacturer shall be used with the Equipment Under Test (EUT) as defined in CFR 47 FCC Part 15.203, RSS-Gen Issue 5.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§ 15.211, 15.213, 15.217, 15.219, 15.221, or § 15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

The manufacturer declares the EUT complies on March 10, 2019.

QAI Laboratories 3980 North Fraser Way Burnaby, BC V5J 5K5 Canada

3.5 RF Peak Power Output

This test ensures the RF peak power output of the Equipment Under Test (EUT) does not exceed the limits as specified in 15.407(a)(1)(2)(3)(4), ICES-003 Issue 6 for unlicensed National Information Infrastructure (U-NII) devices operating in the 5.15-5.35 GHz, 5.47-5.725 GHz and 5.725-5.850 GHz bands.

The EUT was operated at 120V/60Hz while in 'continuous transmit mode'. The test was performed as defined by the standards above with the antenna port of the EUT directly connected to a spectrum analyzer or power meter. If necessary, duty cycle plots are used to establish correction for non-continuous operation.

For systems operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

The RF peak output power or EIRP is calculated using the maximum conducted output power increased by the directional antenna gain. The conducted RF peak output power is also corrected for duty cycle to provide the maximum transmit power.

Directional Antenna Gain (beamforming) reduces the power limit for directional antenna gains over 6dBi.

The EUT was tested without modification on March 16, 2019 and complies with 15.407(a)(1)(2)(3)(4), RSS 247 Issue 2, ICES-003 Issue 6.

Refer to Appendix D for RF Peak Power Output data. Refer to Appendix E for Duty Cycle Correction data.

QAI Laboratories 3980 North Fraser Way Burnaby, BC V5J 5K5 Canada

3.6 Power Spectral Density

This test ensures the RF peak power output of the Equipment Under Test (EUT) does not exceed the limits as specified in 15.407(a)(1)(2)(3)(4), RSS-247 for systems unlicensed National Information Infrastructure (U-NII) devices operating in the 5.15-5.35 GHz, 5.47-5.725 GHz and 5.725-5.850 GHz bands.

The EUT was operated at 120V/60Hz while in 'continuous transmit mode'. The test was performed as defined by the standards above with the antenna port of the EUT directly connected to a spectrum analyzer or power meter.

For systems operating in the band 5.15-5.25 GHz, the the maximum power spectral density shall not exceed +17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed +11 dBm in any 1 megahertz band.

For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed +30 dBm in any 500-kHz band. Fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.

The EUT was tested without modification on March 16, 2019 and complies with 15.407(a)(1)(2)(3)(4), RSS 247 Issue 2, ICES-003 Issue 6.

Refer to Appendix F for Power Spectral Density data.

QAI Laboratories 3980 North Fraser Way Burnaby, BC V5J 5K5 Canada

3.7 Occupied Bandwidth

This test ensures the OBW of the Equipment Under Test (EUT) does not exceed the limits as specified in 15.407(a)(1)(2)(3)(4), RSS-247, RSS-Gen Issue 5 - 6.6 for unlicensed National Information Infrastructure (U-NII) devices operating in the 5.15-5.35 GHz, 5.47-5.725 GHz and 5.725-5.850 GHz bands.

The test was conducted as defined by the standards above with the antenna port of the EUT directly connected to a spectrum analyzer. The 99% bandwidth was measured under the following circumstances.

The transmitter shall be operated at its maximum carrier power measured under normal test conditions. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately 3x RBW.

The EUT was tested without modification on March 16, 2019 and complies with 15.407(a)(1)(2)(3)(4), RSS 247 Issue 2, ICES-003 Issue 6.

Refer to Appendix F for Occupied Bandwidth data.

Report: E10702-1803-FDS(Intrinsyc,OpenQ 626 SOM) Revl.2

3.8 Mask, Out-of-Band Emissions (Band Edge)

This test ensures the Out-of-Band Emissions (Band Edge) of the Equipment Under Test (EUT) does not exceed the limits as specified in 15.407(a)(1)(2)(3)(4), RSS-247 unlicensed National Information Infrastructure (U-NII) devices operating in the 5.15-5.35 GHz, 5.47-5.725 GHz and 5.725-5.850 GHz bands.

The EUT was operated at 120V/60Hz while in 'continuous transmit mode'. The test was performed as defined by the standards above with the antenna port of the EUT directly connected to a spectrum analyzer or power meter.

For transmitters operating in the 5.15-5.25 GHz, 5.25-5.35 GHz, 5.47-5.725 bands, all emissions outside of the specified band EIRP shall be less than -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band, all emissions shall be less than -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits specified.

For conducted measurements above 1000 MHz within the restricted bands, the EIRP[dBm] shall be measured and then field strength E[dBuV/m] shall be calculated (see KDB Publication 789033 D02).

 $E[dB\mu V/m] = EIRP[dBm] - 20 log (d[meters]) + 104.77 + A[dB]$

where: E = field strength

d = distance at which field strength limit is specified in the rules A[dB] = 2TX CDD Directional Gain (Beamforming) in excess of 6 dBi

The EUT was tested without modification on March 16, 2019 and complies with 15.407(a)(1)(2)(3)(4), RSS 247 Issue 2, ICES-003 Issue 6.

Refer to Appendix F for Out-of-Band Emissions (Bandedge) data.

Report: E10702-1803-FDS(Intrinsyc,OpenQ 626 SOM) Revl.2

3.9 Frequency Stability

This requirement ensures the emission bandwidth remains in-band as defined in CFR 47 FCC Part 15.407, 15.205, 15.209(a), RSS 247 Issue 2.

The frequency stability shall be measured with variation of ambient temperature from -30° to + 50° centigrade for all equipment or as specified by the manufacturer. Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. Alternatively, the manufacturer's specified temperature range shall be used.

The frequency stability shall be measured with variation of primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment. For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

With the transmitter installed in an environment test chamber, the unmodulated carrier frequency shall be measured at temperatures of -30° C, $+20^{\circ}$ C and $+50^{\circ}$ C, at the manufacturer's rated supply voltage or at a temperature of $+20^{\circ}$ C and at ±15 percent of the manufacturer's rated supply voltage.

Transmitter frequency stability for licence-exempt radio apparatus shall be measured in accordance with Section 6.11. For licence-exempt radio apparatus, the frequency stability shall be measured at temperatures of ~20°C (~4°F), +20°C (+68°F) and +50°C (+122°F) instead of at the temperatures specified in Section 6.11. If the frequency stability of the licence-exempt radio apparatus is not specified in the applicable standard (RSS), measurement of the frequency stability is not required provided that the occupied bandwidth of the licence-exempt radio apparatus lies entirely outside the restricted bands and the prohibited TV bands of 54-72 MHz, 76-88 MHz, 174-216 MHz, 470-608 MHz and 614-806 MHz.

The EUT was tested without modification on March 10, 2019 and complies.

Refer to Appendix G for Frequency Stability data.

Report: E10702-1803-FDS(Intrinsyc,OpenQ 626 SOM) Rev1.2

3.11 RF Exposure Evaluation

This requirement ensures the Equipment Under Test (EUT) complies with the RF exposure requirements of CFR 47 FCC Part 1.131, RSS-102 Issue 5, Annex A, 9(d).

