

FCC Radio Test Report

FCC ID: 2AF82-TDD1000C

Report No. : BTL-FCCP-8-2503T049
Equipment : Scheduler Docking Station

Model Name : TDD-1000-C

Brand Name : Qbic

Applicant: Qbic Technology Co., Ltd.

Address : 26F.-12, NO.99, SEC. 1, XINTAI 5TH RD., XIZHI DIST., NEW TAIPEI CITY

22175, TAIWAN

Radio Function : Bluetooth

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.247)

Measurement : ANSI C63.10-2013

Procedure(s)

Date of Receipt

: 2025/4/2

Date of Test : 2025/4/23 ~ 2025/5/26

Issued Date : 2025/6/3

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by : <u>Brett Shan Engineer</u>

brett Shen, Engineer

Approved by

Jerry Chuang, Supervisor

Testing Laboratory

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Project No.: 2503T049 Page 1 of 80 Report Version: R00

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by **BTL**.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2503T049 Page 2 of 80 Report Version: R00

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 7 1.2 1.3 **TEST ENVIRONMENT CONDITIONS** 8 1.4 **DUTY CYCLE** 9 2 **GENERAL INFORMATION** 10 2.1 **DESCRIPTION OF EUT** 10 2.2 INTRODUCTION OF DATA REFERENCING 12 2.2.1 **DESCRIPTION OF EUT** 12 2.2.2 INTRODUCTION 12 2.2.3 MODEL DIFFERENCES 12 2.2.4 SPOT CHECK VERIFICATION RESULTS SUMMARY 12 2.2.5 REFERENCE DETAIL 12 2.3 **TEST MODES** 13 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 14 2.5 SUPPORT UNITS 15 AC POWER LINE CONDUCTED EMISSIONS TEST 3 16 3.1 LIMIT 16 3.2 TEST PROCEDURE 16 **DEVIATION FROM TEST STANDARD** 17 3.3 3.4 **TEST SETUP** 17 3.5 **TEST RESULT** 17 RADIATED EMISSIONS TEST 4 18 4.1 LIMIT 18 4.2 TEST PROCEDURE 19 **DEVIATION FROM TEST STANDARD** 4.3 19 4.4 **TEST SETUP** 19 **EUT OPERATING CONDITIONS** 4.5 20 4.6 TEST RESULT - 9 KHZ TO 30 MHZ 21 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 21 TEST RESULT - ABOVE 1 GHZ 4.8 21 5 NUMBER OF HOPPING CHANNEL 22 5.1 APPLIED PROCEDURES 22 5.2 TEST PROCEDURE 22 5.3 **DEVIATION FROM STANDARD** 22 **TEST SETUP** 5.4 22 5.5 **EUT OPERATION CONDITIONS** 22 **TEST RESULTS** 22 5.6 AVERAGE TIME OF OCCUPANCY 23 6 APPLIED PROCEDURES / LIMIT 23 6.1 TEST PROCEDURE 23 6.2 6.3 **DEVIATION FROM STANDARD** 23 6.4 **TEST SETUP** 23 **EUT OPERATION CONDITIONS** 6.5 23 6.6 TEST RESULTS 23 7 HOPPING CHANNEL SEPARATION MEASUREMENT 24

			_	
7.1		LIED PROCEDURES / LIMIT	24	-
7.2	_	Γ PROCEDURE	24	
7.3		ATION FROM STANDARD	24	
7.4		「 SETUP	24	
7.5	_	TRESULTS	24	
8		/IDTH TEST	25	
8.1		LIED PROCEDURES	25	
8.2		F PROCEDURE	25	
8.3	DEVI	ATION FROM STANDARD	25	5
8.4	TEST	Γ SETUP	25	
8.5	EUT	OPERATION CONDITIONS	25	
8.6	TEST	TRESULTS	25	5
9		T POWER TEST	26	3
9.1	APPL	LIED PROCEDURES / LIMIT	26	3
9.2	TEST	Γ PROCEDURE	26	3
9.3	DEVI	ATION FROM STANDARD	26	3
9.4	TEST	Γ SETUP	26	3
9.5	EUT	OPERATION CONDITIONS	26	3
9.6	TEST	「RESULTS	26	3
10	ANTEN	NA CONDUCTED SPURIOUS EMISSION	27	7
10.1	APPL	LIED PROCEDURES / LIMIT	27	7
10.2	TEST	Γ PROCEDURE	27	7
10.3	DEVI	ATION FROM STANDARD	27	7
10.4	TEST	Γ SETUP	27	7
10.5	EUT	OPERATION CONDITIONS	27	7
10.6	TEST	TRESULTS	27	
11	LIST OF	F MEASURING EQUIPMENTS	28	3
12	_	ST PHOTO	30)
13	EUT PH	IOTOS	30)
APPEND	ΙΧ Δ	AC POWER LINE CONDUCTED EMISSIONS	31	1
APPEND		RADIATED EMISSIONS - 9 KHZ TO 30 MHZ	36	
APPEND		RADIATED EMISSIONS - 30 MHZ TO 1 GHZ	41	
APPEND	_	RADIATED EMISSIONS - ABOVE 1 GHZ	44	
APPEND		NUMBER OF HOPPING CHANNEL	63	
APPEND		AVERAGE TIME OF OCCUPANCY	65	
APPEND		HOPPING CHANNEL SEPARATION MEASUREMENT		
APPEND		BANDWIDTH	71	
APPEND		OUTPUT POWER	74	
APPEND		ANTENNA CONDUCTED SPURIOUS EMISSION	76	
				-

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-8-2503T049	R00	Original Report.	2025/6/3	Valid

Project No.: 2503T049 Page 5 of 80 Report Version: R00

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	Pass	
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX E	Pass	
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX F	Pass	
15.247 (a)(1)	Hopping Channel Separation	APPENDIX G	Pass	
15.247 (a)(1)	Bandwidth	APPENDIX H	Pass	
15.247 (b)(1)	Output Power	APPENDIX I	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX J	Pass	
15.203	Antenna Requirement		Pass	

Statement of Conformity

The statement of conformity is based on the binary decision rule according to IEC Guide 115 and ILAC G8 "simple acceptance" principle. Without considering measurement uncertainty, its specific risk is less than 50% PFA. (PFA: Probability of False Accept)

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.

Project No.: 2503T049 Page 6 of 80 Report Version: R00

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659.

The test location(s) used to collect the test data in this report are:

No. 66, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659)

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

□ C05 □ CB08 □ CB11 □ SR10 ☒ SR11

No. 68-2, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

□ CB12 ⊠ SR05

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %.

A. AC power line conducted emissions test:

Test Site	Measurement Frequency Range	U (dB)
SR05	150 kHz ~ 30 MHz	3.06

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U (dB)
CB15	9 kHz ~ 150 kHz	2.82
(1m)	150 kHz ~ 30 MHz	2.58

Test Site	Measurement Frequency Range (GHz)	U (dB)
	0.03~0.2	4.41
	0.02~1	4.61
CB15	1 ~ 6	5.45
(3m)	6 ~ 18	5.04
	18 ~ 26	4.03
	26 ~ 40	4.33

C. Conducted test:

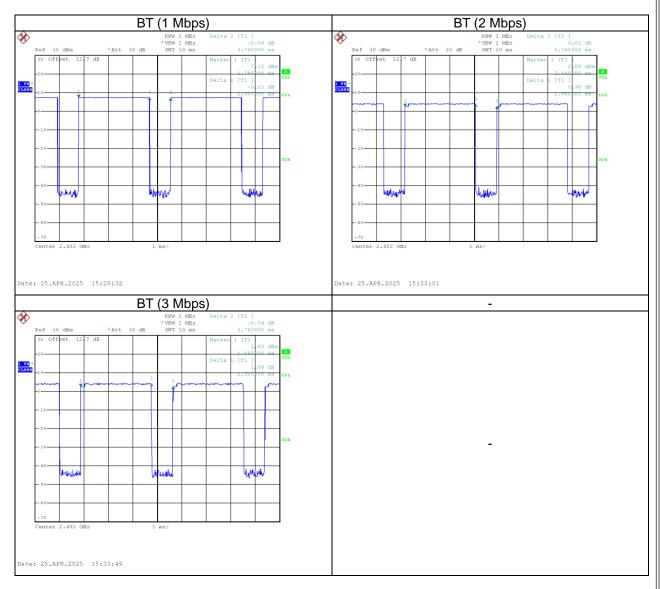
a toot.	
Test Item	U
Occupied Bandwidth	0.83 %
Output power	0.4008 dB
Conducted Spurious emissions	1.8274 dB
Conducted Band edges	1.8353 dB
Dwell time	0.8830 dB
Channel separation	0.8830 dB
Channel numbers	0.9198 dB

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	23 °C, 55 %	AC 120V	Ken Lan
Radiated emissions below 1 GHz	Refer to data	AC 120V	Winston Fang
Radiated emissions above 1 GHz	Refer to data	AC 120V	Winston Fang
Number of Hopping Frequency	24.6 °C, 53 %	AC 120V	Ken Lan
Average Time of Occupancy	24.6 °C, 53 %	AC 120V	Ken Lan
Hopping Channel Separation	24.6 °C, 53 %	AC 120V	Ken Lan
Bandwidth	24.6 °C, 53 %	AC 120V	Ken Lan
Output Power	23.2 °C, 41 %	AC 120V	Ken Lan
Antenna conducted Spurious Emission	24.6 °C, 53 %	AC 120V	Ken Lan


Project No.: 2503T049 Page 8 of 80 Report Version: R00

1.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 2			Delta 3	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
lviode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT (1 Mbps)	2.900	1	2.900	3.760	77.13%	1.13
BT (2 Mbps)	2.900	1	2.900	3.760	77.13%	1.13
BT (3 Mbps)	2.900	1	2.900	3.780	76.72%	1.15

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Scheduler Docking Station
Model Name	TDD-1000-C
Brand Name	Qbic
Model Difference	N/A
Power Source	DC Voltage supplied from AC/DC adapter.
Power Rating	EUT: DC 21V For Adapter: I/P: 100-240V~, 2.5A 50-60Hz
	O/P: 21.0V8.58A 180.0W
Products Covered	1 * Adapter: HUIZHOU CITY YOUWEI CHUANGKE ELECTRONICS CO.,LTD / YW180A2-2100858 1 * Power cable 1* Type-C to Type-C cable
Operation Band	2400 MHz ~ 2483.5 MHz
Operation Frequency	2402 MHz ~ 2480 MHz
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology	FHSS
Transfer Rate	1 Mbps, 2 Mbps, 3Mbps
Output Power Max.	1 Mbps: 7.40 dBm (0.0055 W) 2 Mbps: 5.37 dBm (0.0034 W) 3 Mbps: 5.45 dBm (0.0035 W)
Test Software Version	Command
Test Model	TDD-1000-C
Sample Status	Engineering Sample
EUT Modification(s)	N/A

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

Project No.: 2503T049 Page 10 of 80 Report Version: R00

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

(3) Table for Filed Antenna:

Antenna	Manufacture	Model name	Туре	Connector	Frequency (MHz)	Gain (dBi)
1	JOYMAX	TBF-V03BMP3B-W 015	FPC	I-PEX MHF1	2450	1.31

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

Project No.: 2503T049 Page 11 of 80 Report Version: R00

2.2 INTRODUCTION OF DATA REFERENCING

2.2.1 DESCRIPTION OF EUT

The Scheduler Docking Station is with IEEE 802.11a/b/g/n/ac, Bluetooth (BT), Bluetooth Low Energy (BLE), and Near-Field Communication (NFC)/Wireless Power Transfer (WPT) technologies.

