



## GDR-XXXX NAV/COM Installation Manual

REVISION HISTORY FOLLOWS ON PAGE 2.

**WARNING:** A printed copy of this document may not be the latest revision. It is the responsibility of the user to ensure that the latest revision is used. The latest revision of this document may be printed from the Genesys Aerosystems electronic document repository.

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION OF GENESYS AEROSYSTEMS. NEITHER RECEIPT, NOR POSSESSION THEREOF, CONFERS ANY RIGHT TO REPRODUCE OR USE, OR DISCLOSE, IN WHOLE OR IN PART, ANY SUCH INFORMATION WITHOUT WRITTEN AUTHORIZATION FROM GENESYS AEROSYSTEMS.

|                 |                                                                                                                                                          |                                                                                                                  |     |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----|
| APPROVAL        | NAME                                                                                                                                                     | PURPOSE:<br>This document is the Installation Manual for the GDR-XXXX series Navigation and Communication radio. |     |
| AUTHOR          | R DuRall                                                                                                                                                 |                                                                                                                  |     |
| CHECK           | D Boston                                                                                                                                                 |                                                                                                                  |     |
| QUALITY         | S Conn                                                                                                                                                   |                                                                                                                  |     |
| COGNIZANT       | B DeLong                                                                                                                                                 |                                                                                                                  |     |
| COGNIZANT       |                                                                                                                                                          |                                                                                                                  |     |
| COGNIZANT       |                                                                                                                                                          |                                                                                                                  |     |
| RELEASE DATE:   |                                                                                                                                                          | DOCUMENT NUMBER                                                                                                  | REV |
| Status<br>Draft | Typed signatures indicate approval. Handwritten, or electronic signature approval of this document is on file at Genesys Aerosystems, Anchorage, Alaska. | 64-000109                                                                                                        | A   |



## GDR-XXXX NAV/COM INSTALLATION MANUAL

### REVISION RECORD

| Rev | Notes            | Date           | Author   |
|-----|------------------|----------------|----------|
| A   | Original Version | See Cover Page | R DuRall |

**TABLE OF CONTENTS**

|                                                     |           |
|-----------------------------------------------------|-----------|
| <b>CHAPTER 1 – INTRODUCTION.....</b>                | <b>7</b>  |
| 1. PURPOSE.....                                     | 7         |
| 2. SCOPE.....                                       | 8         |
| 3. STYLE AND DEFINITION.....                        | 8         |
| 4. UNPACKING THE GDR.....                           | 8         |
| 5. SPECIAL TOOLS.....                               | 9         |
| 6. FUNCTIONAL DESCRIPTION.....                      | 10        |
| 7. SYSTEM COMPONENTS.....                           | 14        |
| 8. ELECTRICAL SPECIFICATIONS.....                   | 17        |
| A. <i>Power Inputs</i> .....                        | 17        |
| B. <i>System Antenna Specifications</i> .....       | 17        |
| C. <i>Antenna Inputs</i> .....                      | 17        |
| D. <i>Microphone Inputs (DO-214, § 1.5.2)</i> ..... | 17        |
| E. <i>Audio Outputs and Levels</i> .....            | 17        |
| 9. ENVIRONMENTAL SPECIFICATIONS.....                | 18        |
| 10. TSO APPLICABILITY.....                          | 20        |
| 11. TSO DEVIATIONS.....                             | 20        |
| 12. ACRONYMS AND ABBREVIATIONS.....                 | 21        |
| <b>CHAPTER 2 – SYSTEM INSTALLATION.....</b>         | <b>23</b> |
| 1. LIMITATIONS AND NOTES.....                       | 23        |
| A. <i>Notes and Warnings</i> .....                  | 23        |
| 2. PRE-INSTALLATION INFORMATION.....                | 23        |
| 3. CABLING TERMINATION.....                         | 24        |
| A. <i>General</i> .....                             | 24        |
| B. <i>Solder Sleeve Assembly</i> .....              | 24        |
| C. <i>Optional Shield Pull-Out Method</i> .....     | 26        |
| D. <i>Back Shell Termination</i> .....              | 28        |
| E. <i>Right Angle BNC Connector Assembly</i> .....  | 28        |
| 4. MOUNTING.....                                    | 29        |
| A. <i>Tray Installation</i> .....                   | 29        |
| B. <i>Tray Assembly</i> .....                       | 30        |
| 5. ANTENNA LOCATION.....                            | 31        |
| A. <i>COM Antenna</i> .....                         | 31        |
| B. <i>NAV Antenna</i> .....                         | 32        |
| C. <i>MB Antenna</i> .....                          | 33        |
| 6. SIGNAL DESCRIPTION.....                          | 34        |
| A. <i>Power and Ground</i> .....                    | 34        |
| B. <i>RS-232 Interface</i> .....                    | 34        |
| C. <i>ARINC 429 Interface</i> .....                 | 34        |
| D. <i>MIC Audio</i> .....                           | 35        |
| E. <i>COM Audio and SIDETONE</i> .....              | 35        |
| F. <i>PTT and TX INTERLOCK</i> .....                | 36        |
| G. <i>NAV and MB AUDIO</i> .....                    | 36        |
| H. <i>SDI, Power, and Discrete</i> .....            | 37        |
| <b>CHAPTER 3 – SYSTEM DRAWINGS .....</b>            | <b>39</b> |
| 1. MECHANICAL DRAWING .....                         | 39        |
| A. <i>GDR-XXXX</i> .....                            | 39        |

|                                                               |           |
|---------------------------------------------------------------|-----------|
| B. GDR TRAY .....                                             | 40        |
| 2. GDR-XXXX CONNECTOR DRAWINGS .....                          | 41        |
| A. P1 Connector .....                                         | 41        |
| B. P2 Connector .....                                         | 42        |
| 3. WIRING DIAGRAMS .....                                      | 43        |
| <b>CHAPTER 4 – GROUND FUNCTIONAL TESTS .....</b>              | <b>46</b> |
| <b>CHAPTER 5 – TROUBLESHOOTING .....</b>                      | <b>49</b> |
| 1. TOOLS .....                                                | 49        |
| 2. SETUP .....                                                | 49        |
| 3. FAULT INDICATIONS .....                                    | 49        |
| 4. FAILURES .....                                             | 49        |
| 5. COM PORT INSPECTOR .....                                   | 49        |
| 6. GDR-XXXX MAINTENANCE UTILITY .....                         | 49        |
| <b>APPENDIX A – ARINC 429 SPECIFICATIONS .....</b>            | <b>50</b> |
| 1. ARINC LABELS 030 AND 047, VHF COM .....                    | 51        |
| 2. ARINC LABEL 034, VOR/ILS FREQUENCY .....                   | 52        |
| 3. ARINC LABEL 035, DME FREQUENCY .....                       | 53        |
| 4. ARINC LABEL 040, UHF COM .....                             | 54        |
| 5. ARINC LABEL 173, LOC DEVIATION .....                       | 56        |
| 6. ARINC LABEL 174, G/S DEVIATION .....                       | 57        |
| 7. ARINC LABEL 222, VOR BEARING AND MARKER BEACON TONES ..... | 58        |
| 8. ARINC LABEL 242 & 244, VOR GROUND STATION ID .....         | 59        |
| 9. ARINC LABEL 263 & 264, ILS GROUND STATION ID .....         | 60        |
| 10. ARINC LABEL 350 LRU MAINTENANCE STATUS .....              | 61        |
| 11. ARINC 429 UPDATE RATE (ARINC 429-18, ATTACHMENT 2) .....  | 62        |

### LIST OF FIGURES

|                                                   |    |
|---------------------------------------------------|----|
| Figure 1: GDR-XXXX .....                          | 10 |
| Figure 2: GDR Block Diagram .....                 | 13 |
| Figure 3: Solder Sleeve Assembly.....             | 24 |
| Figure 4: Wire Termination.....                   | 25 |
| Figure 5: Shield Pull-Out Method.....             | 27 |
| Figure 6: Shield Pull-Out Method (Continued)..... | 27 |
| Figure 7: Right Angle BNC Connector.....          | 28 |
| Figure 8: Tray Assembly .....                     | 30 |

### LIST OF TABLES

|                                                                                     |    |
|-------------------------------------------------------------------------------------|----|
| Table 1: Installation Guide Style Conventions .....                                 | 8  |
| Table 2: Special Tools Required.....                                                | 9  |
| Table 3: List of Specifications and Major Components .....                          | 14 |
| Table 4: GDR-XXXX Configuration.....                                                | 14 |
| Table 5: GDR Installation Kit P/N 42-033100-0001 .....                              | 15 |
| Table 6: List of Possible Antennas.....                                             | 16 |
| Table 7: List of VHF COM Antennas .....                                             | 31 |
| Table 8: List of Extended VHF COM Antennas .....                                    | 32 |
| Table 9: List of VHF & UHF COM Antennas .....                                       | 32 |
| Table 10: List of NAV Antennas .....                                                | 32 |
| Table 11: List of MB Antennas .....                                                 | 33 |
| Table 12: VHF COM 118 MHz Frequency with 25 kHz or 8.33 kHz channel bandwidth ..... | 51 |
| Table 13: Sign Status Matrix definition and SDI bit definition.....                 | 51 |
| Table 14: NAV Frequency Selection Format for 109.3 MHz, ARINC Label 034 .....       | 52 |
| Table 15: Definition of Bits 11 to 13 for Label 034.....                            | 52 |
| Table 16: Sign Status Matrix definition .....                                       | 52 |
| Table 17: ARINC SDI bit definition.....                                             | 52 |
| Table 18: DME Frequency Format for 109.3 MHz, ARINC Label 035 .....                 | 53 |
| Table 19: ARINC Label 035, Bits 11-13.....                                          | 53 |
| Table 20: Sign Status Matrix definition .....                                       | 53 |
| Table 21: Navigation source bit definition .....                                    | 53 |
| Table 22: ARINC Label 035 SDI bit definition .....                                  | 53 |
| Table 23: UHF COM Data Format Label 040 .....                                       | 54 |
| Table 24: Modulation Bits.....                                                      | 54 |
| Table 25: Bit 13 .....                                                              | 54 |
| Table 26: SDI bit definition .....                                                  | 54 |
| Table 27: Sign Status Matrix definition .....                                       | 54 |
| Table 28: LOC Deviation Specification, ARINC Label 173 .....                        | 56 |
| Table 29: LOC Deviation Format, ARINC Label 173.....                                | 56 |
| Table 30: Status Matrix definition.....                                             | 56 |
| Table 31: Sign Bit definition .....                                                 | 56 |
| Table 32: Glideslope Deviation Specification, ARINC Label 174.....                  | 57 |
| Table 33: Glideslope Deviation Format, ARINC Label 174.....                         | 57 |
| Table 34: Status Matrix definition.....                                             | 57 |
| Table 35: Sign Bit definition .....                                                 | 57 |
| Table 36: VOR Bearing Specification, ARINC Label 222.....                           | 58 |
| Table 37: VOR Bearing Format, ARINC Label 222.....                                  | 58 |
| Table 38: Status Matrix definition.....                                             | 58 |

|                                                               |    |
|---------------------------------------------------------------|----|
| Table 39: Sign Bit definition .....                           | 58 |
| Table 40: Marker Beacon Tone Bit definition .....             | 58 |
| Table 41: Morse code first word format, ARINC Label 263.....  | 59 |
| Table 42: Morse code second word format, ARINC Label 264..... | 59 |
| Table 43: Status Matrix definition.....                       | 59 |
| Table 44: Morse code first word format, ARINC Label 263.....  | 60 |
| Table 45: Morse code second word format, ARINC Label 264..... | 60 |
| Table 46: Status Matrix definition.....                       | 60 |
| Table 47: Sign Bit definition .....                           | 60 |
| Table 48: Maintenance Status .....                            | 61 |
| Table 49: Label 350 maintenance bit definition .....          | 61 |
| Table 50: Status Matrix definition.....                       | 62 |

## CHAPTER 1 – INTRODUCTION

### 1. PURPOSE

This manual provides a description of the Genesys Aerosystems (Genesys) Digital Radio (GDR) series installation in an aircraft. The GDR can be used for new or retrofit installations. The most recent version of this installation manual is always located online at [www.genesys-aerosystems.com](http://www.genesys-aerosystems.com) under the “DealerLink” tab.

**NOTE:** “The conditions and tests required for TSO approval of this article are minimum performance standards. It is the responsibility of those desiring to install this article either on or within a specific type or class of aircraft to determine that the aircraft installation conditions are within the TSO standards. If not within the TSO standards, the article may be installed only if further evaluation by the applicant documents an acceptable installation and is approved by the Administrator.”

**CAUTION:** These instructions are intended for use by installers familiar with standard aircraft avionics practices and methods of installation. If you do not have prior experience with or knowledge of avionics installations, do not attempt the following installation. Genesys will not be held liable for damaged items resulting from improper handling and installation.

## CHAPTER 1 – INTRODUCTION

### 2. SCOPE

This manual includes installation and checkout procedures for the GDR.

- Chapter 1: Provides an **introduction** to the GDR.
- Chapter 2: Includes **system installation** instructions.
- Chapter 3: Includes **unit drawings**, both mechanical and electrical.
- Chapter 4: Includes **ground maintenance** procedures.
- Chapter 5: Includes **ground functional test** procedures.
- Chapter 6: Includes **troubleshooting** procedures.
- Appendix A: Includes **ARINC 429** specifications.

### 3. STYLE AND DEFINITION

Stylistic elements used throughout this manual are listed in Table 1. These styles are used to emphasize text, to make the information more accessible during installation and to make the online manual more interactive.

**Table 1: Installation Guide Style Conventions**

| Style                  | Description                                                                                                                                                      | Uses                                                                                                                                                                                    |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Steps                  | Numbered steps that together form a set of instructions for installing a specific GDR.                                                                           | The numbered steps provide guidance through the proper sequence of installation procedures.                                                                                             |
| Checklists             | Installation procedures with checkboxes beside them. All the procedures in the checklist must be performed, but do not need to be performed in a specific order. | The checklist will help track the installation progress. Place a check mark on the PASS or FAIL line after completion of each procedure.                                                |
| <b><u>NOTE:</u></b>    | Capitalized underlined text followed by a colon.                                                                                                                 | The note format is used to highlight and further explain certain installation and operation details                                                                                     |
| <b><u>CAUTION:</u></b> | Bold, capitalized underlined text followed by a colon.                                                                                                           | This warning format is used to flag important installation considerations. Failure to heed the information in the warnings could cause bodily harm or death.                            |
| <b><u>WARNING:</u></b> | Bold, capitalized underlined text followed by a colon.                                                                                                           | This caution format is used to flag important installation considerations. Failure to heed the information in the warnings could cause damage to the aircraft or damage to the product. |

### 4. SPECIAL CONSIDERATIONS

#### **WARNING:**

- A. Changes or modifications to the equipment not expressly approved by the Genesys AeroSystem could void the user's authority to operate the equipment.
- B. It is the responsibility of the operator of this equipment to obtain any necessary FCC licenses for transmitting with this equipment and transmit only on authorized channels.

## CHAPTER 1 – INTRODUCTION

### 5. UNPACKING THE GDR

- A. System components are shipped in packaging designed to protect the components during transit. Carefully unpack and identify each component using the list in Table 3. Check the contents of the package against the packing list in the box. Visually inspect each individual component for any signs of damage.
- B. Keep all shipping containers and packaging in case they are needed for returning items. Contact Genesys immediately if there are missing or damaged components. Before returning any items, please contact Genesys by one of the means below.

Phone: (800) 872-7832

Fax: (940) 325-3904

E-mail: [genesys-support@genesys-aerosystems.com](mailto:genesys-support@genesys-aerosystems.com)

- C. A claim must be filed for a damaged product within 48 hours of receiving the equipment.
- D. Most of the items required for installation are supplied in the original package from Genesys. Supplemental items (not included in the package) are the responsibility of the installer.

### 6. SPECIAL TOOLS

- A. In addition to a standard aircraft mechanic's tool set, crimp tools and locators that meet MIL specification M22520 will be needed. These tools will ensure consistent, reliable crimp contact connections.

**Table 2: Special Tools Required**

| Tool Description | Part Number |
|------------------|-------------|
| Crimp Tool       | M22520/1-01 |
| Positioner       | TH25        |
| Crimp Tool       | M22520/2-01 |
| Positioner       | M2520/2-08  |
| Insertion Tool   | CIET-20HD   |

- B. In addition, the following tools and supplies should be available:
  - A digital multi-meter for testing internal terminators on cable assemblies, and for testing voltage
  - Force gauge that can measure push and pull forces up to 90 pounds

## CHAPTER 1 – INTRODUCTION

### 7. FUNCTIONAL DESCRIPTION

A. The GDR is a remotely mounted Very High Frequency (VHF) Navigation (NAV) receiver, a VHF Communications (COM) receiver, an Ultra High Frequency (UHF) Communications receiver and Marker receiver contained in a single rack-mounted enclosure. A single transmitter is shared between the VHF and UHF COM radios. The features included in the GDR are configured during manufacturing as defined by the part number. The GDR is intended for air traffic control (ATC) communications and VOR/ILS navigation.



