

TEST REPORT

FCC ID: 2AF7PSF01

Applicant : Sovogue technology Limited

Address : 9 PANTYGRAIGWEN ROAD PONTYPRIDD MID GLAMORGAN
UNITED KINGDOM CF37 2RR

Equipment Under Test(EUT):

Name : Smart watch

Model : SF01, SF09

In Accordance with: FCC PART 2; FCC PART 22H; FCC PART 24E

Report No : T1851416 01

Date of Test : September 28- October 15, 2015

Date of Issue : October 16, 2015

Test Result : PASS

Test Result: **PASS**

In the configuration tested, the EUT complied with the standards specified above

Authorized Signature

A handwritten signature in black ink, appearing to read "Mark Zhu", is placed above a horizontal line.

(Mark Zhu)

General Manager

The manufacturer should ensure that all the products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of Shenzhen Alpha Product Testing Co., Ltd. Or test done by Shenzhen Alpha Product Testing Co., Ltd. Approvals in connection with, distribution or use of the product described in this report must be approved by Shenzhen Alpha Product Testing Co., Ltd. Approvals in writing.

Contents

1. General Information.....	4
1.1. Description of Device (EUT)	4
1.2. Test Lab information	4
2. Summary of test	5
2.1. Summary of test result	5
2.2. Assistant equipment used for test.....	6
2.3. Test mode	6
2.4. Test Environment Conditions.....	6
2.5. Measurement Uncertainty (95% confidence levels, k=2)	6
2.6. Test Equipment	7
3. Conducted Output power.....	8
3.1. Block Diagram of Test Setup	8
3.2. Limit.....	8
3.3. Test Procedure.....	8
3.4. Test Result.....	8
4. Radiated Output power.....	9
4.1. Block Diagram of Test Setup	9
4.2. Limit.....	9
4.3. Test Procedure.....	9
4.4. Test Result.....	10
5. Occupied Bandwidth	11
5.1. Block Diagram of Test Setup	11
5.2. Limit.....	11
5.3. Test Procedure.....	11
5.4. Test Result.....	12
5.5. Orginal test data	12
6. Frequency stability.....	16
6.1. Block Diagram of Test Setup	16
6.2. Limit.....	16
6.3. Test Procedure.....	16
6.4. Test Result.....	17
7. Conducted spurious emissions	18
7.1. Block Diagram of Test Setup	18
7.2. Limit.....	18
7.3. Test Procedure.....	18
7.4. Test Result.....	18
8. Radiated spurious emissions	25
8.1. Block Diagram of Test Setup	25
8.2. Limit.....	25
8.3. Test Procedure.....	25
8.4. Test Result.....	26
9. Band Edge Compliance	28
9.1. Block Diagram of Test Setup	28

9.2. Limit.....	28
9.3. Test Procedure.....	28
9.4. Test Result.....	29
10. Power line conducted emission	31
10.1. Block Diagram of Test Setup	31
10.2. Limit.....	31
10.3. Test Procedure.....	31
10.4. Test Result.....	32

1. General Information

1.1. Description of Device (EUT)

EUT : Smart watch
Trade Name : N/A

Model No. : SF01, SF09
DIFF. : Only differ in model name.

Power supply : DC 3.7V Supply by battery or DC 5V from USB for charging
Adapter : N/A

Radio Technology : GSM 850: 824.2MHz—848.8MHz
GSM 1900: 1850.2MHz—1909.8MHz

GSM Power class : GSM 850: Class 4
GSM 1900: Class 1

Operation frequency : GSM 850: 824.2MHz—848.8MHz
GSM 1900: 1850.2MHz—1909.8MHz

Modulation : GSM: GMSK

Antenna Type : PCB Antenna, max gain -4 dBi for GSM850
PCB Antenna, max gain -2 dBi for GSM1900

Applicant : Sovogue technology Limited

Address : 9 PANTYGRAIGWEN ROAD PONTYPRIDD MID
GLAMORGAN UNITED KINGDOM CF37 2RR

Manufacturer : Shenzhen Sovogue technology Co.,Ltd.
Address : C1102, Yinxing Tech. Building, No.1301,Guangguang Rd, Guanlan
street, Longhua District, Shenzhen, China