2.2.2 INTRODUCTION

This application for certification is leveraging the data reuse procedures from KDB 484596 D01 based on reference FCC ID: 2AF82-TDD1000 to cover variant model FCC ID: 2AF82-TDD1000C. The major differences between the parent/reference model and the variant model are the NFC and WPT functions. The NFC and WPT functions are independent parts connecting to the device, and except these, all other circuitry and features are identical.

2.2.3 MODEL DIFFERENCES

The manufacturer hereby declares the following for models TDD-1000 and TDD-1000-C. These models are highly similar with the only difference being the supported NFC or WPT function

Model Name	FCC ID	Model Difference
TDD-1000	2AF82-TDD1000	Reference Model (supported NFC function)
TDD-1000-C	2AF82-TDD1000C	Variant model (supported WPT function)

Note:

Except NFC or WPT parts, they have the same PCB layout, design, common components, antennas, antenna locations and housing cases. And the Wi-Fi, BT and BLE transmitters are identical.

2.2.4 SPOT CHECK VERIFICATION RESULTS SUMMARY

Spot check verification has been done on model TDD-1000-C and complied with the data referencing criteria from KDB 484596 D01 v03, section 3.2.

The spot checks were performed on the worst-case orientations and configurations based on the parent model of reference report.

2.2.5 REFERENCE DETAIL

Reference application that contains the reused reference data.

Reference FCC ID	Variant model FCC ID	Reference Test Report / Data Referencing Section	Equipment Class
2AF82-TDD1000	2AF82-TDD1000C	BTL-FCCP-1-2503T049/ All sections, except 15.207	DSS
		BTL-FCCP-2-2503T049/ All sections, except 15.207	DTS
		BTL-FCCP-3-2503T049/ All sections, except 15.207	DTS
		BTL-FCCP-4-2503T049/ All sections, except 15.207	NII
		BTL-FCCP-5-2503T049/ All sections	NII

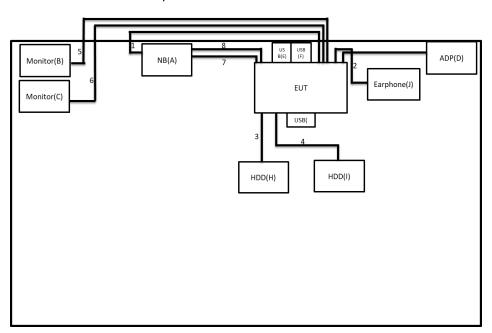
Project No.: 2503T049 Page 12 of 80 Report Version: R00

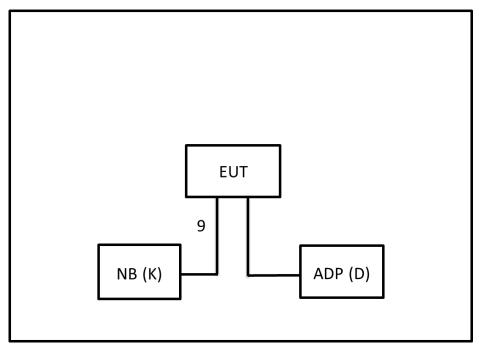
2.3 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	3 Mbps	78	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Transmitter Radiated Emissions (above 18GHz)	3 Mbps	78	-
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Peak Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-

NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Vertical) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.


Project No.: 2503T049 Page 13 of 80 Report Version: R00


2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.5.

AC power line conducted emissions

Radiated Emissions

Project No.: 2503T049 Page 14 of 80 Report Version: R00

2.5 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	NB	Dynabook	N/A	Α	Furnished by test lab.
В	Monitor	Dell	N/A	В	Furnished by test lab.
С	Monitor	Dell	N/A	С	Furnished by test lab.
D	ADP	HUIZHOU CITY YOUWEI CHUANGKE ELECTRONICS CO.,LTD	YW180A2-2100858 2422 01533 A1	D	Supplied by test requester
Е	USB	Kingston	N/A	Е	Furnished by test lab.
F	USB	Kingston	N/A	F	Furnished by test lab.
G	USB	N/A	N/A	G	Furnished by test lab.
Н	HDD	WD	N/A	Н	Furnished by test lab.
I	HDD	WD	N/A		Furnished by test lab.
J	Earphone	soundcore	N/A	J	Furnished by test lab.
K	NB	Dynabook	Satellite pro C50-H	K	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1M	USB-C cable	Supplied by test requester
2	N/A	N/A	1M	USB-C cable	Supplied by test requester
3	N/A	N/A	1M	USB-C cable	Supplied by test requester
4	N/A	N/A	1M	USB-C cable	Supplied by test requester
5	N/A	N/A	1.8M	HDMI Cable	Furnished by test lab.
6	N/A	N/A	2M	DP Cable	Furnished by test lab.
7	N/A	N/A	50CM	USB-A cable	Furnished by test lab.
8	N/A	N/A	50CM	LAN Cable	Furnished by test lab.
9	N/A	N/A	1.9M	USB toMicro Cable	Furnished by test lab.

Project No.: 2503T049 Page 15 of 80 Report Version: R00

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level (dBµV)		Correct Factor (dB)		Measurement Value (dBµV)
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
(dBµV) 41.67	_	(dBµV) 60	_	(dB) -18.33

The following table is the setting of the receiver.

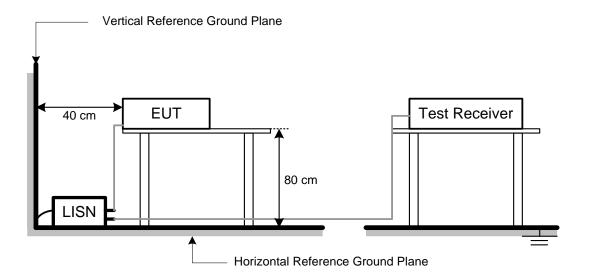
Receiver Parameter	Setting		
Attenuation	10 dB		
Start Frequency	0.15 MHz		
Stop Frequency	30 MHz		
IF Bandwidth	9 KHz		

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


Project No.: 2503T049 Page 16 of 80 Report Version: R00

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	2400/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated (dBu	Measurement Distance	
(IVITZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

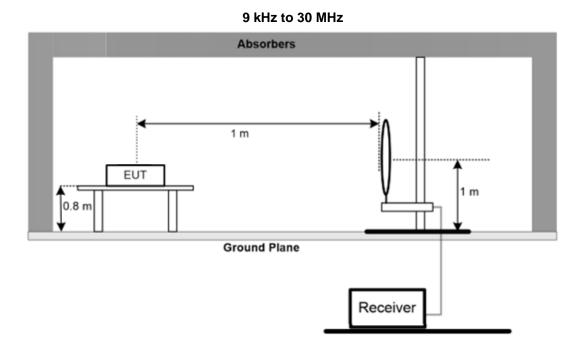
Reading Level (dBµV)		Correct Factor (dB/m)		Measurement Value (dBµV/m)
35.45	+	-11.37	II	24.08

Measurement Value		Limit Value		Margin Level
(dBµV/m)		(dBµV/m)		(dB)
24.08	-	40	=	-15.92

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

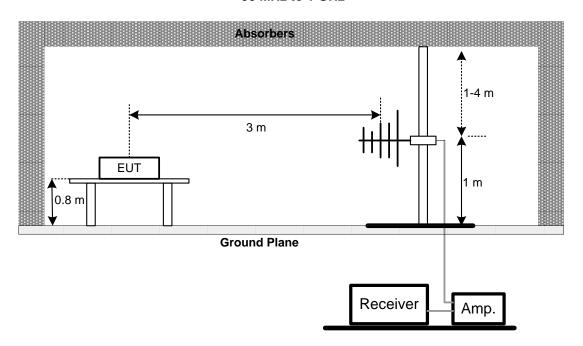
Project No.: 2503T049 Page 18 of 80 Report Version: R00

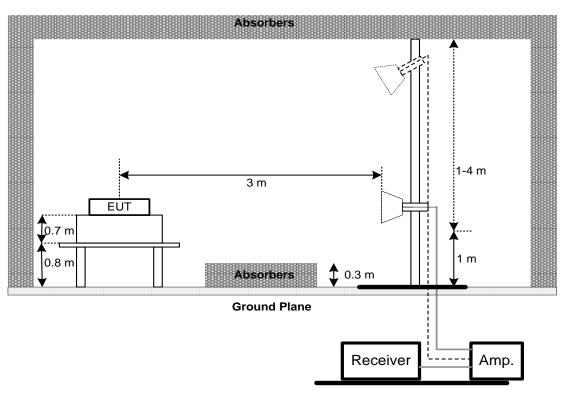

4.2 TEST PROCEDURE

- a. The measuring distance of 1 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 30MHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- c. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- d. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- f. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- g. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- h. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode
 Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to
 meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform.
 (above 1GHz)
- j. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD

No deviation.


