

LCIE
Etablissement de Moirans
ZI Centr'Alp
170, rue de Chatagnon
38430 Moirans
RCS Grenoble 408 363 174
Tél. : +33 4 76 07 36 36
Fax : +33 4 76 55 90 88

LCIE

TEST REPORT

N°: 832764-R1-E

JDE : 135342

Subject Electromagnetic compatibility and Radio spectrum Matters (ERM) tests according to standards: FCC CFR 47 Part 15, Subpart B et C RSS-247 Ed 1.0

Issued to HIKOB
66 Boulevard Niels Bohr
CS52132
69603 VILLEURBANNE CEDEX

Apparatus under test
↳ Product WISE COW
↳ Trade mark HIKOB
↳ Manufacturer HIKOB
↳ Model under test PWC1A
↳ Serial number ABWC011EP000980100117E
↳ FCCID 2AFCS-PWC10
↳ ICID 20474-PWC10

Test date From May 6th to June 8th, 2015
Test location Moirans
IC Test site 6500A-1 & 6500A-3
Test performed by Jonathan PAUC
Composition of document 27 pages

Modification of the last version None
Document issued on October 30th, 2015

Written by :
Jonathan PAUC
Tests operator

This document shall not be reproduced, except in full, without the written approval of the LCIE. This document contains results related only to the item tested. It does not imply the conformity of the whole production to the item tested. Unless otherwise specified; the decision of conformity takes into account the uncertainty of measures. This document does not anticipate any certification decision.

LCIE

33, av du Général Leclerc
BP 8
92266 Fontenay-aux-Roses cedex
France

Tél : +33 1 40 95 60 60
Fax : +33 1 40 95 86 56
contact@lcie.fr
www.lcie.fr

Société par Actions Simplifiée
au capital de 15 745 984 €
RCS Nanterre B 408 363 174
www.lcie.com

SUMMARY

1. TEST PROGRAM	3
2. SYSTEM TEST CONFIGURATION.....	4
3. RADIATED EMISSION DATA	7
4. BANDWIDTH (15.247)	11
5. MAXIMUM PEAK OUTPUT POWER (15.247)	13
6. POWER SPECTRAL DENSITY (15.247)	16
7. BAND EDGE MEASUREMENT (15.247)	19
8. OCCUPIED BANDWIDTH.....	23
9. ANNEX 1 (GRAPHS)	25
10. UNCERTAINTIES CHART	27

1. TEST PROGRAM

Standard:

- FCC Part 15, Subpart C 15.247
- ANSI C63.4 (2014) / ANSI C63.10 (2013)
- RSS-247 Ed 1.0 – Mai 2015
- RSS-Gen Issue 4 – Nov 2014
- 558074 D01 DTS Measurement Guidance v03r03

EMISSION TEST	LIMITS			RESULTS
	Frequency	Quasi-peak value (dB μ V)	Average value (dB μ V)	
Limits for conducted disturbance at mains ports 150kHz-30MHz	150-500kHz	66 to 56	56 to 46	<input type="checkbox"/> PASS <input type="checkbox"/> FAIL <input checked="" type="checkbox"/> NA <input type="checkbox"/> NP
	0.5-5MHz	56	46	
	5-30MHz	60	50	
Radiated emissions 9kHz-30MHz CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-247 §5.5	Measure at 300m 9kHz-490kHz : 67.6dB μ V/m /F(kHz) Measure at 30m 490kHz-1.705MHz : 87.6dB μ V/m /F(kHz) 1.705MHz-30MHz : 29.5 dB μ V/m			<input type="checkbox"/> PASS <input type="checkbox"/> FAIL <input checked="" type="checkbox"/> NA <input type="checkbox"/> NP
Radiated emissions 30MHz-25GHz* CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-247 §5.5 Highest frequency : 108MHz <i>(Declaration of provider)</i>	Measure at 3m 30MHz-88MHz : 40 dB μ V/m 88MHz-216MHz : 43.5 dB μ V/m 216MHz-960MHz : 46.0 dB μ V/m Above 960MHz : 54.0 dB μ V/m			<input checked="" type="checkbox"/> PASS <input type="checkbox"/> FAIL <input type="checkbox"/> NA <input type="checkbox"/> NP
Bandwidth 6dB CFR 47 §15.247 (a) (2) RSS-247 §5.2.1	At least 500kHz			<input checked="" type="checkbox"/> PASS <input type="checkbox"/> FAIL <input type="checkbox"/> NA <input type="checkbox"/> NP
Power spectral Density CFR 47 §15.247 (e) RSS-247 §5.2.2	Limit: 30dBm Conducted or Radiated measurement			<input checked="" type="checkbox"/> PASS <input type="checkbox"/> FAIL <input type="checkbox"/> NA <input type="checkbox"/> NP
Maximum Peak Output Power CFR 47 §15.247 (b) RSS-247 §5.4.4	Limit: -20dBc or Radiated emissions limits in restricted bands			<input checked="" type="checkbox"/> PASS <input type="checkbox"/> FAIL <input type="checkbox"/> NA <input type="checkbox"/> NP
Band Edge Measurement CFR 47 §15.209 (a) CFR 47 §15.247 (d) RSS-247 §5.5	Limit: 8dBm/3kHz			<input checked="" type="checkbox"/> PASS <input type="checkbox"/> FAIL <input type="checkbox"/> NA <input type="checkbox"/> NP
Occupied bandwidth RSS-Gen §4.6.1	No limit			<input checked="" type="checkbox"/> PASS <input type="checkbox"/> FAIL <input type="checkbox"/> NA <input type="checkbox"/> NP
Receiver Spurious Emission** RSS-Gen §4.10	See RSS-Gen §4.10			<input type="checkbox"/> PASS <input type="checkbox"/> FAIL <input checked="" type="checkbox"/> NA <input type="checkbox"/> NP

*§15.33: The highest internal source of a testing device is defined like more the highest frequency generated or used in the testing device or on which the testing device works or agrees.

- If the highest frequency of the internal sources of the testing device is lower than 108 MHz, measurement must be only performed until 1GHz.
- If the highest frequency of the internal sources of the testing device ranges between 108 MHz and 500 MHz, measurement must be only performed until 2GHz.
- If the highest frequency of the internal sources of the testing device ranges between 500 MHz and 1 GHz, measurement must be only performed until 5GHz.

If the highest frequency of the internal sources of the testing device is above 1 GHz, measurement must be only performed until 5 times the highest frequency or 40 GHz, while taking smallest of both.