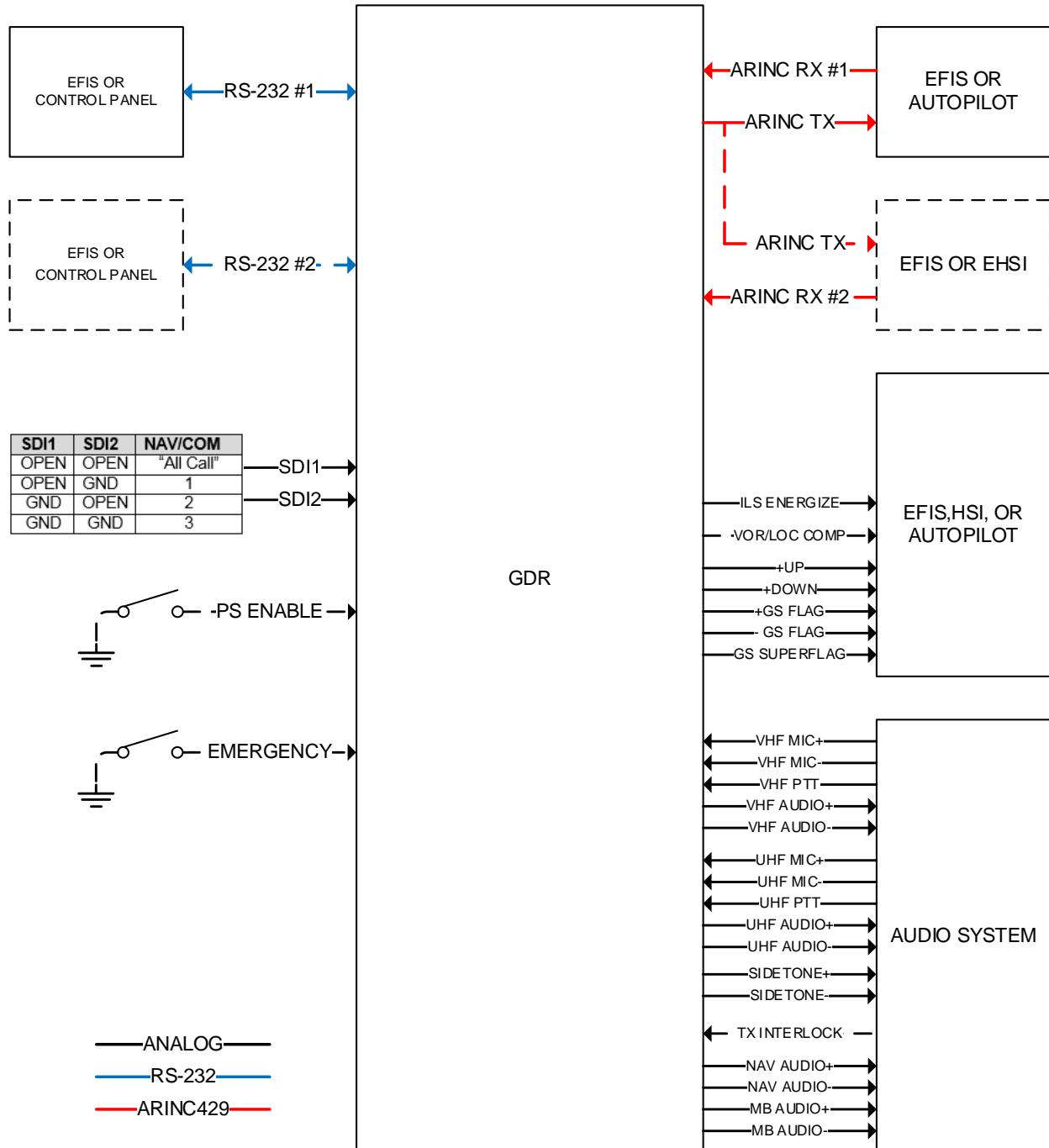
Figure 1: GDR-XXXX

B. **COM RX:** Four (4) communications receivers are included in the GDR unit; two (2) for VHF (Main and Guard) and two (2) for UHF (Main and Guard). Each band has a separate audio output for audio panel interfacing. Guard and Main audio are combined on the same output for each band. Audio volume control is available in the radio for single pilot operation when an audio panel is not available.

C. **COM TX:** The GDR shares a single transmitter for VHF and UHF frequencies. The VHF and UHF receivers have a separate microphone (MIC) inputs, Push-To-Talk (PTT), and audio output for interface with the aircraft's audio system. The transmit frequency is determined by the PTT selected and the Main receiver channel. Simultaneous VHF and UHF transmission is not allowed.

D. **COM Classes:** TX class, 3 and 5. RX class, C, D, and E.

E. **Sidetone:** A separate Sidetone audio output is available. Sidetone can be configured to be on the receiver' audio output or obtained from the independent Sidetone audio output. When Sidetone is combined with the audio, only the transmit band's audio will have Sidetone present.


## CHAPTER 1 – INTRODUCTION

- F. **COM TX Power:** The transmitter is configured for either 16 Watts or 25 Watts as determined by the part number. This is identified by the number “16” or “25” respectively as the first two digits in the model number.
- G. **VHF frequency range:** Depending on the model number, the VHF receiver operates in the 118 MHz to 136.991 MHz, or the extended 118 MHz to 155.975 MHz range with either 8.33 KHz or 25 KHz spacing. This is identified with the number “36” or “56” respectively as the third and fourth digits in the model number. The 8.33 kHz spacing is used in the ICAO EUR region states.
- H. **UHF frequency range:** Units with UHF transceivers operate from 225 MHz to 399.975 MHz with either 12.5 KHz or 25 KHz spacing. The letter “U” at the end of the model number designates that the UHF option has been enabled. The UHF transceiver can operate in simplex or semi-duplex mode.
- I. **COM guard receivers:** Guard receivers are factory configured with the standard emergency frequencies of the 121.5 MHz and/or 243 MHz. The receivers may be disabled or configured for other channels as desired.
- J. **TX interlock:** A TX interlock input is available when needed for multiple transmitter installations.
- K. **NAV ILS/VOR receiver:** The GDR has a combined VHF Omnidirectional Radio (VOR) and Localizer (LOC) receiver. The VOR covers 160 channels and the LOC covers 40 channels in the 108.00 to 117.95 MHz range.
- L. **NAV audio:** The GDR provides a separate audio outputs for the VOR/LOC. Audio volume control is available in the radio for single pilot operation when an audio panel is not available.
- M. **Glideslope receiver:** The GS channels are automatically paired by the radio to provide Instrument Landing System (ILS) guidance on Localizer channels. The GS covers 40 channels in the 330.95 MHz to 334.70 MHz range.
- N. **NAV antenna:** The Glideslope and NAV receivers share a common antenna input through an internal RF diplexer. The GDR is intended to be connected to a combined VOR/LOC/GS antenna to be supplied by the installer. If two GDRs are installed, an external NAV/GS splitter, similar to a Sensor Systems Model SSPD-113-10 or equivalent, may be installed to route the VOR/LOC/GS signal to both GDR receivers. This splitter is to be supplied by the installer. Alternately two NAV antennas may be installed for redundancy. The GDR can tune an external Distance Measuring Equipment (DME) transceiver using the ARINC 429 communications bus.
- O. **Marker beacon receiver:** The GDR has a MB receiver, which uses a separate BNC connector mounted on the front of the chassis. If two GDRs are installed, an external MB splitter, supplied by the installer, may be used to route the MB signal to both GDR receivers. A Cobham (Comant) Model CI 509 or equivalent splitter is

## CHAPTER 1 – INTRODUCTION

acceptable. The lamp indicators of the MB receiver are contained in the transmitted ARINC 429 Label 222 (VOR) and the RS-232 message ID V33. No discrete lamp drivers are provided.

- P. **Marker audio:** The GDR has a separate MB audio output for connection to the aircraft's audio system. Audio volume control is available in the radio for single pilot operation when an audio panel is not available.
- Q. **Marker thresholds:** The MB receiver has a HI and LO threshold factory set for -67 dBm and -53 dBm respectively. When an external splitter is installed, the installer may wish to compensate the MB thresholds for the loss. On installation, the threshold may be adjusted using the RS-232 ID V52, which is stored in non-volatile memory.
- R. **Control buses:** The GDR radio has four (4) tuning buses, two RS-232, two RX ARINC 429 and one TX ARINC 429. The last bus tuned controls the radio, which is compatible with burst mode tuning.

**CHAPTER 1 – INTRODUCTION**

**Figure 2: GDR System Block Diagram**

### CHAPTER 1 – INTRODUCTION

#### 8. SYSTEM COMPONENTS

The table below provides a list of specifications and major components (by part number) that make up the equipment system complying with the standards prescribed in all TSOs listed in Chapter 1, Section 10.

**Table 3: List of Specifications and Major Components**

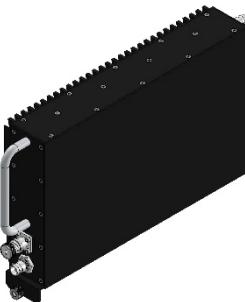
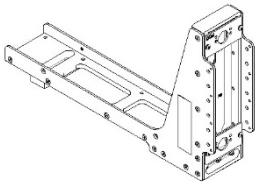


| Component                                                                          | Description              | Part No.                      | Specifications                 |           |                              |
|------------------------------------------------------------------------------------|--------------------------|-------------------------------|--------------------------------|-----------|------------------------------|
|                                                                                    |                          |                               | Dimensions                     | Weight    | Power                        |
|   | GDR-XXXXXX               | 42-03300X-XXXX<br>See Table 4 | 1.79" w<br>6.77" h<br>12.24" d | 3.9 lbs.  | 8.0A TX mode<br>0.8A RX mode |
|  | Single GDR Mounting Tray | 42-033                        |                                | 0.60 lbs. | NA                           |

Table 4 provides a part number breakdown for the currently defined radio configurations.

**Table 4: GDR-XXXX Configuration**

| Part Number    | Model Number | VOR/ILS | Marker Beacon | 136MHz VHF | 156MHz VHF | 225-400MHz UHF | TX Power |
|----------------|--------------|---------|---------------|------------|------------|----------------|----------|
| 42-033001-0001 | GDR-1636     | Y       | Y             | Y          |            |                | 16       |
| 42-033002-0001 | GDR-1656     | Y       | Y             |            | Y          |                | 16       |
| 42-033003-0001 | GDR-1636U    | Y       | Y             | Y          |            | Y              | 16       |
| 42-033004-0001 | GDR-1656U    | Y       | Y             |            | Y          | Y              | 16       |
| 42-033005-0001 | GDR-2536     | Y       | Y             | Y          |            |                | 25       |
| 42-033006-0001 | GDR-2556     | Y       | Y             |            | Y          |                | 25       |
| 42-033007-0001 | GDR-2536U    | Y       | Y             | Y          |            | Y              | 25       |
| 42-033008-0001 | GDR-2556U    | Y       | Y             |            | Y          | Y              | 25       |
| 42-033009-0001 | GDR-1624U    |         |               |            | Y          | Y              | 16       |
| 42-033010-0001 | GDR-2524U    |         |               |            | Y          | Y              | 25       |

**CHAPTER 1 – INTRODUCTION**

NOTE: Small parts and electrical components required for installation that are not specifically called out in the parts list, shall meet the requirements for aerospace use as “acceptable parts” or “standard parts. Selection of these parts shall be in accordance with guidance provided in FAA Advisory Circular 20-62D, Dated 5/24/96 (or later revision).

**Table 5: GDR Installation Kit P/N 42-033100-0001**

| ITEM | QTY | PART NUMBER   | DESCRIPTION                                        |
|------|-----|---------------|----------------------------------------------------|
| 1    | 1   | 3010-10153-01 | Connector, D-Sub, 37 Pin, Female, Swage Locknut    |
| 2    | 1   | 3010-10152-01 | Connector, D-Sub, 15 Pin, Female, Swage Locknut    |
| 3    | 2   | 3010-10154-01 | Connector, Coax, Rack Mount                        |
| 4    | 1   | 9010-21457-01 | Radio Mounting Tray                                |
| 5    | 4   | 9000-21465-01 | Screw, Modified, Shoulder, Hex, 4-40 x .266" L, SS |
| 6    | 4   | MS24693-C4    | Screw, Phillips, 100° Flat, 4-40 x 3/8" L, SS      |
| 7    | 1   | 031-4427      | Connector, BNC, Straight Crimp Plug, RG-400/U, 50  |

## CHAPTER 1 – INTRODUCTION

**Table 6: List of Possible Antennas**

| Antenna function           | Vendor         | Part number        | Maximum Airspeed        | Freq. Range           |
|----------------------------|----------------|--------------------|-------------------------|-----------------------|
| <b>Marker Antenna</b>      | Dayton Granger | EMB10-14           | 600 knots               | 75 MHz                |
|                            | Comant         | CI 102             | 400 knots               | 75 MHz                |
|                            | Comant         | CI 118             | Not specified           | 75 MHz                |
| <b>VOR/LOC and GS Ant.</b> | <b>Vendor</b>  | <b>Part number</b> | <b>Maximum Airspeed</b> | <b>Freq. Range</b>    |
|                            | Dayton Granger | VT10-56-6/15960    |                         | 108-118 & 329-335 MHz |
|                            | Harris         | DMN4-17N           | Mach 1 "blade"          | 108-118 & 329-335 MHz |
|                            | Comant         | CI 205-3           | 300 knots "towel bar"   | 108-118 & 329-335 MHz |
|                            | Comant         | CI 120-400         | 300 knots "blade"       | 108-118 & 329-335 MHz |
|                            | Comant         | CI 120 G/S         | 600 knots "blade"       | 108-118 & 329-335 MHz |
| <b>COM Antenna</b>         | <b>Vendor</b>  | <b>Part number</b> | <b>Maximum Airspeed</b> | <b>Freq. Range</b>    |
| <b>VHF COM:</b>            | Harris         | DM C60-1           | Not specified "Blade"   | 118-137 MHz           |
|                            | Comant         | C109               | Not specified "whip"    | 118-137 MHz           |
|                            | Harris         | DM C63-1/A         | Not specified "whip"    | 118-137 MHz           |
|                            | Harris         | DM C70-1/A         | 400 mph "Blade"         | 118-137 MHz           |
| <b>Extended VHF COM:</b>   | Harris         | DM C60-17          | Not specified "Blade"   | 118-152 MHz           |
|                            | Comant         | CI-108-1           | Not specified "Blade"   | 118-153 MHz           |
|                            | Harris         | DMC50              | Mach 0.89 "Blade"       | 118-156 MHz           |
|                            | Harris         | DM C50-17          | Not specified "Blade"   | 116-156 MHz           |
|                            | Sensor Systems | S65-8280-18        | Mach 0.85 "Blade"       | 116-156 MHz           |
| <b>VHF &amp; UHF COM:</b>  | Sensor Systems | S65-8282-512       | Mach 0.85 "Blade"       | 108-512 MHz           |
|                            | Cooper Antenna | 21-50-99           | Mach 0.95 "Blade"       | 100-400 MHz           |

NOTE: This list is provided as a reference only. It is up to the installer to determine suitability of each antenna for its intended purpose. The GDR radio should operate properly with any antenna meeting the appropriate TSO.

## CHAPTER 1 – INTRODUCTION

### **9. ELECTRICAL SPECIFICATIONS**

Connector pin numbers for these inputs are listed in CHAPTER 3 – SYSTEM DRAWINGS.

#### **A. Power Inputs**

|                 |                                 |
|-----------------|---------------------------------|
| Receiver (NORM) | 22 to 33 VDC, 1.0 Amps @ 22 VDC |
|                 | 27.5 VDC, 0.8 Amps typical      |
| (EMER)          | 18.0 VDC, 1.2 Amps typical      |
| Transmit (NORM) | 22 to 33 VDC, 6.0 Amps @ 22 VDC |
|                 | 27.5 VDC, 5.7 Amps typical      |
| (EMER)          | 18.0 VDC, 6 Amps typical        |

The Equipment shall provide the specified performance when operating on aircraft 28 VDC power supplies with characteristics and limits as specified in MIL-STD-704F.

#### **B. System Antenna Specifications**

|             |                                                        |
|-------------|--------------------------------------------------------|
| COM Ant:    | 50 Ohm, 3:1 VSWR max., recommended $\leq$ 2.5:1 max.   |
| Marker Ant: | 50 Ohm, 1.5:1 VSWR max.                                |
| G/S Ant:    | 50 Ohm, 5.0:1 VSWR max., recommended $\leq$ 3.0:1 VSWR |
| NAV Ant:    | 50 Ohm, 5.0:1 VSWR max., recommended $\leq$ 3.0:1 VSWR |

#### **C. Antenna Inputs**

|            |            |
|------------|------------|
| COM        | 50 Ohm BNC |
| Marker Ant | 50 Ohm BNC |
| G/S RX     | 50 Ohm BNC |
| NAV RX     | 50 Ohm BNC |

#### **D. Microphone Inputs (DO-214, § 1.5.2)**

|                      |                                                                                                                               |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Impedance:           | 150 Ohm                                                                                                                       |
| Bias:                | 12 VDC, on MIC HI input                                                                                                       |
| Input voltage range: | 0.25 to 2.5 V <sub>RMS</sub> for specified AM modulation<br>0.27 V <sub>RMS</sub> recommended typical audio panel input level |
| Input type:          | Differential, MIC HI to MIC LO                                                                                                |

#### **E. Audio Outputs and Levels**

|                        |                                                                                         |
|------------------------|-----------------------------------------------------------------------------------------|
| Audio Output Range:    | <2 to 8 Vrms configurable in ~0.03 Volt steps                                           |
| Output load:           | 150 to 600 Ohms capable                                                                 |
| Output balance:        | Floating differential or single-ended with negative side grounded                       |
| Audio power:           | Production set 100 mW into 150 Ohms, output voltage must be reset for other impedances. |
| Marker audio output:   | 3.87 $\pm$ 0.50 V <sub>RMS</sub> , 100 mW, 150 Ohms                                     |
| VOR/LOC audio output:  | 3.87 $\pm$ 0.50 V <sub>RMS</sub> , 100 mW, 150 Ohms                                     |
| VHF COM audio output:  | 3.87 $\pm$ 0.50 V <sub>RMS</sub> , 100 mW, 150 Ohms                                     |
| UHF COM audio output:  | 3.87 $\pm$ 0.50 V <sub>RMS</sub> , 100 mW, 150 Ohms                                     |
| Sidetone audio output: | 3.87 $\pm$ 0.50 V <sub>RMS</sub> , 100 mW, 150 Ohms                                     |
| Combined Sidetone:     | Set -6 dB below received RX audio level, see note.                                      |

## CHAPTER 1 – INTRODUCTION

Note: When Sidetone is combined with the normal receiver output, the Sidetone will be -6 dB or 25 mW at 0.25 V<sub>RMS</sub> audio input.