4.4 TEST SETUP


Project No.: 2503T049 Page 19 of 80 Report Version: R00

30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

Report No.: BTL-FCCP-8-2503T049
4.6 TEST RESULT – 9 KHZ TO 30 MHZ
Please refer to the APPENDIX B.
4.7 TEST RESULT – 30 MHZ TO 1 GHZ
Please refer to the APPENDIX C.
4.8 TEST RESULT – ABOVE 1 GHZ
Please refer to the APPENDIX D.
NOTE: (1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2503T049 Page 21 of 80 Report Version: R00

5 NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

Section	Test Item	Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Number of Hopping Channel	2400-2483.5	PASS

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> Operating Frequency Range
RBW	100 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX E.

Project No.: 2503T049 Page 22 of 80 Report Version: R00

6 AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse.

A Period Time = (channel number) * 0.4

For Non-AFH Mode (79 Channel):

DH1 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

DH3 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

DH5 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

For AFH Mode (20 Channel):

DH1 Time Solt: Reading * (800/6)/20 * (0.4 * 20)

DH3 Time Solt: Reading * (800/6)/20 * (0.4 * 20)

DH5 Time Solt: Reading * (800/6)/20 * (0.4 * 20)

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX F.

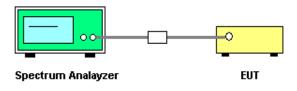
Project No.: 2503T049 Page 23 of 80 Report Version: R00

7 Hopping Channel Separation Measurement

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RBW	30 KHz	
VBW	100 KHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	


7.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 TEST RESULTS

Please refer to the APPENDIX G.

Project No.: 2503T049 Page 24 of 80 Report Version: R00

8 BANDWIDTH TEST

8.1 APPLIED PROCEDURES

Section	Test Item	Frequency Range (MHz)
15.247(a)(2)	Bandwidth	2400-2483.5

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)	
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

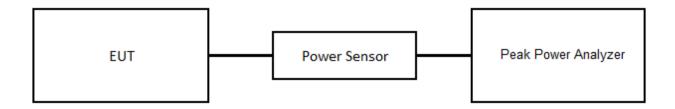
Please refer to the APPENDIX H.

Project No.: 2503T049 Page 25 of 80 Report Version: R00

9 OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Peak Output Power	0.125Watt or 21dBm	2400-2483.5	PASS


9.2 TEST PROCEDURE

- a. The EUT was directly connected to the peak power analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to the APPENDIX I.

Project No.: 2503T049 Page 26 of 80 Report Version: R00

10 ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

EUT SPECTRUM ANALYZER

10.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.6 TEST RESULTS

Please refer to the APPENDIX J.

Project No.: 2503T049 Page 27 of 80 Report Version: R00

11 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	TWO-LINE V-NETWORK	R&S	ENV216	101497	2024/5/20	2025/5/19		
2	Test Cable	EMCI	EMC400-BM-BM- 5000	170501	2024/7/31	2025/7/30		
3	EMI Test Receiver	R&S	ESR3	102950	2025/4/14	2026/4/13		
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A		

	Radiated Emissions							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until		
1	Amplifier	HP	8447D	2944A08558	2025/3/20	2026/3/19		
2	Pre-Amplifier	EMCI	EMC012645B	980267	2025/3/25	2026/3/24		
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2024/9/4	2025/9/3		
4	Preamplifier	EMCI	EMC001340	980579	2024/9/4	2025/9/3		
5	Test Cable	EMCI	EMC104-SM-SM- 1000	250312	2025/4/2	2026/4/1		
6	Test Cable	EMCI	EMC104-SM-SM- 1000	250313	2025/4/2	2026/4/1		
7	Test Cable	EMCI	EMC104-SM-SM- 7000	250314	2025/4/2	2026/4/1		
8	Spectrum Analyzer	R&S	FSV3044	101524	2024/6/19	2025/6/18		
9	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2024/9/9	2025/9/8		
10	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9120 D	546	2024/6/19	2025/6/18		
11	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2025/5/15	2026/5/14		
12	TRILOG Broadband Antenna	Schwarzbeck	VULB 9168	9168-352	2024/8/14	2025/8/13		
13	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2025/3/12	2026/3/11		
14	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2025/3/12	2026/3/11		
15	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A		

Project No.: 2503T049 Page 28 of 80 Report Version: R00

	Number of Hopping Frequency						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	101139	2025/3/7	2026/3/6	

	Average Time of Occupancy						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	101139	2025/3/7	2026/3/6	

Hopping Channel Separation						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	101139	2025/3/7	2026/3/6

			Bandwidth			
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Spectrum Analyzer	R&S	FSP 40	101139	2025/3/7	2026/3/6

	Output Power					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Peak Power Analyzer	Keysight	8990B	MY51000517	2025/3/16	2026/3/15
2	Power Sensor	Keysight	N1923A	MY58310005	2025/3/18	2026/3/17

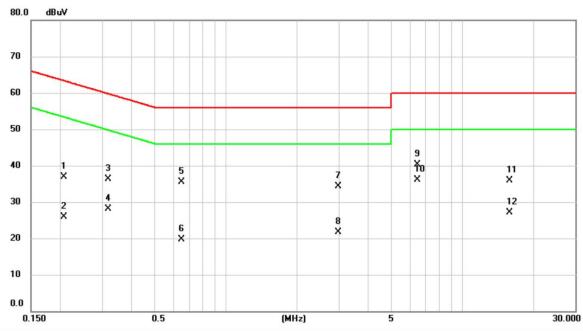
	Antenna conducted Spurious Emission						
Iten	n Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until	
1	Spectrum Analyzer	R&S	FSP 40	101139	2025/3/7	2026/3/6	

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2503T049 Page 29 of 80 Report Version: R00

12 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2503T049-FCCP-3 (APPENDIX-TEST PHOTOS).
13 EUT PHOTOS
Please refer to document Appendix No.: EP-2503T049-2 (APPENDIX-EUT PHOTOS).
Thouse refer to desament, appendix res.: 21 255516 to 2 (741 21451X 251 116165).

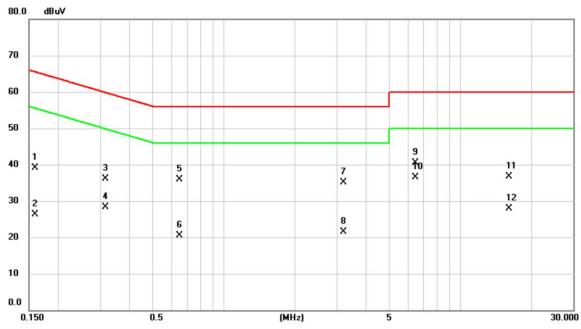
Project No.: 2503T049 Page 30 of 80 Report Version: R00



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2503T049 Page 31 of 80 Report Version: R00

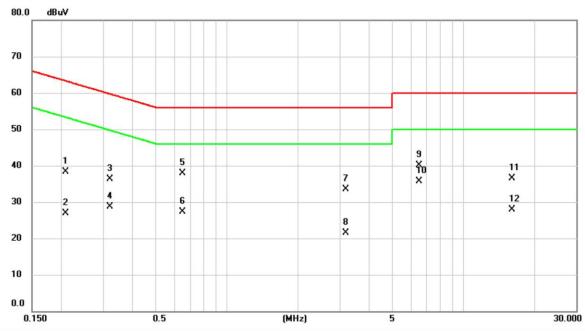
Test Mode	Normal	Tested Date	2025/5/8
Test Frequency	-	Phase	Line



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2063	27.26	9.59	36.85	63.35	-26.50	QP	
2		0.2063	16.34	9.59	25.93	53.35	-27.42	AVG	
3		0.3187	26.82	9.58	36.40	59.74	-23.34	QP	
4		0.3187	18.50	9.58	28.08	49.74	-21.66	AVG	
5		0.6495	25.89	9.59	35.48	56.00	-20.52	QP	
6		0.6495	10.17	9.59	19.76	46.00	-26.24	AVG	
7		2.9850	24.64	9.68	34.32	56.00	-21.68	QP	
8		2.9850	12.09	9.68	21.77	46.00	-24.23	AVG	
9		6.4658	30.52	9.80	40.32	60.00	-19.68	QP	
10	*	6.4658	26.34	9.80	36.14	50.00	-13.86	AVG	
11		15.8325	25.92	10.07	35.99	60.00	-24.01	QP	
12		15.8325	17.06	10.07	27.13	50.00	-22.87	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

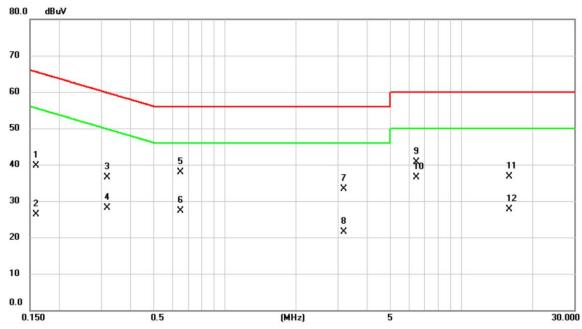
Test Mode	Normal	Tested Date	2025/5/8
Test Frequency	-	Phase	Neutral



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	29.53	9.57	39.10	65.52	-26.42	QP	
2		0.1590	16.64	9.57	26.21	55.52	-29.31	AVG	
3		0.3165	26.56	9.58	36.14	59.80	-23.66	QP	
4		0.3165	18.78	9.58	28.36	49.80	-21.44	AVG	
5		0.6495	26.26	9.60	35.86	56.00	-20.14	QP	
6		0.6495	10.95	9.60	20.55	46.00	-25.45	AVG	
7		3.2010	25.42	9.71	35.13	56.00	-20.87	QP	
8		3.2010	11.75	9.71	21.46	46.00	-24.54	AVG	
9		6.4658	30.68	9.83	40.51	60.00	-19.49	QP	
10	*	6.4658	26.68	9.83	36.51	50.00	-13.49	AVG	
11		16.0328	26.44	10.21	36.65	60.00	-23.35	QP	
12		16.0328	17.65	10.21	27.86	50.00	-22.14	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2025/5/8
Test Frequency	-	Phase	Line