2. SYSTEM TEST CONFIGURATION

2.1. HARDWARE IDENTIFICATION (EUT AND AUXILIARIES):

Equipment under test (EUT):

PWC1A

Serial Number: ABWC011EP000980100117E

Photography of EUT

Power supply:

During all the tests, EUT is supplied by V_{nom} : 3.6VDC

For measurement with different voltage, it will be presented in test method.

Name	Type	Rating	Reference / Sn	Comments
Supply1	<input type="checkbox"/> AC <input type="checkbox"/> DC <input checked="" type="checkbox"/> Battery	3.6V 6Ah	Lithium 1S4P MGLO0365	/

Inputs/outputs - Cable:

Access	Type	Length used (m)	Declared <3m	Shielded	Under test	Comments
		None				/

Antenna:

Reference	Comments
PA25MM/CH/2450	/

Auxiliary equipment used during test:

Type	Reference	Sn	Comments
Gateway Ethernet / Zigbee	HIKOB GATEWAY	BA:DB:0B:01:13/00:11:7B	/
Notebook computer	W310CZ	NKW310CZ0003K01978	/

Equipment information:

Type:	DTS		
Frequency band:	[2400 – 2483.5] MHz		
Sub-band REC7003:	Annex 3 (a)		
Spectrum Modulation:	<input checked="" type="checkbox"/> DSSS		
Number of Channel:	15		
Spacing channel:	5MHz		
Channel bandwidth:	2MHz		
Antenna Type:	<input checked="" type="checkbox"/> Integral	<input type="checkbox"/> External	<input type="checkbox"/> Dedicated
Antenna connector:	<input type="checkbox"/> Yes	<input checked="" type="checkbox"/> No	<input type="checkbox"/> Temporary for test
Transmit chains:	1		
	Single antenna		
	Gain 1 : 3dBi		Gain 2: dBi
Beam forming gain:	No		
Receiver chains	1		
Duty cycle:	<input checked="" type="checkbox"/> Continuous duty	<input type="checkbox"/> Intermittent duty	<input type="checkbox"/> 100% duty
Equipment type:	<input checked="" type="checkbox"/> Production model	<input type="checkbox"/> Pre-production model	
Type of power source:	<input type="checkbox"/> AC power supply	<input type="checkbox"/> DC power supply	<input checked="" type="checkbox"/> Battery (Lithium)
Operating voltage range:	Vmin:	<input type="checkbox"/> 207V/50Hz	<input checked="" type="checkbox"/> 3.2Vdc
	Vnom:	<input type="checkbox"/> 230V/50Hz	<input checked="" type="checkbox"/> 3.6Vdc
	Vmax	<input type="checkbox"/> 253V/50Hz	<input checked="" type="checkbox"/> 4.0Vdc

CHANNEL PLAN

Channel	Frequency (MHz)
Cmin: 11	2405
12	2410
13	2415
14	2420
15	2425
16	2430
17	2435
Cmid: 18	2440
19	2445
20	2450
21	2455
22	2460
23	2465
24	2470
Cmax: 25	2475

DATA RATE

Data Rate (Mbps)	Modulation Type	Worst Case Modulation
0.25	O-QPSK	<input checked="" type="checkbox"/>

2.2. EUT CONFIGURATION

The EUT is set in the following modes during tests with software:

- Permanent emission with modulation on a fixed channel in the data rate that produced the highest power
- Permanent reception

2.3. EQUIPMENT MODIFICATIONS

None Modification:

2.4. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

$$FS = RA + AF + CF - AG$$

Where FS = Field Strength
 RA = Receiver Amplitude
 AF = Antenna Factor
 CF = Cable Factor
 AG = Amplifier Gain

Assume a receiver reading of 52.5dB μ V is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 dB μ V/m.

$$FS = 52.5 + 7.4 + 1.1 - 29 = 32 \text{ dB}\mu\text{V/m}$$

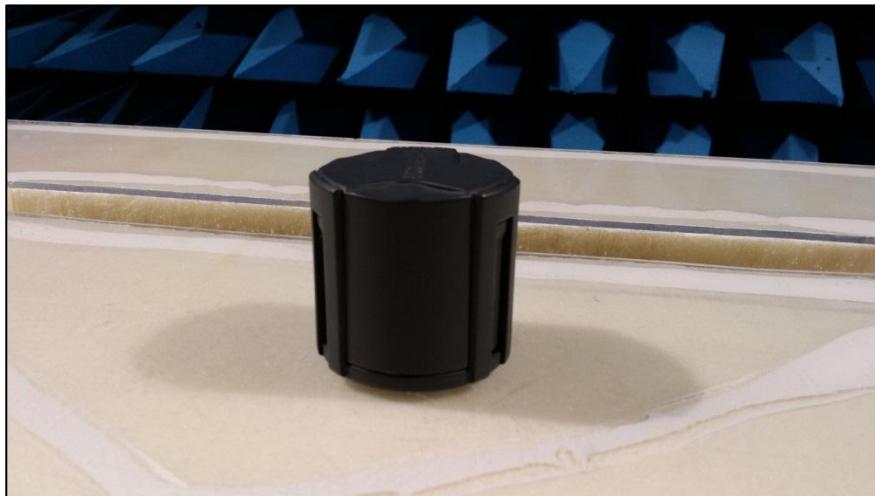
The 32 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

$$\text{Level in } \mu\text{V/m} = \text{Common Antilogarithm } [(32 \text{ dB}\mu\text{V/m})/20] = 39.8 \mu\text{V/m.}$$

3. RADIATED EMISSION DATA

3.1. ENVIRONMENTAL CONDITIONS

Date of test :May 29th , 2015
 Test performed by :Jonathan PAUC
 Atmospheric pressure (hPa) :990
 Relative humidity (%) :41
 Ambient temperature (°C) :23


3.2. TEST SETUP

The installation of EUT is identical for pre-characterization measures in a 3 meters semi- anechoic chamber and for measures on the 10 meters Open site.

The EUT and auxiliaries are set:

- 80cm above the ground on the non-conducting table (Table-top equipment) - Below 1GHz
- 150cm above the ground on the non-conducting table (Table-top equipment) - Above 1GHz
- 10cm above the ground on isolating support (Floor standing equipment)

The EUT is powered by V_{nom} .

Test setup in anechoic chamber

3.3. TEST METHOD

Pre-characterisation measurement: (30MHz – 25GHz)

A pre-scan of all the setup has been performed in a 3 meters semi-anechoic chamber for frequency from 30MHz to 25GHz. Test is performed in horizontal (H) and vertical (V) polarization, the loop antenna was rotated during the test to maximize the emission measurement. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration.

The pre-characterization graphs are obtained in PEAK detection and PEAK/AVERAGE from 1GHz to 25GHz.

