

FCC RF Test Report

(NFC)

Applicant: Inepro BV

Address of Applicant: Pondweg 7, 2153 PK Nieuw-Vennep, The Netherlands

Equipment Under Test (EUT)

Product Name: Red Spider

Model No.: Red Spider Desktop HF

Trade Mark: Red Spider

FCC ID: 2AFBFRSDHF1

Applicable Standards: FCC CFR Title 47 Part 15C (§15.225)

Date of Sample Receipt: 08 Sep., 2022

Date of Test: 09 Sep., 2022 to 20 Feb., 2023

Date of Report Issue: 21 Feb., 2023

Test Result: PASS

Tested by: Mike.Ou

Date: 21 Feb., 2023

Reviewed by: Wenren.Zhang

Date: 21 Feb., 2023

Approved by: Mike.Zhang

Date: 21 Feb., 2023

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description
00	23 Nov., 2022	Original
01	21 Feb., 2023	<i>1. Update section 3.5, 3.9, 5. 2 Update test setup photo</i>

2 Contents

	Page
Cover Page	1
1 Version	2
2 Contents	3
3 General Information	4
3.1 Client Information	4
3.2 General Description of E.U.T.	4
3.3 Test Mode and Environment	5
3.4 Description of Test Auxiliary Equipment	5
3.5 Measurement Uncertainty	5
3.6 Additions to, Deviations, or Exclusions From the Method.....	5
3.7 Laboratory Facility	5
3.8 Laboratory Location.....	5
3.9 Test Instruments List	6
4 Measurement Setup and Procedure	7
4.1 Test Setup	7
4.2 Test Procedure.....	9
5 Test Results.....	10
5.1 Summary	10
5.1.1 Clause and Data Summary.....	10
5.1.2 Test Limit.....	11
5.2 Spurious Emissions Spot check.....	12

3 General Information

3.1 Client Information

Applicant:	Inepro BV
Address:	Pondweg 7, 2153 PK Nieuw-Vennep, The Netherlands
Manufacturer/Factory:	Inepro BV
Address:	Pondweg 7, 2153 PK Nieuw-Vennep, The Netherlands

3.2 General Description of E.U.T.

Product Name:	Red Spider
Model No.:	Red Spider Desktop HF
Operation Frequency:	13.56MHz
Channel Numbers:	1
Modulation Type:	ASK
Antenna Type:	Internal Antenna
Power Supply:	DC 5V
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

3.3 Test Mode and Environment

Test Mode:	
Transmitting mode:	Keep the EUT in transmitting mode with modulation
<i>Remark: Pre-scan The EUT was placed on three different polar directions tested: i.e. X axis, Y axis, Z axis, and found Y axis was worse case, so the report only reflects the worse axis tested data.</i>	
Operating Environment:	
Temperature:	15°C ~ 35°C
Humidity:	20 % ~ 75 % RH
Atmospheric Pressure:	1008 mbar

3.4 Description of Test Auxiliary Equipment

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
N/A	N/A	N/A	N/A	N/A

3.5 Measurement Uncertainty

Reference report JYTSZ-R12-2201852, FCC ID: 2AFBFRSHF01.

3.6 Additions to, Deviations, or Exclusions From the Method

No

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● **FCC - Designation No.: CN1211**

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● **ISED – CAB identifier.: CN0021**

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● **CNAS - Registration No.: CNAS L15527**

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

● **A2LA - Registration No.: 4346.01**

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <https://portal.a2la.org/scopepdf/4346-01.pdf>

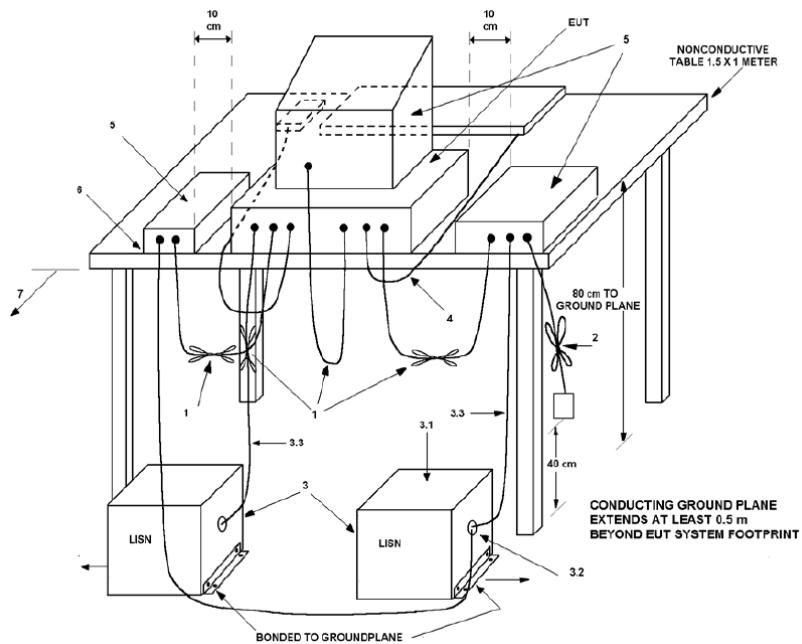
3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