FCC Part 1.1310 defines radio frequency radiation exposure limits for General Population/Uncontrolled Exposure within frequency range 1500 - 100,000 MHz: as 1.0 mW/cm^2.

RSS-102 Section 2.5.2 defines RF exposure evaluation as required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates at or above 300 MHz and below 6 GHz, the source-based, time-averaged maximum EIRP of the device is equal to or less than 1.31 x $10-2 \, f^0.6834 \, \text{W}$ (adjusted for tune-up tolerance), where f is in MHz. In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the EIRP was derived.

RF Exposure Limits

Band	Worst-Case (Lowest) Frequency in Band MHz	RSS-102-2.5.2 Power Density Limit at 20 cm mW/cm^2	CFR 47 FCC 1.1310 Power Density Limit at 20 cm mW/cm^2
UNII-1	5150	4.5	1.0
UNII-2A	5250	4.6	1.0
UNII-2C	5470	4.7	1.0
UNII-3	5725	4.8	1.0

RF Exposure Evaluation

Power Density $(mW/cm^2) = EIRP(mW) / (4 * PI * r^2)$

Band	Highest Measured Conducted Power dBm	Antenna Gain dBi	EIRP mW	Power Density at 20 cm mW/cm^2
UNII-1	20.1	6.11	421.2	0.084
UNII-2A	20.1	6.11	421.2	0.084
UNII-2C	20.1	6.11	421.2	0.084
UNII-3	20.1	6.11	421.2	0.084

In all cases, the Power Density reported is significantly less than the applicable limits.

The measurements and calculations for RF Exposure were performed on March 5, 2019 and the EUT complies with CFR 47 FCC Part 1.131 and RSS-102 Issue 5, Annex A, 9(d).

3.12 Modular Transmitters

This requirement ensures modular device requirements as declared by manufacturer and defined in CFR 47 FCC Part 15.212 and Radio Standards Procedure RSP-100, Certification of Radio Apparatus are met.

Single modular transmitters consist of a completely self-contained radio frequency transmitter device that is typically incorporated into another product, host or device. Split modular transmitters consist of two components: a radio front end with antenna (or radio devices) and a transmitter control element (or specific hardware on which the software that controls the radio operation resides). All single or split modular transmitters are approved with an antenna.

Single modular transmitters must meet the following requirements to obtain a modular transmitter approval. The radio elements of the modular transmitter must have their own shielding. The physical crystal and tuning capacitors may be located external to the shielded radio elements. The modular transmitter must have buffered modulation/data inputs (if such inputs are provided) to ensure that the module will comply with part 15 requirements under conditions of excessive data rates or over-modulation. The modular transmitter must have its own power supply regulation.

The modular transmitter must be tested in a stand-alone configuration, i.e., the module must not be inside another device during testing for compliance with part 15 requirements. Unless the transmitter module will be battery powered, it must comply with the AC line conducted requirements found in § 15.207. AC or DC power lines and data input/output lines connected to the module must not contain ferrites, unless they will be marketed with the module (see § 15.27(a)). The length of these lines shall be the length typical of actual use or, if that length is unknown, at least 10 centimeters to ensure that there is no coupling between the case of the module and supporting equipment. Any accessories, peripherals, or support equipment connected to the module during testing shall be unmodified and commercially available (see § 15.31(i)).

The manufacturer has declared compliance with the requirements for a SINGLE modular transmitter on March 10, 2019.

3.13 Dynamic Frequency Selection Requirements

This procedure ensures the Equipment Under Test (EUT) complies with the requirements for Dynamic Frequency Selection (DFS) as defined in CFR 47 FCC Part 15.407(h), 15.407(i), and RSS 247 Issue 2.

This test is performed in accordance with KDB 905462 D02 v02 - UNII DFS Compliance Procedures New Rules. Either conducted or radiated tests may be performed. A temporary antenna connector may be used to facilitate conducted tests for equipment with an integral antenna. One operating channel (frequency) is selected within the 5250-5350 MHz or 5470-5725 MHz band for the tests.

Table 3.13.1: DFS Requirements Prior to Use of a Channel

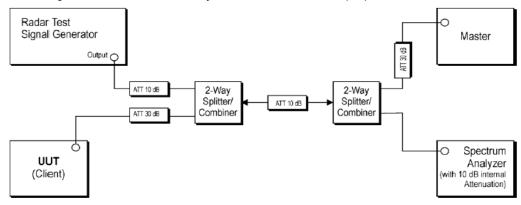
Requirement	Master Device	Client Without Radar Detection	Client With Radar Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Yes
U-NII Detection Bandwidth	Yes	Not required	Yes

Table 3.13.2: DFS Requirements Prior to Use of a Channel

Requirement	Master Device or Client With Radar Detection	Client Without Radar Detection	Limit
DFS Detection Threshold	Yes	Not required	see KDB 905462 D02
Channel Closing Transmission Time	Yes	Yes	10 sec
Channel Move Time	Yes	Yes	200 msec + 60 msec over 10 sec period
U-NII Detection Bandwidth	Yes	Not required	see KDB 905462 D02

QAI Laboratories 3980 North Fraser Way Burnaby, BC V5J 5K5 Canada

Table 3.13.3: DFS Requirements Prior to Use of a Channel


Requirement	Master Device or Client With Radar Detection	Client Without Radar Detection	
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required	
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link	
All other tests	Any single BW mode	Not required	

Manufacturer has declared device as Client Device without rader detection capability. Required tests consist of Channel Closing Transmission (CCT) and Channel Move Time (CMT) at the widest bandwidth mode available for the RF link.

After a radar's presence is detected, all transmissions on the operating channel shall cease within 10 seconds (Channel Move Time).

Transmissions during the Channel Move Time shall consist of normal traffic for a maximum of 200 ms after detection of the radar signal and intermittent management and control signals to facilitate vacating the operating channel. The aggregate management and control signals cannot exceed an (additional) 60 msec (Channel Closing Transmission).

Figure 3.13.1: DFS Setup - Conducted Test with Injection at Master Device (AE).

All U-NII devices must contain security features to protect against modification of software by unauthorized parties. Manufacturers must implement security features in any digitally modulated devices capable of operating in any of the U-NII bands, so that third parties are not able to reprogram the device to operate outside the parameters for which the device was certified. The software must prevent the user from operating the transmitter with operating frequencies, output power, modulation types or other radio frequency parameters outside those that were approved for the device. Manufacturers may use means including, but not limited to the use of a private network that allows only authenticated users to download software, electronic signatures in software or coding in hardware that is decoded by software to verify that new software can be legally loaded into a device to meet these requirements and must describe the methods in their application for equipment authorization.

Manufacturers must take steps to ensure that DFS functionality cannot be disabled by the operator of the U-NII device.

The EUT was tested without modification on March 27, 2019 and complies.

Refer to Appendix I for Dynamic Frequency Selection Requirements data.

3.14 Transmit Power Control Requirements

Transmit power control (TPC). U-NII devices operating in the 5.25-5.35 GHz band and the 5.47-5.725 GHz band shall employ a TPC mechanism. The U-NII device is required to have the capability to operate at least 6 dB below the mean EIRP value of 30 dBm. A TPC mechanism is not required for systems with an EIRP of less than 500 mW or +27dBm.