See §7, conducted measurements are performed.
Characterisation are done on frequencies observed in restricted band

Characterization on 10 meters open site from 30MHz to 1GHz:

The product has been tested according to ANSI C63.4, FCC part 15 subpart C. Radiated Emissions were measured on an open area test site. A description of the facility is on file with the FCC. The product has been tested at a distance of **10 meters** from the antenna and compared to the FCC part 15 subpart C limits. Measurement bandwidth was 9kHz below 30MHz and 120kHz from 30 MHz to 1GHz. Test is performed in horizontal (H) and vertical (V) polarization, the loop antenna was rotated during the test to maximize the emission measurement. The height antenna is varied from 1m to 4m. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown.

Frequency list has been created with anechoic chamber pre-scan results.

Characterization on 3 meters full anechoic chamber from 1GHz to 25GHz:

The product has been tested at a distance of **3 meters** from the antenna and compared to the FCC part 15 subpart B §15.109 limits and C §15.209 limits. Measurement bandwidth was 1MHz from 1GHz to 25GHz.

Test is performed in horizontal (H) and vertical (V) polarization. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on all axis of EUT used in normal configuration. A summary of the worst case emissions found in all test configurations and modes is shown. The height antenna is

- On mast, varied from 1m to 4m
- Fixed and centered on the EUT (EUT smaller than the beamwidth of the measurement antenna, ANSI C63.10 §6.6.5)

Frequency list has been created with anechoic chamber pre-scan results.

3.4. TEST EQUIPMENT LIST

Anechoic chamber					
DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
Amplifier 1-13GHz	LCIE SUD EST	-	A7102067	10/14	10/15
Antenna Loop	ELECTRO-METRICS	EM-6879	C2040052	10/13	10/15
Antenna Bi-log	CHASE	CBL6111A	C2040172	04/13	06/15
Antenna horn	EMCO	3115	C2042029	09/14	09/15
Cable Measure @3m	-	6	A5329038	08/14	08/15
Cable Measure @3m	-	-	A5329206	04/15	04/16
Semi-Anechoic chamber #3	SIEPEL	-	D3044017	-	-
Radiated emission comb generator	BARDET	-	A3169050	-	-
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16
Thermo-hygrometer (C3)	OREGON	BAR206	B4204078	04/15	04/16
Thermo-hygrometer (PM2)	OREGON	BAR916HG-G	B4206011	04/14	04/15
Turntable chamber (Cage#3)	ETS Lingren	Model 2165	F2000371	-	-
Table	LCIE	-	F2000461	-	-

3.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

None Divergence:

3.6. TEST RESULTS

3.6.1. Pre-characterization at 3 meters [30MHz-1GHz]

See graphs for 30MHz-1GHz:

Graph identifier	Polarization	Mode	EUT position	Channel	Comments
Emr# 1	H & V	TX	Axis XY	Min	See annex 1
Emr# 2	H & V	TX	Axis XY	Max	See annex 1

3.6.2. Characterization on 10 meters open site from 30MHz to 1GHz

Worst case final data result:

Frequency list has been created with semi-anechoic chamber pre-scan results.
Measurements are performed using a QUASI-PEAK detection.

No	Frequency (MHz)	Limit Quasi-Peak (dB μ V/m)	Measure Quasi-Peak (dB μ V/m)	Margin (Mes-Lim) (dB)	Angle Table (deg)	Pol Ant.	Ht Ant. (cm)	Correc. Factor (dB)	Comments
No significant frequency observed, see annex1									

Note: Measure have been done at 10m distance and corrected according to requirements of 15.209.e)
(M@3m = M@10m+10.5dB)

3.6.3. Characterization on 3meters anechoic chamber from 1GHz to 25GHz

Worst case final data result:

The frequency list is created from the results obtained during the pre-characterization *in anechoic chamber*. Measurements are performed using a PEAK and AVERAGE detection.

No	Frequency (MHz)	Limit Peak (dB μ V/m)	Measure Peak (dB μ V/m)	Margin Peak (dB)	Limit Average (dB μ V/m)	Measure Average (dB μ V/m)	Margin Average (dB)	Angle Table (°)	Pol. Ant.	Ht. Ant. (cm)	FC (dB)	Remark
1	2484.139	74.0	68.2	-5.8	54.0	46.3	-7.7	112	V	100	30.4	/
2	2485.138	74.0	65.0	-9.0	54.0	43.3	-10.7	0	V	100	30.4	/
3	2486.121	74.0	62.9	-11.1	54.0	40.8	-13.2	0	V	100	30.4	/
4	2487.141	74.0	62.3	-11.7	54.0	40.6	-13.4	45	V	100	30.4	/
5	2488.157	74.0	60.7	-13.3	54.0	37.9	-16.1	15	V	100	30.4	/
6	2489.183	74.0	61.3	-12.7	54.0	38.4	-15.6	0	V	100	30.4	/
7	2490.149	74.0	59.0	-15.0	54.0	39.7	-14.3	0	V	100	30.4	/
8	2491.127	74.0	59.1	-14.9	54.0	33.0	-21.0	15	V	100	30.4	/
9	2492.147	74.0	58.7	-15.3	54.0	32.9	-21.1	15	H	100	30.4	/
10	2493.242	74.0	57.9	-16.1	54.0	32.7	-21.3	10	H	100	30.4	/
11	4961.170	74.0	66.1	-7.9	54.0	43.0	-11.0	20	H	100	36.7	/
12	7439.000	74.0	72.7	-1.3	54.0	47.2	-6.8	10	H	100	40.7	/

Note: Measures have been done at 3m distance.

3.7. CONCLUSION

Radiated emission data measurement performed on the sample of the product PWC1A, SN: ABWC011EP000980100117E, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Ed 1.0 limits.

4. BANDWIDTH (15.247)

4.1. TEST CONDITIONS

Test performed by : Jonathan PAUC
 Date of test : May 6th , 2015
 Ambient temperature (°C) : 24
 Relative humidity (%) : 41
 Atmospheric pressure (hPa) : 990

4.2. SETUP

Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Offset: Attenuator+cable 10.1dB

Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete, a delta marker is used to measure the frequency difference as the emission bandwidth.

Measurement Procedure: §8.1 Option 1 (DTS Measurement Guidance)

1. Set resolution bandwidth (RBW) = 100kHz.
2. Set the video bandwidth (VBW) $\geq 3 \times$ RBW.
3. Detector = Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer.