### **10. ENVIRONMENTAL SPECIFICATIONS**

The GDR-XXXX meets the following environmental testing requirements from DO-160F:

| <b>Sec.</b>  | <b>Condition</b>                  | <b>Cat.</b> | <b>Test Category Description</b>                                                                                                                                                                                                    | <b>Notes</b>                                                                                                                        |
|--------------|-----------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 4.0          | Temperature and Altitude          | F2          | Equipment intended for installation in a non-pressurized but controlled temperature location on an aircraft that is operated at altitudes up to 50,000 ft. MSL.                                                                     | Operating High: +70°C<br>Operating Low: -55°C<br>Ground Survival High: +85°C<br>Ground Survival Low: -55°C<br>Altitude: 50,000 feet |
| 4.5.5        | In-Flight Loss of Cooling         | X           | No cooling is required                                                                                                                                                                                                              |                                                                                                                                     |
| 4.62<br>4.63 | Decompression and Overpressure    | X           |                                                                                                                                                                                                                                     |                                                                                                                                     |
| 5.0          | Temperature Variation             | A           | Equipment external to the aircraft or internal to the aircraft at 10°C/min.                                                                                                                                                         |                                                                                                                                     |
| 6.0          | Humidity                          | B           | Equipment intended for installation in civil aircraft, non-civil transport aircraft and other classes, within non-environmentally controlled compartments of aircraft in which more severe humidity environment may be encountered. |                                                                                                                                     |
| 7.0          | Operational Shocks & Crash Safety | B           | Equipment generally installed in fixed-wing aircraft or helicopters and tested for standard operational shock and crash safety.                                                                                                     |                                                                                                                                     |
| 8.0          | Vibration                         | S<br>U2     | U - (Helicopter w/Unknown Frequencies) Demonstrates performance at higher vibration levels and after long term vibration exposure for fuselage and instrument panel equipment when the specific rotor frequencies are unknown.      | Fixed wing sine curve M & B<br>Random vibration curves F&F1                                                                         |
| 9.0          | Explosive Atmosphere              | X           |                                                                                                                                                                                                                                     |                                                                                                                                     |
| 10.0         | Waterproofness                    | W           | Equipment is installed in locations where it may be subjected to falling water, such as condensation.                                                                                                                               |                                                                                                                                     |
| 11.0         | Fluids Susceptibility             | X           |                                                                                                                                                                                                                                     |                                                                                                                                     |
| 12.0         | Sand and Dust                     | S           | Equipment installed in locations where the equipment is subjected to blowing dust in the course of normal aircraft operations.                                                                                                      |                                                                                                                                     |
| 13.0         | Fungus Resistance                 | F           | Demonstrate whether equipment material is adversely affected by fungi growth.                                                                                                                                                       | By Analysis                                                                                                                         |
| 14.0         | Salt Fog                          | S           |                                                                                                                                                                                                                                     |                                                                                                                                     |
| 15.0         | Magnetic Effect                   | Z           | Magnetic deflection distance less than 0.3m.                                                                                                                                                                                        |                                                                                                                                     |
| 16.0         | Power Input                       | Z           | DC equipment intended for use on aircraft electrical systems supplied by engine-driven alternator/rectifiers, or DC generators where a battery of significant capacity is floating on the DC bus at all times.                      |                                                                                                                                     |

**CHAPTER 1 – INTRODUCTION**

| <b>Sec.</b> | <b>Condition</b>                                        | <b>Cat.</b> | <b>Test Category Description</b>                                                                                                                                                                                                                                                                  | <b>Notes</b>                                                   |
|-------------|---------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 17.0        | Voltage Spike                                           | A           | Equipment intended primarily for installation where a high degree of protection against damage by voltage spikes is required.                                                                                                                                                                     |                                                                |
| 18.0        | Audio Frequency Conducted Susceptibility-Power Inputs   | Z           | Equipment intended primarily for installation where a high degree of protection against damage by voltage spikes is required.                                                                                                                                                                     |                                                                |
| 19.0        | Induced Signal Susceptibility                           | ZC          | Equipment intended primarily for operation in systems where interference-free operation is required on aircraft whose primary power is constant frequency (DC).                                                                                                                                   |                                                                |
| 20.0        | Radio Frequency Susceptibility (Conducted and Radiated) | W/WR        | Equipment and interconnecting wiring installed in severe electromagnetic environments and to show compliance with the interim HIRF rules. Includes JAA INT/POL AC/AMJ 20.1317                                                                                                                     | Conducted: Cat. W & G<br>Radiated: Cat. W, R, & G<br>.         |
| 21.0        | Emission of Radio Frequency Energy                      | M           | Equipment in areas where apertures are EM significant but not in direct view of aircraft antennas, such as passenger cabin or cockpit.                                                                                                                                                            |                                                                |
| 22.0        | Lightning Induced Transient Susceptibility              | A3J3L3      | Equipment interconnected with shielded wiring installed within any airframe or airframe section where apertures, not structural resistance are a significant source of induced transients. Level 3 designates equipment and interconnecting wiring installed in a moderately exposed environment. | All wires (including discretes) shielded and heavily grounded. |
| 23.0        | Lightning Direct Effects                                | X           | Not Applicable                                                                                                                                                                                                                                                                                    |                                                                |
| 24.0        | Icing                                                   | X           | Not Applicable                                                                                                                                                                                                                                                                                    |                                                                |
| 25.0        | Electrostatic Discharge (ESD)                           | A           | Electronic equipment that is installed repaired or operated in an aerospace environment.                                                                                                                                                                                                          |                                                                |
| 26.0        | Fire, Flammability                                      | C           | Non-metallic equipment, component parts, sub-assemblies installed in pressurized or non-pressurized zones and non-fire zones with largest dimension greater than 50 mm.                                                                                                                           | By Analysis                                                    |

## CHAPTER 1 – INTRODUCTION

### **11. TSO APPLICABILITY**

The GDR-XXXX is an incomplete system for each of the TSOs listed below.

| <b>TSO</b> | <b>Title</b>                                                                                                     | <b>MOPS</b>  |
|------------|------------------------------------------------------------------------------------------------------------------|--------------|
| TSO-C34e   | ILS Glideslope Equipment Operating within the Radio Frequency Range of 328.6-335.4 MHz (Class D)                 | RTCA/DO-192  |
| TSO-C35d   | Airborne Radio Marker Receiving Equipment (Class A)                                                              | RTCA/DO-143  |
| TSO-C36e   | Airborne ILS Localizer Receiving Equipment Operating within Radio Frequency Range of 108-112 MHz                 | RTCA/DO-195  |
| TSO-C40c   | VOR Receiving Equipment Operating within Radio Frequency Range of 108-117.95 MHz                                 | RTCA/DO-196  |
| TSO-C128a  | Devices That Prevent Blocked Channels Used in Two-Way Radio Communication Due to Unintentional Transmission.     | RTCA/DO-207  |
| TSO-C169a  | VHF Radio Communication Transceiver Equipment Operating within the Radio Frequency Range 117.975 to 137.000 MHz. | RTCA/DO-186B |

### **12. TSO DEVIATIONS**

The following TSO deviations have been granted for the GDR-XXXX.

| <b>TSO</b> | <b>TSO Deviation</b> |
|------------|----------------------|
|            |                      |
|            |                      |
|            |                      |
|            |                      |
|            |                      |

## CHAPTER 1 – INTRODUCTION

### **13. ACRONYMS AND ABBREVIATIONS**

The following acronyms may appear in this document.

|       |                                                |      |                                                                                   |
|-------|------------------------------------------------|------|-----------------------------------------------------------------------------------|
| AC    | Advisory Circular, Alternating Current         | KHz  | Kilo-Hertz                                                                        |
| A/C   | Aircraft                                       | LOC  | Localizer                                                                         |
| AD    | Airworthiness Directive                        | LRU  | Line Replaceable Unit                                                             |
| ADF   | Automatic Direction Finding                    | LSB  | Least Significant Bit or Byte                                                     |
| AFM   | Aircraft Flight Manual                         | M    | Meters                                                                            |
| ANSI  | American National Standards Institute          | MB   | Marker Beacon                                                                     |
| ARINC | Aeronautical Radio, Inc.                       | MFD  | Multifunction Display (an IDU with software for showing multiple display screens) |
| ARP   | SAE Aerospace Recommended Practice             | MIC  | Microphone                                                                        |
| AS    | SAE Aerospace Standard                         | MIL  | Military                                                                          |
| C     | Centigrade                                     | MHz  | Mega-Hertz                                                                        |
| CAR   | Civil Air regulations                          | MOPS | Minimum Operational Performance Standard                                          |
| COM   | Communication                                  | MSB  | Most Significant Bit or Byte                                                      |
| CPU   | Central Processing Unit                        | MSL  | Mean Sea Level                                                                    |
| D-A   | Digital to Analog (converter)                  | MTBF | Mean Time Between Failures                                                        |
| dB    | Decibel                                        | NAS  | U.S. National Airspace System                                                     |
| DC    | Direct Current                                 | NAV  | Navigation                                                                        |
| DME   | Distance Measuring Equipment                   | Nm   | Nautical Mile                                                                     |
| DO    | RTCA Document                                  | OBS  | Omni-bearing Selector                                                             |
| EFIS  | Electronic Flight Instrument System            | PN   | Part Number                                                                       |
| EIA   | Electronics Industry Association               | PTT  | Push-To-Talk                                                                      |
| EMI   | Electromagnetic Interference                   | RS   | EIA Recommended Standard                                                          |
| FAA   | Federal Aviation Administration                | RTCA | Radio Telephone Commission for Aeronautics                                        |
| FAR   | Federal Aviation Regulation                    | RX   | Receive                                                                           |
| FMS   | Flight Management System                       | SAE  | Society of Automotive Engineers                                                   |
| FSD   | Full Scale Deflection                          | SDI  | Source/Destination Identifier                                                     |
| GDR   | Genesys Digital Radio                          | SN   | Serial Number                                                                     |
| GND   | Ground (potential)                             | SNI  | Serial Number Information                                                         |
| GS    | Glideslope                                     | STC  | Supplemental Type Certificate                                                     |
| IC    | Integrated Circuit                             | TSO  | Technical Standard Order                                                          |
| ICAO  | International Civil Aviation Organization      | TX   | Transmit                                                                          |
| ID    | Identity or Identification                     | UHF  | Ultra High Frequency                                                              |
| IDU   | Integrated Display Unit                        | UTC  | Universal Time Coordinated                                                        |
| ILS   | Instrument Landing System                      | VFR  | Visual Flight Rules                                                               |
| JTAG  | Joint Test Action Group (IEEE 1149.1 Standard) | VHF  | Very High Frequency                                                               |
| K     | Kilo=1000                                      | VOR  | Very High Frequency Omnidirectional Radio                                         |
| KB    | Kilobyte                                       |      |                                                                                   |



## GDR-XXXX NAV/COM INSTALLATION MANUAL

### CHAPTER 1 – INTRODUCTION

**THIS PAGE IS BLANK**

## CHAPTER 2 – SYSTEM INSTALLATION

**CAUTION:** It is critically important that this installation manual be read and understood completely and thoroughly before starting component installation and wiring.

A successful installation should begin with careful consideration and planning of mounting locations, cable routing and any associated airframe modifications that may be required.

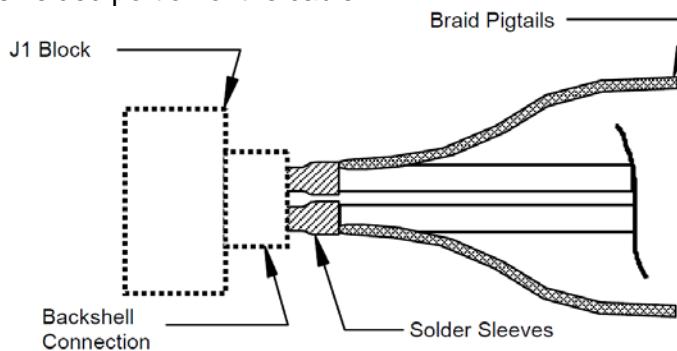
The conditions and tests required for TSO approval of this article are minimum performance standards. Those installing this article, on or in a specific type of class of aircraft, must determine that the aircraft installation conditions are within the TSO standards. TSO articles must have a separate approval for installation in an aircraft. This article may be installed only according to 14 CFR Part 43 or the applicable airworthiness requirements.

### **14. LIMITATIONS AND NOTES**

#### **A. Notes and Warnings**

**NOTE:** No special airworthiness limitations exist. Maintenance is required per FAR 43.16 and FAR 91.403.

### **15. PRE-INSTALLATION INFORMATION**


- A. Always follow good avionics installation practices per FAA Advisory Circulars 43.13-1B, 43.13-2A, and AC 23-1311-1A or later FAA approved revisions of these documents.
- B. Follow the installation procedures in this chapter as it is presented for a successful installation. Read and understand the entire chapter before beginning the installation procedures. Perform the post installation checkout before closing the work areas in case problems occur.
- C. Complete an electrical load analysis on the aircraft prior to starting modification to ensure the aircraft electrical system has the ability to carry the GDR electrical load per AC 43.13-1B, Chapter 11. Refer to Chapter 1, Table 3 for the power consumption of each component. Record the aircraft electrical load; identify system configuration and location of equipment on FAA Form 337.

## CHAPTER 2 – SYSTEM INSTALLATION

### **16. CABLING TERMINATION**

#### **A. General**

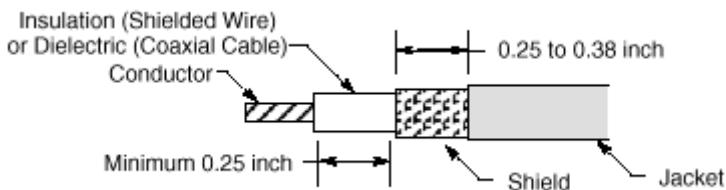
- (1) Terminate all individual cable shields which are not “dead ended” using a solder sleeve and braided pigtail (equivalent in cross section to shield braid with center conductors removed) or optionally the braid pull-out method. Use the smallest solder sleeve that will fit over the cable shield and the braid pigtail.
- (2) The shield pigtail may be either a wire segment (of sufficient diameter equivalent to shield braid with center conductors removed) or another small braid segment. Wire segments are used when the cable shield is terminated to a connector contact or a terminal lug. Braid segments are used when the cable shield terminates at a back shell or EMI spigot, terminal lug, or split support ring used to terminate a braid sock. ZAP assemblies with multiple terminations may use either wire pigtails, braid pigtails or a combination of both.
- (3) For back shell shield terminations, the individual cable shield shall be terminated at the end of the cable maintaining the minimum length of unshielded conductors with the shield pigtail installed at the back end. The solder sleeve may end up inside the back shell depending on the length of the unshielded portion of the cable.



**Figure 3: Solder Sleeve Assembly**

#### **B. Solder Sleeve Assembly**

- (1) Remove the outer jacket using a thermal stripper or other suitable means, exposing 0.25 to 0.38 inch of shield braid.
  - (a) When using a suitable tool other than a thermal stripper to remove jacket, score jacket lightly and bend cable to complete jacket separation. Do not cut completely through cable jacket.


**CAUTION:** Cutting through the cable jacket may result in damage to shield.

## CHAPTER 2 – SYSTEM INSTALLATION

(2) Push the solder sleeve over the exposed shield braid so solder sleeve shall be approximately centered over the exposed shield braid.

(a) To avoid heat concentration which might split or otherwise damage the solder sleeve, the end of the shield ground wire insulation, if not preinstalled, should be positioned approximately even with the inner edge of the seal ring.

(b) Maintain the relative position of the solder sleeve, shield ground wire and shield braid during assembly.



**Figure 4: Wire Termination**

(c) Use tinned copper braid Alpha P/N 1223 (3/64 inch) or equivalent for pigtail. Lap pigtail braid or wire segment with wire shield and place solder sleeve over assembly.

(d) Shrink the solder sleeve in accordance using infrared or hot air heaters. Apply the heat uniformly, periodically rotating the solder sleeve during the heating process. Do not allow the infrared or hot air heater to touch the solder sleeve or wire during the heating process (touching of the heating guard is acceptable).