The EUT was evaluated without modification on March 27, 2019. The EIRP of the EUT is less than +27dBm; transmit power control (implemented by software arbitration of link quality) is not required.

Report: E10702-1803-FDS(Intrinsyc,OpenQ 626 SOM) Rev1.2

Appendix A: CONDUCTED EMISSIONS DATA

Figure Al: AC Mains Conducted Emissions for FCC/ISED 120V/60H - RX - L1

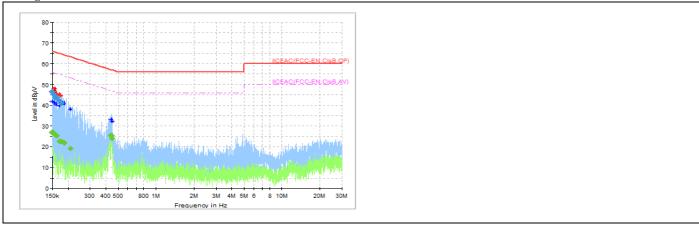


Table A1-1: Quasi-Peak Data AC Mains Conducted Emissions for FCC/ISED 120V/60H - RX - L1

Frequency MHz	*	Meas. Time msec	Bandwidth kHz	Line	Correction dB	Limit dBµV	Margin dB			
0.150450	46.5	1000	9	Ll	12.0	66.0	19.5	PASS		
		1000	9	L1			0.0	PASS		
		1000	9	L1			0.0	PASS		
		1000	9	L1			0.0	PASS		
Notes: 1.	1. Peak data may be compared to average limit.									
2.	Emissions above no	ise floor or within 20d	lB of limit are report	ed.						

Table A1-2: Average Data AC Mains Conducted Emissions for FCC/ISED 120V/60H - RX - L1

	Frequency MHz	Average dBµV	Meas. Time msec	Bandwidth kHz	Line	Correction dB	Limit dBµV	Margin dB			
N	No emissions found within 20dB of limit.										
	Notes: 1. Peak data may be compared to average limit.										
	2.	2. Emissions above noise floor or within 20dB of limit are reported.									

Figure A2: AC Mains Conducted Emissions for FCC/ISED 120V/60H - RX - L2

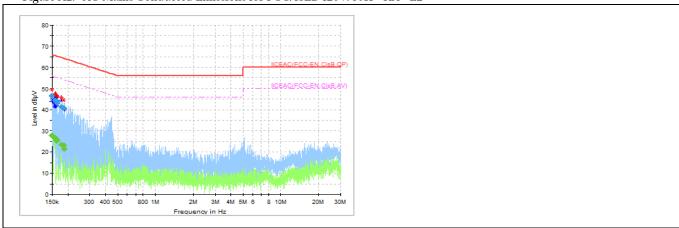


Table A2-1: Quasi-Peak Data AC Mains Conducted Emissions for FCC/ISED 120V/60H - RX - L2

Frequency MHz	Quasi-Peak dBµV	Meas. Time msec	Bandwidth kHz	Line	Correction dB	Limit dBµV	Margin dB			
0.150601	46.6	1000	9	L2	12.0	66.0	19.4	PASS		
		1000	9	L2			0.0	PASS		
		1000	9	L2			0.0	PASS		
		1000	9	L2			0.0	PASS		
Notes: 1.	Peak data may be compared to average limit.									
2.	Emissions above noi	se floor or within 20	lB of limit are report	ed.						

, , , , ,

Table A2-2: Average Data AC Mains Conducted Emissions for FCC/ISED 120V/60H - RX - L2

Frequency MHz	Average dBµV	Meas. Time msec	Bandwidth kHz	Line	Correction dB	Limit dBµV	Margin dB			
No emissions for	No emissions found within 20dB of limit.									
Notes: 1. Peak data may be compared to average limit. 2. Emissions above noise floor or within 20dB of limit are reported.										

Report: E10702-1803-FDS(Intrinsyc,OpenQ 626 SOM) Rev1.2

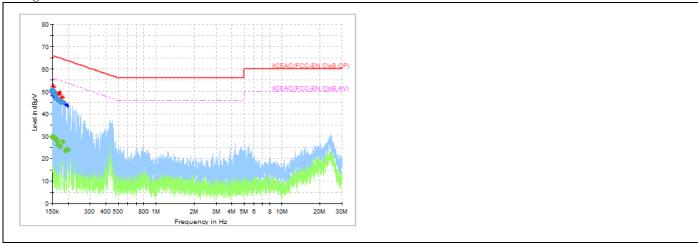


Table A3-1: Quasi-Peak Data AC Mains Conducted Emissions for FCC/ISED 120V/60H - TX Worst-Case - L1

Frequency MHz	Quasi-Peak dBµV	Meas. Time msec	Bandwidth kHz	Line	Correction dB	Limit dBµV	Margin dB	
0.150450	46.5	1000	9	Ll	12.0	66.0	19.5	PASS
		1000	9	L1			0.0	PASS
		1000	9	L1			0.0	PASS
		1000	9	Ll			0.0	PASS
Notes: 1.	Peak data may be co	mpared to average li	mit.					•

Emissions above noise floor or within 20dB of limit are reported.

Table A3-2: Average Data AC Mains Conducted Emissions for FCC/ISED 120V/60H - TX - Worst-Case - L1

Frequency MHz	Average dBµV	Meas. Time msec	Bandwidth kHz	Line	Correction dB	Limit dBµV	Margin dB				
No emissions found within 20dB of limit.											
Notes: 1											

2. Emissions above noise floor or within 20dB of limit are reported.



Table A4-1: Quasi-Peak Data AC Mains Conducted Emissions for FCC/ISED 120V/60HC

Frequency MHz	Quasi-Peak dBµV	Meas. Time msec	Bandwidth kHz	Line	Correction dB	Limit dBµV	Margin dB				
0.150601	46.6	1000	9	L2	12.0	66.0	19.4	PASS			
		1000	9	L2			0.0	PASS			
		1000	9	L2			0.0	PASS			
		1000	9	L2			0.0	PASS			
Notes: 1.	Notes: 1. Peak data may be compared to average limit.										

2. Emissions above noise floor or within 20dB of limit are reported.

Table A4-2: Average Data AC Mains Conducted Emissions for FCC/ISED 120V/60H - Worst-Case - L2

	- 0			•						
Frequency MHz	Average dBµV	Meas. Time msec	Bandwidth kHz	Line	Correction dB	Limit dBµV	Margin dB			
No emissions for	No emissions found within 20dB of limit.									
Notes: 1.	Notes: 1. Peak data may be compared to average limit.									
2.	Emissions above not	ise floor or within 20	dB of limit are reports	ed.						

