

JianYan Testing Group Shenzhen Co., Ltd.

Report No.: JYTSZ-R12-2201857

FCC RF Test Report

Applicant: Inepro BV

Address of Applicant: Pondweg 7, 2153 PK Nieuw-Vennep, The Netherlands

Equipment Under Test (EUT)

Product Name: Red Spider

Model No.: Red Spider Desktop HF

Trade Mark: Red Spider

FCC ID: 2AFBFRSDHF1

Applicable Standards: FCC CFR Title 47 Part 15C (§15.247)

Date of Sample Receipt: 08 Sep., 2022

Date of Test: 09 Sep., 2022 to 20 Feb., 2023

Date of Report Issued: 21 Feb., 2023

Test Result: PASS

Tested by: Date: 21 Feb., 2023

Reviewed by: Date: 21 Feb., 2023

Approved by: Date: 21 Feb., 2023

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in above the application standard version. Test results reported herein relate only to the item(s) tested.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

1 Version

Version No.	Date	Description	
00	23 Nov., 2022	Original	
01	21 Feb., 2023	 Update section 3.5, 3.9, 5. Update test setup photo. 	

2 Contents

			Page
Co	ver Pag	ge	1
1	Vers	ion	2
2	Cont	tents	3
3	Gene	eral Information	4
3	3.1	Client Information	4
3	3.2	General Description of E.U.T.	4
3	3.3	Test Mode and Test Environment	5
3	3.4	Description of Test Auxiliary Equipment	5
3	3.5	Measurement Uncertainty	5
3	3.6	Additions to, Deviations, or Exclusions from the Method	5
3	3.7	Laboratory Facility	5
3	3.8	Laboratory Location	5
3	3.9	Test Instruments List	6
4	Meas	surement Setup and Procedure	7
2	1.1	Test Channel	7
2	1.2	Test Setup	7
4	1.3	Test Procedure	9
5	Test	Results	10
5	5.1	Summary	10
	5.1.1	Clause and Data Summary	10
	5.1.2	Prest Limit	11
5	5.2	Test Results	12
	5.2.1	RF Output Power Spot-check	12

3 General Information

3.1 Client Information

Applicant:	Inepro BV
Address:	Pondweg 7, 2153 PK Nieuw-Vennep, The Netherlands
Manufacturer/Factory:	Inepro BV
Address:	Pondweg 7, 2153 PK Nieuw-Vennep, The Netherlands

3.2 General Description of E.U.T.

<u></u>	iz Ceneral Description of E.G.T.				
Product Name:	Red Spider				
Model No.:	Red Spider Desktop HF				
Operation Frequency:	2402 MHz - 2480 MHz				
Channel Numbers:	40				
Channel Separation:	2MHz				
Modulation Technology:	GFSK				
Data Speed:	1 Mbps (LE 1M PHY)				
Antenna Type:	Internal Antenna				
Antenna Gain:	0.5dBi (declare by applicant)				
Antenna transmit mode:	SISO (1TX, 1RX)				
Power Supply:	DC 5V				
Test Sample Condition:	The test samples were provided in good working order with no visible defects.				

Report No.: JYTSZ-R12-2201857

3.3 Test Mode and Test Environment

Test Mode:					
Transmitting mode	Keep the EUT in continuous transmitting with modulation				
Remark: For AC power line conducted emission and radiated spurious emission (below 1GHz), pre-scan all data speed, found 1 Mbps (LE 1M PHY) was worse case mode. The report only reflects the test data of worst mode.					
Operating Environment:					
Temperature: 15° ~ 35°					
Humidity: 20 % ~ 75 % RH					
Atmospheric Pressure:	1008 mbar				

3.4 Description of Test Auxiliary Equipment

The EUT has been tested as an independent unit.

3.5 Measurement Uncertainty

Please reference report JYTSZ-R12-2201851, FCC ID: 2AFBFRSHF01.