(e) Inspect for conformance to criteria for installed solder sleeves per the following:

(i) No appearance of the solder perform ring will remain.

(ii) In the case of solder sleeves with indicator rings the following also applies: It is necessary that the indicator ring has completely disappeared or melted.

**NOTE:** If the process continually results in less than 100 percent melting of the indicator ring there may be a problem with the process which should be corrected before further processing.

- If infrared heating is used, the problem is usually caused by a dirty reflector.
- If hot air is used, the sleeve may not be centered in the hot air reflector.

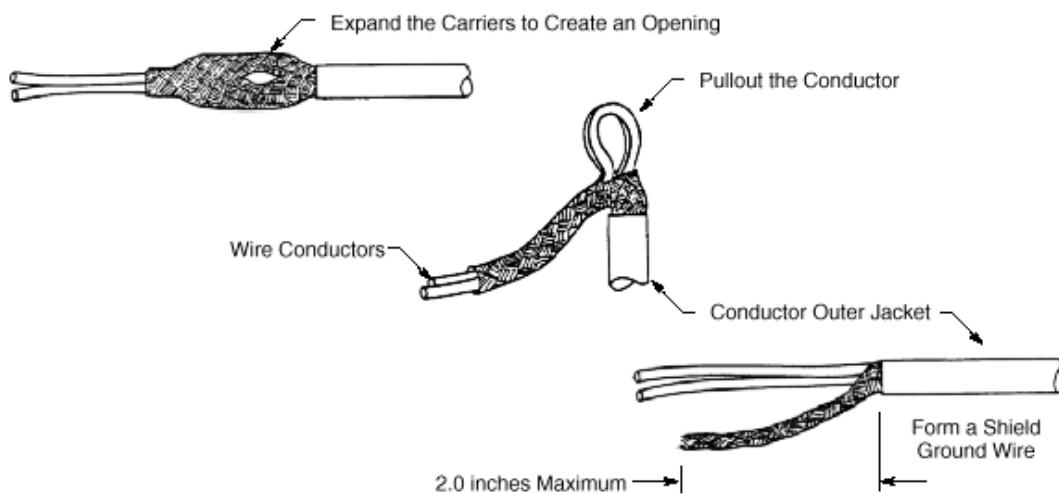
## CHAPTER 2 – SYSTEM INSTALLATION

- (iii) The shield ground wire shall be approximately centered in the melted area.
- (iv) Preformed solder ring inserts are to melt and flow along the shield ground wire leads and shield.
- (v) A minimum 0.125 inch fillet length is visible under a maximum power of 4X magnification along the shield ground wire lead and shield junction on at least one side of the shield ground wire. This requirement also applies to each shield ground wire of a multiple shield ground wire termination.
- (vi) Browning or darkening of the sleeve is acceptable unless this condition inhibits visibility of the solder termination.
- (vii) The materials must not be split, charred, or otherwise damaged to any extent that that would compromise the insulating integrity of the sleeve.
- (viii) Inserts are to melt and flow around the circumference of the cable between the cable jacket and the insulation sleeve to prevent solder from flowing out of the work area.
- (ix) The melted insert rings must not obstruct visual inspection of the solder joint.
- (x) A maximum of 1/2 inch wicking up the shield ground wire (measured from the shield ground wire end of the sleeve) is allowed.

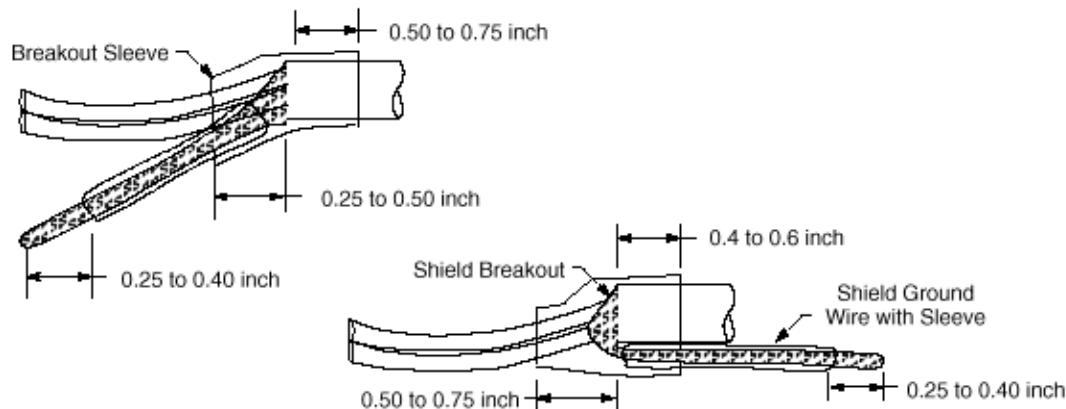
### **C. Optional Shield Pull-Out Method**

- (1) Do not use this procedure for a shield that has flat conductor braid strands.
- (2) Remove the cable outer jacket to the point of breakout.
- (3) Using a non-metallic awl or similar tool, start a small hole in the shield braid approximately 0.5 inch from end of outer jacket by spreading the shield carriers slightly.
- (4) Push the shield braid back on the wire(s) to cause it to bunch.
- (5) Widen the hole in the shielding by alternately pushing shield carriers back in each direction.
- (6) As the hole enlarges, start bending the wire(s) slightly to allow shield carriers to be worked down over the bent wire(s) until the wire(s) can be

## CHAPTER 2 – SYSTEM INSTALLATION


pulled through the opening. During this operation, avoid damage to braid and conductor insulation.

- (i) Do not overstress individual shield strands causing breakage.
- (ii) Do not subject the conductors to a bend radius less than 3 times the insulation diameter.


(7) Work the bunched shielding back down the wire and straighten the shield ground wire to its full length.

(8) Cut the shield ground wire to a maximum length of 2.0 inches.

(9) Protect shield breakout area using M23053/5 sleeving.

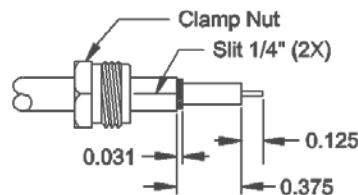


**Figure 5: Shield Pull-Out Method**



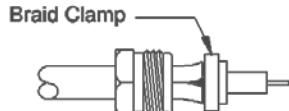
**Figure 6: Shield Pull-Out Method (Continued)**

## CHAPTER 2 – SYSTEM INSTALLATION


### **D. Back Shell Termination**

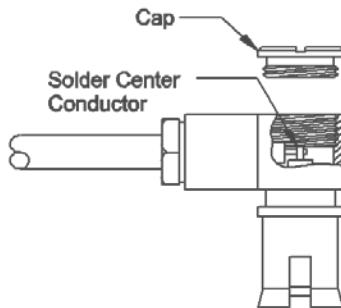
### **E. Right Angle BNC Connector Assembly**

The NAV and COM coaxial cables terminate in a right-angled BNC connector that is mounted on the tray assembly.


#### **Assembly Instructions for right angle connector part #3010-10154-01**

**Step 1**




- Slide clamp nut over coax
- Strip coax as illustrated
- Cut two 1/4" slits in jacket 180 degrees apart.

**Step 2.**



- Slide braid clamp over end of coax and under the braid.

**Step 3.**



- Insert coax with braid clamp into the connector and tighten clamp nut securely.
- Solder the center conductor of the coax to the contact as illustrated.
- Attach the cap and secure tightly.

**Figure 7: Right Angle BNC Connector**

## CHAPTER 2 – SYSTEM INSTALLATION

### **17. MOUNTING**

#### **A. Tray Installation**

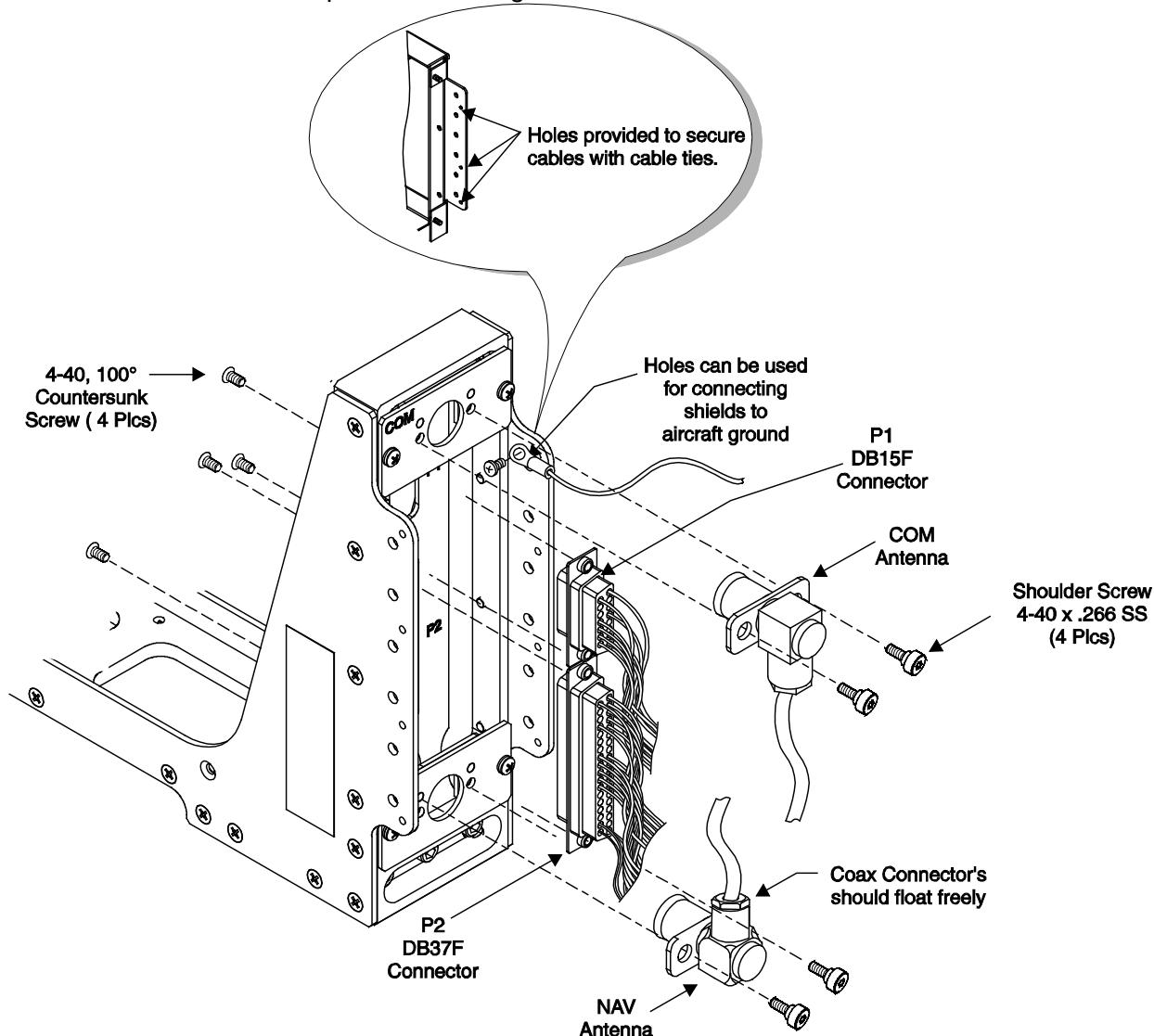
Use the following guidelines in locating and mounting the tray assembly in the aircraft. See Chapter 3 for tray mechanical dimensions.

- For normal operation, it is preferred the GDR be mounted in a temperature controlled environment between -20°C and +55°C.
- The GDR may be mounted in the pressure vessel. The GDR contains no batteries or potentially explosive components.
- The tray assembly may be mounted in the normal (mounting screws down), inverted, or on its side.
- The GDR should be located within 20 feet of the NAV display system (EFIS or HSI) and audio control system.
- Burnish and apply an electrical bonding agent to the mounting surface area that will be contacting the mounting tabs of the tray assembly.
- Install the tray assembly using four (4) 8-32 screws (MS27039-0807) and four (4) #8 washers (NAS1149F0832P) or equivalent with installer supplied AN, MS, or NAS nuts, nut clips, or nut plates as required.
- Use four (4) self-locking nuts (AN365) or equivalent, nut plates, or #8 threaded inserts to secure the tray assembly to the airframe.
- Verify resistance between the tray assembly chassis and airframe ground is less than 2.5 milliohms.

Upon determination of a suitable existing shelf, or completion of a new equipment shelf, a static load test must be performed per AC 43.13-2A, Chapter1, §2 and §3 to determine proper load bearing and security of the equipment. A typical aircraft operating in Normal FAR 23 (CAR 3), Normal FAR 27 (CAR 6), Transport FAR 25 (CAR 4b), or Transport FAR 29 (CAR 7) category will require a test of the shelf as follows:

| Fixed Wing        |             |                                                     | Rotorcraft  |                                                     |
|-------------------|-------------|-----------------------------------------------------|-------------|-----------------------------------------------------|
| Direction of Pull | Load Factor | Static Test Load<br>(Load factor x GDR-XXXX Weight) | Load Factor | Static Test Load<br>(Load factor x GDR-XXXX Weight) |
| Sideways          | 4.5g        | (4.5 x 4.5) = 20.2 lbs.                             | 8.0g        | (8.0 x 4.5) = 36.0 lbs.                             |
| Upwards           | 7.0g        | (7 x 4.5) = 31.5 lbs.                               | 4.0g        | (4.0 x 4.5) = 18.0 lbs.                             |
| Forwards          | 18.0g       | (18 x 4.5) = 81.0 lbs.                              | 16.0g       | (16.0 x 4.5) = 72.0 lbs.                            |
| Downwards         | 10.0g       | (10 x 4.5) = 45.0 lbs.                              | 20.0g       | (20.0 x 4.5) = 90.0 lbs.                            |
| Backwards         |             |                                                     | 1.5g        | (1.5 x 4.5) = 6.8 lbs.                              |

The installer will make a simple test jig that will be used to measure the static test loads as shown in the table above. Perform the tests at the center of gravity of the GDR-XXXX and record the completion of the test in the Ground Maintenance section of this manual. An


## CHAPTER 2 – SYSTEM INSTALLATION

acceptable installation will show no signs of permanent deformation after 3 seconds of applied pressure in all directions of pull.

### **B. Tray Assembly**

The tray assembly provides the mounting for the electrical connectors and coax cable connectors. Hardware to mount the connectors is contained in the Installation Kit.

- Install
- Group wires to P1 together and secure to



**Figure 8: Tray Assembly**

## CHAPTER 2 – SYSTEM INSTALLATION

### **18. ANTENNA LOCATION**

#### **A. COM Antenna**

The GDR requires a 50 Ohm vertically polarized COM antenna compliant with TSO-C169. The COM antenna should cover the COM frequencies appropriate for your model number. Some possible antennas are listed in Table 7, Table 8, and Table 9.

- Use RG-400 or equivalent, not to exceed 2 dB of signal loss.
- The COM antenna should be mounted on the centerline of the airframe, at least 3 feet from other antennas.
- In multiple GDR installations, one antenna should be mounted on the bottom centerline of the airframe and the other antenna should be mounted on the top centerline of the airframe.
- Avoid sharp bends of the coax.
- Do not route the COM coax near ADF antenna cables.
- Maintain at least a 2 foot distance between COM and NAV coaxial cables when routed parallel to each other.

**CAUTION:**

- The installer must ensure that the antenna is placed such that radiation exposure to aircraft personnel is limited to 0.2 mWatt/cm<sup>2</sup> to conform to the FCC safe exposure limit. This may be measured or calculated. For direct line of sight spacing the following formula may be utilized:

$$Power_{Exposure} = \frac{Power_{effective}}{4\pi R^2} \text{ mW/cm}^2$$

In this formula, R is the distance from the antenna. The effective transmit power is found by adjusting the transmitter power for the antenna gain in milli-Watts. For a 25 Watt radio with an antenna gain of 3 dBi, the corrected transmit power is 49,881 mW. This gives a minimum safe distance of 141 cm.

**Table 7: List of VHF COM Antennas**

| <b>Vendor</b> | <b>Part Number</b> | <b>Maximum Airspeed</b> | <b>Freq. Range</b> |
|---------------|--------------------|-------------------------|--------------------|
| Harris        | DM C60-1           | Not specified "Blade"   | 118-137 MHz        |
| Comant        | C109               | Not specified "whip"    | 118-137 MHz        |
| Harris        | DM C63-1/A         | Not specified "whip"    | 118-137 MHz        |
| Harris        | DM C70-1/A         | 400 mph "Blade"         | 118-137 MHz        |

## CHAPTER 2 – SYSTEM INSTALLATION

**Table 8: List of Extended Range VHF COM Antennas**

| <b>Vendor</b>  | <b>Part Number</b> | <b>Maximum Airspeed</b> | <b>Freq. Range</b> |
|----------------|--------------------|-------------------------|--------------------|
| Dayton Granger | VF10-347           | 600 knots "Blade"       | 116-150 MHz        |
| Harris         | DM C60-17          | Not specified "Blade"   | 118 -152 MHz       |
| Comant         | CI-108-1           | Not specified "Blade"   | 118-153 MHz        |
| Harris         | DMC50              | Mach 0.89 "Blade"       | 118-156 MHz        |
| Harris         | DM C50-17          | Not specified "Blade"   | 116-156 MHz        |
| Sensor Systems | S65-8280-18        | Mach 0.85 "Blade"       | 116-156 MHz        |

**Table 9: List of Combined VHF & UHF COM Antennas**

| <b>Vendor</b>  | <b>Part Number</b> | <b>Maximum Airspeed</b> | <b>Freq. Range</b> |
|----------------|--------------------|-------------------------|--------------------|
| Sensor Systems | S65-8282-512       | Mach 0.85 "Blade"       | 108-512 MHz        |
| Cooper Antenna | 21-50-99           | Mach 0.95 "Blade"       | 100-400 MHz        |

### **B. NAV Antenna**

The GDR requires a 50 Ohm horizontally polarized navigation VOR/LOC/GS antenna meeting TSOs TSO-C34e, TSO-C36e, and TSO-C40c. Some possible antennas are listed in Table 10.