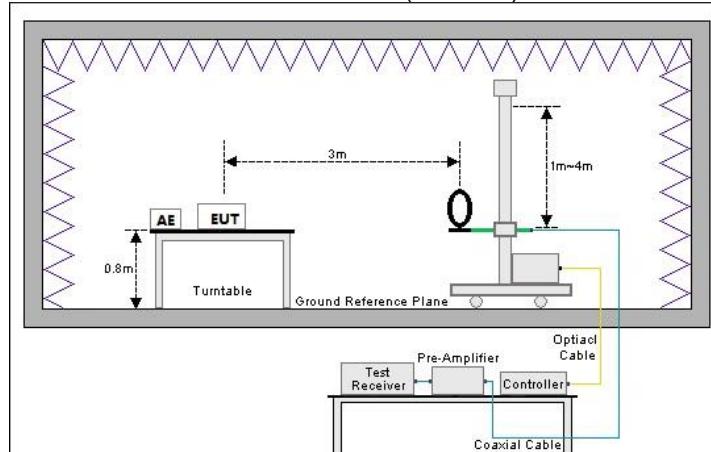
Email: info-JYTee@lets.com, Website: <http://jyt.lets.com>

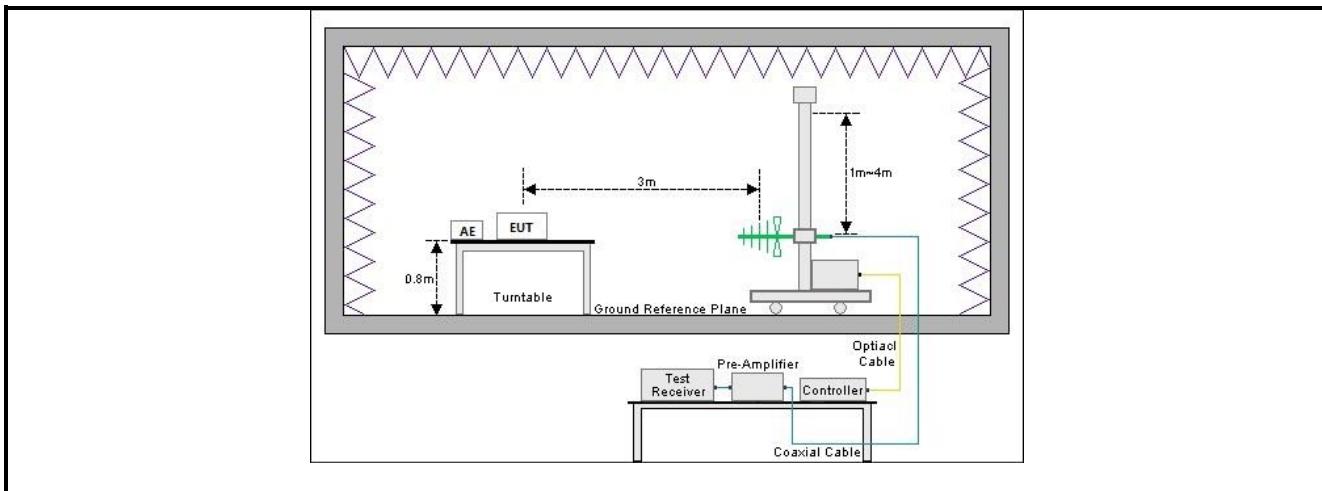
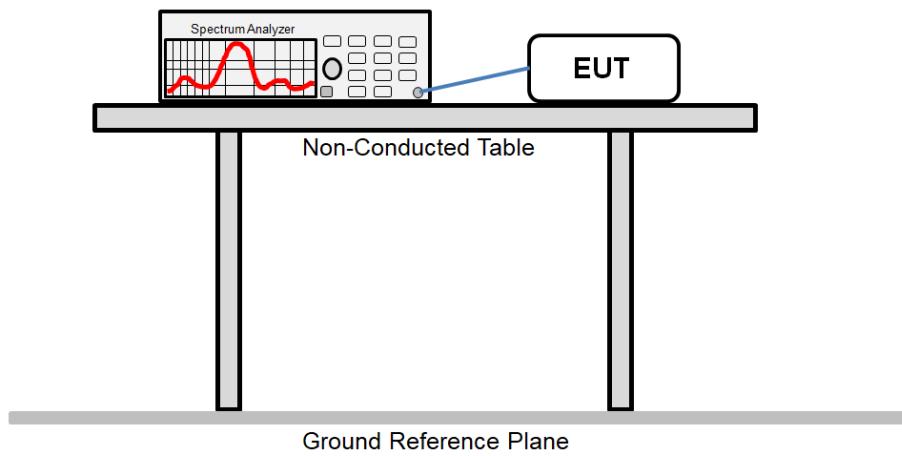