Appendix B: RADIATED EMISSIONS DATA

Figure Bl: Radiated Emissions 30M-IG Hz for FCC/ISED - RX

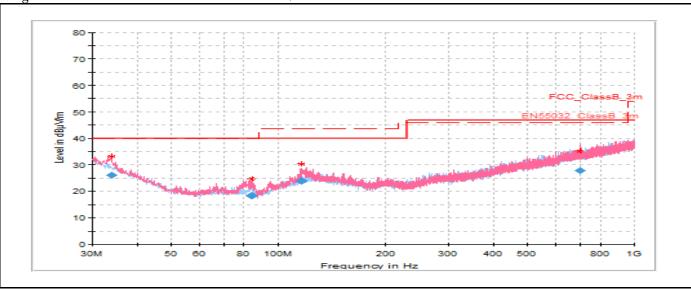
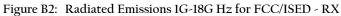



Table B1-1: Radiated Emissions 30M-1G Hz Data for FCC/ISED - RX

Frequency MHz	Quasi-Peak dBµV	Meas. Time ms	Bandwidth KHz	Polarity	Correction dB	Margin dB	Limit dBµV/m	
33.992	26.1	1000	120	VERT	25.7	13.9	40.0	PASS
84.464	18.2	1000	120	VERT	16.2	21.8	40.0	PASS
115.776	24.0	1000	120	VERT	21.1	19.5	43.5	PASS
700.137	27.8	1000	120	VERT	30.7	18.2	46.0	PASS

Peak data may be compared to quasi-peak limit. 2. Emissions above noise floor are reported.

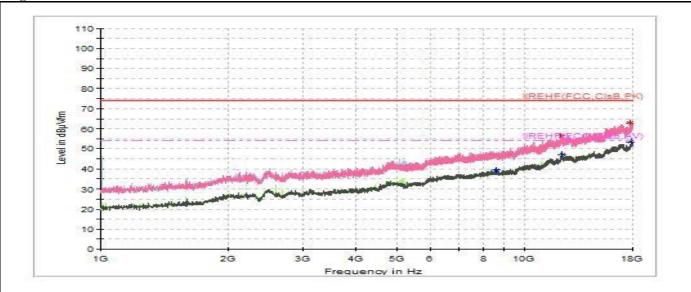
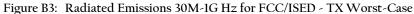



Table B2-1: Radiated Emissions IG-18G Hz Data for FCC/ISED - RX

Frequency MHz	Peak dBµV/m	Average dBµV/m	Meas. Time ms	Bandwidth Hz	Polarity	Correction dB	Margin dB	Limit dBµV/m	
No emissions found above measurement noise floor.									
Notes: 1. Peak data may be compared to average limit. 2. Emissions above noise floor are reported.									

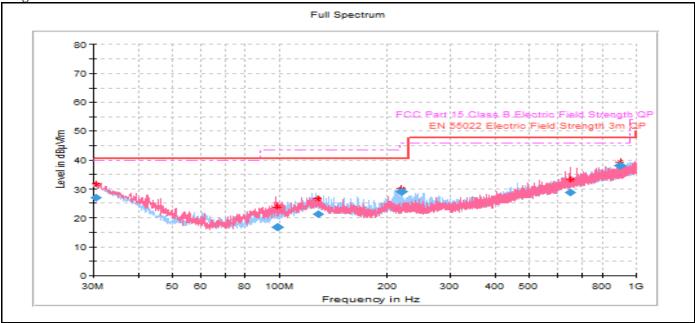


Table B3-1: Radiated Emissions 30M-1G Hz Data for FCC/ISED - TX Worst-Case

Frequency MHz	Quasi-Peak dBµV	Meas. Time ms	Bandwidth KHz	Polarity	Correction dB	Margin dB	Limit dBµV/m	
30.621	27.0	1000	120	VERT	25.4	29.3	40.0	PASS
98.960	16.9	1000	120	VERT	18.3	17.1	43.5	PASS
128.595	21.3	1000	120	HORZ	20.2	21.2	43.5	PASS
219.363	29.1	1000	120	HORZ	34.2	19.1	46.0	PASS
653.678	28.8	1000	120	VERT	34.2	29.0	46.0	PASS
896.019	38.0	1000	120	HORZ	34.2	32.2	46.0	PASS

Notes 1. Peak data may be compared to quasi-peak limit.

^{2.} Emissions above noise floor are reported.

^{3.} Transmit mode emission sweeps including co-location if applicable were performed using test configuration matrix to determine worst-case (section 2.1).

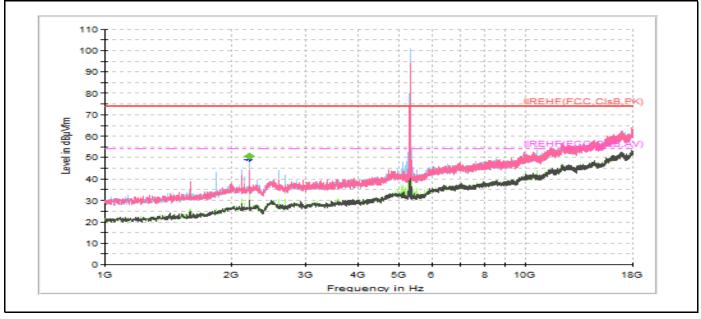


Table B4-1: Radiated Emissions 1G-18G Hz Data for FCC/ISED - TX Worst-Case

Frequency MHz	Peak dBµV/m	Average dBµV/m	Meas. Time ms	Bandwidth Hz	Polarity	Correction dB	Margin dB	Limit dBµV/m	
5825			1000	1M	VERT	-4.5			TX
1597.1956		33.6	1000	1M	VERT	-0.2	20.4	54.0	PASS
2210.0124		52.8	1000	1M	HORZ	-0.1	1.2	54.0	PASS

Notch filter used to remove fundamental for 2.4G, fundamental at 5G8 shown.

The worst-case mode for co-located transmitters was determined to be Bluetooth(BTDH5) and 802.11n Co-location Worst-case: (HT40MS0) operating in 5G8 band at 5825MHz.

Emissions above noise floor are reported; emissions less 20dBc are not reported.

Transmit mode emission sweeps including co-location if applicable were performed using test configuration matrix to determine worst-case (section 2.1).

UH

Appendix C: SPURIOUS CONDUCTED EMISSIONS DATA

Figure C1: Spurious Conducted Emissions for FCC/ISED - TX(2G4/5G/5G8), Worst-Case(lla/n/ac)

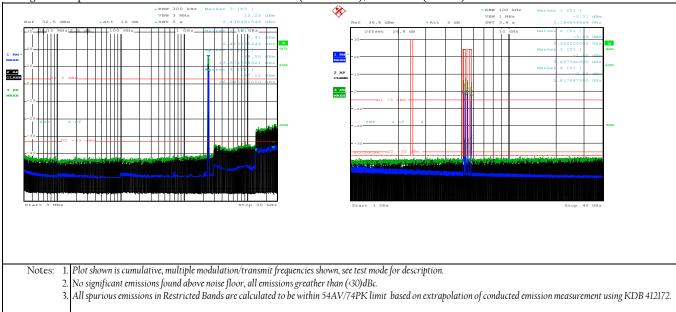
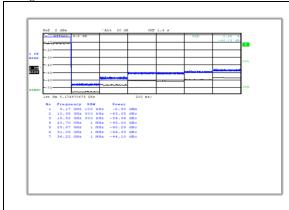
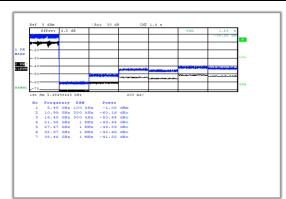




Figure C2: Harmonic Conducted Emissions for FCC/ISED - TX(5G/5G8) - Sample

Notes: 1. Typical measurement shown.