- An external diplexer for VOR/LOC and GS signals is not required for a combined NAV and GS antenna. The GDR contains an internal diplexer to split the GS signal from the VOR/LOC signal.
- Use RG-400 or equivalent, not to exceed 2 dB of signal loss.
- The antenna must be mounted symmetrically with the centerline of the airframe and should have a clear line of sight in front of the aircraft.
- In multiple GDR installations, a splitter may be used for the VOR/LOC and GS signals to route signals to both GDR inputs. A Sensor Systems P/N SSPD-113-10, or equivalent is recommended for this splitter.
- When using a splitter, the coax from the antenna will be routed to the "REC" port of the splitter and the coax from each GDR will be routed to one of the "ANT" ports of the splitter.
- Avoid sharp bends of the coax.
- Maintain at least a 2 foot distance between NAV and COM coaxial cables when routed parallel to each other.

**Table 10: List of NAV Antennas**

| <b>Vendor</b>  | <b>Part Number</b> | <b>Maximum Airspeed</b> | <b>Freq. Range</b>    |
|----------------|--------------------|-------------------------|-----------------------|
| Dayton Granger | VT10-56-6/15960    |                         | 108-118 & 329-335 MHz |
| Harris         | DMN4-17N           | Mach 1 "blade"          | 108-118 & 329-335 MHz |
| Comant         | CI 205-3           | 300 knots "towel bar"   | 108-118 & 329-335 MHz |
| Comant         | CI 120-400         | 300 knots "blade"       | 108-118 & 329-335 MHz |
| Comant         | CI 120 G/S         | 600 knots "blade"       | 108-118 & 329-335 MHz |

CHAPTER 2 – SYSTEM INSTALLATION**C. MB Antenna**

The GDR requires a 50 Ohm horizontally polarized Marker Beacon antenna meeting TSO-C36e. Some possible antennas are listed in Table 11.

- Use RG-400 or equivalent, not to exceed 2dB of signal loss.
- Antenna should be mounted on the bottom of the aircraft, along the centerline of the airframe at least 3 feet from other antennas.
- In multiple GDR installations, a Comant CI 165 dual Marker Beacon antenna (or equivalent) may be used.
- Avoid sharp bends of the coax.
- Maintain at least a 2 foot distance between MB and NAV or COM coaxial cables when routed parallel to each other.

**Table 11: List of MB Antennas**

| Vendor         | Part Number | Maximum Airspeed | Freq. Range |
|----------------|-------------|------------------|-------------|
| Dayton Granger | EMB10-14    | 600 knots        | 75 MHz      |
| Comant         | CI 102      | 400 knots        | 75 MHz      |
| Comant         | CI 118      | Not specified    | 75 MHz      |

## CHAPTER 2 – SYSTEM INSTALLATION

### **19. SIGNAL DESCRIPTION**

Use of the following signals will be determined by the avionics and audio panel interface.

#### **A. Power and Ground**

In receive mode, maximum current draw is 1.0 A. When one COM channel is transmitting, maximum current draw is 8.0 A.

| Conn | Pin | Description    |
|------|-----|----------------|
| P1   | 1   | POWER (+28VDC) |
| P2   | 1   | POWER (+28VDC) |
| P1   | 9   | GROUND         |
| P2   | 2   | GROUND         |

#### **B. RS-232 Interface**

The GDR contains two RS-232 communications ports. Both ports can be connected to an EFIS or Radio Management Unit to set frequencies, volumes, and other modes of the COM, NAV, and MB. The GDR will use the last valid data from any tuning port. The data used on these ports is proprietary and is intended to be used by Genesys equipment.

| Conn | Pin | Description   |
|------|-----|---------------|
| P2   | 3   | RS-232 #1 GND |
| P2   | 4   | RS-232 #1 RX  |
| P2   | 5   | RS-232 #1 TX  |
| P2   | 26  | RS-232 #2 RX  |
| P2   | 34  | RS-232 #2 TX  |
| P2   | 37  | RS-232 #2 GND |

#### **C. ARINC 429 Interface**

The GDR contains two ARINC 429 receive ports and one ARINC 429 transmit port. Either ARINC429 receive port may be used to control the VHF, UHF, NAV, and MB receivers. The GDR will use the last valid data from either port. Burst mode operation is recommended, which will allow a combination of RS-232 and ARINC tuning when required.

| Conn | Pin | Description      |
|------|-----|------------------|
| P2   | 15  | ARINC 429 RX#1 A |
| P2   | 16  | ARINC 429 RX#1 B |
| P2   | 17  | ARINC 429 RX#2 A |
| P2   | 18  | ARINC 429 RX#2 B |
| P2   | 21  | ARINC 429 TX A   |
| P2   | 22  | ARINC 429 TX B   |

The ARINC 429 transmit port is used to send COM, VOR/LOC, GS, and MB data and/or status. The following ARINC 429 labels are accepted and/or transmitted by the GDR. Please refer to APPENDIX A – ARINC 429 SPECIFICATIONS for bit definition and other details on each ARINC 429 label.

## CHAPTER 2 – SYSTEM INSTALLATION

| ARINC<br>LABEL | NAME               | ARINC<br>RX#1 | ARINC<br>RX#2 | ARINC<br>TX | NOTES                           |
|----------------|--------------------|---------------|---------------|-------------|---------------------------------|
| 030            | VHF COM FREQ.      | X             | X             | X           | 25 KHz tuning                   |
| 034            | VOR/ILS FREQ.      | X             | X             | X           |                                 |
| 035            | DME FREQ.          |               |               | X           |                                 |
| 040            | UHF COM FREQ.      | X             | X             | X           |                                 |
| 047            | VHF COM FREQ.      | X             | X             | X           | 8.33KHz tuning                  |
| 173            | LOC DEVIATION      |               |               | X           |                                 |
| 174            | GS DEVIATION       |               |               | X           |                                 |
| 222            | VOR BEARING        |               |               | X           | Includes MB                     |
| 242            | VOR STATION ID     |               |               | X           | 1 <sup>st</sup> word Morse code |
| 244            | VOR STATION ID     |               |               | X           | 2 <sup>nd</sup> word Morse code |
| 263            | ILS STATION ID     |               |               | X           | 1 <sup>st</sup> word Morse code |
| 264            | ILS STATION ID     |               |               | X           | 2 <sup>nd</sup> word Morse code |
| 350            | LRU<br>MAINTENANCE |               |               | X           | BIT status of GDR               |

### **D. MIC Audio**

There are two microphone audio inputs to the GDR. In dual radio mode, the VHF MIC is used for VHF transmission and the UHF MIC is used for UHF transmission. In single radio mode, only the UHF mic input is used for both bands.

The MIC input has a 150 Ohm impedance, biased at 12 VDC on MIC+, and has an input range of 0.25 to 2.50 Vrms for full modulation. A typical input setting of 0.27 Vrms is recommended, which minimizes cabin noise.

| Conn | Pin | Description |
|------|-----|-------------|
| P1   | 7   | VHF MIC-    |
| P1   | 8   | VHF MIC+    |
| P1   | 10  | UHF MIC+    |
| P1   | 11  | UHF MIC-    |

### **E. COM Audio and SIDETONE**

The UHF and VHF bands have separate RX audio outputs and are configurable to combined Sidetone on these outputs. Both bands have a shared Sidetone output, when Sidetone level control by the audio panel is desired. The GDR must be configured to provide Sidetone on the receiver output.

All audio outputs are floating differential, but may be installed single-ended with the negative output grounded if required. Differential connection to the audio panel is recommended for noise immunity.

Each COM audio output can generate up to 100 mW into a 600 Ohm load or  $7.75 \pm 0.5$  Vrms. Normal production setting is for 100 mW into 150 Ohm load at  $3.87 \pm 0.5$  Vrms. Desired audio levels depend on the audio panel and headset impedance used in the aircraft. If the audio panel has an emergency mode, the radio may be required to drive the headset directly and may require a different audio output level.

## CHAPTER 2 – SYSTEM INSTALLATION

| Conn | Pin | Description |
|------|-----|-------------|
| P1   | 2   | SIDETONE+   |
| P1   | 3   | SIDETONE-   |
| P1   | 5   | UHF AUDIO-  |
| P1   | 6   | UHF AUDIO+  |
| P1   | 13  | VHF AUDIO-  |
| P1   | 14  | VHF AUDIO+  |

### **F. PTT and TX INTERLOCK**

The VHF and UHF transceivers have separate Push-To-Talk (PTT) inputs, except when configured for single radio mode. Each PTT input has an impedance of 7.9k Ohms and requires a voltage below 2.0 VDC to be active.

The Transmit Interlock discrete input is available in installations where a co-located transmitter's noise floor opens the receiver's squelch during transmit. This can occur when COM to COM antenna separation is limited. If this occurs, all receiver's TX interlock may be diode ORed with the PTT to the audio panel. This feature is also available in select audio panels.

When the Transmit Interlock input is pulled low, this inserts a 10 dB pad at the input of the COM receivers and enables the TX Squelch level settings. This reduces the sensitivity of the receiver during transmit and allows an alternate squelch setting during transmit when required. The need for this feature is determined by the location of antennas and the noise floor of the offending transmitter.

**CAUTION:** The TX Interlock pin of all radios cannot sink any current otherwise TX Interlock will be permanently active unless an external pull up resistor is installed.

| Conn | Pin | Description  |
|------|-----|--------------|
| P1   | 4   | VHF PTT      |
| P1   | 12  | UHF PTT      |
| P1   | 15  | TX INTERLOCK |

### **G. NAV and MB AUDIO**

The NAV (VOR/LOC) and MB receivers each have separate balanced audio outputs. Each output can generate 100 mW into a 600 Ohm load at  $7.75 \pm 0.5$  Vrms. Normal production setting is for 100 mW into 150 Ohm load at  $3.87 \pm 0.5$  Vrms.

| Conn | Pin | Description |
|------|-----|-------------|
| P2   | 20  | NAV AUDIO-  |
| P2   | 23  | NAV AUDIO+  |
| P2   | 24  | MB AUDIO+   |
| P2   | 25  | MB AUDIO-   |

## CHAPTER 2 – SYSTEM INSTALLATION

### **H. SDI, Power, and Discrete**

Two pins on the P2 connector are used to set the ARINC 429 Source/Destination Identifier (SDI), one pin is used to remotely turn on the radio, and one pin to tune to the Emergency frequency.

An open condition is valid when the input is above 12VDC. A ground condition is valid when the input is below 2VDC.

The two SDI pins are used to identify the identification of the radio for the ARINC 429 words. The combination of SDI1 and SDI2 will determine NAV/COM1 through NAV/COM3 as noted below.

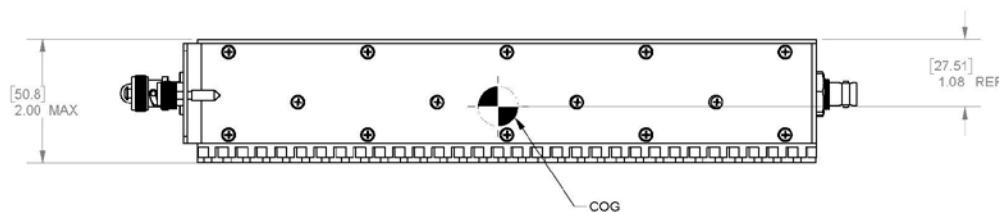
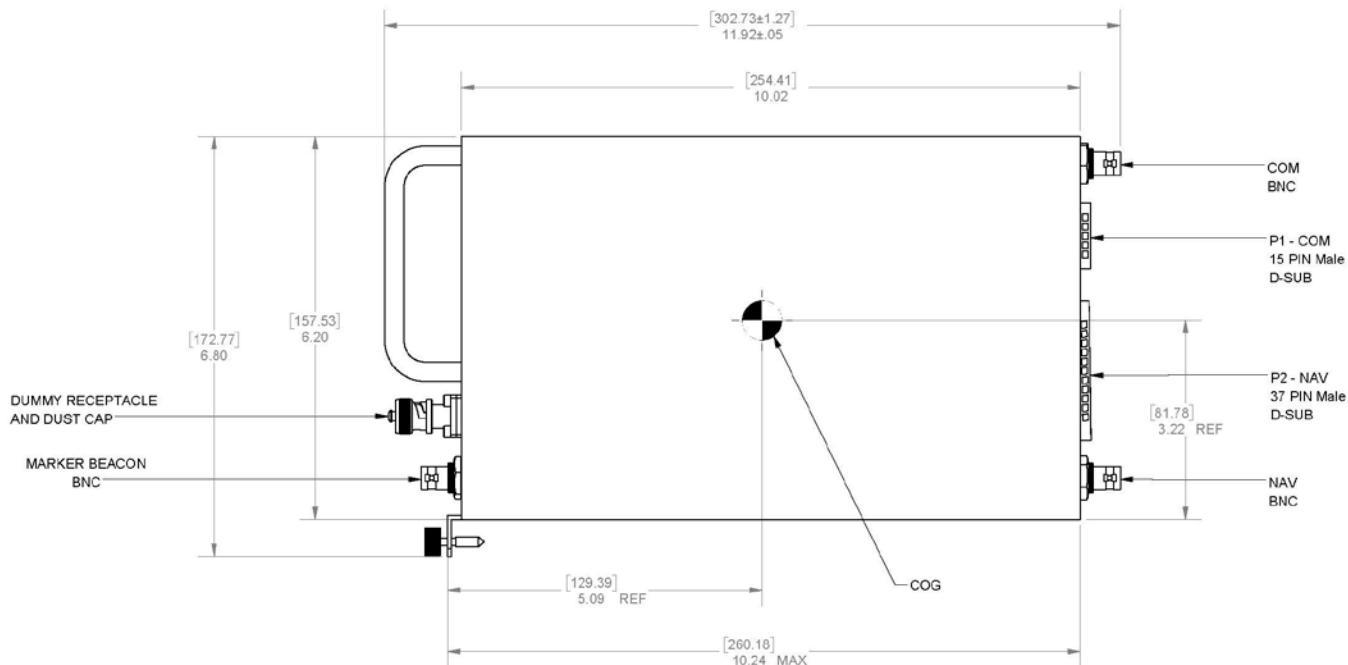
| SDI1 | SDI2 | NAV/COM    |
|------|------|------------|
| OPEN | OPEN | “All Call” |
| OPEN | GND  | 1          |
| GND  | OPEN | 2          |
| GND  | GND  | 3          |

The PS ENABLE pin enables the power supply of the radio on when grounded. This pin may be wired to a control head power switch or permanently wired to ground. When permanently wired to ground, the unit will activate when 28 Volt power is applied.

The EMERGENCY pin will tune the VHF and UHF transceivers to the emergency frequency of 121.5MHz (VHF) and 243.00MHz (UHF) when grounded.