3.9 Test Instruments List

Radiated Emission(3m SAC):							
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	ETS	9m*6m*6m	WXJ001-1	04-14-2021	04-13-2024		
Loop Antenna	Schwarzbeck	FMZB 1519 B	WXJ002-4	03-07-2022	03-06-2023		
BiConiLog Antenna	Schwarzbeck	VULB9163	WXJ002	03-08-2022	03-07-2023		
Pre-amplifier (30MHz ~ 1GHz)	Schwarzbeck	BBV9743B	WXJ001-2	01-20-2022 01-10-2023	01-19-2023 01-09-2024		
EMI Test Receiver	Rohde & Schwarz	ESRP7	WXJ003-1	03-05-2022	03-04-2023		
Coaxial Cable (9kHz ~ 30MHz)	JYT	JYT3M-1G-BB-5M	WXG001-6	01-20-2022 01-10-2023	01-19-2023 01-09-2024		
Coaxial Cable (30MHz ~ 1GHz)	JYTSZ	JYT3M-1G-NN-8M	WXG001-4	01-20-2022 01-10-2023	01-19-2023 01-09-2024		
Band Reject Filter Group	Tonscend	JS0806-F	WXJ089	N/A			
Test Software	Tonscend	TS+	Version: 3.0.0.1				
EMI Test Software	AUDIX	E3	Version: 6.110919b				

4 Measurement Setup and Procedure

4.1 Test Setup


1) Conducted emission measurement:



Note: The detailed descriptions please refer to Figure 8 of ANSI C63.4:2014.

2) Radiated emission measurement:

9kHz ~ 30 MHz (3m SAC)

30 MHz ~ 1GHz (3m SAC)

Conducted test method:

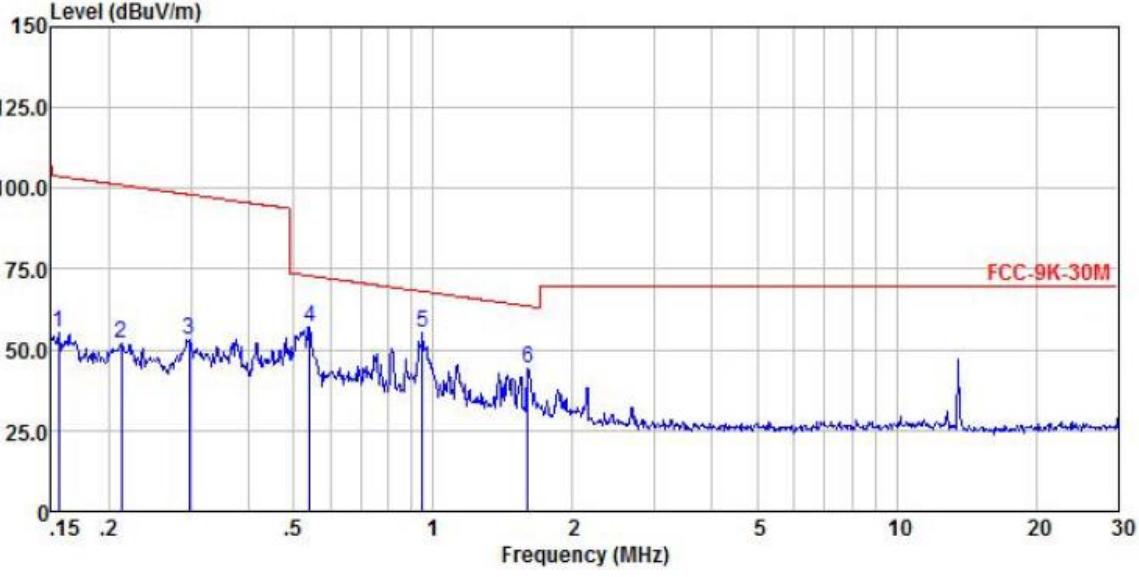
4.2 Test Procedure

Test method	Test step
Conducted emission	<ol style="list-style-type: none">1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.
Radiated emission	<ol style="list-style-type: none">1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working, respectively on 3 axis (X, Y & Z) and considered typical configuration to obtain worst position. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
Conducted test method	<ol style="list-style-type: none">1. The antenna port of EUT was connected to the RF port of the spectrum analyzer through an RF cable.2. The EUT is keeping in continuous transmission mode and tested in all modulation modes.3. The test data is saved by the screenshot function of the spectrum analyzer.

5 Test Results

5.1 Summary

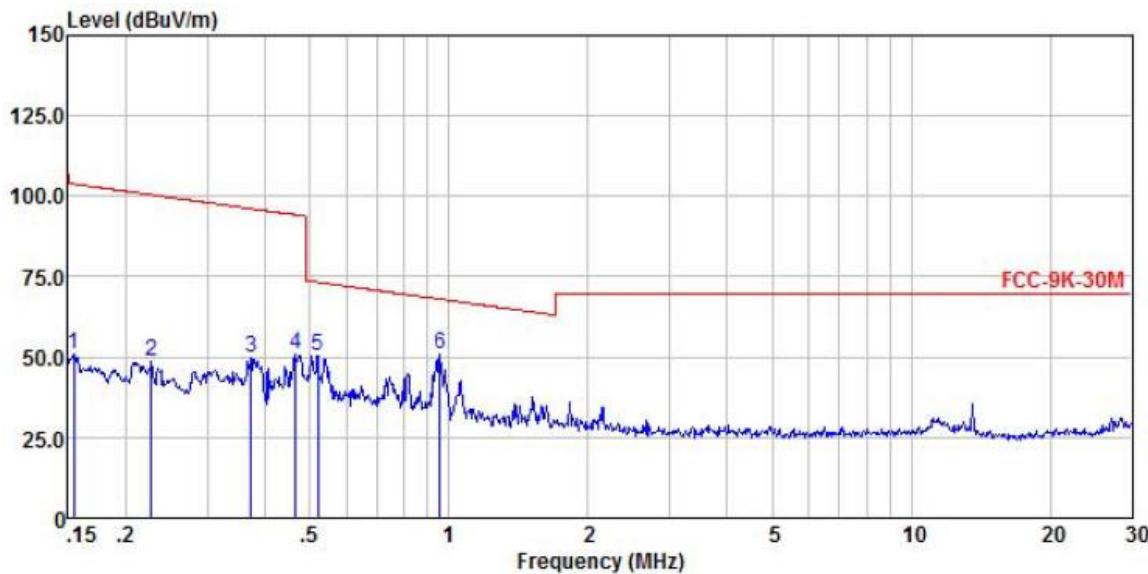
5.1.1 Clause and Data Summary


Please refer to FCC ID: 2AFBFRSHF01, report No.: JYTSZ-R12-2201852 issue by JianYan Testing Group Shenzhen Co., Ltd. The Red Spider Desktop HF and the Red Spider HF model are the same internally, including circuit design, layout, components used and internal wiring. The differences between them are as follows: The Red Spider Desktop HF have four electrical cables. So only add part of spot-check.