2. All harmonic emissions greater than 30dBc.

LABORATORIES

 $Table \ C2: \ \ Conducted \ Harmonic \ Emissions \ for \ FCC/ISED - TX (5G/5G8), \ Worst-Case (lla/n/ac)$

Frequency MHz	H2	НЗ	Н4	H5	Н6	Н7				
5180	53	44	38	39	37	35	-	-	-	lla-xHT
5320	55	45	39	37	36	34	2	-	-	lla-xHT
5500	54	44	38	39	35	36	~	-	-	lla-xHT
5825	54	44	38	37	35	0	2	-	-	lla-xHT
5180	52	43	37	38	36	34	-	-	-	lln-HT20M
5320	55	45	39	37	36	34	-	-	-	lln-HT20M
5500	53	43	37	39	35	36	-	-	-	lln-HT20M
5825	53	43	37	36	34	0	-	-	-	lln-HT20M
5180	46	37	36	36	33	34	-	-	-	lln-HT40M
5320	55	45	39	37	36	34	-	-	-	lln-HT40M
5500	53	42	42	40	40	36	-	-	-	lln-HT40M
5825	54	44	37	37	35	0	-	2	-	lln-HT40M
5180	52	43	37	39	37	36	-	-	-	llac-VHT20M
5320	53	44	37	35	34	32	-	-	-	llac-VHT20M
5500	54	44	38	39	35	36	-	-	-	llac-VHT20M
5825	54	44	38	38	36	0	-	-	-	llac-VHT20M
5190	48	39	38	38	36	34	-	-	-	llac-VHT40M
5310	50	40	39	36	35	34	-	-	-	llac-VHT40M
5510	51	39	38	39	36	36	-	-	-	llac-VHT40M
5815	56	46	39	38	37	0	~	-	-	llac-VHT40M
5230	54	45	42	41	37	39	~	-	-	llac-VHT80M
5290	53	44	38	36	34	33	-	-	-	llac-VHT80M
5610	58	47	41	40	37	37	~	-	-	llac-VHT80M
5795	54	44	42	41	39	0	~	-	-	llac-VHT80M

Notes: 1. All harmonic content is less than 30dBc.

^{2.} Measurement above 40GHz is not required for harmonic content.

^{3.} Harmonic emissions for 11a were measured at both high and low data rates and worst-case data reported.

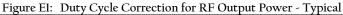
^{4.} Harmonic emissions for 11n, 11ac were measured at both high and low data rates at each of two modulation modes and worst-case data reported.

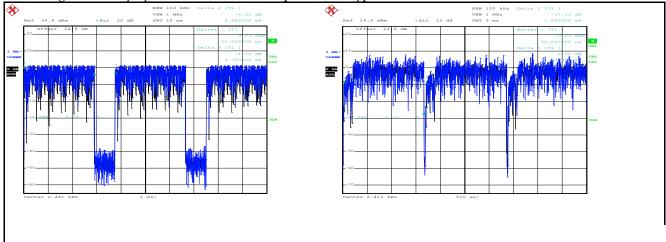
E+C39xample measurement case: 11n-HT-40M - HT40M-MCS0(13M5), HT40M-MCS7(135M), HT40M-MCS0(15M), HT40M-MCS7(150M).

Appendix D: CONDUCTED RF OUTPUT POWER & EIRP DATA

Table D2: RF Conducted Output Power Maximum (Worst-Case), Corrected for Duty Cycle & EIRP - FCC/ISED - 5G/5G8

· · · · · · · · · · · · · · · · · · ·			1110111 (0100	0000), 00					· · · · · · · · · · · · · · · · · · ·
Band	UNII-1/2A/2C/3 5G/5G8 Frequency LO/HI MHz	Output Power Watt	Antenna Gin dBi	Output Power mW	Output Power dBm	EIRP dBm	EIRP Limit dBm	Margin dB	
UNII-1(Client)	5180, 5240	0.08913	6.11	89.1	19.5	25.6	35.9	10.3	PASS
UNII-2A	5260, 5320	0.10316	6.11	103.2	20.1	26.2	29.9	3.6	PASS
UNII-2C	5500, 5700	0.09978	6.11	99.8	20.0	26.1	29.9	3.8	PASS
UNII-3	5745, 5825	0.09159	6.11	91.6	19.6	25.7	36.0	10.3	PASS
Band	UNII-1/2A/2C/3 5G/5G8 Frequency Bands MHz	Modulation			Output Power dBm	Limit dBm	Margin dB		Max Output Power dBm
5G-11a	UNII-1 - 5180M	xHT6MxHT54N	Л		19.5	24.0	4.5	PASS	19.5
5G-lln(20M)	UNII-1 - 5180M	HT20M0-L/HH	T20M19-L/H		19.0	24.0	5.0	PASS	
5G-lln(40M)	UNII-1 - 5180M	HT40M0-L/HH	T40M19-L/H		19.3	24.0	4.7	PASS	
5G-11ac(20M)	UNII-1 - 5180M	VHT20M0-L/H	VHT20M7-L/H		19.1	24.0	4.9	PASS	
5G-11ac(40M)	UNII-1 - 5180M	VHT40M0-L/H	VHT40M0-L/HVHT40M7-L/H			24.0	4.7	PASS	
5G-11ac(80M)	UNII-1 - 5180M	VHT80M0-L/H	VHT80M7-L/H		19.0	24.0	5.0	PASS	
5G-lla	UNII-2A - 5320M	xHT6MxHT54N	xHT6MxHT54M			24.0	3.9	PASS	20.1
5G-lln(20M)	UNII-2A - 5320M	HT20M0-L/HH	T20M19-L/H		19.6	24.0	4.4	PASS	
5G-lln(40M)	UNII-2A - 5320M	HT40M0-L/HH	T40M19-L/H		19.7	24.0	4.3	PASS	
5G-11ac(20M)	UNII-2A - 5320M	VHT20M0-L/H	VHT20M7-L/H		19.6	24.0	4.4	PASS	
5G-11ac(40M)	UNII-2A - 5320M	VHT40M0-L/H	VHT40M7-L/H		19.5	24.0	4.5	PASS	
5G-11ac(80M)	UNII-2A - 5320M	VHT80M0-L/H	VHT80M7-L/H		19.2	24.0	4.8	PASS	
5G-lla	UNII-2C - 5500M	xHT6MxHT54N	Л		19.2	24.0	4.8	PASS	20.0
5G-lln(20M)	UNII-2C - 5500M	HT20M0-L/HH	T20M19-L/H		19.7	24.0	4.3	PASS	
5G-lln(40M)	UNII-2C - 5500M	HT40M0-L/HH	T40M19-L/H		19.8	24.0	4.2	PASS	
5G-11ac(20M)	UNII-2C - 5500M	VHT20M0-L/H	VHT20M7-L/H		19.9	24.0	4.1	PASS	
5G-11ac(40M)	UNII-2C - 5500M	VHT40M0-L/H	VHT40M7-L/H		20.0	24.0	4.0	PASS	
5G-11ac(80M)	UNII-2C - 5500M	VHT80M0-L/HVHT80M7-L/H			19.8	24.0	4.2	PASS	
5G-lla	UNII-3 - 5825M	xHT6MxHT54N	xHT6MxHT54M			30.0	11.8	PASS	19.6
5G-lln(20M)	UNII-3 - 5825M	HT20M0-L/HHT20M19-L/H			19.0	30.0	11.0	PASS	
5G-lln(40M)	UNII-3 - 5825M	HT40M0-L/HHT40M19-L/H			18.6	30.0	11.4	PASS	
5G-11ac(20M)	UNII-3 - 5825M	VHT20M0-L/HVHT20M7-L/H			18.8	30.0	11.2	PASS	
5G-11ac(40M)	UNII-3 - 5825M	VHT40M0-L/H	VHT40M0-L/HVHT40M7-L/H			30.0	11.3	PASS	
5G-11ac(80M)	UNII-3 - 5825M	VHT80M0-L/H	VHT80M7-L/H		19.6	30.0	10.4	PASS	
Notes: 1.	Reported Output Power dBm inclu	ıdes duty cycle corre	ction (Appendix E)	for specific mod	ulation to be det	ermined as wors	t-case.		