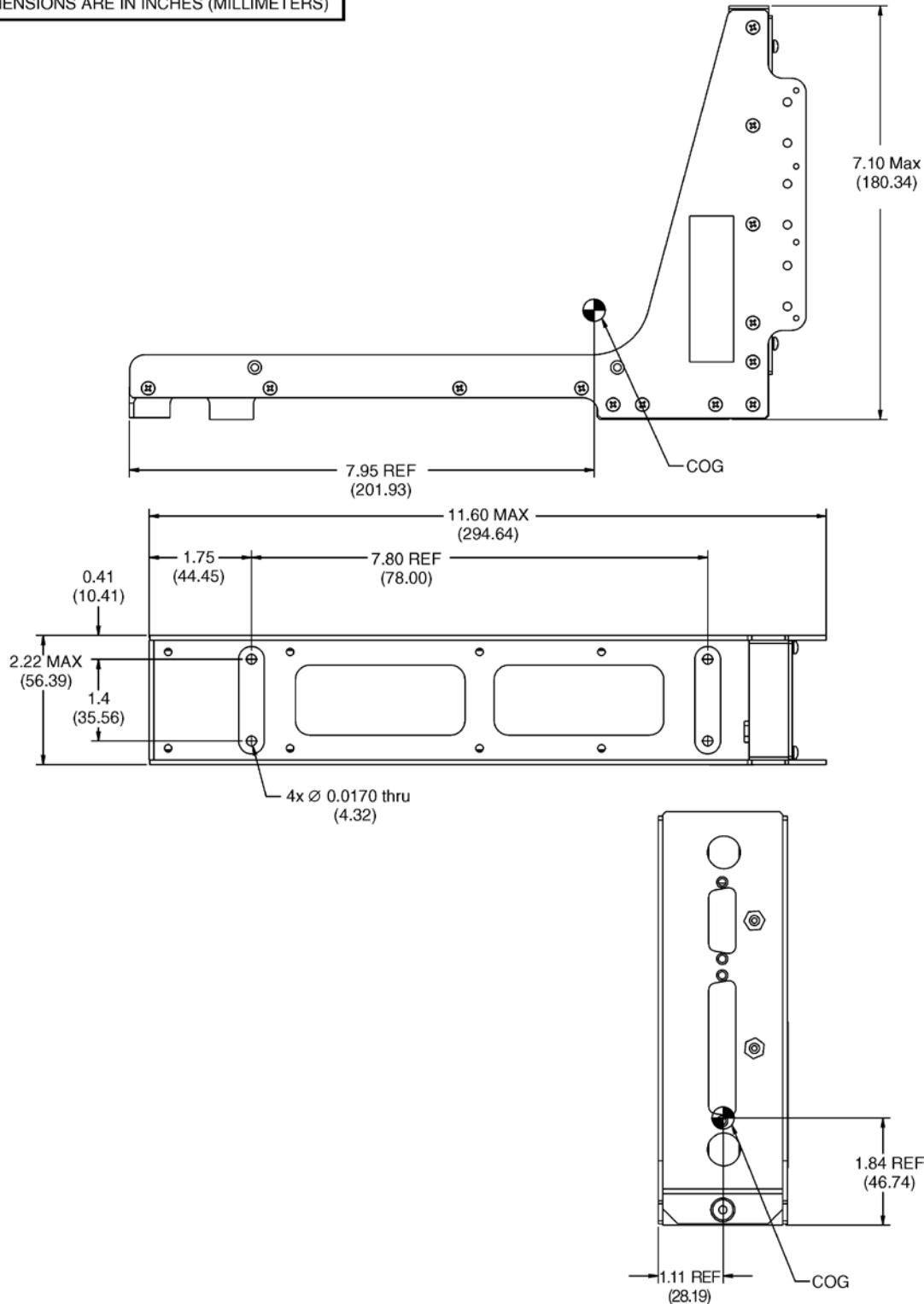
| Conn | Pin | Description |
|------|-----|-------------|
| P2   | 7   | SDI1        |
| P2   | 8   | SDI2        |
| P2   | 35  | PS ENABLE   |
| P2   | 36  | EMERGENCY   |





### **CHAPTER 3 – SYSTEM DRAWINGS**

This section contains the drawings of the GDR-XXXX and electrical connectors.

#### **20. MECHANICAL DRAWING**

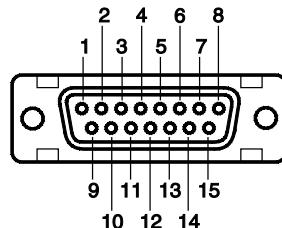

##### **A. GDR-XXXX**

**NOTE: DIMENSIONS ARE IN INCHES [MILLIMETERS]**

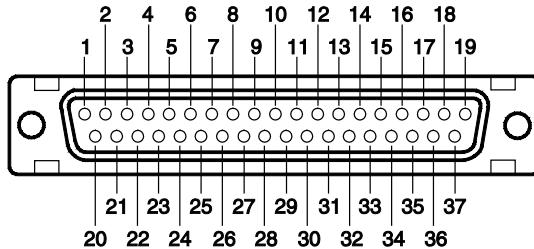


**B. GDR TRAY**

**NOTE**  
DIMENSIONS ARE IN INCHES (MILLIMETERS)




0220-21456-01 (rev B)


## 21. GDR-XXXX CONNECTOR DRAWINGS

All connector drawings are shown viewed from the mating face of the connector.

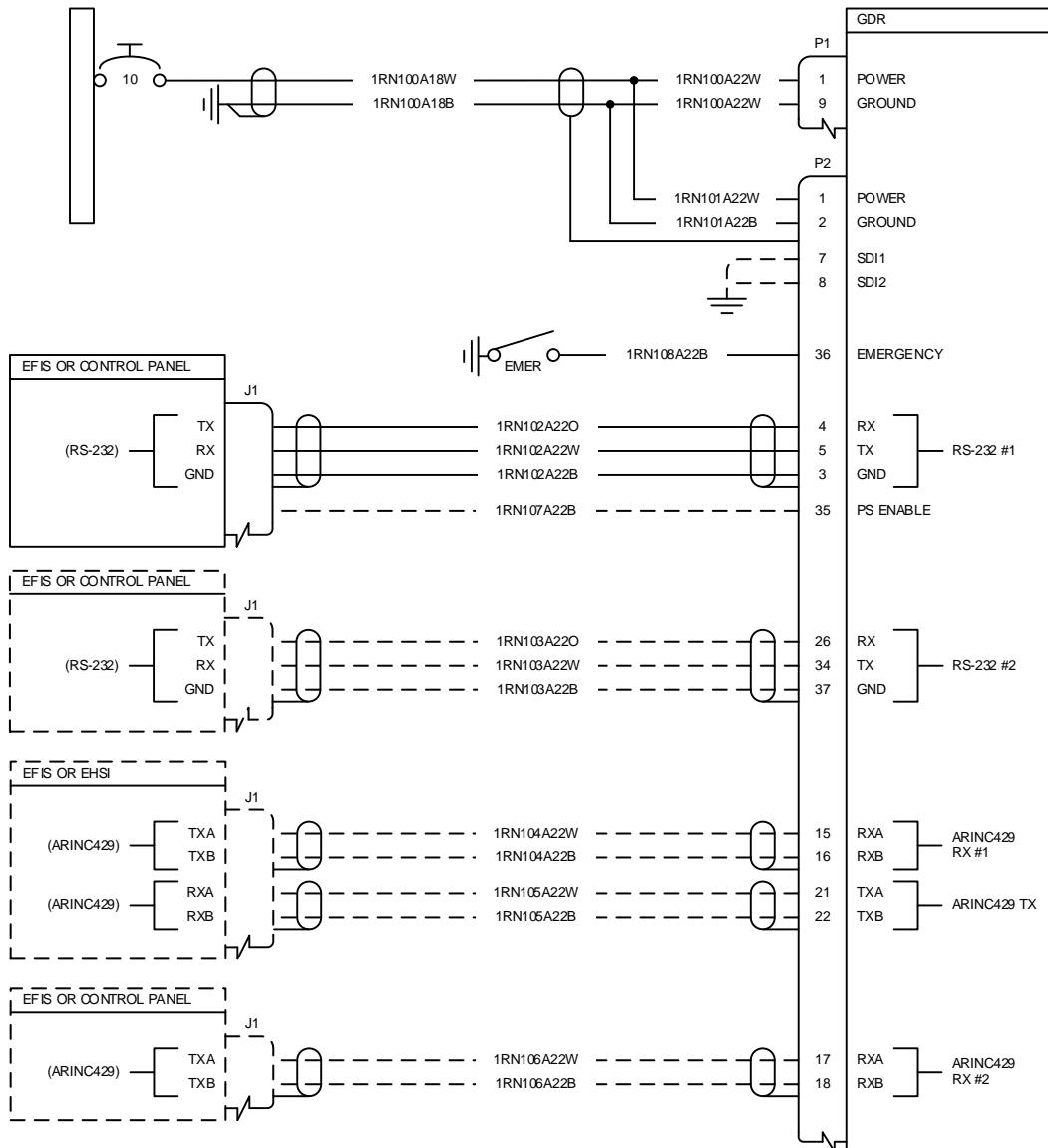
### A. P1 Connector



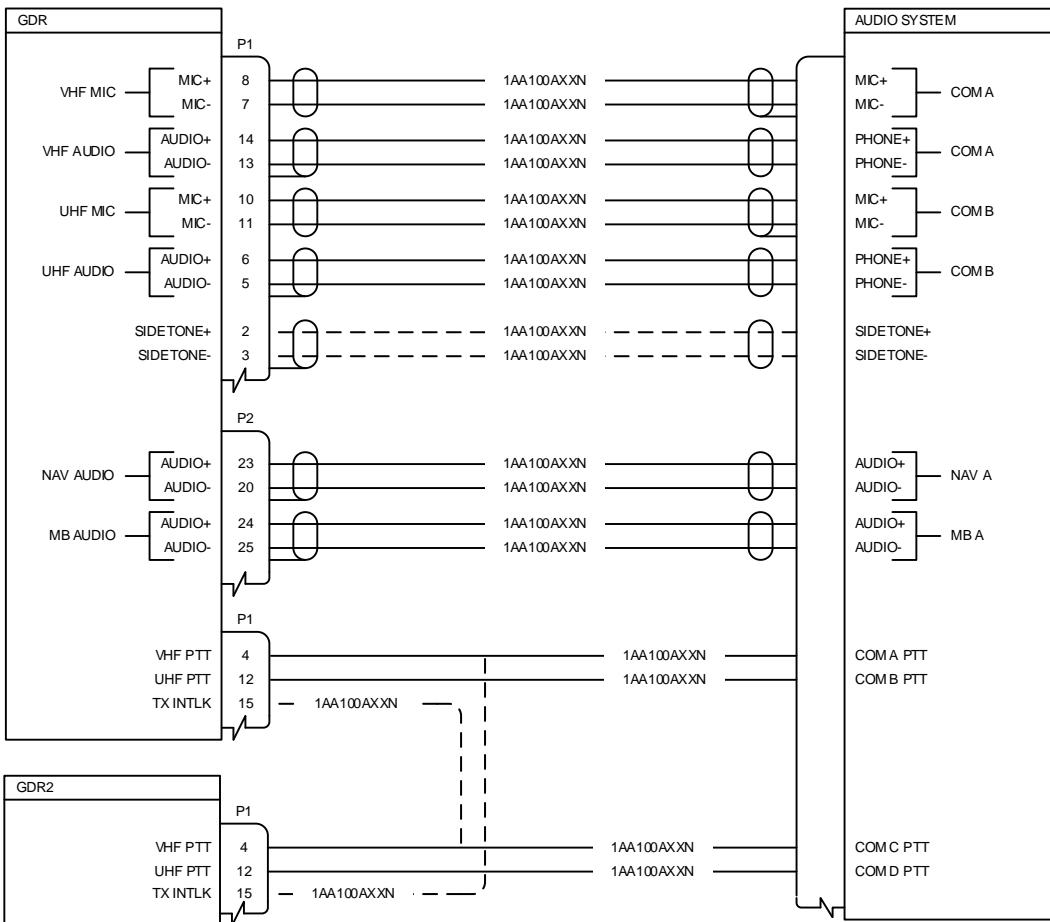
| Pin | Description       | Pin | Description  |
|-----|-------------------|-----|--------------|
| 1   | A/C POWER (28VDC) | 9   | GROUND       |
| 2   | SIDETONE+         | 10  | UHF MIC+     |
| 3   | SIDETONE-         | 11  | UHF MIC-     |
| 4   | VHF PTT           | 12  | UHF PTT      |
| 5   | UHF AUDIO-        | 13  | VHF AUDIO-   |
| 6   | UHF AUDIO+        | 14  | VHF AUDIO+   |
| 7   | VHF MIC-          | 15  | TX INTERLOCK |
| 8   | VHF MIC+          |     |              |

**B. P2 Connector**


| <b>Pin</b> | <b>Description</b> | <b>Pin</b> | <b>Description</b> |
|------------|--------------------|------------|--------------------|
| 1          | A/C POWER (28VDC)  | 20         | NAV AUDIO-         |
| 2          | GROUND             | 21         | ARINC 429 TX A     |
| 3          | RS-232 GND         | 22         | ARINC 429 TX B     |
| 4          | RS-232 RX1         | 23         | NAV AUDIO+         |
| 5          | RS-232 TX1         | 24         | MB AUDIO+          |
| 6          | RESERVED           | 25         | MB AUDIO-          |
| 7          | SDI1               | 26         | RS-232 RX2         |
| 8          | SDI2               | 27         | RESERVED           |
| 9          | RESERVED           | 28         | RESERVED           |
| 10         | RESERVED           | 29         | GND                |
| 11         | RESERVED           | 30         | RESERVED           |
| 12         | RESERVED           | 31         | RESERVED           |
| 13         | RESERVED           | 32         | RESERVED           |
| 14         | RESERVED           | 33         | ILS ENERGIZE       |
| 15         | RX1 A (ARINC 429)  | 34         | RS-232 TX2         |
| 16         | RX1 B (ARINC 429)  | 35         | PS ENABLE          |
| 17         | RX2 A (ARINC 429)  | 36         | EMERGENCY          |
| 18         | RX2 B (ARINC 429)  | 37         | GND                |
| 19         | RESERVED           |            |                    |


## 22. WIRING DIAGRAMS

This section will provide generic diagrams for installation of auxiliary equipment to the GDR-XXXX. Refer to the aircraft wiring diagrams for actual connections.


**NOTE:** Wiring codes in the diagrams are for reference and may not reflect the actual wire codes on the aircraft. Refer to the aircraft installation drawings for correct codes and connections.

### WIRING NOTES:

1. Unless noted otherwise, all new wire to meet MIL-W-22759/16 or later revision. All shielded wire to be MIL-C-27500E with shields type (T) and jackets type (14). For additional routing, bonding, and grounding details, reference AC43-13-1B Chapter 11, Sections 9, 10, 11, and 15 or the airframe manufacturers Maintenance Manual.
2. Grounds to be as short as possible unless otherwise indicated. Grounds under 6 inches in length do not require a wire number. Shield preparation should not exceed 3 inches from connector. Shield grounds may not be accomplished by daisy-chaining. Splicing or individually grounding shields to appropriate ground devices.
3. All wires 22AWG unless otherwise specified.
4. Small parts and electrical components required for installation that are not specifically called out in the parts lists shall meet the requirement for aerospace use as "Accepted Parts" or "Standard Parts". Selection of these parts shall be in accordance with guidance provided in FAA Advisory Circular AC20-62D, Dated 5/24/96 or later revision.
5. Due to the many different configuration possibilities and options, the drawings are divided into function groups (Power, Communications, etc.) to allow flexibility in the installation.

**GDR POWER, DISCRETE, SERIAL BUS**
**AVIONICS  
BUS**

**NOTES:**

1. SEPARATE POWER AND GROUND WIRES NO MORE THAN 12 INCHES FROM CIRCUIT BREAKER.
2. WIRE SDI PIN(S) TO AIRFRAME GROUND. REFER TO CHAPTER 2, SECTION 6.J FOR DETAILS.
3. WIRE PS ENABLE TO CONTROL PANEL ON/OFF SWITCH OR DIRECT TO GROUND AS NEEDED.
4. EMERGENCY PIN WILL TUNE VHF AND UHF TRANSCEIVERS TO EMERGENCY FREQUENCY WHEN GROUNDED.
5. RS-232 AND ARINC429 INTERFACE WILL BE DETERMINED BY INSTALLER.

**AUDIO**

**NOTES:**

1. SHIELDS ARE GROUND TO CONNECTOR BACKSHELLS AT TRANSMISSION END ONLY.
2. SIDETONE OUTPUT (P1 PINS 2 AND 3) IS OPTIONAL.
3. TX INTLK IS USED WHEN MULTIPLE RADIOS ARE LOCATED NEAR EACH OTHER AND UNINTENDED SQUELCH IS OPENED DUE TO THE OTHER RADIO. THE EXAMPLE ABOVE IS FOR VHF COMMUNICATION. TX INTLK MAY BE USED FOR UHF COMMUNICATIONS AS NEEDED.

**CHAPTER 4 – GROUND FUNCTIONAL TESTS**

This section provided the initial installation and return to service tests of the GDR.

|            |                                                                                                                                                                                    | PASS   FAIL |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| <b>1.0</b> | <b>PURPOSE OF TEST:</b>                                                                                                                                                            |             |
| 1.1        | The procedures defined in this plan will demonstrate the proper installation of the GDR-XXXX as installed on _____ aircraft.                                                       |             |
| <b>2.0</b> | <b>TEST EQUIPMENT REQUIRED:</b>                                                                                                                                                    |             |
| 2.1        | Digital Multi-Meter (DMM)<br>Milliohm Meter<br>Aeroflex IFR-4000 or equivalent NAV/COM Test Set                                                                                    |             |
| <b>3.0</b> | <b>PRE-OPERATIONAL TESTS:</b>                                                                                                                                                      |             |
| 3.1        | Structural test of the GDR NAV/COM1 mounting shelf with tray installed per Chapter 2, Section 4.                                                                                   | _____       |
| 3.2        | If installed, structural test of the GDR NAV/COM2 mounting shelf with tray installed per Chapter 2, Section 4.                                                                     | _____       |
| 3.3        | Using a Milliohm Meter, verify the resistance between the NAV/COM1 tray assembly and structure is less than 2.5 milliohms.                                                         | _____       |
| 3.4        | If installed, use a Milliohm Meter and verify the resistance between the NAV/COM2 tray assembly and structure is less than 2.5 milliohms.                                          | _____       |
| 3.4        | Using a Milliohm Meter, verify the resistance between the NAV/COM1 transceiver and the tray assembly when installed is less than 2.5 milliohms.                                    | _____       |
| 3.5        | If installed, use a Milliohm Meter and verify the resistance between the NAV/COM2 transceiver and the tray assembly when installed is less than 2.5 milliohms.                     | _____       |
| 3.6        | Using a DMM, verify +28VDC on P1, Pin 1 and P2, Pin 1 for all GDRs installed in the aircraft.                                                                                      | _____       |
| 3.7        | Using a DMM, verify aircraft ground on P1, Pin 9 and P2, Pin 2 for all GDRs installed in the aircraft.                                                                             | _____       |
| 3.8        | Using a DMM, verify continuity of all audio wiring between each GDR and the aircraft audio system. Verify there are no shorts between signal wires and shields or airframe ground. | _____       |

|      |                                                                                                                                                                                                     | PASS  | FAIL  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 3.9  | Using a DMM, verify continuity of all control wiring between each GDR and the radio controllers or EFIS. Verify there are no shorts between signal wires and shields or airframe ground.            | _____ | _____ |
| 3.10 | Using a DMM, verify continuity of center conductors of RF connectors and antennas. Verify continuity of shields to RF connectors. Verify there are no shorts between center conductors and shields. | _____ | _____ |

**4.0 OPERATIONAL / CONTINUED AIRWORTHINESS TESTS:**

4.1 While transmitting, determined if the TX carrier is within 1 ppm of the transmit frequency. Adjust the 48 MHz reference standard as required.