4.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	CA_DATE	CAIDUE
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Spectrum Analyzer 9kHz - 6GHz	ROHDE & SCHWARZ	FSL6	A2642049	11/14	11/15
Cable	-	-	A5329604	12/14	12/15

4.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

None Divergence:

4.5. TEST SEQUENCE AND RESULTS

Channel	Channel Frequency (MHz)	6dB Bandwidth (MHz)	Bandwidth Limit (MHz)
Cmin	2405	1.376	>0.5
Cmid	2440	1.303	>0.5
Cmax	2475	1.326	>0.5

Offs 10.1 dB * RBW 100 kHz
Att 25 dB * VBW 300 kHz
Batt Ref 12.1 dBm M1[1] 1.13 dBm
SWT 15ms 2.404646800 GHz

CF 2.405 GHz Span 10.0 MHz

Offs 10.1 dB * RBW 100 kHz
Att 25 dB * VBW 300 kHz
Batt Ref 12.1 dBm M1[1] 2.00 dBm
SWT 15ms 2.439650100 GHz

CF 2.44 GHz Span 10.0 MHz

Offs 10.1 dB * RBW 100 kHz
Att 25 dB * VBW 300 kHz
Batt Ref 12.1 dBm M1[1] 2.10 dBm
SWT 15ms 2.474643500 GHz

CF 2.475 GHz Span 10.0 MHz

4.6. CONCLUSION

Bandwidth measurement performed on the sample of the product PWC1A, SN: ABWC011EP000980100117E, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Ed 1.0 limits.

5. MAXIMUM PEAK OUTPUT POWER (15.247)

5.1. TEST CONDITIONS

Date of test : Jonathan PAUC
 Test performed by : May 6th, 2015
 Atmospheric pressure (hPa) : 24
 Relative humidity (%) : 41
 Ambient temperature (°C) : 990

5.2. SETUP

Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency.

Offset: Attenuator+cable 10.1dB

Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency.

The product has been tested at a distance of 3 meters from the antenna. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on following table. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

To demonstrate compliance with peak output power requirement of section 15.247 (b), the transmitter's peak output power is calculated using the following equation:

$$E = \frac{\sqrt{30PG}}{d}$$

Where:

- E is the measured maximum fundamental field strength in V/m.
- G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.
- d is the distance in meters from which the field strength was measured.
- P is the power in watts for which you are solving:

$$P = \frac{(Ed)^2}{30G}$$

Maximum peak conducted output power

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

- **RBW ≥ DTS bandwidth §9.1.1 (DTS Measurement Guidance)**

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW ≥ 3 x RBW.
- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

• **Integrated band power method**

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

- a) Set the RBW = 1 MHz.
- b) Set the VBW $\geq 3 \times$ RBW
- c) Set the span $\geq 1.5 \times$ DTS bandwidth.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges

5.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	CA_DATE	CAIDUE
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Spectrum Analyzer 9kHz - 6GHz	ROHDE & SCHWARZ	FSL6	A2642049	11/14	11/15
Cable	-	-	A5329604	12/14	12/15

5.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

None

Divergence:

5.5. TEST SEQUENCE AND RESULTS

Modulation:

Channel	Channel Frequency (MHz)	Peak Output Power (dBm)	Power Limit (dBm)
Cmin	2405	3.2	30.0
Cmid	2440	3.2	30.0
Cmax	2475	3.7	30.0

CF 2.405 GHz

Span 10.0 MHz

1Pk View

Offs 10.1 dB * RBW 3 MHz
Att 25 dB * VBW 10 MHz
Batt Ref 12.1 dBm SWT 15ms

M1[1] 3.23 dBm 2.405866400 GHz

CF 2.44 GHz

Span 10.0 MHz

1Pk View

Offs 10.1 dB * RBW 3 MHz
Att 25 dB * VBW 10 MHz
Batt Ref 12.1 dBm SWT 15ms

M1[1] 3.18 dBm 2.440659800 GHz

CF 2.475 GHz

Span 10.0 MHz

1Pk View

Offs 10.1 dB * RBW 3 MHz
Att 25 dB * VBW 10 MHz
Batt Ref 12.1 dBm SWT 15ms

M1[1] 3.74 dBm 2.474703400 GHz

5.6. CONCLUSION

Maximum Peak Output Power measurement performed on the sample of the product PWC1A, SN: ABWC011EP000980100117E, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Ed 1.0 limits.

6. POWER SPECTRAL DENSITY (15.247)

6.1. TEST CONDITIONS

Date of test : Jonathan PAUC
Test performed by : May 6th, 2015
Atmospheric pressure (hPa) : 24
Relative humidity (%) : 41
Ambient temperature (°C) : 990

6.2. SETUP

Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency.

Offset: Attenuator+cable 10.1dB

Radiated measurement:

The EUT is placed in an anechoic chamber; the center frequency of the spectrum analyzer is set to the fundamental frequency.

The product has been tested at a distance of 3 meters from the antenna. Continuous linear turntable azimuth search was performed with 360 degrees range. Measurement performed on 3 axis of EUT. A summary of the worst case emissions found in all test configurations and modes is shown on following table. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

To demonstrate compliance with peak output power requirement of section 15.247 (b), the transmitter's peak output power is calculated using the following equation:

$$E = \frac{\sqrt{30PG}}{d}$$

Where:

- E is the measured maximum fundamental field strength in V/m.
- G is the numeric gain of the transmitting antenna with reference to an isotropic radiator.
- d is the distance in meters from which the field strength was measured.
- P is the power in watts for which you are solving:

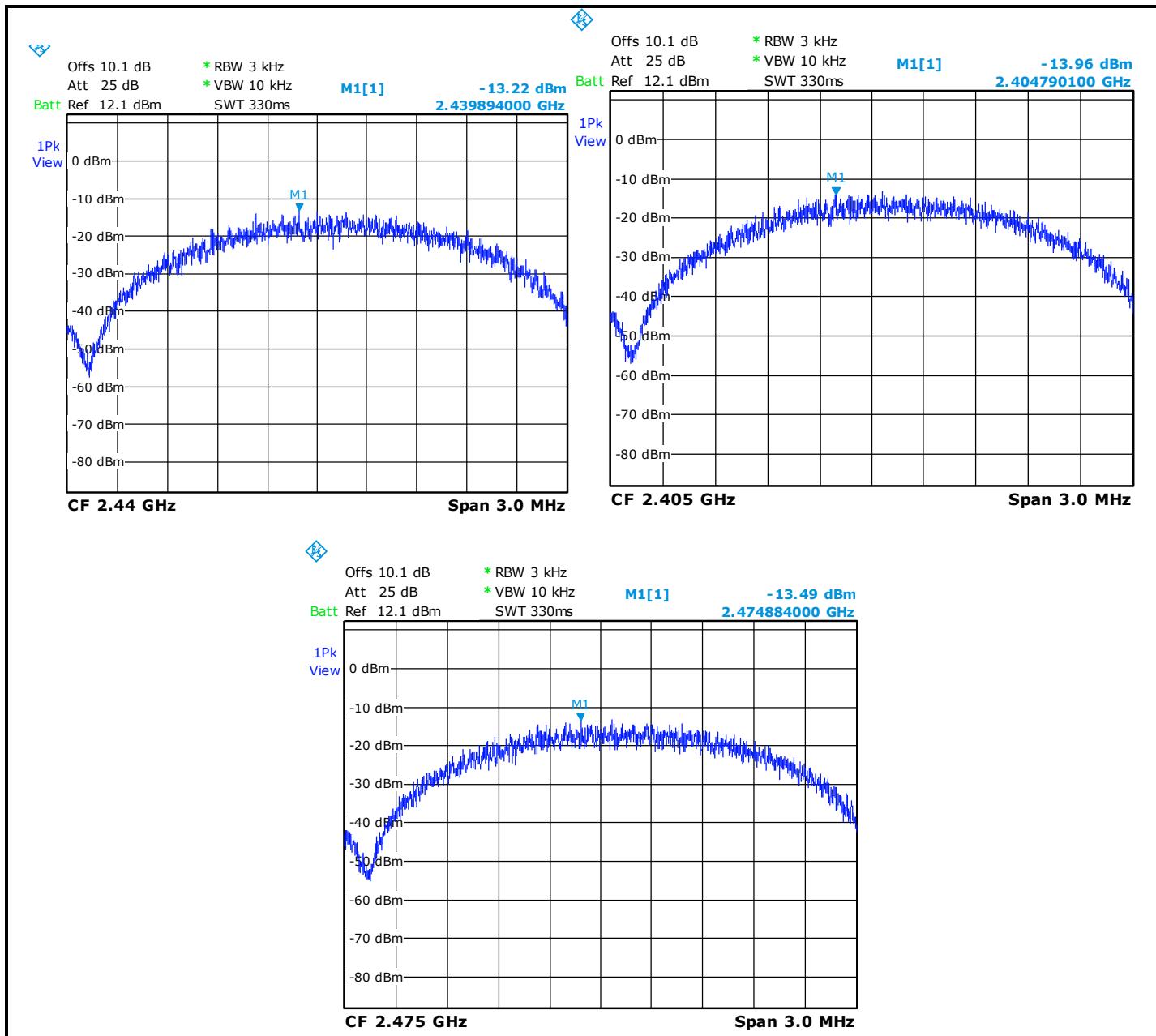
$$P = \frac{(Ed)^2}{30G}$$

Measurement Procedure PKPSD: §10.2 (DTS Measurement Guidance)

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: 3 kHz ≤ RBW ≤ 100 kHz.
- d) Set the VBW ≥ 3 □ RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	CA_DATE	CAIDUE
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Spectrum Analyzer 9kHz - 6GHz	ROHDE & SCHWARZ	FSL6	A2642049	11/14	11/15
Cable	-	-	A5329604	12/14	12/15


6.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

None Divergence:

6.5. TEST SEQUENCE AND RESULTS

Modulation:

Channel	Channel Frequency (MHz)	Power Spectral Density (dBm)	PSD Limit (dBm)
Cmin	2405	-13.2	8.0
Cmid	2440	-14.0	8.0
Cmax	2475	-13.5	8.0

6.6. CONCLUSION

Power Spectral Density measurement performed on the sample of the product PWC1A, SN: ABWC011EP000980100117E, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Ed 1.0 limits.

7. BAND EDGE MEASUREMENT (15.247)

7.1. TEST CONDITIONS

Date of test : May 7th, 2015
 Test performed by : J.PAUC
 Atmospheric pressure (hPa) : 990
 Relative humidity (%) : 31
 Ambient temperature (°C) : 25

7.2. LIMIT

RF antenna conducted test: § 11 (DTS Measurement Guidance)

Set RBW = 100 kHz, Video bandwidth (VBW) > RBW, scan up through 10th harmonic. All harmonics/spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Note: If the device complies with the use of power option 2 the attenuation under this paragraph shall be 30 dB instead of 20 dB. *For -20dBc limit, lowest power output level is considered, worst case.*

Radiated emission test: § 12 (DTS Measurement Guidance)

Applies to harmonics/spurs that fall in the restricted bands listed in Section 15.205. The maximum permitted average field strength is listed in Section 15.209. For measurements above 1 GHz, set RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation. See results in Radiated emissions section before.

7.3. SETUP

The EUT is placed in an anechoic chamber; levels have been corrected to be in compliant with Peak Output Power measurement. The EUT is turn ON; the graphs of the restrict frequency band are recorded with a display line indicating the highest level and other the 20dB offset below to show compliance with 15.247 (d) and 15.205. The emissions in restricted bands are compared to 15.209 limits.