Reported Output Power dBm includes duty cycle correction (Appendix E) for specific
 EIRP limit is reduced by the amount the antenna exceeds 6dBi.



Appendix E: DUTY CYCLE CORRECTION DATA

Table El: Duty Cycle Correction for RF Output Power

Frequency MHz	Modulation	Frequency MHz	T2 (OFF) usec or msec	T1 (ON+OFF) usec or msec	Duty Cycle dB	Max Duty Cycle dB
5G lla	xHT6M	5230	2700	2722	0.04	0.26
5G lla	xHT54M	5230	326	346	0.26	
5G-lln-20M	H20MCS0S(6M5)	5230	2512	2532	0.03	0.29
5G-11n-20M	H20MCS7S(65M)	5230	290	304	0.20	
5G-11n-20M	H20MCS0N(7M2)	5230	2266	2280	0.03	
5G-11n-20M	H20MCS7N(72M)	5230	262	280	0.29	
5G-llac-20M	V20(MS0)	5230	999.6	1000	0.00	1.08
5G-llac-20M	V20(MS19)	5230	120	154	1.08	
5G-11ac-20M	V20(MN0)	5230	868	902	0.17	
5G-llac-20M	V20(MN19)	5230	119	143	0.80	
5G-llac-40M	V40(MS0)	5230	491	513	0.19	0.94
5G-llac-40M	V40(MS19)	5230	83	103	0.94	
5G-llac-40M	V40(MN0)	5230	441	461	0.19	
5G-llac-40M	V40(MN19)	5230	79	97.3	0.90	
5G-llac-80M	V80(MS0)	5230	252	265	0.22	0.75
5G-llac-80M	V80(MS19)	5230	66	78	0.73	
5G-11ac-80M	V80(MN0)	5230	232	242	0.18	
5G-llac-80M	V80(MN19)	5230	64	76	0.75	
Notes: 1.						

Appendix F: OBW, MASK & BANDEDGE, PSD DATA

Table F1: Occupied Bandwidth for FCC/ISED

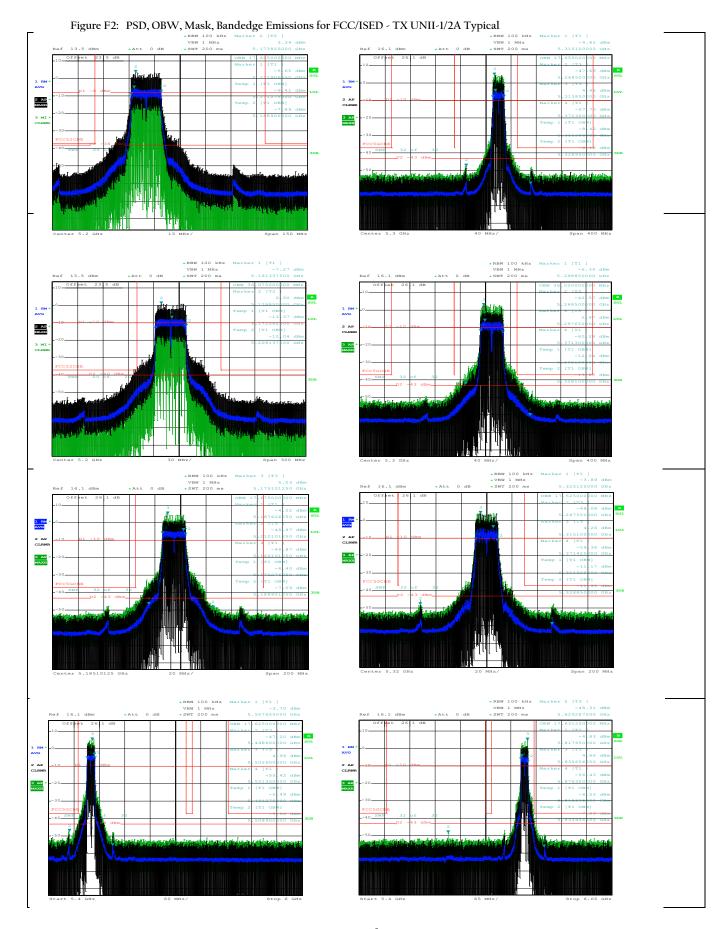
Band	Frequency MHz	Modulation	Occupied Bandwidth MHz	Limit OBW 6dB >500kHz					
UN II-3 (5G8)	5825	xHT6M, xHT54M	16.5	PASS					
, ,		· · · · · · · · · · · · · · · · · · ·							
UN II-3 (5G8)	5825	HT20M0-L/H, HT20M7-L/H	17.7	PASS					
UN II-3 (5G8)	5825	HT40M0-L/H, HT40M7-L/H	36.0	PASS					
UN II-3 (5G8)	5825	VHT20M0-L/H, VHT20M7-L/H	17.7	PASS					
UN II-3 (5G8)	5825	VHT40M0-L/H, VHT40M7-L/H	36.1	PASS					
UN II-3 (5G8)	5825	VHT80M0-L/H, VHT80M7-L/H	75.0	PASS					
Mode	5G/5G8 - UNII-1/2A/2C/3 Frequency Band MHz	Modulation	UNII-1A Occupied Bandwidth MHz	UNII-2A Occupied Bandwidth MHz	UNII-2C Occupied Bandwidth MHz	UNII-3 Occupied Bandwidth MHz			
5G-lla	5180/5320/5500/5825	xHT6M, xHT54M	16.5	16.5	16.5	16.5			
5G-lln	5180/5320/5500/5825	HT20M0-L/H, HT20M7-L/H	17.7	17.6	17.6	17.7			
5G-lln	5180/5320/5500/5825	HT40M0-L/H, HT40M7-L/H	36.1	36.1	36.0	36.0			
5G-llac	5180/5320/5500/5825	VHT20M0-L/H, VHT20M7-L/H	17.7	17.7	17.7	17.7			
5G-llac	5180/5320/5500/5825	VHT40M0-L/H, VHT40M7-L/H	36.1	36.1	36.1	36.1			
5G-llac	5180/5320/5500/5825	VHT80M0-L/H, VHT80M7-L/H	75.0	75.0	75.0	75.0			
Notes: 1.	Notes: 1. Spurious emissions are required to be attenuated by 30dB (RMS detector) or 20dB (PK detector) unless emissions are within restricted bands								

^{2.} Within 2G4 bands 3 frequencies were selected at each modulation and both the high and low data rates if multiple data rates exist.