## GDR-XXXX NAV/COM INSTALLATION MANUAL

### CHAPTER 5 – TROUBLESHOOTING

This section provides guidance on troubleshooting the GDR-XXXX system. Refer to Chapter 4 for functional test procedures.

#### **23. TOOLS**

The following tools are required to test the GDR:

Aeroflex IFR-4000 or equivalent NAV/COM Test Set

#### **24. SETUP**

#### **25. FAULT INDICATIONS**

#### **26. FAILURES**

The table provided in this section may be used to assist in troubleshooting the GDR-XXXX and connected sensors. Always verify that the sensors connected to the GDR-XXXX are operating per the manufacturer's specification.

| CONDITION | ACTION | CORRECTION |
|-----------|--------|------------|
|           |        |            |

#### **27. COM PORT INSPECTOR**

#### **28. GDR-XXXX MAINTENANCE UTILITY**

## GDR-XXXX NAV/COM INSTALLATION MANUAL

### APPENDIX A – ARINC 429 SPECIFICATIONS

The ARINC bus may contain concentrated commands for multiple sets of equipment. The LRU masks labels that it is not configured to receive. In addition to the label, the LRU uses the SDI bits to differentiate messages, e.g., up to three VHF COM receivers may be placed on the same bus and the target COM is determined by the strapped SDI bits as noted below. If a label is received by the unit, it is also retransmitted. Some labels are only transmitted from the LRU, which contain status or data.

Multiple bus inputs are handled in the order received with the last bus input determining the outcome, i.e., there is no priority bus. RS-232 and ARINC commands are handled together in this manner. ARINC shall be implemented to allow bust mode turning, i.e., there is not a requirement for the normal label transmission rate on the input.

## 29. ARINC Labels 030 and 047, VHF COM

Labels 030 or 047 determine the frequency of the VHF COM and both labels are accepted by the radio. Only the label received by the radio shall be retransmitted, e.g., if radio 030 is received by the LRU, it will be transmitted without label 047 and vice versa. Label 030 shall be used for 25 kHz channels, while 047 shall be used for 8.33 kHz spaced channels. Both labels contain the channel name rather than frequency as per channel labeling scheme in ARINC 716, which is listed in Appendix A for reference.

The example shown below is for channel 118.000, which also has a frequency of 118.000 MHz and sets the receive bandwidth required for reception of a 25 kHz channel. Channel 118.005, has a frequency of 118.000 MHz and sets the receive bandwidth required for reception of an 8.33 kHz channel.

**Table 12: VHF COM 118 MHz Frequency with 25 kHz or 8.33 kHz channel bandwidth**

| Function | Label | Parity (odd) | Sign/Status Matrix | 10 MHz (1) | 1 MHz (8)   | 0.1 MHz (0) | 0.01 MHz (0) | 0.001 MHz (0) | Res (SDI) | LABEL VHF COM FREQ. Octal |       |     |
|----------|-------|--------------|--------------------|------------|-------------|-------------|--------------|---------------|-----------|---------------------------|-------|-----|
|          |       |              |                    | 29 28 27   | 26 25 24 23 | 22 21 20 19 | 18 17 16 15  | 14 13 12 11   |           | LSB 1 2 4 1 2 4 1 2 MSB   |       |     |
| Bit #    |       | 32           | 31 30              | 29 28 27   | 26 25 24 23 | 22 21 20 19 | 18 17 16 15  | 14 13 12 11   | 10 9      | 8 7 6                     | 5 4 3 | 2 1 |
| 25 kHz   | 030   | 0            | 0 0                | 0 0 1      | 1 0 0 0 0   | 0 0 0 0     | 0 0 0 0      | 0 0 0 0       | 0 1       | 0 0 0                     | 1 1 0 | 0 0 |
| 8.33 kHz | 047   | 0            | 0 0                | 0 0 1      | 1 0 0 0     | 0 0 0 0     | 0 0 0 0      | 0 1 0 1       | 0 1       | 1 1 1                     | 0 0 1 | 0 0 |

**Table 13: Sign Status Matrix definition and SDI bit definition**

| Bit 31 | Bit 30 | Status           |
|--------|--------|------------------|
| 0      | 0      | Squelch Normal   |
| 0      | 1      | No Computed Data |
| 1      | 0      | Functional Test  |
| 1      | 1      | Squelch Open     |

| SDI Bits 10 9 | Radio Number |
|---------------|--------------|
| 0 0           | All Call     |
| 0 1           | COM 1        |
| 1 0           | COM 2        |
| 1 1           | COM 3        |

Notes:

1. The SSM matrix defines a bit configuration binary 10 for “Functional Test”, which shall initiate any COM IBIT, unless the NAV receiver is in the ILS mode.
2. A received SSM of 11 opens the receiver’s squelch. A SSM returned from the unit indicates the squelch is opened by either a received signal or the RMU. This can be used as a means to indicate channel activity.
3. The LRU shall use the SSM matrix of labels 030 and 047 to annunciate any corrupt or invalid data associated with the label by setting the SSM to NCD on the retransmitted word. LRU failures are reported on label 350.
4. The channel number’s hundreds place both have a default value of “1”, i.e., they have 100 MHz added to the sent number.

### 30. ARINC Label 034, VOR/ILS Frequency

Label 034 is used for tuning the VOR or ILS frequency.

**Table 14: NAV Frequency Selection Format for 109.3 MHz, ARINC Label 034**

|           | Parity (odd) | Sign/Status Matrix | 10 MHz (0) | 1 MHz (9)   | 0.1 MHz (3) | 0.02 MHz (0) | See Table Below | Res (SDI) | VHF NAV FREQ. Octal |       |     |
|-----------|--------------|--------------------|------------|-------------|-------------|--------------|-----------------|-----------|---------------------|-------|-----|
| Bit #     | 32           | 31 30              | 29 28 27   | 26 25 24 23 | 22 21 20 19 | 18 17 6 15   | 14 13 12 11     | 10 9      | 8 7 6               | 5 4 3 | 2 1 |
| 109.3 MHz | 0            | 0 0                | 0 0 0      | 1 0 0 1     | 0 0 1 1     | 0 0 0 0      | 0 0 0 0         | 0 0       | 0 0 1               | 1 1 0 | 0 0 |
|           |              |                    |            |             |             |              |                 |           | 4                   | 3     | 0   |

Note: 1) The frequency transmitted has an implied 100 MHz added.  
 2) Bit 14 is used in systems where the DME is tuned by the VOR/ILS and acts as a hold function. When set to a '1' the DME is held at the last frequency tuned with a '0' value.

**Table 15: Definition of Bits 11 to 13 for Label 034**

| Bit Number | Description         |                                                 |
|------------|---------------------|-------------------------------------------------|
| Bit 11     | Marker Sensitivity  | '1' denotes high, "0" denotes low               |
| Bit 12     | VOR Rotor Filtering | '1' denotes employed. "0" denotes no filter     |
| Bit 13     | Reserved            |                                                 |
| Bit 14     | DME Hold            | '1' denotes the DME is held at the last channel |

**Table 16: Sign Status Matrix definition**

| 31 | 30 | Status           |
|----|----|------------------|
| 0  | 0  | Verified         |
| 0  | 1  | No Computed Data |
| 1  | 0  | Functional Test  |
| 1  | 1  | Not Defined      |

**Table 17: ARINC SDI bit definition**

| SDI Bits<br>10 9 | J100<br>Pin 15 | J100<br>Pin 44 | Radio<br>Number |
|------------------|----------------|----------------|-----------------|
| 0 0              | Gnd            | Gnd            | All Call        |
| 0 1              | Gnd            | Open           | NAV 1           |
| 1 0              | Open           | Gnd            | NAV 2           |
| 1 1              | Open           | Open           | NAV 3           |

### 31. ARINC Label 035, DME Frequency

Label 035 is generated by the NAV radio to tune a companion DME if desired.

**Table 18: DME Frequency Format for 109.3 MHz, ARINC Label 035**

|           | Parity (odd) | Sign/Status Matrix | 10 MHz (0) | 1 MHz (9)   | 0.1 MHz (3) | 0.00/0.05 MHz | Ident Display | MLS Freq. | ILS Freq. | DME Mode | Res (SDI) | DME Tune Octal |       |     |
|-----------|--------------|--------------------|------------|-------------|-------------|---------------|---------------|-----------|-----------|----------|-----------|----------------|-------|-----|
| Bit #     | 32           | 31 30              | 29 28 27   | 26 25 24 23 | 22 21 20 19 | 18            | 17 16         | 15        | 14        | 13 12 11 | 10 9      | 8 7 6          | 5 4 3 | 2 1 |
| 109.3 MHz | 0            | 0 0 0              | 0 0 0      | 1 0 0 1     | 0 0 1 1     | 0             | 0 0           | 0         | 0         | 0 0 0    | 0 0       | 1 0 1          | 1 1 0 | 0 0 |
|           |              |                    |            |             |             |               |               |           |           |          |           | 5              | 3     | 0   |

Note:

- 1) The frequency in this label is the frequency to which the NAV radio is tuned plus 100 MHz.
- 2) The DME does the translation to the required DME frequency.
- 3) The SDI bits of the NAV radio are used to determine the DME number as shown in Table 22.
- 4) The SDI bits for Label 035 should always be set to "All Call", if a scanning DME is used.
- 5) The Sign Status Matrix is always set to Verified.
- 5) Table 21 defines the bit definitions for the navigational source, which will be set to ILS or VOR mode as determined by the NAV frequency received.

**Table 19: ARINC Label 035, Bits 11-13**

| Bit 13 | Bit 12 | Bit 11 | Function         | NAV SDI |
|--------|--------|--------|------------------|---------|
| 0      | 0      | 0      | Standby          |         |
| 0      | 0      | 1      | DME #1 Frequency | NAV 1   |
| 0      | 1      | 0      | DME #2 Frequency | NAV 2   |
| 0      | 1      | 1      | DME #3 Frequency | NAV 3   |
| 1      | 0      | 0      | DME #4 Frequency |         |
| 1      | 0      | 1      | DME #5 Frequency |         |
| 1      | 1      | 0      | Free Scan        |         |
| 1      | 1      | 1      | Spare            |         |

**Table 20: Sign Status Matrix definition**

| Bit 31 | Bit 30 | Status           |
|--------|--------|------------------|
| 0      | 0      | Verified         |
| 0      | 1      | No Computed Data |
| 1      | 0      | Functional Test  |
| 1      | 1      | Not Defined      |

**Table 21: Navigation source bit definition**

| Bit 15 | Bit 14 | Definition      |
|--------|--------|-----------------|
| 0      | 0      | VOR Freq. Tuned |
| 0      | 1      | ILS Freq. Tuned |
| 1      | 0      | MLS Enabled     |
| 1      | 1      | Spare           |

**Table 22: ARINC Label 035 SDI bit definition**

| SDI Bits 10 9 | Radio Number |
|---------------|--------------|
| 0 0           | All Call     |
| 0 1           | DME 1        |
| 1 0           | DME 2        |
| 1 1           | DME 3        |

## 32. ARINC Label 040, UHF COM

Label 040 is used to control the UHF COM transceiver. UHF operation covers the band of 225 to 399.975 MHz. Operations can be simplex or semi-duplex operation when a repeater is utilized. In semi-duplex operation, the transmission frequency is different from the received frequency.

When the semi-duplex mode is chosen, two label pairs shall be sent, back to back, with the proper encoding to provide both the Main transmit and receive frequency information. In simplex mode, the transmit frequency shall default to the Main receive frequency; therefore, the second label is not required.

**Table 23: UHF COM Data Format Label 040**

| Function     | Parity (odd) | Sign/Status Matrix | 100 MHz (3) | 10 MHz (3)  | 1 MHz (8)   | 0.1 MHz (0) | 12.5 kHz (12.5) | Simplex Word Bit 2 | Res (SDI) | LABEL UHF COM FREQ. Octal |       |     |
|--------------|--------------|--------------------|-------------|-------------|-------------|-------------|-----------------|--------------------|-----------|---------------------------|-------|-----|
| Bit #        | 32           | 31 30              | 29          | 28 27 26 25 | 24 23 22 21 | 20 19 18 17 | 16 15 14        | 13 12 11           | 10 9      | 8 7 6                     | 5 4 3 | 2 1 |
| 338.0125 MHz | 1            | 0 0 1              | 0 0 1 1     | 1 0 0 0     | 0 0 0 0     | 0 0 0 0     | 0 0 1           | 1 0 0              | 0 1       | 0 0 0                     | 0 0 1 | 0 0 |

**Table 24: Modulation Bits**

| 12 | 11 | Function                  |
|----|----|---------------------------|
| 0  | 0  | AM modulation             |
| 0  | 1  | FM, wideband modulation   |
| 1  | 0  | FM, narrowband modulation |
| 1  | 1  | TX frequency encoded      |

**Table 25: Bit 13**

| Bit Position | Description                  |
|--------------|------------------------------|
| Bit 13       | 0 = Semi-duplex. 1 = Simplex |

**Table 26: SDI bit definition**

| SDI Bits 10 9 | Radio Number |
|---------------|--------------|
| 0 0           | All Call     |
| 0 1           | COM 1        |
| 1 0           | COM 2        |
| 1 1           | COM 3        |

**Table 27: Sign Status Matrix definition**

| 31 | 30 | Status                |
|----|----|-----------------------|
| 0  | 0  | Squelch Normal        |
| 0  | 1  | No Computed Data      |
| 1  | 0  | Functional Test       |
| 1  | 1  | Receiver Squelch Open |

Notes:

1. The 100 MHz position has an implied 200 MHz added.
2. The 12.5 kHz position uses the binary value multiplied by 12.5 kHz. This allows either 25 kHz or 12.5 kHz spaced channels as desired.
3. The LRU shall use the SSM matrix of label 040 to annunciate received corrupt or invalid data by NCD.
4. The SSM matrix defines the bit configuration 10 for “Functional Test”, which shall initiate any COM IBIT, unless the NAV is in the ILS mode.
5. A received SSM of 11 shall open the receiver’s squelch gate.

**GDR-XXXX NAV/COMM INSTALLATION MANUAL**

6. A SSM transmitted from the LRU shall indicate when the squelch is opened by either channel activity or the received SSM. This can be used as a means to display channel activity to the pilot when desired. The LRU shall transmit label 040 immediately upon a state change to reduce latency for this function but no more frequently than allowed by the 040 label transmission rate.

### 33. ARINC Label 173, LOC Deviation

The calculated ddm of the Localizer is transmitted on ARINC label 173. When valid data is not present, the SSM is set to "No Computed Data".

**Table 28: LOC Deviation Specification, ARINC Label 173**

| Label | PARAMETER NAME      | UNITS | RANGE     | SIG. BITS | APPROX. RESOLUTION |
|-------|---------------------|-------|-----------|-----------|--------------------|
| 173   | Localizer Deviation | DDM   | $\pm 0.4$ | 12        | 0.0001             |

**Table 29: LOC Deviation Format, ARINC Label 173**

| Bit #      | Parity (odd) | Sign/Status Matrix | DATA FIELD |    |    |    |    |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |   |   |   |   |   | Res (SDI) | LOC Deviation Octal |   |   |   |   |   |
|------------|--------------|--------------------|------------|----|----|----|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|---|---|---|---|---|-----------|---------------------|---|---|---|---|---|
|            |              |                    | MSB        |    |    |    |    |    |    |    |    |    |    |    | LSB |    |    |    |    |    |    |    |   |   |   |   |   |           | LSB                 | 1 | 2 | 4 | 1 | 2 |
| Bit #      | 32           | 31 30              | 29         | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17  | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4         | 3                   | 2 | 1 |   |   |   |
| +0.021 DDM | 1            | 1 1                | 0          | 0  | 0  | 0  | 0  | 1  | 1  | 0  | 1  | 1  | 0  | 0  | 0   | P  | P  | P  | P  | P  | P  | 0  | 0 | 1 | 1 | 0 | 1 | 1         | 1                   | 1 | 0 |   |   |   |

Note: 1) "P" denotes a pad with a "0" value.

- 2) Negative values are encoded as the two's complements of positive values and the negative sign is annunciated in bit 29.
- 3) The transmitted binary value is found as  $(ddm)/0.4 * 4096$ , encoded as two's complement.
- 4) The two's complement of an N-bit number is the result of subtracting the number from  $2^N$ .