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203	Reference report JYTSZ-R12-2201852, FCC ID: 2AFBFRSHF01.	Reference report JYTSZ-R12-2201852, FCC ID: 2AFBFRSHF01.
AC Power Line Conducted Emission	15.207	Reference report JYTSZ-R12-2201852, FCC ID: 2AFBFRSHF01.	Reference report JYTSZ-R12-2201852, FCC ID: 2AFBFRSHF01.
20dB Bandwidth	15.215(c)	Reference report JYTSZ-R12-2201852, FCC ID: 2AFBFRSHF01.	Reference report JYTSZ-R12-2201852, FCC ID: 2AFBFRSHF01.
Field Strength of Fundamental	15.225 (a)	Reference report JYTSZ-R12-2201852, FCC ID: 2AFBFRSHF01.	Reference report JYTSZ-R12-2201852, FCC ID: 2AFBFRSHF01.
Field Strength of Spurious Emissions	15.209	1. Reference report JYTSZ-R12-2201852, FCC ID: 2AFBFRSHF01. 2. See Section 5.2	Reference report JYTSZ-R12-2201852, FCC ID: 2AFBFRSHF01.
Frequency Tolerance	15.225 (e)	Reference report JYTSZ-R12-2201852, FCC ID: 2AFBFRSHF01.	Reference report JYTSZ-R12-2201852, FCC ID: 2AFBFRSHF01.
Remark:			
1. The report is that of JYTSZ-R12-2201852, FCC ID: 2AFBFRSHF01 issue by JianYan Testing Group Shenzhen Co., Ltd.			
2. N/A: Not Applicable.			
Test Method:	ANSI C63.4-2014 ANSI C63.10-2013		

5.1.2 Test Limit

Items	Limit																									
AC Power Line Conducted Emission	Frequency (MHz)	Limit (dB μ V)																								
		Quasi-Peak	Average																							
	0.15 – 0.5	66 to 56 Note 1	56 to 46 Note 1																							
	0.5 – 5	56	46																							
	5 – 30	60	50																							
Note 1: The limit level in dB μ V decreases linearly with the logarithm of frequency. Note 2: The more stringent limit applies at transition frequencies.																										
20dB Bandwidth	N/A																									
Field Strength of Fundamental Field Strength of Spurious Emissions	(a) The field strength of any emissions within the band 13.553-13.567 MHz shall not exceed 15,848 microvolts/meter at 30 meters. (d) The field strength of any emissions appearing outside of the 13.110-14.010 MHz band shall not exceed the general radiated emission limits in § 15.209.																									
	<table border="1"> <thead> <tr> <th>Frequency (MHz)</th><th>Field strength (microvolts/meter)</th><th>Measurement distance (meters)</th></tr> </thead> <tbody> <tr> <td>0.009 – 0.490</td><td>2400/F(kHz)</td><td>300</td></tr> <tr> <td>0.490 – 1.705</td><td>24000/F(kHz)</td><td>30</td></tr> <tr> <td>1.705 – 30.0</td><td>30</td><td>30</td></tr> <tr> <td>30 – 88</td><td>100**</td><td>3</td></tr> <tr> <td>88 – 216</td><td>150**</td><td>3</td></tr> <tr> <td>216 – 960</td><td>200**</td><td>3</td></tr> <tr> <td>Above 960</td><td>500</td><td>3</td></tr> </tbody> </table> <p>** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.</p>			Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	0.009 – 0.490	2400/F(kHz)	300	0.490 – 1.705	24000/F(kHz)	30	1.705 – 30.0	30	30	30 – 88	100**	3	88 – 216	150**	3	216 – 960	200**	3	Above 960	500
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)																								
0.009 – 0.490	2400/F(kHz)	300																								
0.490 – 1.705	24000/F(kHz)	30																								
1.705 – 30.0	30	30																								
30 – 88	100**	3																								
88 – 216	150**	3																								
216 – 960	200**	3																								
Above 960	500	3																								
Frequency Tolerance	The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to + 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.																									