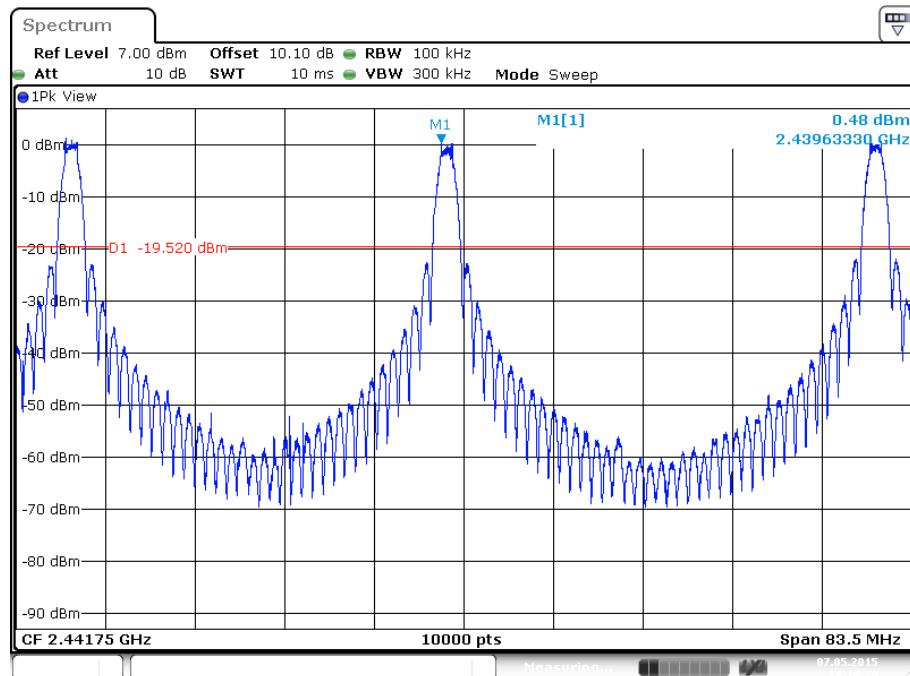
RBW: 100kHz

VBW: 300kHz

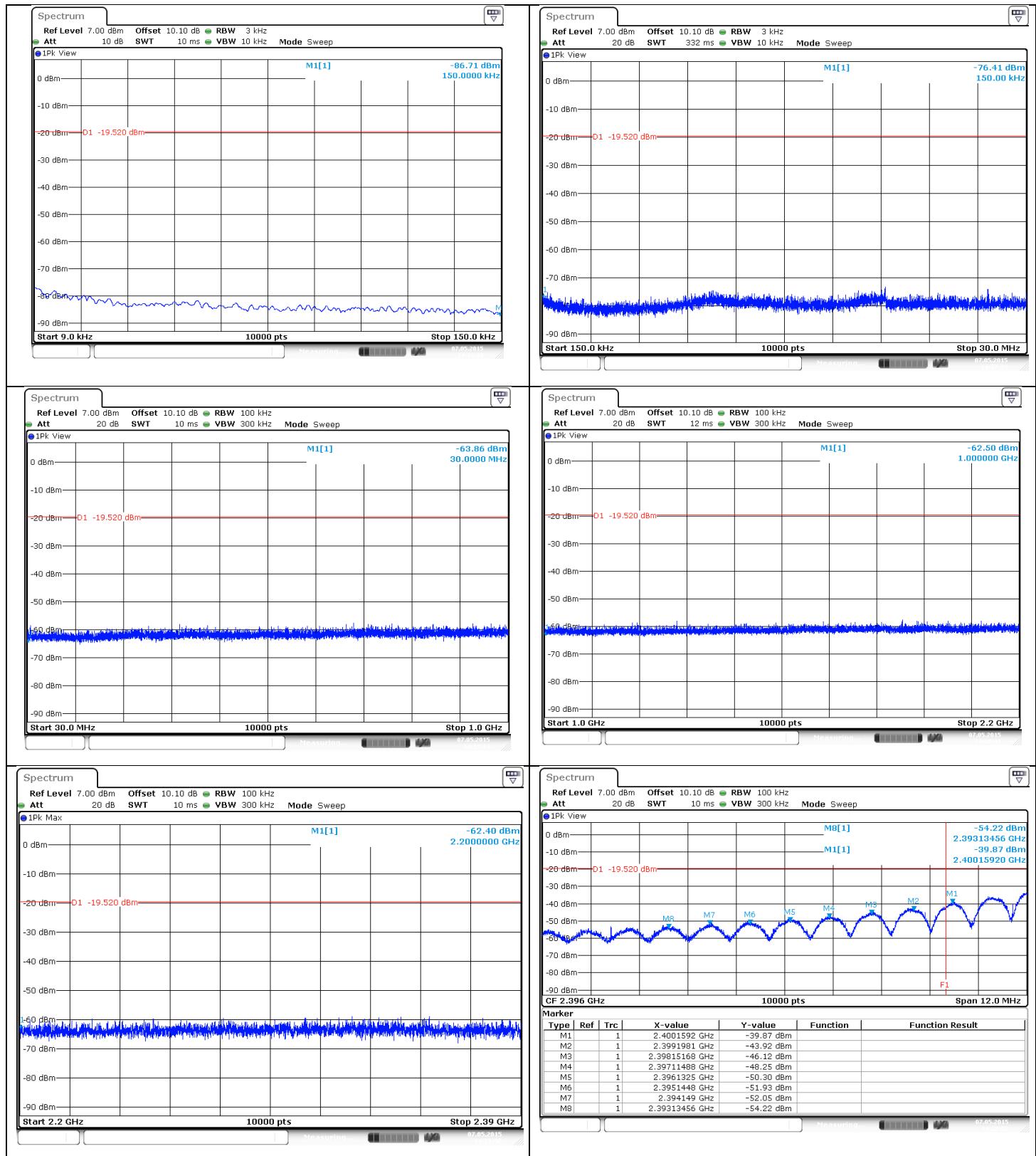
7.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	CA_DATE	CAIDUE
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Spectrum analyzer	ROHDE & SCHWARZ	FSV 30	A4060050	01/15	01/16
Cable	-	-	A5329604	12/14	12/15

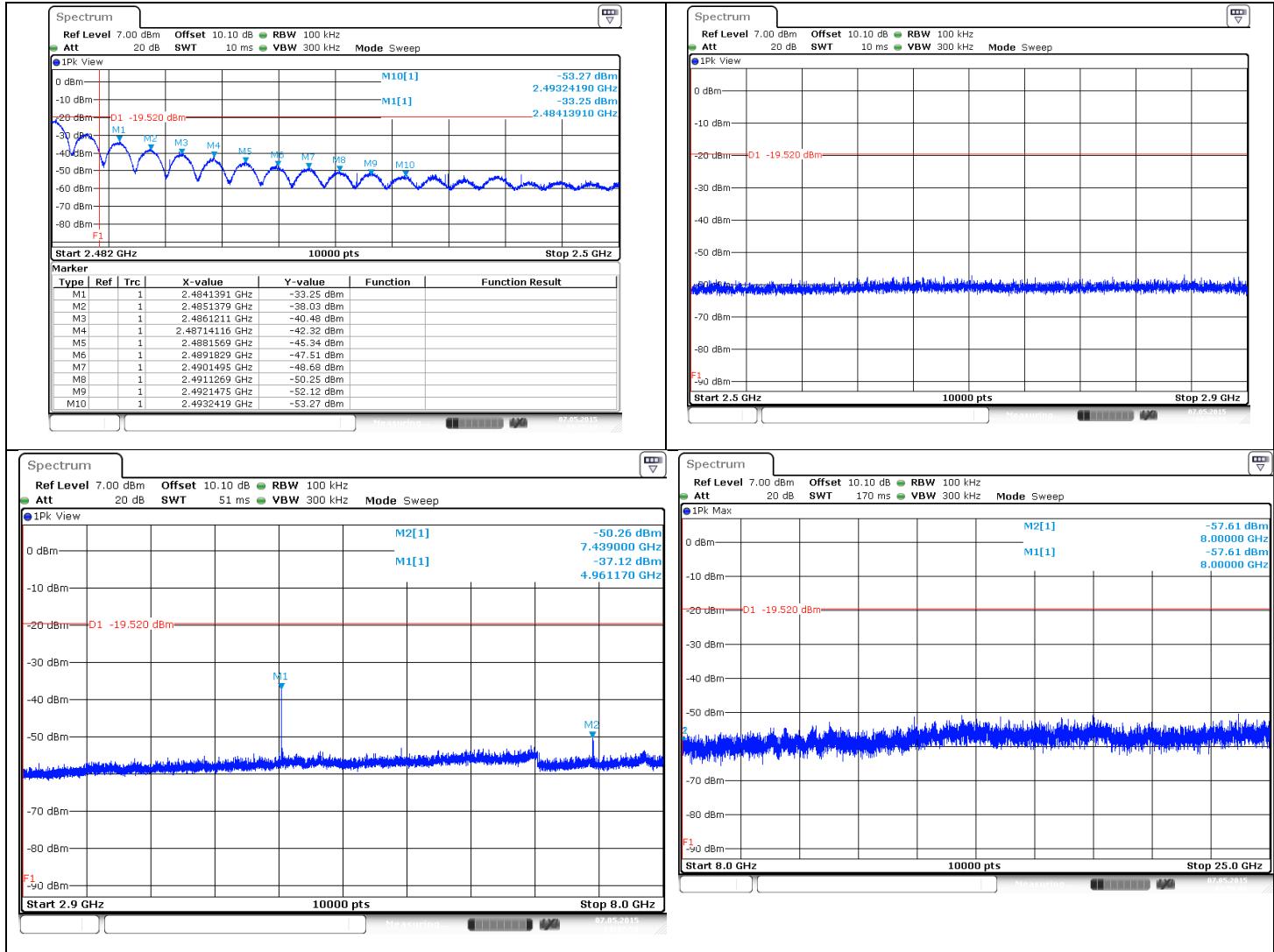
7.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION


None

Divergence:


7.6. TEST SEQUENCE AND RESULTS

Offset: Attenuator+cable 10.1dB


-20dbc limit used :

Worst case: Middle Channel, limit at -19.62 dBm

L C I E

7.7. CONCLUSION

Band Edge Measurement performed on the sample of the product PWC1A, SN: ABWC011EP000980100117E, in configuration and description presented in this test report, show levels below the FCC CFR 47 Part 15 and RSS-247 Ed 1.0 limits.

8. OCCUPIED BANDWIDTH

8.1. TEST CONDITIONS

Date of test : Jonathan PAUC
 Test performed by : May 6th, 2015
 Atmospheric pressure (hPa) : 24
 Relative humidity (%) : 41
 Ambient temperature (°C) : 990

8.2. SETUP

Conducted measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Offset: Attenuator+cable 10.1dB

Radiated measurement:

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

Measurement Procedure:

1. RBW used should not be lower than 1% of the selected span
2. Set the video bandwidth (VBW) $\geq 3 \times$ RBW.
3. Detector = Peak.
4. Trace mode = max hold.
5. Sweep = auto couple.
6. Allow the trace to stabilize.
7. OBW 99% function of spectrum analyzer used

8.3. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	CA_DATE	CAIDUE
Attenuator 10dB	JFW	-	A7122166	10/14	10/15
Spectrum Analyzer 9kHz - 6GHz	ROHDE & SCHWARZ	FSL6	A2642049	11/14	11/15
Cable	-	-	A5329604	12/14	12/15

8.4. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

None

Divergence:

8.5. TEST SEQUENCE AND RESULTS

Channel	Channel Frequency (MHz)	99% Occupied Bandwidth (MHz)
Cmin	2405	2.315
Cmid	2440	2.395
Cmax	2475	2.455

Offs 10.1 dB * RBW 100 kHz
Att 25 dB * VBW 300 kHz
Batt Ref 12.1 dBm SWT 2.5ms

1Pk View

CF 2.405 GHz Span 10.0 MHz

M1[1] 0.87 dBm 2.404641000 GHz
Occ Bw 2.315369261 MHz -14.41 dBm
T1[1] 2.403982036 GHz -15.14 dBm
T2[1] 2.406297405 GHz

Offs 10.1 dB * RBW 100 kHz
Att 25 dB * VBW 300 kHz
Batt Ref 12.1 dBm SWT 2.5ms

1Pk View

CF 2.44 GHz Span 10.0 MHz

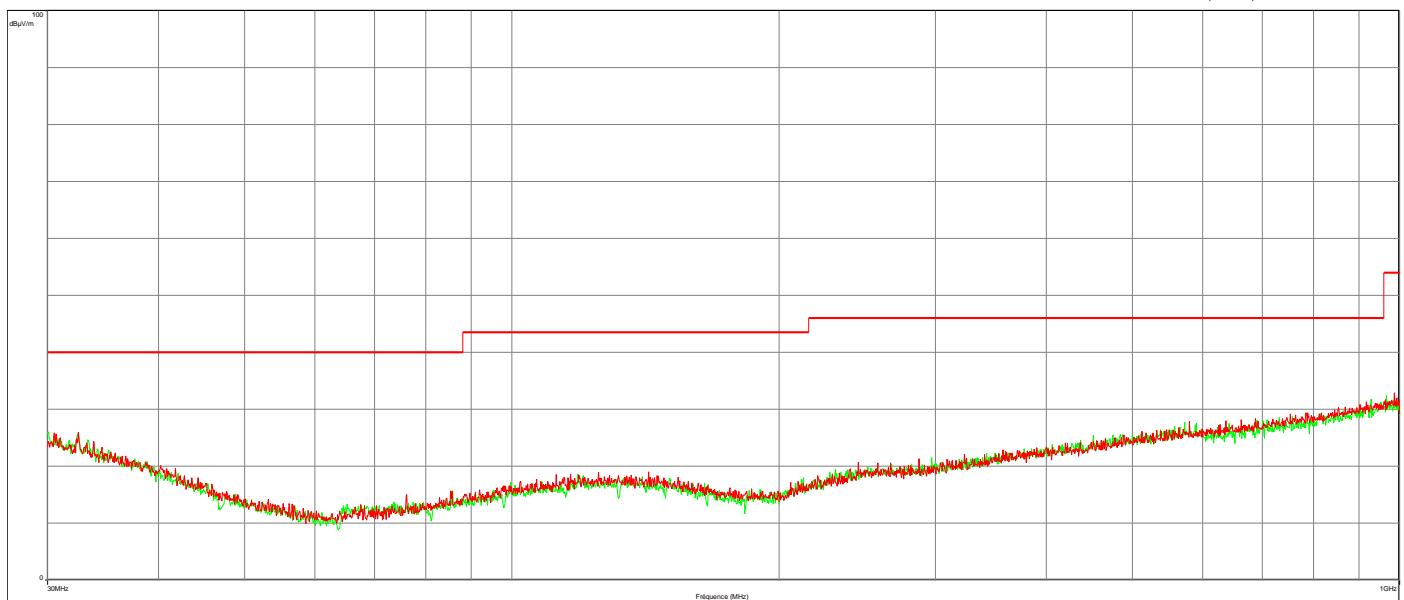
M1[1] -0.03 dBm 2.440103000 GHz
Occ Bw 2.395209581 MHz -14.71 dBm
T1[1] 2.438942116 GHz -15.51 dBm
T2[1] 2.441337325 GHz