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2085	28.68	9.59	38.27	63.26	-24.99	QP	
2	0.2085	17.23	9.59	26.82	53.26	-26.44	AVG	
3	0.3210	26.80	9.58	36.38	59.68	-23.30	QP	
4	0.3210	19.16	9.58	28.74	49.68	-20.94	AVG	
5	0.6495	28.36	9.59	37.95	56.00	-18.05	QP	
6	0.6495	17.72	9.59	27.31	46.00	-18.69	AVG	
7	3.1808	23.74	9.69	33.43	56.00	-22.57	QP	
8	3.1808	11.83	9.69	21.52	46.00	-24.48	AVG	
9	6.5108	30.26	9.80	40.06	60.00	-19.94	QP	
10 *	6.5108	25.97	9.80	35.77	50.00	-14.23	AVG	
11	16.0890	26.50	10.08	36.58	60.00	-23.42	QP	
12	16.0890	17.92	10.08	28.00	50.00	-22.00	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2025/5/8
Test Frequency	-	Phase	Neutral

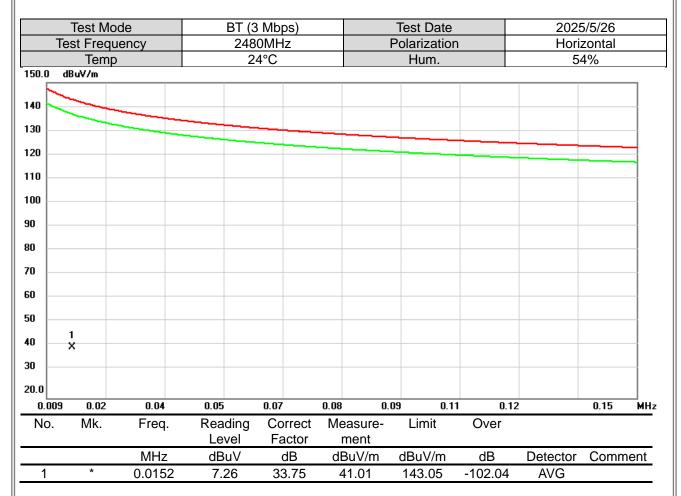
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	30.19	9.57	39.76	65.52	-25.76	QP	
2		0.1590	16.65	9.57	26.22	55.52	-29.30	AVG	
3		0.3187	26.92	9.58	36.50	59.74	-23.24	QP	
4		0.3187	18.59	9.58	28.17	49.74	-21.57	AVG	
5		0.6495	28.22	9.60	37.82	56.00	-18.18	QP	
6		0.6495	17.73	9.60	27.33	46.00	-18.67	AVG	
7		3.1920	23.50	9.71	33.21	56.00	-22.79	QP	
8		3.1920	11.78	9.71	21.49	46.00	-24.51	AVG	
9		6.4658	30.92	9.83	40.75	60.00	-19.25	QP	
10	*	6.4658	26.65	9.83	36.48	50.00	-13.52	AVG	
11		15.9563	26.45	10.20	36.65	60.00	-23.35	QP	
12		15.9563	17.60	10.20	27.80	50.00	-22.20	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

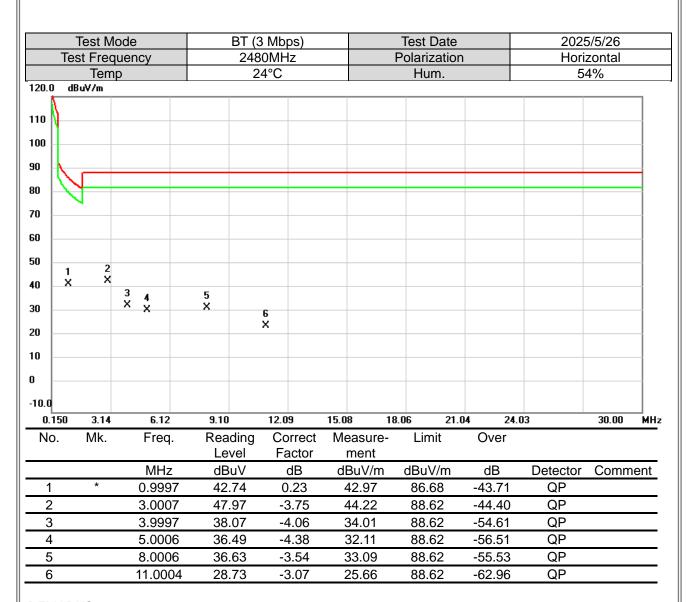
APPENDIX B RADIATED EMISSIONS - 9 KHZ TO 30 MHZ

Project No.: 2503T049 Page 36 of 80 Report Version: R00

		t Mod			BT (3					Test Date			5/5/26	
	Test F		ency			0MH	Z		F	Polarization			rtical	
150.0	dBuV/	emp			2	4°C				Hum.		5.	4%	
130.0	ubu¥7													\neg
140														
30						_								
30														
20										<u> </u>				
10														_
100														
10														\dashv
:0														_
, L														
iO														
io -														\dashv
10 L	1													_
	×													
30														T
20.0														
0.0		.02	0.04	0.05		0.07		0.08					0.15	МН
No.	M	k.	Freq.	Rea			rrect		easure-	Limit	Over			
				Lev			ctor		ment	ID 1//	ID.	D		
		ŧ	MHz	dB			B 		BuV/m	dBuV/m	dB	Detector	Comm	ent
1		•	0.0114	4.6	51	35	5.14	3	39.75	145.55	-105.80	AVG		


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M	lode	В	T (3 M	bps)			Test Date)	202	25/5/26	
-	Test Fred	quency		2480M	Hz			Polarizatio	n	Ve	ertical	
	Tem	ıp		24°C	;			Hum.		5	54%	
30 <u> </u>	dBuV/m	3 X	4 X	24.0				Hum.		5 X	6 X	
10 0 -10.0 0.150	0 3.14	6.12	9.10	12	.09	15.08	10	1.06 21	.04 24.	02	30.00	MH:
No.	Mk.				orrect	Meas		Limit	Over	03	30.00	мн
INO.	IVIK.	Freq.	Readi Leve		actor	me		Limit	Over			
		MHz	dBu\		dB	dBu		dBuV/m	dB	Detector	Comm	nent
1	*	0.9997	37.40		0.23	37.		86.68	-49.05	QP		
2		2.9997	42.3		-3.75	38.		88.62	-50.02	QP		
3		5.0006	30.4		-4.38	26.		88.62	-62.53	QP		
4		8.0006	29.18		-3.54	25.		88.62	-62.98	QP		
5		24.2560	29.9		-3.10	26.		88.62	-61.75	QP		
6		27.1921	25.30	1	-2.52	22.	70	88.62	-65.84	QP		


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

Project No.: 2503T049 Page 41 of 80 Report Version: R00

	Test Mo	de		BT	(3 Mb	ps)			Test Da	ate		2025	5/5/26	
Te	st Frequ	iency		2	480MF	lz			Polariza	ation			rtical	
	Temp	1			24°C				Hum	١.		54	4%	
80.0 dE	BuV/m													
70														
60														
50					3 X				4 ×					
40			2 X		×							5 X		6 X
30 1														-
20 X														
10														
0.0														
30.000	127.00			321.00	418.		515.00		12.00	709.0		5.00	1000.00	MH
No.	Mk.	Freq	-	Readin Level		rrect actor		sure- ent	Limit	İ	Over			
		MHz		dBuV		dB	dΒι	ıV/m	dBuV/	m	dB	Detector	Comm	ent
1		55.284	17	32.03	-8	3.68	23	3.35	40.00)	-16.65	QP		
2		249.99	60	47.48	-	9.11	38	3.37	46.00)	-7.63	peak		
3	!	375.02	90	50.45	-(5.13	44	.32	46.00)	-1.68	QP		
4	*	625.03	03	46.70	-	1.25	45	5.45	46.00)	-0.55	QP		
5		874.99	93	35.78	2	2.71	38	3.49	46.00)	-7.51	peak		
6		1000.0	በበ	33.56		.29	37	'.85	54.00)	-16.15	peak		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mod				Mbps)		Test Date			5/5/26	
Tes	t Frequ	ency			0MHz		Polarization	n		zontal	
	Temp			2	4°C		Hum.		5.	4%	
80.0 dB	uV/m										٦
70											-
60											
50			2 X	3							
40 ——		1	^	,	4 ×		5				6 X
30	_										-
20											
10											-
0.0											
30.000	127.00	224.00	321.	.00	418.00	515.00	612.00 70	9.00 806	5.00	1000.00	_мн
No.	Mk.	Freq.		iding vel	Correct Factor	Measure- ment	Limit	Over			
		MHz		BuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent
1		225.0023		.68	-11.09	39.59	46.00	-6.41	QP		
2	*	249.9960	54	.60	-9.11	45.49	46.00	-0.51	QP		
3	!	374.9967	7 50	.81	-6.14	44.67	46.00	-1.33	QP		
4		425.0163	3 40	.95	-5.07	35.88	46.00	-10.12	peak		
5		624.9980		.36	-1.25	39.11	46.00	-6.89	peak		
6		1000.000	32	.30	4.29	36.59	54.00	-17.41	peak		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX D RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2503T049 Page 44 of 80 Report Version: R00