1.2. Test Lab information

Shenzhen Alpha Product Testing Co., Ltd
Building B, East Area of Nanchang Second, Industrial Zone, Gushu 2nd Road,
Bao'an, Shenzhen, China

August 11, 2014 File on Federal Communication Commission
Registration Number: 203110

July 18, 2014 Certificated by IC
Registration Number: 12135A

2. Summary of test

2.1. Summary of test result

Description of Test Item	Standard	Results
Conducted Output power	FCC PART 2: 2.1046 FCC PART 22H: 22.913 (a) FCC PART 24E: 24.232 (c)	PASS
Radiated Output power(erp/eirp)	FCC PART 22H:22.913 (a) FCC PART 24E:24.232(c)	PASS
Occupied bandwidth	FCC PART 2: 2.1049 FCC PART 22H: 22.917 (b) FCC PART 24E: 24.238 (b)	PASS
Frequency stability	FCC PART 2: 2.1055 FCC PART 22H: 22.355 FCC PART 24E: 24.235	PASS
Conducted spurious emission (Antenna terminal)	FCC PART 2: 2.1051 FCC PART 22H: 22.917 FCC PART 24E: 24.238	PASS
Radiated spurious emissions	FCC PART 2: 2.1053 FCC PART 22H: 22.917 FCC PART 24E: 24.238	PASS
Band edge compliance	FCC PART 22H: 22.917 (b) FCC PART 24E: 24.238 (b)	PASS
Power Line Conducted Emission Test	FCC Part 15: 15.207 ANSI C63.4: 2014	PASS

2.2. Assistant equipment used for test

Description	:	N/A
Manufacturer	:	N/A
Model No.	:	N/A
Input	:	N/A
Output	:	N/A

2.3. Test mode

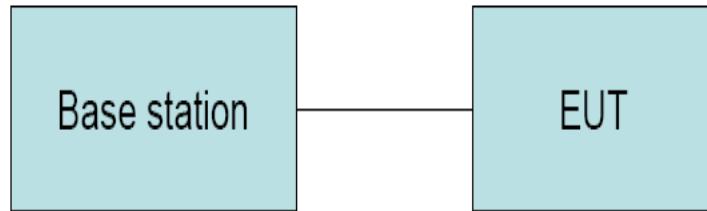
During all testing, EUT is in link mode with base station emulator at maximum power level in each test mode and channel as below:

Mode	Channel	Frequency(MHz)
GSM 850	128	824.2
	190	836.6
	251	848.8
PCS 1900	512	1850.2
	661	1880.0
	810	1909.8

2.4. Test Environment Conditions

Temperature range	21-25°C
Humidity range	40-75%
Pressure range	86-106kPa

2.5. Measurement Uncertainty (95% confidence levels, k=2)


Item	MU	Remark
Uncertainty for Power point Conducted Emissions Test	2.42dB	
Uncertainty for Radiation Emission test in 3m chamber (30MHz to 1GHz)	3.54dB	Polarize: V
	4.1dB	Polarize: H
Uncertainty for Radiation Emission test in 3m chamber (1GHz to 25GHz)	2.08dB	Polarize: H
	2.56dB	Polarize: V
Uncertainty for radio frequency	1×10^{-9}	
Uncertainty for conducted RF Power	0.65dB	
Uncertainty for temperature	0.2°C	
Uncertainty for humidity	1%	
Uncertainty for DC and low frequency voltages	0.06%	