3.6 Additions to, Deviations, or Exclusions from the Method

No

3.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber and 10m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L15527

JianYan Testing Group Shenzhen Co., Ltd. is accredited to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L15527.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

3.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

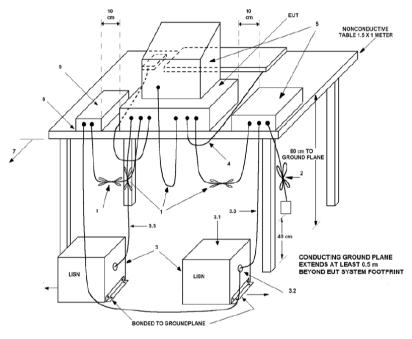
Email: info-JYTee@lets.com, Website: http://jyt.lets.com

JianYan Testing Group Shenzhen Co., Ltd. Report Template No.: JYTSZ4b-148-C1 No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Tel: +86-755-23118282, Fax: +86-755-23116366

3.9 Test Instruments List

Conducted Method:								
Test Equipment	Manufacturer	Model No.	Manage No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
Chaotrum Anglyzor	Kovojaht	N9010B	WXJ004-3	10-27-2021	10-26-2022			
Spectrum Analyzer	Keysight	N9010B		10-17-2022	10-16-2023			
Temperature Humidity Chamber	ZHONG ZHI	CZ-A-80D	WXJ032-3	03-19-2021	03-18-2023			
Dawar Datastar Day	MAADETECT	MM/400 DCD	W/V 1007 4	11-19-2021	11-18-2022			
Power Detector Box	MWRFTEST	MW100-PSB	WXJ007-4	10-17-2022	10-16-2023			
DC Power Supply	Keysight	E3642A	WXJ025-2	N	I/A			
RF Control Unit	MWRFTEST MW100-RFCB WXG006 N/A		I/A					
Test Software	MWRFTEST	MTS 8310		Version: 2.0.0.0				

4 Measurement Setup and Procedure

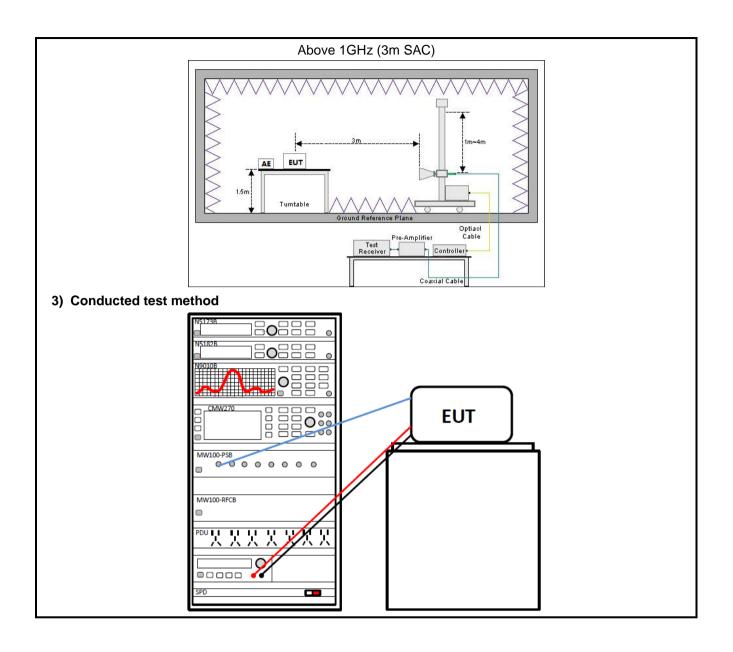

4.1 Test Channel

According to ANSI C63.10-2013 chapter 5.6.1 Table 4 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows:

Lowest channel		Midd	le channel	Highe	st channel
Channel No. Frequency (MHz)		Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	0 2402		2442	39	2480

4.2 Test Setup

1) Conducted emission measurement:


Note: The detailed descriptions please refer to Figure 8 of ANSI C63.4:2014.

2) Radiated emission measurement:

Below 1GHz (3m SAC)