	Te	st Mo	de			BT (1	l Mbp	os)			Т	Test Da	ate			202	5/5/26	
	Test	Frequ	ency				2MH	Z			Po	olariza	tion				rtical	
		Temp				2	4°C					Hum				5.	4%	
130.0	dBu\	//m																_
120																		_
110																		
00									1									1
90 -									-									-
30																		-
70																		-
50 L									Ř									
50					3	Į				1,						Ludwingham	6 X	
40 🎽	Mondanyahis	Marthamphysid	high-hidd generallyn y	ermily o	vandystadakstus	Mondaha	may probably	MMAL	Musel	bullate yet	handahan dari	~100/4/14/14	ydrogladh	us. Agro-yallandi D	theirmin	or productive contraction	- /	N
30					>	<											X	
																		-
20 📙																		
																	^	
10																		
10 0.0	2 000	2222 00	0 224	2.00	2202	100	2202	.00	2402	00	2422	00	2442	00	2402	100		
10 0.0 230		2322.00 Mk			2362 Rea		2382		2402 Ma		2422		2442		2462	2.00	2502.00	MH
10 0.0		2322.00 Mk.	0 2342 Freq		Rea	ding	Со	rrect	Me	asure		2. 00 Limit		. 00 Ove		2.00		МН
10 0.0 230				٦.		ding vel	Co Fa		Me		-							
10).0 230			Freq	վ. z	Rea Le	ding vel uV	Co Fa	rrect	Me I dE	asure nent	-	Limit	m	Ove	r		2502.00	
230 No.			MHz 2362.3 2362.3	z 360 360	Rea Le dB 64,	ding vel uV .08	Co Fa (-1	rrect actor dB 7.55	Me dE 4	easure ment BuV/m 6.53 85.20	-	Limit dBuV/i 74.00 54.00	m)	Ove dB -27.4 -18.8	7 0	Detector	2502.00 Commo	ent
10 230 No.		Mk.	MHz 2362.3 2362.3 2400.0	z 360 360 000	Rea Le dB 64. 52.	ding vel uV .08 .75	-1 -1	7.55 7.38	Me I dE 2	easure ment BuV/m 16.53 85.20 64.86	-	Limit dBuV/ 74.00 54.00 74.00	m))	Ove dB -27.4 -18.8 -9.14	7 0	Detector peak AVG peak	2502.00 Commo	ent
10 No. 1 2 3 4		Mk.	MHz 2362.3 2362.3 2400.0 2402.0	z 360 360 000	Rea Le dB 64 52 82	ding vel uV .08 .75 .24	-1' -1' -1'	7.55 7.38 7.37	Me dl dl	easure ment BuV/m 46.53 85.20 64.86	-	Limit dBuV/0 74.00 54.00 74.00	m))	Ove dB -27.4 -18.8 -9.14 23.0	7 0 1	Detector peak AVG peak peak	2502.00 Commo	ent nit
1 2 3		Mk.	MHz 2362.3 2362.3 2400.0	z 360 360 000 000	Rea Le dB 64. 52.	ding vel uV .08 .75 .24 .38	Co Fa -1 -1 -1 -1 -1	7.55 7.38	Me dE 2	easure ment BuV/m 16.53 85.20 64.86	-	Limit dBuV/ 74.00 54.00 74.00	m)))	Ove dB -27.4 -18.8 -9.14	7 0 4 1 9	Detector peak AVG peak	2502.00 Commo	ent nit

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

		T4 N/	1 1 -			DT /4	NAL-	- 1				T4 D-	. 4 -		000	F/F/00	
		Test M	lode quency			BT (1	июр НМО					Test Da olarizat				5/5/26 rtical	
	10.	Tem					4°C				<u>'</u>	Hum.				4%	
130.0	O dE	3uV/m															
400																	
120																	1
110										<u> </u>							-
100									- }								-
90																	
00									- 1	1							
80																	
70																	7
60																	-
50										5							-
40	-Alim	wadaaa	white	novelet.	Linguaga	sulproduces,	maglidh	الماران مريدون	WW.	Maria	dharh	White broken	w	postherenableope	nerally one water of the	L. HANNEL AND	44
	2 X									X							
30																	1
20																	+
10																	4
0.0																	
	380.00	0 2400	.00 2420).00	2440	.00	2460	.00	2480	.00	250	0.00	2520	.00 254	0.00	2580.00	 ⊢MHz
No	0.	Mk.	Freq		Rea	ding	Co	rrect	Мє	asur	e-	Limit		Over			
					Lev			ctor		ment							
			MHz		dB			B.		3uV/r		dBuV/n		dB	Detector	Comm	ent
1			2383.0		63.			7.45		16.12		74.00		-27.88	peak		
2			2383.0		52.			7.45		35.35		54.00		-18.65	AVG	NI.I.	. '1
3		X *	2480.0		117			7.01		00.85		74.00		26.85	peak	NoLin	
5			2480.0 2484.5		117 68.			7.01 7.00		00.49 51.11	1	54.00 74.00		46.49 -22.89	AVG	NoLin	ΠIT
6			2484.5		54.			7.00		37.05		54.00		-22.89 -16.95	peak AVG		
C	,		2404.3	υſ	54.	υü	- 1 /	.UU	,	CU. 10		54.00		- 10.90	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mod	е			BT (3	3 Mbp	s)			٦	Test D	ate			2025	5/5/26	
Tes	st Freque	ncy				2MHz	Z			P	olariza	ation			Vei	rtical	
	Temp				2	4°C					Hun	n.			5-	4%	
130.0 dB	3uV/m																_
120																	-
110																	-
100								5	ì								+
90								1									4
80]									_
70								_									_
								3									
60								1									1
50	J														mal Marine	6 X	
40 m	water the september of	untug kappapa	Markel	HAN BANKAN	4444	profilerations	/Marth	Arryal .	Market	habah	-distribute.	halfaraghai	y ddin o frefer on h	parales Miller	annallo bloranarona	makarkahira, jerian	MU
										-						7	-"
30	×															7 X	
	X															7 X	
20	×															7 X	
20	X															7 X	
20 10 0.0		2242	00	2202		2202	00	2400				244	2.00		2.00		
20 10 0.0 2302.00	00 2322.00	2342 Eroo		2362		2382		2402 Ma		2422		244 it		2462	2.00	7 X	
20 10 0.0		2342 Freq.		Read	ding	Cor	rect	Me	easure	2422	2. 00 Limi		2.00 Ove	2462	2.00		
20 10 0.0 2302.00	00 2322.00				ding vel	Coi Fa		Мє		2422		it		2 4 62 er	2.00 Detector)
20 10 0.0 2302.00	00 2322.00 Mk.	Freq.		Read Lev	ding vel uV	Coi Fa	rect ctor	Me dl	easure ment	2422	Limi	it /m	Ove	2462 er		2502.00)
20 0.0 2302.00 No.	00 2322.00 Mk.	Freq. MHz 2323.4 2323.4	40 40	Read Lev dBr 64.	ding vel uV 21 16	Cor Fa d -17	rrect ctor IB 7.73	Me dl	easure ment BuV/m 16.48 34.43	2422	Limi dBuV, 74.0 54.0	it /m 0	Ove dE -27.	2462 er 3 52 57	Detector	2502.00 Comm) MH
20 2302.00 No.	00 2322.00 Mk.	Freq. MHz 2323.4 2323.4 2400.0	40 40 00	Read Lev dBi 64. 52. 79.	ding vel uV 21 16 91	Cor Fa d -17 -17	rrect ctor IB 7.73 7.73	dl	easure ment BuV/m 46.48 34.43	2422	Limi dBuV, 74.0 54.0 74.0	/m 0 0	Ove -27.9 -19.9	2462 er 3 52 57 47	Detector peak AVG peak	2502.00 Comm	nit
20 2302.00 No. 1 2 3 4	00 2322.00 Mk.	Freq. MHz 2323.4 2323.4 2400.0 2402.0	40 40 00 00	Read Lev dB 64. 52. 79.	ding vel uV 21 16 91	Cor Fa d -17 -17 -17	rrect ctor IB 7.73 7.73 7.38 7.37	dl dl	easure ment BuV/m 46.48 34.43 62.53	2422	Limi 74.0 54.0 74.0 74.0	/m 0 0 0	Ove dE -27.5 -19.5 -11.4 20.7	2462 er 3 52 57 47	Detector peak AVG peak peak	2502.00 Comm NoLin NoLin	nit nit
20 10 0.0 2302.00 No.	00 2322.00 Mk.	Freq. MHz 2323.4 2323.4 2400.0	40 40 00 00 00	Read Lev dBi 64. 52. 79.	ding vel uV 21 16 91 .10	Cor Fa d -17 -17 -17 -17	rrect ctor IB 7.73 7.73	Me dl	easure ment BuV/m 46.48 34.43	2422	Limi dBuV, 74.0 54.0 74.0	/m 0 0 0 0	Ove -27.9 -19.9	2462 8 52 57 47 73 86	Detector peak AVG peak	2502.00 Comm	ent mit nit