^{3.} Within UNII bands (5G/5G8), 3 frequencies were selected for each modulation at both high and low data rates.

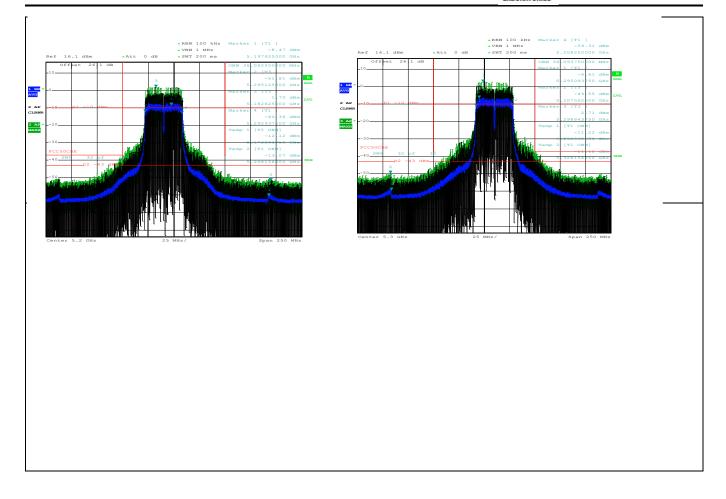
^{4. 20}dB occupied bandwidth (99%) measurement compared to 6dB occupied bandwidth (75%) requirement.

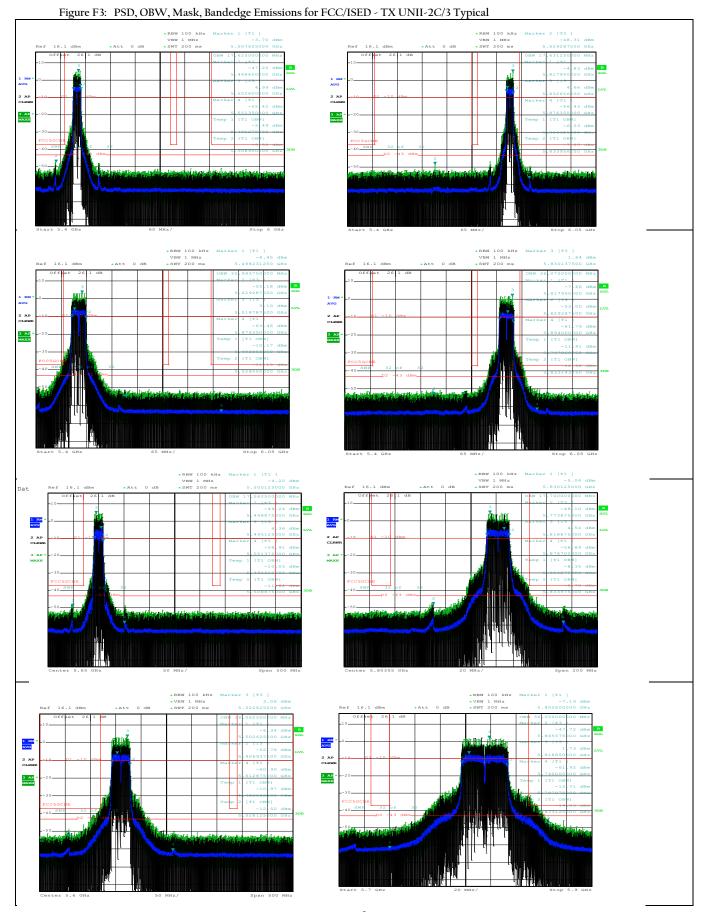
Band	Frequency Band	Modulation	Power Spectral Density dBm/1MHz	Limit dBm/1MHz	Margin dB	
5G-11a	UNII-1 - 5180M (*4)	xHT6M, xHT54M	5.4	11.0	5.6	PASS
5G-11a	UNII-2A - 5320M	xHT6M, xHT54M	5.5	17.0	11.5	PASS
5G-11a	UNII-2C - 5500M	xHT6M, xHT54M	4.7	11.0	6.3	PASS
5G-11a	UNII-3 - 5825M	xHT6M, xHT54M	6.7	30.0	23.3	PASS
5G-11n-20M	UNII-1 - 5180M (*4)	HT20M0-L/H, HT20M7-L/H	4.7	11.0	6.3	PASS
5G-11n-20M	UNII-2A - 5320M	HT20M0-L/H, HT20M7-L/H	6.4	17.0	10.6	PASS
5G-11n-20M	UNII-2C - 5500M	HT20M0-L/H, HT20M7-L/H	6.7	11.0	4.3	PASS
5G-11n-20M	UNII-3 - 5825M	HT20M0-L/H, HT20M7-L/H	5.5	30.0	24.5	PASS
5G-11n-40M	UNII-1 - 5180M (*4)	HT40M0-L/H, HT40M7-L/H	4.7	11.0	6.3	PASS
5G-11n-40M	UNII-2A - 5320M	HT40M0-L/H, HT40M7-L/H	6.4	17.0	10.6	PASS
5G-11n-40M	UNII-2C - 5500M	HT40M0-L/H, HT40M7-L/H	6.7	11.0	4.3	PASS
5G-11n-40M	UNII-3 - 5825M	HT40M0-L/H, HT40M7-L/H	5.5	30.0	24.5	PASS
5G-11ac-20M	UNII-1 - 5180M (*4)	VHT20M0-L/H, VHT20M7-L/H	6.5	11.0	4.5	PASS
5G-11ac-20M	UNII-2A - 5320M	VHT20M0-L/H, VHT20M7-L/H	6.9	17.0	10.1	PASS
5G-11ac-20M	UNII-2C - 5500M	VHT20M0-L/H, VHT20M7-L/H	6.3	11.0	4.7	PASS
5G-11ac-20M	UNII-3 - 5825M	VHT20M0-L/H, VHT20M7-L/H	6.9	30.0	23.1	PASS
5G-11ac-40M	UNII-1 - 5180M (*4)	VHT40M0-L/H, VHT40M7-L/H	4.8	11.0	6.2	PASS
5G-11ac-40M	UNII-2A - 5320M	VHT40M0-L/H, VHT40M7-L/H	4.4	17.0	12.6	PASS
5G-11ac-40M	UNII-2C - 5500M	VHT40M0-L/H, VHT40M7-L/H	6.0	11.0	5.0	PASS
5G-11ac-40M	UNII-3 - 5825M	VHT40M0-L/H, VHT40M7-L/H	5.1	30.0	24.9	PASS
5G-11ac-80M	UNII-1 - 5180M (*4)	VHT80M0-L/H, VHT80M7-L/H	2.2	11.0	8.8	PASS
5G-11ac-80M	UNII-2A - 5320M	VHT80M0-L/H, VHT80M7-L/H	1.5	17.0	15.5	-1.5
5G-11ac-80M	UNII-2C - 5500M	VHT80M0-L/H, VHT80M7-L/H	2.1	11.0	8.9	PASS
5G-11ac-80M	UNII-3 - 5825M	VHT80M0-L/H, VHT80M7-L/H	0.5	30.0	29.5	PASS


Notes: 1. Within 2G4 bands 3 frequencies were selected at each modulation and both the high and low data rates if multiple data rates exist.