4.3 Test Procedure

Test method	Test step
Conducted emission	The E.U.T and simulators are connected to the main power through a line
Conducted Cimission	impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH
	coupling impedance for the measuring equipment.
	The peripheral devices are also connected to the main power through a LISN
	that provides a 50ohm/50uH coupling impedance with 50ohm termination.
	(Please refer to the block diagram of the test setup and photographs).
	3. Both sides of A.C. line are checked for maximum conducted interference. In
	order to find the maximum emission, the relative positions of equipment and
	all of the interface cables must be changed according to ANSI C63.10 on
	conducted measurement.
Radiated emission	For below 1GHz:
	The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a
	3 m semi anechoic chamber. The measurement distance from the EUT to the
	receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and
	considered typical configuration to obtain worst position. The highest signal
	levels relative to the limit shall be determined by rotating the EUT from 0° to
	360° and with varying the measurement antenna height between 1 m and 4
	m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.
	the test, save the test results, and export the test data.
	For above 1GHz:
	1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a
	3 m fully anechoic room. The measurement distance from the EUT to the
	receiving antenna is 3 m.
	2. EUT works in each mode of operation that needs to be tested, and having
	the EUT continuously working, respectively on 3 axis (X, Y & Z) and
	considered typical configuration to obtain worst position. The highest signal
	levels relative to the limit shall be determined by rotating the EUT from 0° to
	360° and with varying the measurement antenna height between 1 m and 4
	m in vertical and horizontal polarizations.
	3. Open the test software to control the test antenna and test turntable. Perform
Conducted test method	the test, save the test results, and export the test data.
Conducted test method	The BLE antenna port of EUT was connected to the test port of the test system through an RF cable.
	The EUT is keeping in continuous transmission mode and tested in all
	modulation modes.
	Open the test software, prepare a test plan, and control the system through
	the software. After the test is completed, the test report is exported through
	the test software.

5 Test Results

5.1 Summary

5.1.1 Clause and Data Summary

Please refer to FCC ID: 2AFBFRSHF01, report No.: JYTSZ-R12-2201851 issue by JianYan Testing Group Shenzhen Co., Ltd. The Red Spider Desktop HF and the Red Spider HF model are the same internally, including circuit design, layout, components used and internal wiring. The differences between them are as follows: The Red Spider Desktop HF have four electrical cables. So only add part of spot-check.

Test items	Standard clause	Test data	Result
Antenna Requirement	15.203 15.247 (b)(4)	Reference report JYTSZ-R12- 2201851, FCC ID: 2AFBFRSHF01.	Reference report JYTSZ- R12-2201851, FCC ID: 2AFBFRSHF01.
AC Power Line Conducted Emission	15.207	Reference report JYTSZ-R12- 2201851, FCC ID: 2AFBFRSHF01.	Reference report JYTSZ- R12-2201851, FCC ID: 2AFBFRSHF01.
Conducted Output Power	15.247 (b)(3)	1. Reference report JYTSZ- R12-2201851, FCC ID: 2AFBFRSHF01. 2. See Section 5.2	Reference report JYTSZ- R12-2201851, FCC ID: 2AFBFRSHF01.
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Reference report JYTSZ-R12- 2201851, FCC ID: 2AFBFRSHF01.	Reference report JYTSZ- R12-2201851, FCC ID: 2AFBFRSHF01.
Power Spectral Density	15.247 (e)	Reference report JYTSZ-R12- 2201851, FCC ID: 2AFBFRSHF01.	Reference report JYTSZ- R12-2201851, FCC ID: 2AFBFRSHF01.
Band-edge Emission Conduction Spurious Emission	15.247 (d)	Reference report JYTSZ-R12- 2201851, FCC ID: 2AFBFRSHF01.	Reference report JYTSZ- R12-2201851, FCC ID: 2AFBFRSHF01.
Emissions in Restricted Frequency Bands	15.205 15.247 (d)	Reference report JYTSZ-R12- 2201851, FCC ID: 2AFBFRSHF01.	Reference report JYTSZ- R12-2201851, FCC ID: 2AFBFRSHF01.
Emissions in Non-restricted Frequency Bands	15.209 15.247(d)	Reference report JYTSZ-R12- 2201851, FCC ID: 2AFBFRSHF01.	Reference report JYTSZ- R12-2201851, FCC ID: 2AFBFRSHF01.

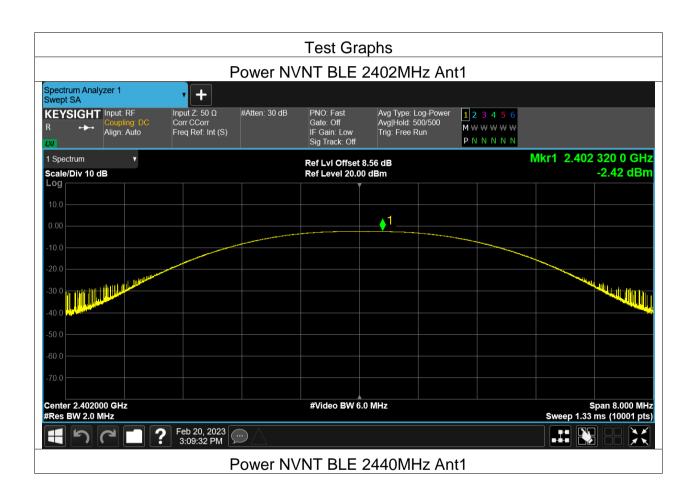
Remark

- 1. The report is that of JYTSZ-R12-2201851, FCC ID: 2AFBFRSHF01 issue by JianYan Testing Group Shenzhen Co., I td.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