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo					Mbps)			Test Date			5/5/26	
Tes	st Frequ	uency				0MHz			Polarization	า		rtical	
	Temp)			24	4°C			Hum.		54	4%	
30.0 dB	uV/m												٦
20													1
10								4					1
00							j	•					+
10													-
10													
vo ⊨													4
io								t.					1
50 4								_					
U.								1			5		1
U.	deprivation about	way when the same of the same	y market had	pendupun	tymlullarid	hadaaabpaayada	MAN	The way	an manyagadaka	may a free to the second party and	www.prywagewyerwa	onder popularita	4
10 X	dy*whenbr	water water	Market Park	pentupun	tywyluthad a	handra and production	wy	Manuscrip,	on a seek of the graduither	m/upropolatarsproto	X X X X X X X X X X X X X X X X X X X	mayophanin	4
10 × × × × × × × × × × × × × × × × × × ×	dy maker bo	wythro _{der} who	_{ne} negrical head	productions	Marketonia	haadan eedd faw by byddi	wyl	The water the	anni arth 1996, gail abha	mpapal desembly and		food girthdeadann	*
10 X	dy maken abo	wystry, maker webysger	_{wa} annaday da ah	pendunpun	tynfotostal	haselvan medijevila je jeden	und	The market	ann an haift gadalla	enjumpeluturumthyami		enderphonen.	*
10 × × × × × × × × × × × × × × × × × × ×	tyrindurto	with him the way they the	wenterlynd	pantuspus.	tyd-faird	hasta cultura (grafa) (dec	wyl	Warrist Mark	orang garaken sipilah agarakea biran	mpunpelanumpun		endage politica da se	
10 × × × × × × × × × × × × × × × × × × ×	try maken ja	WANTE OF THE STATE	_{rog} onatt _{el} u [†] god	paratant part	ty al-above a	jraeter en diperiories	wyl	Manuska Manusk	agan, garan, garang dalam	en partinet de la constitue de		good geoffelfenske se	
20 20 20 2380.000	0 2400.0			2440.0	00	2460.00	248		500.00 252	20.00 254		2580.00	
20 XX			00	2440.0 Read	00 ing	2460.00 Correct	2480 Mo	0.00 2 easure-			×		
20 20 20 2380.000	0 2400.0	00 2420. Freq.	00	2440.0 Read Leve	oo ing el	2460.00 Correct Factor	2486 Mo	0.00 2 easure- ment	500.00 252 Limit	20.00 254 Over	0.00	2580.00	MH
20 20 0.0 2380.000	0 2400.0	00 2420. Freq. MHz	00	2440.0 Read Leve	oo ing el V	2460.00 Correct Factor dB	2486 Mo	0.00 2 easure- ment BuV/m	500.00 252 Limit dBuV/m	20.00 254 Over dB	0.00 Detector		MH
20 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2400.0	00 2420. Freq. MHz 2381.08	00	2440.0 Read Leve dBu 64.0	ing el V	2460.00 Correct Factor dB -17.47	2480 Mo	0.00 2 easure- ment BuV/m 46.54	500.00 252 Limit dBuV/m 74.00	20.00 254 Over dB -27.46	0.00 Detector peak	2580.00	MH
0 2 X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2400.0 Mk.	00 2420. Freq. MHz 2381.08 2381.08	00 30 30	2440.0 Read Leve dBu 64.0 52.0	00 ing el V 01	2460.00 Correct Factor dB -17.47	248I Mo	0.00 2 easure- ment BuV/m 46.54 34.54	500.00 252 Limit dBuV/m 74.00 54.00	20.00 254 Over dB -27.46 -19.46	0.00 Detector peak AVG	2580.00 Comme	MI-
0 2 0 2 0 0 0 2380.000 No.	0 2400.0	00 2420. Freq. MHz 2381.08	30 30 30	2440.0 Read Leve dBu 64.0	00 ing el V 01 01	2460.00 Correct Factor dB -17.47	2488 Mo	0.00 2 easure- ment BuV/m 46.54	500.00 252 Limit dBuV/m 74.00	20.00 254 Over dB -27.46	0.00 Detector peak	2580.00	MI
200 2380.000 No.	0 2400.0 Mk.	00 2420. Freq. MHz 2381.08 2381.08 2480.00	30 30 30 00	2440.0 Read Leve dBu 64.0 52.0	oo ing el V 01 01 035 23	2460.00 Correct Factor dB -17.47 -17.47	2480 Mo d	0.00 2 easure- ment BuV/m 46.54 34.54 00.64	500.00 252 Limit dBuV/m 74.00 54.00 74.00	20.00 254 Over dB -27.46 -19.46 26.64	Detector peak AVG peak	2580.00 Comme	MI

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test N					BT (1						Test D					5/5/26	
	Test Fre	_	ncy				2MH	Z				Polariz)			rtical	
130.0	Ten	np				2	4°C					Hun	n			54	4%	
- T	ubu viii																	
120 📙																		
110																		
00																		
10																		
o _																		
o																		
0																		
50																		
ю				1 X														
30				1 X 2 X														
20																		
10																		
0.0																		
	.000 270	0.00	4400	.00	6100	0.00	7800	.00	9500).00	11	200.00		00.00	1460	00.00	18000.00 M	4H
No.	Mk.		Freq			ding vel		rrect ctor		easu ment		Limi	it	Ove	er			
			MHz			uV		dΒ		BuV/		dBuV	/m	dE	3	Detector	Commen	nt
1			4804.0	00	51	.60	-10	0.46	4	41.14		74.0	0	-32.	86	peak		
2	*		4804.0	00	43	.01	-10	0.46	;	32.55	5	54.0	0	-21.	45	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo				Mbps)			Test Da				5/5/26
les	t Frequ				2MHz		F	Polarizat	ion			zontal
1000 10	Temp	1		24	4°C			Hum.			54	4%
130.0 dB	uV/m											
120												
110												
00												
10												
30												
70												
50												
50												
10 <u> </u>			1 X									
30			2 X									
20												
10												
0.0												
1000.000	2700.0	0 4400.0)0	6100.00	7800.00	9500.00	11:	200.00	12900.00	1460	00.00	18000.00 MH
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure ment) -	Limit	Ov	er		
		MHz		dBuV	dB	dBuV/m	1	dBuV/m	n dE	3	Detector	Comment
1		4804.00		52.62	-10.46	42.16		74.00	-31.		peak	
2	*	4804.00	0	42.94	-10.46	32.48		54.00	-21.	52	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			(1 Mbps)		Test Date			5/5/26
Te	est Frequ		24	l41MHz		Polarizatio	n		rtical
	Temp			24°C		Hum.		5	4%
130.0 d	IBuV/m								
120									
110									
100 -									
30									
BO									
70									
60									
50									
40									
30			<u> </u>						
20									
10									
0.0									
	00 2700.0			7800.00				00.00	18000.00 MH
No.	Mk.	Freq.	Readino Level	g Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000	53.07	-10.29	42.78	74.00	-31.22	peak	
2	*	4882.000	43.01	-10.29	32.72	54.00	-21.28	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mo				Mbps)			Test Da				5/5/26
Tes	t Frequ	•			1MHz			Polariza				zontal
	Temp			2	4°C			Hum.			54	4%
130.0 dB	ıV/m											
120												
110												
00												
10												
30												
70												
50												
50												
ю			1 X									
30			2 X									
20												
10												
0.0												
1000.000	2700.0	0 4400.0	10	6100.00	7800.00	9500.00	11	200.00	12900.00	146	00.00	18000.00 MH
No.	Mk.	Freq.		Reading Level	Correct Factor	Measu men		Limit	Ov	er		
		MHz		dBuV	dB	dBuV/		dBuV/r	m d	В	Detector	Comment
1		4960.00		53.13	-10.12	43.0		74.00			peak	
2	*	4960.00	0	42.38	-10.12	32.26	3	54.00	-21	.74	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	de				Mbp					Test D					5/5/26	
Te	est Frequ	ency				OMH:	Z			F	Polariza	ation				rtical	
	Temp				2	4°C					Hum	۱.			5	4%	
30.0	BuV/m																_
20																	
10																	
00 -																	-
o																	
0																	$\frac{1}{1}$
																	1
0 —																	$\frac{1}{1}$
0 ⊨																	
o			1 X 2														\parallel
o			x														$\frac{1}{2}$
o																	-
o																	$\frac{1}{2}$
.0																	
	000 2700.00			6100		7800		9500			200.00		00.00		00.00	18000.0	D MI
No.	Mk.	Freq	-		ding vel		rrect ctor		easure ment	9-	Limi	t	Ove	er			
		MHz		dB	uV	С	ΙB	dl	3uV/n	n	dBuV/	m_	dE	3	Detector	Comme	ent
1		4882.0			.26).29		12.97		74.0		-31.		peak		
2	*	4882.0	00	43.	.12	-10	0.29	3	32.83		54.00	0	-21.	17	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)			Test Da			5/5/26
Te	est Frequ				0MHz		Р	olarizat	ion		zontal
	Temp			2	4°C			Hum.		5-	4%
130.0 c	BuV/m										
120											
10											
00 -											
10											
30 <u> </u>											
70 <u> </u>											
io											
50											
0 —			1 X								
:0			2 X								
20											
0											
).0											
	00 2700.0				7800.00	9500.00			12900.00	14600.00	18000.00 MF
No.	Mk.	Freq.		ading evel	Correct Factor	Measur ment	9-	Limit	Ove	r	
		MHz	dE	₿uV	dB	dBuV/n	n	dBuV/m	n dB	Detector	Comment
1		4960.000	52	.84	-10.12	42.72		74.00	-31.2	28 peak	-
2	*	4960.000) 42	.71	-10.12	32.59		54.00	-21.4	1 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				3 Mbps)			Test Dat			5/5/26
ies	st Frequ				2MHz 4°C		<u> </u>	olarizati	on		rtical
30.0 dE	Temp				4°C			Hum.			4%
30.0 0	JUY7III										
20											
10											
10											
00											
0											
10											
0											
0											
io 💳											
ا ا			1 X								
			2 X								
0 -			×								
0											
o L											
1000.00	0 2700 0	0 4400.0	n c	100.00	7800.00	9500.00	112	00.00 1	12900.00	14600.00	18000.00 MH
No.	00 2700.0 Mk.	Freq.			Correct	Measure		Limit	Ove		18000.00 MH
INU.	IVIN.	rieq.		eading ∟evel	Factor	ment	, -	LIIIII	Ove	5 1	
		MHz		dBuV	dB	dBuV/n	<u> </u>	dBuV/m	n dE	B Detector	Comment
1		4804.000		53.02	-10.46	42.56		74.00	-31.		
2	*	4804.000	0 4	12.39	-10.46	31.93		54.00	-22.		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	de	BT	(3 Mbps)		Test Date		2025	5/5/26
Te	est Frequ	iency	2	402MHz		Polarizatio	n	Hori	zontal
	Temp)		24°C		Hum.		5.	4%
30.0	dBuV/m								
20									
10									
00									
o									
0 —									
o									
0 —									
0									
0									
o			<u> </u>						
0 —									
0									
.0									
	000 2700.0			7800.00				00.00	18000.00 MI
No.	Mk.	Freq.	Readin Level	g Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	52.64	-10.46	42.18	74.00	-31.82	peak	
2	*	4804.000	42.48	-10.46	32.02	54.00	-21.98	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)		Test D			5/5/26
169	st Frequ	•			1MHz 4°C		Polariz			rtical
30.0 dB	Temp				4°C		Hur	n.	5	4%
30.0 UB	uv/III									
20										
10										
00										
0 -										
80										
_{'0}										
_										
0										
io <u> </u>			_							
ю			1 X							
			2 X							
			^							
20										
0										
).0										
1000.00	0 2700.0	0 4400.0	0 6	100.00	7800.00	9500.00	11200.00	12900.00	14600.00	18000.00 MH
No.	Mk.	Freq.		eading Level	Correct Factor	Measure ment	- Lim	it O\	/er	
		MHz		dBuV	dB	dBuV/m	dBu√	//m d	B Detector	Comment
1		4882.000		53.76	-10.29	43.47	74.0		.53 peak	
2	*	4882.000		42.34	-10.29	32.05	54.0		.95 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo st Frequ				Mbps) 1MHz		Test Date Polarizatio			5/5/26 zontal
	Temp				4°C		Hum.			4%
130.0 dB	uV/m				<u> </u>		7.00.00			
120										
100										
30										
BO										
70										
50										
50										
10 <u> </u>			1 X							
80			2 X							
20										
10										
0.0										
1000.00	0 2700.0	0 4400.0)0	6100.00	7800.00	9500.00	11200.00 12	900.00 146	00.00	18000.00 MH
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure- ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.00	0	53.03	-10.29	42.74	74.00	-31.26	peak	
2	*	4882.00	0	42.37	-10.29	32.08	54.00	-21.92	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo st Frequ				BT (3	Mb _l 0MH					Test D Polariza					5/5/26 tical
100	Temp					4°C					Hum					4%
30.0 dB	BuV/m					, 					Han	<u> </u>			<u> </u>	1 / 0
20																
10																
00																
o																
10																
0																
0 —																
0																
o			1 X													
			2 X													
_			×													
0																
0 -																
.0																
1000.00	0 2700.0	0 4400.	.00	6100	.00	7800	.00	9500).00	11	200.00	129	00.00	1460	00.00	18000.00 MH
No.	Mk.	Freq.		Read Lev			rrect ictor		easui ment		Limi	t	Ove	er		
		MHz		dBı	uV	(dB	d	BuV/ı	m	dBuV	/m	dE	3	Detector	Comment
1		4960.0		53.			0.12		43.75		74.0		-30.		peak	
2	*	4960.0	00	41.	76	-1	0.12		31.64		54.0	0	-22.	36	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	est Mod t Frequ				Mbps) 0MHz		Test Date Polarization			5/5/26 zontal
100	Temp				4°C		Hum.	/11		4%
130.0 dBu	ıV/m									.,,
120										
100										
30										
30										
70										
50										
10			1 X							
10			2 X							
.o										
0										
).0										
1000.000				6100.00	7800.00				00.00	18000.00 MH
No.	Mk.	Freq.		Reading Level	Correct Factor	Measure ment	- Limit	Over		
		MHz		dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	0	53.24	-10.12	43.12	74.00	-30.88	peak	
2	*	4960.000	0	41.85	-10.12	31.73	54.00	-22.27	AVG	