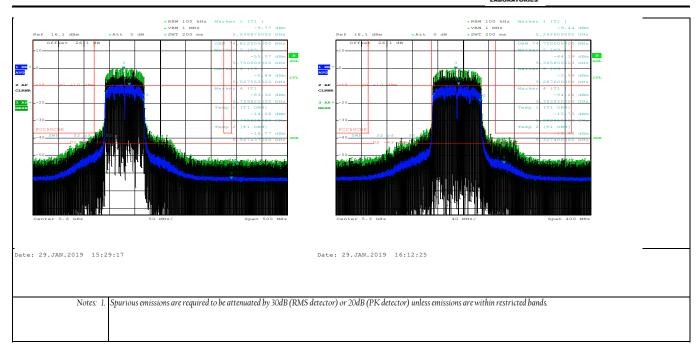
Within UNII bands (5G/5G8), 3 frequencies were selected for each modulation at both high and low data rates.

3. PSD data may be corrected for measurement bandwidth using 10log(Rbw1/Rbw2) such as 10log(100kHz/3kHz) = 9.5dB.


4. UNII-IA PSD limit is 11dBm for client or 17dBm for master device.C49



Client: Intrinsyc Technologies Corporation Report: E10702-1803-FDS(Intrinsyc,OpenQ 626 SOM)_Rev1.2

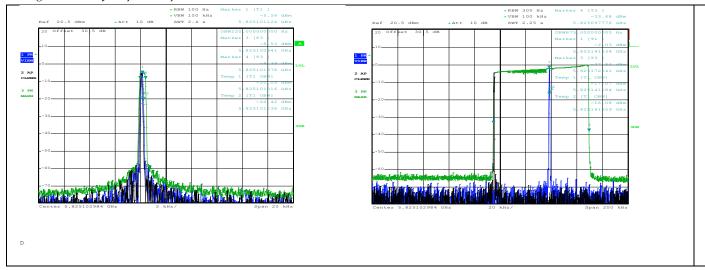


Page 47 of 53

Client: Intrinsyc Technologies Corporation Report: E10702-1803-FDS(Intrinsyc,OpenQ 626 SOM)_Revl.2

Appendix G: FREQUENCY STABILITY DATA

Table GI: Frequency Stability Variation Data

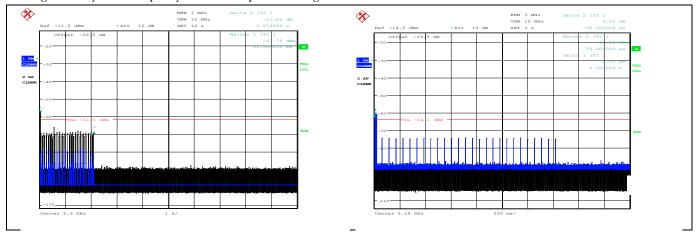

Procedure	Reference Frequency MHz	Cursor l Hz	Cursor 2 Hz	Delta Hz	OBW Hz	Deviation Hz	Deviation Hz	Deviation ppm
Input voltage variation	5825.100	941	1276	335	220	941	115	0.02
Temperature variation	5825	141534	172541	31007	675	141534	30332	5.21

- Notes: 1. Frequency stability performed with CW signal or randomly selected modulated signal and is assumed to represent all TX modes.

 2. Variation over input voltage range of 85 115% of AC or DC input.

 - 3. Variation over temperature over manufacturer declared temperature range or -20C +50C.
 - 4. EUT monitored continuously using maxhold to record frequency deviation envelope.

Figure G1: Frequency Stability Plots



Appendix I: DYNAMIC FREQUENCY SELECTION DATA

Table II: Dynamic Frequency Selection Requirements Data

UNII - DFS Requirements Data			
Test Channel Frequencies (MHz) 5290, 5300			
Channel Move Time (s)	2.1	PASS	
Channel Closing Transmission Time (msec)			
Notes: 1.			

Figure II: Dynamic Frequency Selection Requirements Figures

Appendix R: TEST SETUP PHOTOS

Figure R1: EUT Radiated Emissions Cable Layout

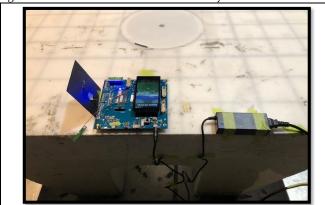


Figure R2: Radiated Emissions Test Setup w/ AE

Figure R3: Conducted Emissions Test Setup

Figure R4: Radiated Emissions 30M-1G Test Setup

Figure R5: Radiated Emissions IG-18G Test Setup

Figure R6: Conducted Radio Emissions Test Setup

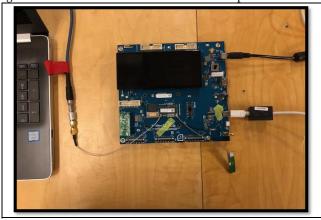


Figure R7: Conducted DFS Test Setup

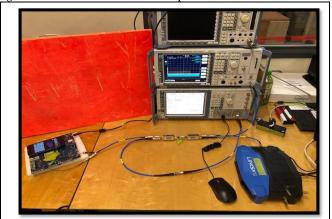
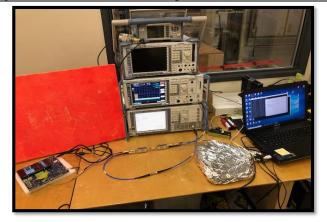



Figure R8: Conducted DFS Test Setup - Detail

Client: Intrinsyc Technologies Corporation Report: El0702-1803-FDS(Intrinsyc,OpenQ 626 SOM)_Revl.2

Appendix S: ABBREVIATIONS

Abbreviation	Definition
AC	Alternating Current
AE	Auxiliary Equipment
CDN	Coupling/Decoupling Network
CE	European Conformity
CISPR	Comité International Spécial des Perturbations Radioélectriques
DC	Direct Current
EFT	Electrical Fast Transient
EMC	Electro-Magnetic Compatibility
EMI	Electro-Magnetic Interference
EIRP	Equivalent Isotropic Radiated Power
ESD	Electro-Static Discharge
EUT	Equipment Under Test
FCC	Federal Communications Commission
IC	Industry Canada
ICES	Interference Causing Equipment Standard
LISN	Line Impedance Stabilizing Network
OATS	Open Area Test Site
RF	Radio Frequency
RMS	Root-Mean-Square
SAC	Semi-Anechoic Chamber

[END OF REPORT]