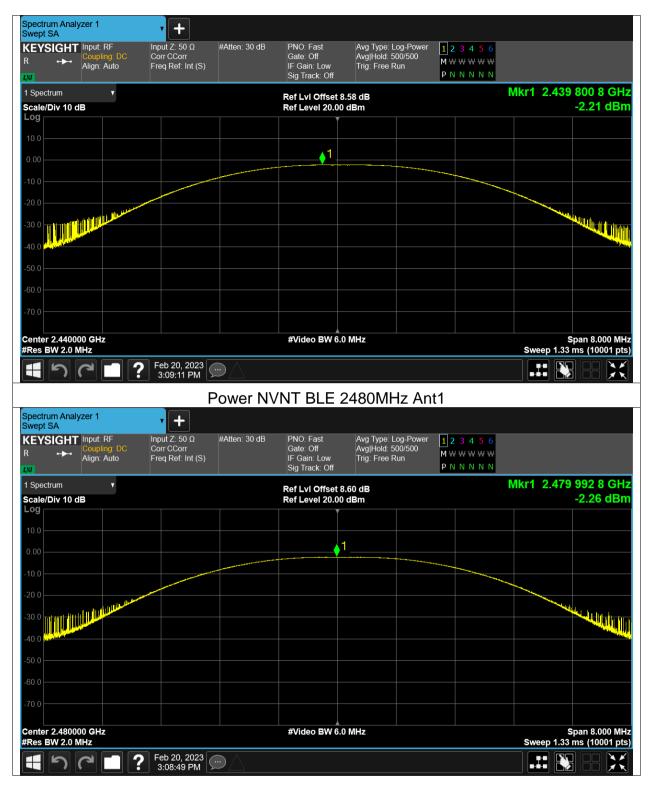
Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5.1.2 Test Limit

Test items	Limit					
		Frequency		Limit (de	3μV)	
		(MHz)	Qua	si-Peak	Average	
AC Power Line Conducted		0.15 – 0.5	66 to	56 Note 1	56 to 46 Note 1	
Emission		0.5 – 5		56	46	
		5 – 30		60	50	
		Note 1: The limit level in dBµ Note 2: The more stringent li			n of frequency.	
Conducted Output Power		systems using digital i 5725-5850 MHz band		the 902-928 N	ИНz, 2400-2483.5 МН.	z,
6dB Emission Bandwidth	The	e minimum 6 dB bandw	idth shall be a	at least 500 kH	dz.	
99% Occupied Bandwidth	N/A	1				
Power Spectral Density	inte	digitally modulated synthemics of the analor of the and during any time interest.	antenna shall	not be greate	r than 8 dBm in any 3	
Band-edge Emission Conduction Spurious Emission	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).					
		Frequency		BμV/m)	Detector	
	-	(MHz)	@ 3m	@ 10m		-
Facinations in Booksists I	-	30 – 88	40.0	30.0	Quasi-peak	-
Emissions in Restricted	-	88 – 216	43.5	33.5	Quasi-peak	-
Frequency Bands	-	216 – 960 960 – 1000	46.0 54.0	36.0 44.0	Quasi-peak	+
	Notes The second of the second					
Emissions in Non-restricted Frequency Bands	Note: The more stringent limit applies at transition frequencies. Limit (dBµV/m) @ 3m					
l Toquelley Dallus		Frequency	Average		Peake	
	Above 1 GHz 54.0 74.0				1	
		Note: The measurement band			1	1



5.2 Test Results


5.2.1 RF Output Power Spot-check.

Maximum Conducted Output Power

Condition Mode Frequency		Antenna	Conducted Power	Limit	Verdict	
		(MHz)		(dBm)	(dBm)	
NVNT	BLE	2402	Ant1	-2.419	30	Pass
NVNT	BLE	2440	Ant1	-2.206	30	Pass
NVNT	BLE	2480	Ant1	-2.261	30	Pass

-----End of report-----