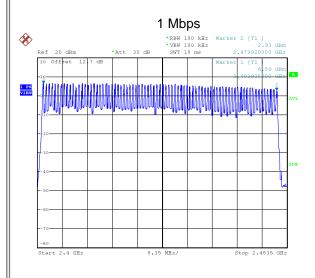
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

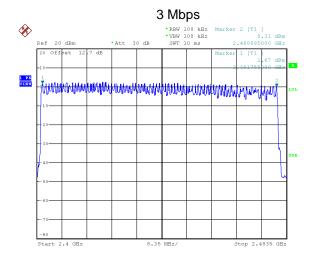
	Test Mo			3 Mbps)		Test [5/5/26
T	est Frequ			0MHz		Polariz			rtical
	Temp	l.	2	4°C		Hur	n.	5	4%
130.0	dBuV/m								
120									
110 🕌									
100 🗀									
90									
BO									
70 📙									
50									
50									
		1 X							
10		2 X							
30		^							
20									
10									
0.0									
18000).000 18850.	00 19700.00	20550.00	21400.00	22250.00	23100.00	23950.00	24800.00	26500.00 MH
No.	Mk.	Freq.	Reading	Correct	Measure	e- Lim	it Ove	er	
		MHz	Level dBuV	Factor dB	ment dBuV/m	n dBuV	//m dE	Detector	Comment
1		19840.00	50.30	-6.31	43.99	74.0			Commont
2	*	19840.00	40.45	-6.31	34.14	54.0			

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			[Mbps)					Test Da					5/5/26	
Te	est Frequ					0MHz				F	Polariza					zontal	
	Temp)			2	4°C					Hum	١.			54	4%	
130.0	BuV/m																_
120																	-
10																	+
00																	+
0																	-
io																	-
'o ⊨																	+
;o																	-
io ⊨			1 X														†
io			2														-
io			X														-
20																	-
0 —																	-
).0																	
	.000 18850		00.00	20550		21400.0		2225			00.00		50.00	2480	0.00	26500.00) MI
No.	Mk.	Freq	-	Read Lev		Corre Facto			easur ment	e-	Limit	İ	Ove	er			
		MHz		dΒι	ιV	dB		dl	3uV/r	n	dBuV/	m	dB		Detector	Comme	ent
1		19840		51.3		-6.3			15.05		74.00		-28.9		peak		
2	*	19840	.00	40.6	37	-6.3	1	3	34.36		54.00)	-19.6	64	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


APPENDIX E NUMBER OF HOPPING CHANNEL

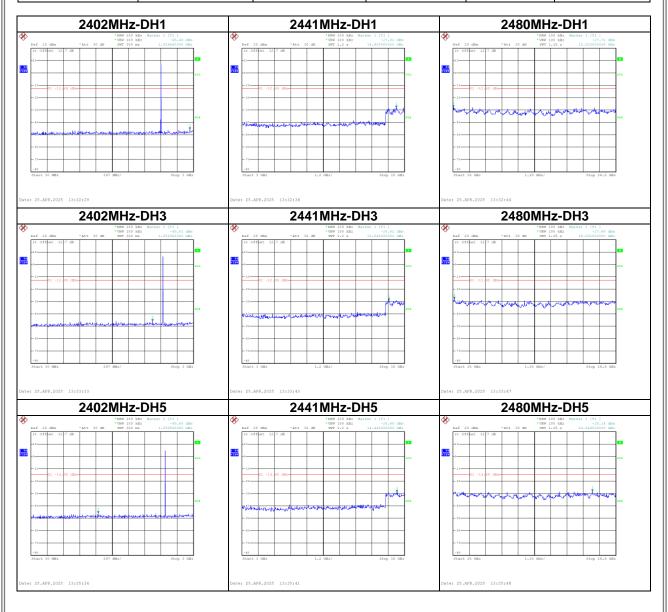

Project No.: 2503T049 Page 63 of 80 Report Version: R00

Test Mode

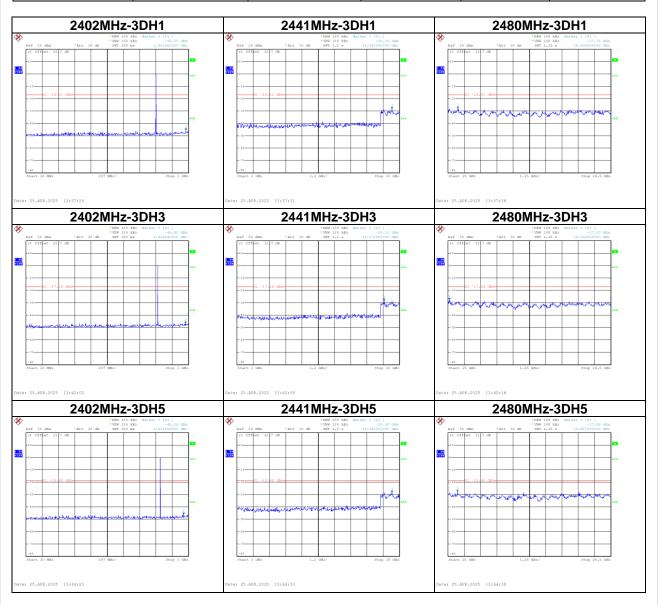
Test Mode	Number of Hopping Channel	≥ Limit	Test Result
1 Mbps	79	15	Pass
3 Mbps	79	15	Pass

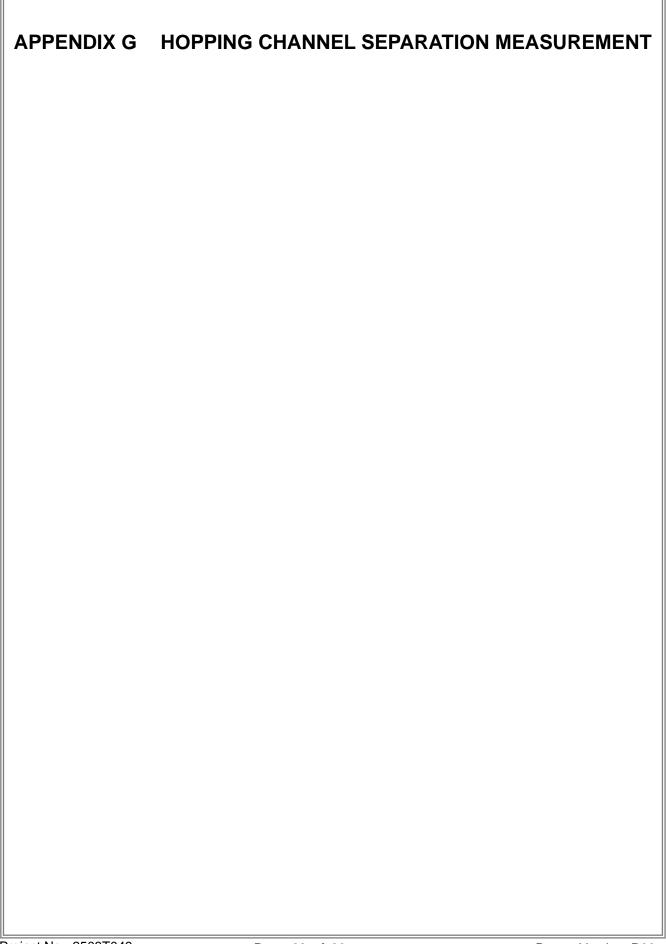
Date: 25.APR.2025 14:59:46 Date: 25.APR.2025 15:13:14

APPENDIX F AVERAGE TIME OF OCCUPANCY


Project No.: 2503T049 Page 65 of 80 Report Version: R00

Test Mode: 1Mbps


Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402	2.8800	0.3072	0.4000	Pass
DH3	2402	1.6400	0.2624	0.4000	Pass
DH1	2402	0.3850	0.1232	0.4000	Pass
DH5	2441	2.9200	0.3115	0.4000	Pass
DH3	2441	1.6400	0.2624	0.4000	Pass
DH1	2441	0.3900	0.1248	0.4000	Pass
DH5	2480	2.9200	0.3115	0.4000	Pass
DH3	2480	1.6400	0.2624	0.4000	Pass
DH1	2480	0.3850	0.1232	0.4000	Pass