**Table 30: Status Matrix definition**

| Bit 31 | Bit 30 | Status           |
|--------|--------|------------------|
| 0      | 0      | Failure Warning  |
| 0      | 1      | No Computed Data |
| 1      | 0      | Functional Test  |
| 1      | 1      | Functional       |

**Table 31: Sign Bit definition**

| Bit 29 | Meaning |
|--------|---------|
| 0      | Right   |
| 1      | Left    |

### 34. ARINC Label 174, G/S Deviation

The calculated ddm of the Glideslope is transmitted on ARINC label 174. When valid data is not present, the SSM is set to "No Computed Data".

**Table 32: Glideslope Deviation Specification, ARINC Label 174**

| Label | PARAMETER NAME       | UNITS | RANGE     | SIG. BITS | APPROX. RESOLUTION |
|-------|----------------------|-------|-----------|-----------|--------------------|
| 174   | Glideslope Deviation | DDM   | $\pm 0.8$ | 12        | 0.0002             |

**Table 33: Glideslope Deviation Format, ARINC Label 174**

| Parity (odd) | Sign/Status Matrix | DATA FIELD |    |    |    |    |    |    |    |    |     |    |    |    |    |    |    |    |    | Res (SDI) | G/S Deviation Octal |     |     |   |   |   |   |   |   |   |   |   |   |
|--------------|--------------------|------------|----|----|----|----|----|----|----|----|-----|----|----|----|----|----|----|----|----|-----------|---------------------|-----|-----|---|---|---|---|---|---|---|---|---|---|
|              |                    | MSB        |    |    |    |    |    |    |    |    | LSB |    |    |    |    |    |    |    |    |           |                     | LSB | MSB |   |   |   |   |   |   |   |   |   |   |
| Bit #        | 32                 | 31         | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22  | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13        | 12                  | 11  | 10  | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |   |
| -0.125 DDM   | 0                  | 1          | 1  | 1  | 1  | 0  | 1  | 1  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | P  | P  | P  | P         | P                   | P   | 0   | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 4 | 7 | 1 |

Note:

- 1) "P" denotes a pad with a "0" value.
- 2) Negative values are encoded as the two's complements of positive values and the negative sign is annunciated in bit 29.
- 3) The transmitted binary value is found as  $ddm/0.8 * 4096$ , encoded as two's complement.
- 4) The two's complement of an N-bit number is the result of subtracting the number from  $2^N$ .

**Table 34: Status Matrix definition**

| Bit 31 | Bit 30 | Status           |
|--------|--------|------------------|
| 0      | 0      | Failure Warning  |
| 0      | 1      | No Computed Data |
| 1      | 0      | Functional Test  |
| 1      | 1      | Functional       |

**Table 35: Sign Bit definition**

| Bit 29 | Meaning |
|--------|---------|
| 0      | Above   |
| 1      | Below   |

### 35. ARINC Label 222, VOR Bearing and Marker Beacon Tones

The calculated VOR Bearing is transmitted on ARINC label 222. When valid data is not present, the SSM bits are set for no computed data.

**Table 36: VOR Bearing Specification, ARINC Label 222**

| Label | PARAMETER NAME   | UNITS          | RANGE | SIG. BITS | APPROX. RESOLUTION |
|-------|------------------|----------------|-------|-----------|--------------------|
| 222   | VOR Omni-bearing | Degrees<br>180 | ±180° | 12        | 0.044°             |

**Table 37: VOR Bearing Format, ARINC Label 222**

|           | Parity (odd) | Sign/Status Matrix | DATA FIELD |    |    |    |    |    |    |     |    |    |    |    |    |    | Spares (Pads) | ILS | Marker Beacon Tones | Res (SDI) | VOR Bearing Octal |     |   |       |   |       |   |     |   |   |   |
|-----------|--------------|--------------------|------------|----|----|----|----|----|----|-----|----|----|----|----|----|----|---------------|-----|---------------------|-----------|-------------------|-----|---|-------|---|-------|---|-----|---|---|---|
|           |              |                    | MSB        |    |    |    |    |    |    | LSB |    |    |    |    |    |    |               |     |                     |           |                   | LSB |   | 1 2 4 |   | 1 2 4 |   | MSB |   |   |   |
| Bit #     | 32           | 31 30              | 29         | 28 | 27 | 26 | 25 | 24 | 23 | 22  | 21 | 20 | 19 | 18 | 17 | 16 | 15            | 14  | 13                  | 12        | 11                | 10  | 9 | 8     | 7 | 6     | 5 | 4   | 3 | 2 | 1 |
| LABEL 222 | 0            | 0 0                | 0          | 0  | 0  | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0  | P  | P             | 0   | 0                   | 0         | 0                 | 0   | 0 | 0     | 1 | 0     | 0 | 1   | 0 | 0 | 1 |
|           |              |                    |            |    |    |    |    |    |    |     |    |    |    |    |    |    |               |     |                     |           |                   |     | 2 |       | 2 |       | 2 |     | 2 |   |   |

Note: (1) 'P' denotes a pad set for a '0' value.

- (2) Negative values are encoded as the two's complements of positive values and the negative sign is annunciated in the sign/status matrix.
- (3) Angles in the range 0 to 180° are encoded as positive numbers. Angles in the range >180° to <360° are subtracted from 360° and the resulting number encoded as a negative value per note 2.
- (4) Bits 11 to 13 are set as per Table 40 when valid Marker Beacon Tones are present. The presence of these tones does not affect the SSM matrix. Only one tone is allowed to be present and shall have a dominance of > 20 dB over the other tones.
- (5) Bit 14 designates ILS mode and indicates only the Marker Tones are functional and the Data field is parked at all zeros.

**Table 38: Status Matrix definition**

| Bit 31 | Bit 30 | Status           |
|--------|--------|------------------|
| 0      | 0      | Failure Warning  |
| 0      | 1      | No Computed Data |
| 1      | 0      | Functional Test  |
| 1      | 1      | Functional       |

**Table 39: Sign Bit definition**

| Bit 29 | Meaning |
|--------|---------|
| 0      | Plus    |
| 1      | Minus   |

**Table 40: Marker Beacon Tone Bit definition**

| Discrete | Bit | Bit State     |         |
|----------|-----|---------------|---------|
|          |     | Tone Dominate | No Tone |
| 400 Hz   | 11  | 1             | 0       |
| 1,300 Hz | 12  | 1             | 0       |
| 3,000 Hz | 13  | 1             | 0       |

### 36. ARINC Label 242 & 244, VOR Ground Station ID

The detected VOR Station Morse code is transmitted on ARINC labels 242 and 243. When valid data is not present, the SSM bits are set for no computed data.

**Table 41: Morse code first word format, ARINC Label 263**

|           | Parity (odd) | Sign/Status Matrix | Spare | Spare | P  | 2 <sup>nd</sup> Character (A) |       | P  | 1 <sup>st</sup> Character (V) |     | Res (SDI) | Character ID Octal |       |       |       |       |       |     |
|-----------|--------------|--------------------|-------|-------|----|-------------------------------|-------|----|-------------------------------|-----|-----------|--------------------|-------|-------|-------|-------|-------|-----|
|           |              |                    |       |       |    | MSB                           | LSB   |    | MSB                           | LSB |           | LSB                | 1 2 4 | 1 2 4 | MSB   |       |       |     |
| Bit #     | 32           | 31 30              | 29 28 | 27    | 26 | 25 24                         | 23 22 | 21 | 20 19                         | 18  | 17 16     | 15 14              | 13 12 | 11    | 10 9  | 8 7 6 | 5 4 3 | 2 1 |
| LABEL 242 | 0            | 1 1                | 0 0   | 0     | 0  | 1 0                           | 0 0   | 0  | 0 1                           | 0   | 1 0 1 0   | 1 1 0              | 0 0   | 0 1 0 | 0 0 1 | 0 1   |       |     |
|           |              |                    |       |       |    | ASCII (65)                    |       |    | ASCII (86)                    |     |           |                    | 2     | 4     | 2     |       |       |     |

**Table 42: Morse code second word format, ARINC Label 264**

|           | Parity (odd) | Sign/Status Matrix | Spare | Spare | P  | 4 <sup>th</sup> Character (C) |       | P   | 3 <sup>rd</sup> Character (B) |     | Res (SDI) | Character ID Octal |       |       |       |       |       |     |
|-----------|--------------|--------------------|-------|-------|----|-------------------------------|-------|-----|-------------------------------|-----|-----------|--------------------|-------|-------|-------|-------|-------|-----|
|           |              |                    |       |       |    | MSB                           | LSB   |     | MSB                           | LSB |           | LSB                | 1 2 4 | 1 2 4 | MSB   |       |       |     |
| Bit #     | 32           | 31 30              | 29 28 | 27    | 26 | 25 24                         | 23 22 | 21  | 20 19                         | 18  | 17 16     | 15 14              | 13 12 | 11    | 10 9  | 8 7 6 | 5 4 3 | 2 1 |
| LABEL 244 | 0            | 1 1                | 0 0   | 0     | 0  | 1 0                           | 0 0   | 0 1 | 1 1                           | 0   | 1 0 0 1   | 0 1 0              | 0 0   | 0 0 1 | 0 0 1 | 0 1   |       |     |
|           |              |                    |       |       |    | ASCII (67)                    |       |     | ASCII (66)                    |     |           |                    | 4     | 4     | 2     |       |       |     |

**Table 43: Status Matrix definition**

| Bit 31 | Bit 30 | Status           |
|--------|--------|------------------|
| 0      | 0      | Verified         |
| 0      | 1      | No Computed Data |
| 1      | 0      | Functional Test  |
| 1      | 1      | Not Defined      |

### 37. ARINC Label 263 & 264, ILS Ground Station ID

The detected Morse code is transmitted on ARINC labels 263 and 264. When valid data is not present, the SSM bits are set for “No Computed Data”.

**Table 44: Morse code first word format, ARINC Label 263**

|           | Parity (odd) | Sign/Status Matrix | Spare | Act/Standby | P  | 2 <sup>nd</sup> Character (A) |       | P  | 1 <sup>st</sup> Character (I) |            | Res (SDI) | Character ID Octal |       |       |       |       |       |     |
|-----------|--------------|--------------------|-------|-------------|----|-------------------------------|-------|----|-------------------------------|------------|-----------|--------------------|-------|-------|-------|-------|-------|-----|
|           |              |                    |       |             |    | MSB                           | LSB   |    | MSB                           | LSB        |           | LSB                | 1 2 4 | 1 2 4 | MSB   |       |       |     |
| Bit #     | 32           | 31 30              | 29 28 | 27          | 26 | 25 24                         | 23 22 | 21 | 20 19                         | 18         | 17 16     | 15 14              | 13 12 | 11    | 10 9  | 8 7 6 | 5 4 3 | 2 1 |
| LABEL 263 | 0            | 1 1                | 0 0   | 0           | 0  | 1 0                           | 0 0   | 0  | 0 1                           | 0          | 1 0 0     | 1 0 0              | 1     | 0 1   | 0 0 0 | 1 1 0 | 0 1 1 | 0 1 |
|           |              |                    |       |             |    | ASCII (65)                    |       |    |                               | ASCII (73) |           |                    |       |       | 3     | 6     | 2     |     |

**Table 45: Morse code second word format, ARINC Label 264**

|           | Parity (odd) | Sign/Status Matrix | Spare | Act/Standby | P  | 4 <sup>th</sup> Character (C) |       | P  | 3 <sup>rd</sup> Character (B) |            | Res (SDI) | Character ID Octal |       |       |       |       |       |     |
|-----------|--------------|--------------------|-------|-------------|----|-------------------------------|-------|----|-------------------------------|------------|-----------|--------------------|-------|-------|-------|-------|-------|-----|
|           |              |                    |       |             |    | MSB                           | LSB   |    | MSB                           | LSB        |           | LSB                | 1 2 4 | 1 2 4 | MSB   |       |       |     |
| Bit #     | 32           | 31 30              | 29 28 | 27          | 26 | 25 24                         | 23 22 | 21 | 20 19                         | 18         | 17 16     | 15 14              | 13 12 | 11    | 10 9  | 8 7 6 | 5 4 3 | 2 1 |
| LABEL 264 | 0            | 1 1                | 0 0   | 0           | 0  | 1 0                           | 0 0   | 0  | 1 1                           | 0          | 1 0 0     | 1 0 1              | 0     | 1 0   | 0 0 1 | 0 1 1 | 0 1   |     |
|           |              |                    |       |             |    | ASCII (67)                    |       |    |                               | ASCII (66) |           |                    |       |       | 4     | 6     | 2     |     |

**Table 46: Status Matrix definition**

| Bit 31 | Bit 30 | Status           |
|--------|--------|------------------|
| 0      | 0      | Verified         |
| 0      | 1      | No Computed Data |
| 1      | 0      | Functional Test  |
| 1      | 1      | Not Defined      |

**Table 47: Sign Bit definition**

| Bit 27 | Meaning             |
|--------|---------------------|
| 0      | Active Receiver ID  |
| 1      | Standby Receiver ID |

**38. ARINC Label 350 LRU Maintenance Status**

The following word contains current BIT status of the radio.

**Table 48: Maintenance Status**

| Function  | Label | Parity (odd) | Sign Matrix | Maintenance Discrete Bits |                   |             |             |      |       |       |     | Res (SDI) | LABEL Octal |  |  |
|-----------|-------|--------------|-------------|---------------------------|-------------------|-------------|-------------|------|-------|-------|-----|-----------|-------------|--|--|
|           |       |              |             | LSB                       |                   |             |             | MSB  |       |       |     |           | Octal       |  |  |
| Bit       |       | 32           | 31 30       | 29 28 27 26 25            | 24 23 22 21 20 19 | 18 17 16 15 | 14 13 12 11 | 10 9 | 8 7 6 | 5 4 3 | 2 1 |           |             |  |  |
| Co. Info. | 350   | x            | 0 0         | x x x x x                 | 0 1 1 1 0 0       | 0 0 0 1     | 0 1 1 0     | x x  | 0 0 0 | 1 0 1 | 1 1 |           |             |  |  |

**Table 49: Label 350 maintenance bit definition**

| Bit | Function                | Coding | Notes                                   |
|-----|-------------------------|--------|-----------------------------------------|
| 1   | Label                   | 1      | (msb)<br>3 decimal                      |
| 2   | Label                   | 1      |                                         |
| 3   | Label                   | 1      | 5 decimal                               |
| 4   | Label                   | 0      |                                         |
| 5   | Label                   | 1      |                                         |
| 6   | Label                   | 0      |                                         |
| 7   | Label                   | 0      | 0 decimal<br>(lsb)                      |
| 8   | Label                   | 0      |                                         |
| 9   | SDI                     | (lsb)  | 00 Not used 01 LRU #1                   |
| 10  | SDI                     | (msb)  | 10 LRU#2 11 LRU #3                      |
| 11  | GlideSlope PLL unlocked | B1     | Set high if the GS LO has a failure     |
| 12  | NAV PLL unlocked        | B2     | Set high if the NAV LO has a failure    |
| 13  | VHF COM PLL unlocked    | B3     | Set high if the VHF PLL has a failure   |
| 14  | UHF COM PLL unlocked    | B4     | Set high if the UHF PLL has a failure   |
| 15  | Guard PLL unlocked      | B5     | Set high if the Guard PLL has a failure |
| 16  | Transmitter LO Power    | B6     | Set high if the TX power is low         |
| 17  | HI COM VSWR             | B7     | Set high an antenna failure is detected |
| 18  | Mic Stuck               | B8     | Set high if Mic timeout has occurred    |
| 19  | A/C voltage low         | B9     | Set high if input voltage is low        |
| 20  | Temperature high        | B10    | Unit exceeds temperature high           |
| 21  | Temperature low         | B11    | Unit exceeds temperature low            |
| 22  | Internal voltage error  | B12    | Internal power supply failure           |
| 23  | PBIT failure            | B13    | Unit failed power on test               |
| 24  | TBD                     | B14    | To be defined                           |
| 25  | TBD                     | B15    | To be defined                           |
| 26  | TBD                     | B16    | To be defined                           |
| 27  | TBD                     | B17    | To be defined                           |
| 28  | TBD                     | B18    | To be defined                           |
| 29  | TBD                     | B19    | To be defined                           |
| 30  | SSM                     | (lsb)  | 00 Normal; 01 Standby                   |
| 31  | SSM                     | (msb)  | 10 Functional Test; 11 Failure Warn     |
| 32  | Parity                  | ODD    |                                         |

**Table 50: Status Matrix definition**

| Bit 31 | Bit 30 | Status           |
|--------|--------|------------------|
| 0      | 0      | Verified         |
| 0      | 1      | No Computed Data |
| 1      | 0      | Functional Test  |
| 1      | 1      | Not Defined      |

**39. ARINC 429 Update Rate (ARINC 429-18, Attachment 2)**

| Label | Transmit Interval Min.<br>(mSec) | Transmit Max.<br>(mSec) |
|-------|----------------------------------|-------------------------|
| 030   | 100                              | 200                     |
| 034   | 100                              | 200                     |
| 035   | 100                              | 200                     |
| 040   | 100                              | 200                     |
| 047   | 100                              | 200                     |
| 173   | 33.3                             | 62.5                    |
| 174   | 33.3                             | 62.5                    |
| 222   | 50                               | 100                     |
| 242   | 100                              | 200                     |
| 244   | 100                              | 200                     |
| 263   | 100                              | 200                     |
| 264   | 100                              | 200                     |
| 350   | 500                              | 1000                    |