Offs 10.1 dB * RBW 100 kHz
Att 25 dB * VBW 300 kHz
Batt Ref 12.1 dBm SWT 2.5ms

1Pk View

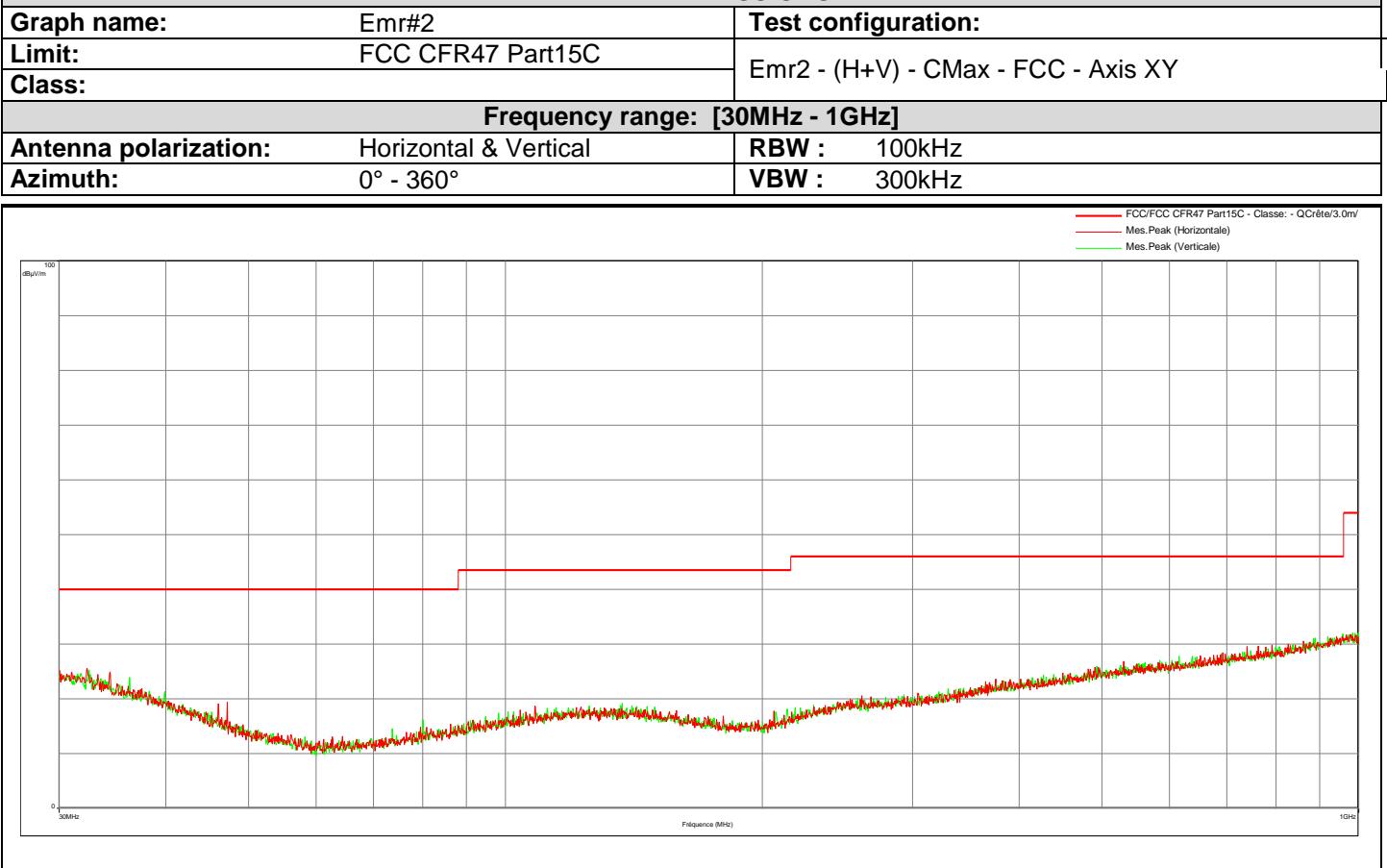
CF 2.475 GHz Span 10.0 MHz

M1[1] 0.78 dBm 2.475659000 GHz
Occ Bw 2.455089820 MHz -16.06 dBm
T1[1] 2.473902196 GHz -15.57 dBm
T2[1] 2.476357285 GHz



9. ANNEX 1 (GRAPHS)

RADIATED EMISSIONS


Graph name:	Emr#1	Test configuration:
Limit:	FCC CFR47 Part15C	Emr1 - (H+V) - CMin - FCC - Axis XY
Class:		
Frequency range: [30MHz - 1GHz]		
Antenna polarization:	Horizontal & Vertical	RBW : 100kHz
Azimuth:	0° - 360°	VBW : 300kHz

— FCC/FCC CFR47 Part15C - Classe: - QCrête(3.0mV
— Mes.Peak (Horizontale)
— Mes.Peak (Verticale)

RADIATED EMISSIONS

10. UNCERTAINTIES CHART

Type de mesure / Kind of measurement	Incertitude élargie laboratoire / Wide uncertainty laboratory (k=2) ± x	Incertitude limite du CISPR / CISPR uncertainty limit ± y
Mesure des perturbations conduites en tension sur le réseau d'énergie <i>Measurement of conducted disturbances in voltage on the power port</i>	3.57 dB	3.6 dB
Mesure des perturbations conduites en tension sur le réseau de télécommunication <i>Measurement of conducted disturbances in voltage on the telecommunication port.</i>	3.28 dB	A l'étude / Under consid.
Mesure des perturbations discontinues conduites en tension <i>Measurement of discontinuous conducted disturbances in voltage</i>	3.47 dB	3.6 dB
Mesure des perturbations conduites en courant <i>Measurement of conducted disturbances in current</i>	2.90 dB	A l'étude / Under consid.
Mesure du champ électrique rayonné sur le site en espace libre de Moirans <i>Measurement of radiated electric field on the Moirans open area test site</i>	5.07 dB	5.2 dB

Les valeurs d'incertitudes calculées du laboratoire étant inférieures aux valeurs d'incertitudes limites établies par la norme, la conformité de l'échantillon est établie directement par les niveaux limites applicables. / The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the standard. The conformity of the sample is directly established by the applicable limits values.