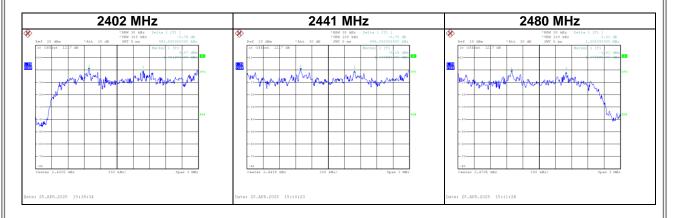


Test Mode: 3Mbps

Data Packet	Frequency	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
3DH5	2402	2.8800	0.3072	0.4000	Pass
3DH3	2402	1.6400	0.2624	0.4000	Pass
3DH1	2402	0.3900	0.1248	0.4000	Pass
3DH5	2441	2.9200	0.3115	0.4000	Pass
3DH3	2441	1.6400	0.2624	0.4000	Pass
3DH1	2441	0.3900	0.1248	0.4000	Pass
3DH5	2480	2.8800	0.3072	0.4000	Pass
3DH3	2480	1.6400	0.2624	0.4000	Pass
3DH1	2480	0.3950	0.1264	0.4000	Pass

Project No.: 2503T049 Page 68 of 80 Report Version: R00

ı			
ı	Test Mode :	Hopping on _	_1Mbps


Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	0.993	0.689	Pass
2441	0.997	0.684	Pass
2480	1.018	0.652	Pass

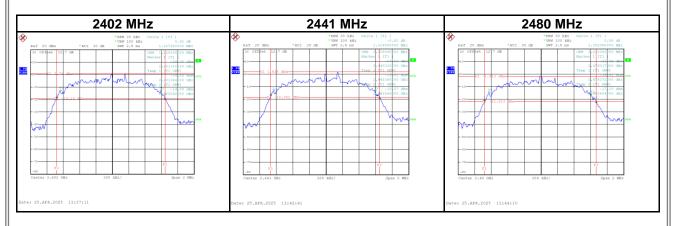
Test Mode : Hopping on _3Mbps

Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	0.994	0.885	Pass
2441	0.995	0.879	Pass
2480	1.008	0.901	Pass

3TL		Report No.: BTL-FCCP-8-2503T049
		Report No.: BTE-FCCF-6-23031049
	APPENDIX H	BANDWIDTH

Project No.: 2503T049 Page 71 of 80 Report Version: R00

Test Mode :	1Mbps


Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	1.034	0.924	Pass
2441	1.026	0.928	Pass
2480	0.978	0.908	Pass

Test Mode :	3Mbps
	·

Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	1.328	1.228	Pass
2441	1.318	1.228	Pass
2480	1.352	1.232	Pass

3 T L		Report No.: BTL-FCCP-8-2503T049
		Керин No.: ВтЕ-РССР-6-23031049
	ADDENINIY I	OUTPUT POWER
	AFFENDIAI	OUTFOTFOWER

Project No.: 2503T049 Page 74 of 80 Report Version: R00

Test Mode :	1Mbps	LIACIAN LISTA	2025/4/25~ 2025/4/25

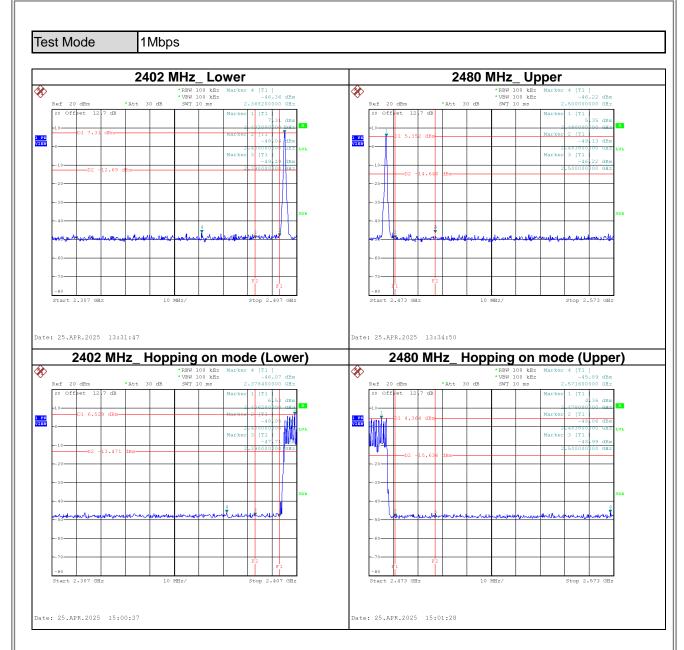
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	7.40	0.0055	20.97	0.1250	Pass
2441	6.81	0.0048	20.97	0.1250	Pass
2480	5.06	0.0032	20.97	0.1250	Pass

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	5.37	0.0034	20.97	0.1250	Pass
2441	4.93	0.0031	20.97	0.1250	Pass
2480	3.27	0.0021	20.97	0.1250	Pass

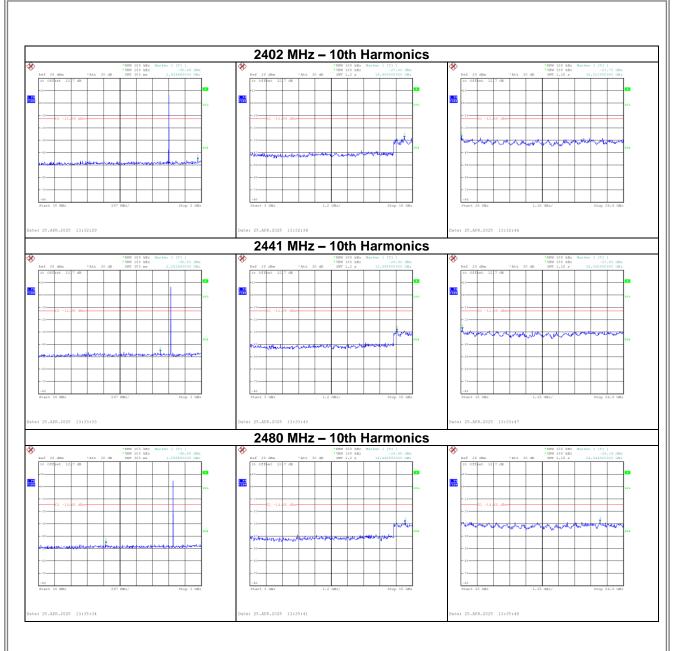
Test Mode: 3Mbps	Tested Date	2025/4/25~ 2025/4/25
------------------	-------------	-------------------------

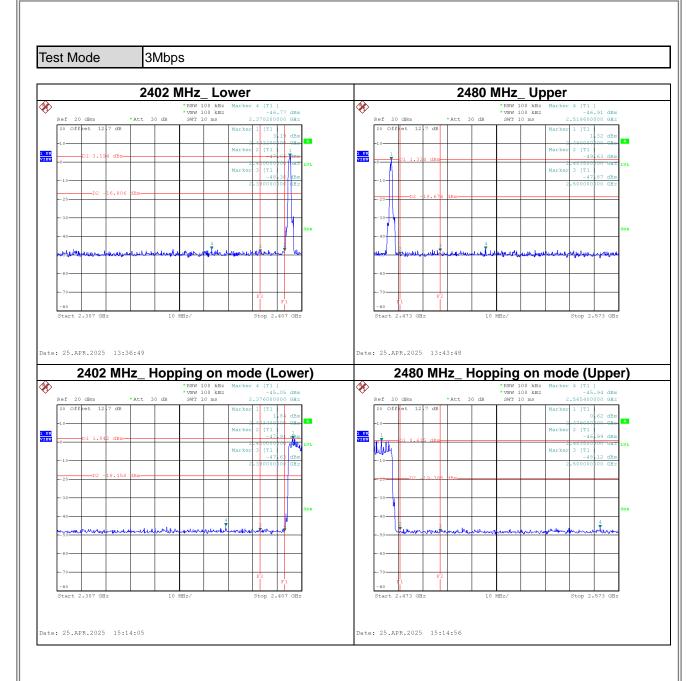
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	5.45	0.0035	20.97	0.1250	Pass
2441	4.96	0.0031	20.97	0.1250	Pass
2480	3.36	0.0022	20.97	0.1250	Pass

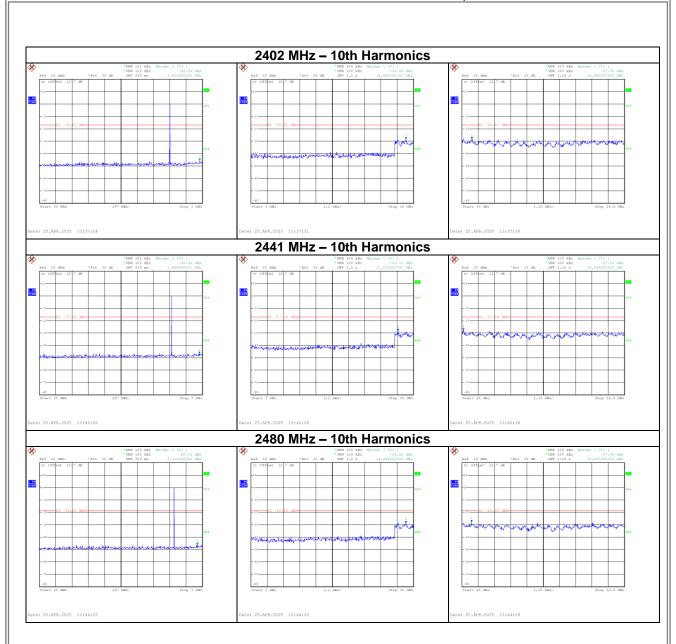
Project No.: 2503T049 Page 75 of 80 Report Version: R00



APPENDIX J ANTENNA CONDUCTED SPURIOUS EMISSION


Project No.: 2503T049 Page 76 of 80 Report Version: R00





End of Test Report