5.2 Spurious Emissions Spot check

Product Name:	Red Spider	Product Model:	Red Spider Desktop HF																																																																					
Test By:	Mike	Test mode:	NFC Tx mode																																																																					
Test Frequency:	150 kHz – 30 MHz	Polarization:	Coxial																																																																					
Test Voltage:	DC 5.0V																																																																							
<table border="1"> <thead> <tr> <th>Freq</th> <th>ReadAntenna Level Factor</th> <th>Cable Loss Factor</th> <th>Preamp Level</th> <th>Limit Line</th> <th>Over Limit</th> <th>Remark</th> </tr> </thead> <tbody> <tr> <td>MHz</td> <td>dBuV</td> <td>dB/m</td> <td>dB</td> <td>dB</td> <td>dBuV/m</td> <td>dBuV/m</td> <td>dB</td> </tr> <tr> <td>1</td> <td>0.156</td> <td>35.10</td> <td>20.22</td> <td>0.03</td> <td>0.00</td> <td>55.35</td> <td>103.78</td> <td>-48.43 Peak</td> </tr> <tr> <td>2</td> <td>0.213</td> <td>31.54</td> <td>20.37</td> <td>0.04</td> <td>0.00</td> <td>51.95</td> <td>101.06</td> <td>-49.11 Peak</td> </tr> <tr> <td>3</td> <td>0.297</td> <td>32.77</td> <td>20.54</td> <td>0.06</td> <td>0.00</td> <td>53.37</td> <td>98.15</td> <td>-44.78 Peak</td> </tr> <tr> <td>4</td> <td>0.541</td> <td>36.39</td> <td>20.77</td> <td>0.09</td> <td>0.00</td> <td>57.25</td> <td>72.95</td> <td>-15.70 Peak</td> </tr> <tr> <td>5</td> <td>0.948</td> <td>34.48</td> <td>20.52</td> <td>0.11</td> <td>0.00</td> <td>55.11</td> <td>68.08</td> <td>-12.97 Peak</td> </tr> <tr> <td>6</td> <td>1.602</td> <td>23.64</td> <td>20.46</td> <td>0.17</td> <td>0.00</td> <td>44.27</td> <td>63.54</td> <td>-19.27 Peak</td> </tr> </tbody> </table>				Freq	ReadAntenna Level Factor	Cable Loss Factor	Preamp Level	Limit Line	Over Limit	Remark	MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	1	0.156	35.10	20.22	0.03	0.00	55.35	103.78	-48.43 Peak	2	0.213	31.54	20.37	0.04	0.00	51.95	101.06	-49.11 Peak	3	0.297	32.77	20.54	0.06	0.00	53.37	98.15	-44.78 Peak	4	0.541	36.39	20.77	0.09	0.00	57.25	72.95	-15.70 Peak	5	0.948	34.48	20.52	0.11	0.00	55.11	68.08	-12.97 Peak	6	1.602	23.64	20.46	0.17	0.00	44.27	63.54	-19.27 Peak
Freq	ReadAntenna Level Factor	Cable Loss Factor	Preamp Level	Limit Line	Over Limit	Remark																																																																		
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB																																																																	
1	0.156	35.10	20.22	0.03	0.00	55.35	103.78	-48.43 Peak																																																																
2	0.213	31.54	20.37	0.04	0.00	51.95	101.06	-49.11 Peak																																																																
3	0.297	32.77	20.54	0.06	0.00	53.37	98.15	-44.78 Peak																																																																
4	0.541	36.39	20.77	0.09	0.00	57.25	72.95	-15.70 Peak																																																																
5	0.948	34.48	20.52	0.11	0.00	55.11	68.08	-12.97 Peak																																																																
6	1.602	23.64	20.46	0.17	0.00	44.27	63.54	-19.27 Peak																																																																

Remark:

1. Level = Read level + Antenna Factor + Cable Loss – Preamplifier Factor.
2. The emission levels of 9 kHz~150 kHz are background noise and very lower than the limit, so not show in test report.

Product Name:	Red Spider	Product Model:	Red Spider Desktop HF
Test By:	Mike	Test mode:	NFC Tx mode
Test Frequency:	150 kHz – 30 MHz	Polarization:	Coplanar
Test Voltage:	DC 5.0V		

Freq MHz	Read Level MHz	Antenna Factor	Cable Loss Factor	Preamplifier Level dB	Limit Line dBuV/m	Over Line dBuV/m	Over Limit dB	Over Remark
	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	dB	
1	0.154	30.43	20.21	0.03	50.67	103.87	-53.20	Peak
2	0.227	28.40	20.41	0.05	48.86	100.50	-51.64	Peak
3	0.373	29.38	20.65	0.06	50.09	96.17	-46.08	Peak
4	0.466	30.01	20.77	0.07	50.85	94.23	-43.38	Peak
5	0.521	29.68	20.78	0.08	50.54	73.27	-22.73	Peak
6	0.958	30.43	20.52	0.12	51.07	67.99	-16.92	Peak

Remark:

1. Level = Read level + Antenna Factor + Cable Loss – Preamplifier Factor.
2. The emission levels of 9 kHz~150 kHz are background noise and very lower than the limit, so not show in test report.

-----End of report-----