2.6. Test Equipment

Equipment	Manufacture	Model No.	Serial No.	Last cal.	Cal Interval
3m Semi-Anechoic	ETS-LINDGREN	N/A	SEL0017	2015.01.19	1 Year
Spectrum analyzer	Agilent	E4407B	MY46185649	2015.01.19	1 Year
Receiver	R&S	ESCI	1166.5950K0 3-1011	2015.01.19	1 Year
Receiver	R&S	ESCI	101202	2015.01.19	1 Year
Bilog Antenna	Schwarzbeck	VULB 9168	VULB9168-4 38	2015.01.21	1 Year
Horn Antenna	EMCO	3115	640201028-06	2015.01.21	1 Year
Active Loop Antenna	Beijing Daze	ZN30900A	SEL0097	2015.01.21	1 Year
Cable	Resenberger	N/A	No.1	2015.01.19	1 Year
Cable	SCHWARZBEC K	N/A	No.2	2015.01.19	1 Year
Cable	SCHWARZBEC K	N/A	No.3	2015.01.19	1 Year
Pre-amplifier	Schwarzbeck	BBV9743	9743-019	2015.01.19	1 Year
Pre-amplifier	R&S	AFS33-180026 50-30-8P-44	SEL0080	2015.01.19	1 Year
Base station	Agilent	E5515C	GB44300243	2015.01.19	1 Year
Temperature controller	Terchy	MHQ	120	2015.01.19	1 Year
Power divider	Anritsu	K240C	020346	2015.01.19	1 Year
Signal Generator	HP	83732B	VS3449051	2015.01.19	1 Year
Power Meter	Anritsu	ML2487A	6K00001491	2015.01.19	1 Year
Power sensor	Anritsu	ML2491A	32516	2015.01.19	1 Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	8126466	2016.01.1 9	1 Year
L.I.S.N.#2	ROHDE&SCHW ARZ	ENV216	101043	2016.01.1 9	1 Year

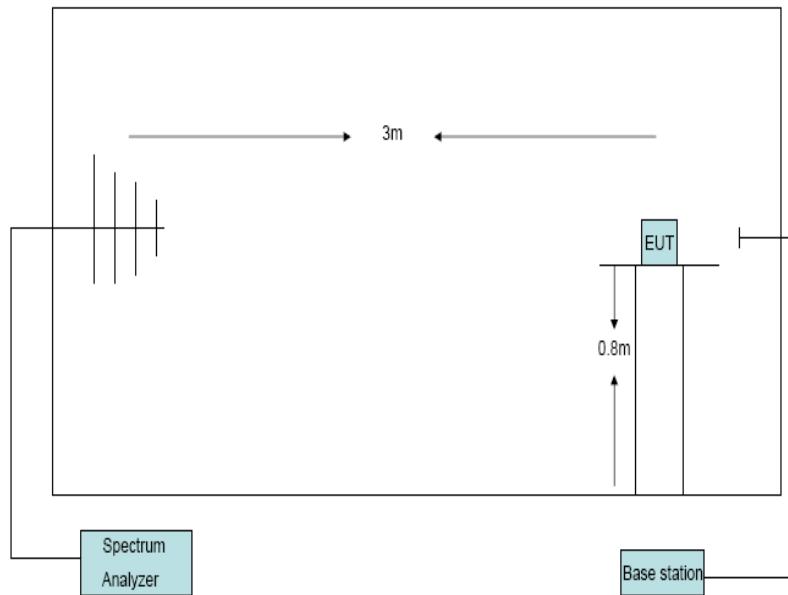
3. Conducted Output power

3.1. Block Diagram of Test Setup

3.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz
38.5dBm(ERP)	33dBm(EIRP)

3.3. Test Procedure


- (1) The EUT's RF output port was connected to base station.
- (2) A call is set up by the SS according to the generic call set up procedure
- (3) Set EUT at maximum power level through base station by power level command
- (4) Measure the maximum output power of EUT at each frequency band and mode by base station.

3.4. Test Result

EUT: Smart watch		M/N:SF01	Power: DC 3.7V		
Ambient Temperature:24 °C		Relative Humidity: 62%			
Test date: 2015-10-09		Test site: RF site Tested by: Simple Guan			
Conclusion: PASS					
Mode		PK Output Power(dBm)			Limit (dBm)
		GSM850	GPRS -1 Slot	GPRS -2 Slot	GPRS -3 Slot
GSM 850	128	32.03	/	/	/
	190	32.15	/	/	/
	251	32.04	/	/	/
PCS 1900	512	30.00	/	/	/
	661	29.98	/	/	/
	810	29.74	/	/	/

4. Radiated Output power

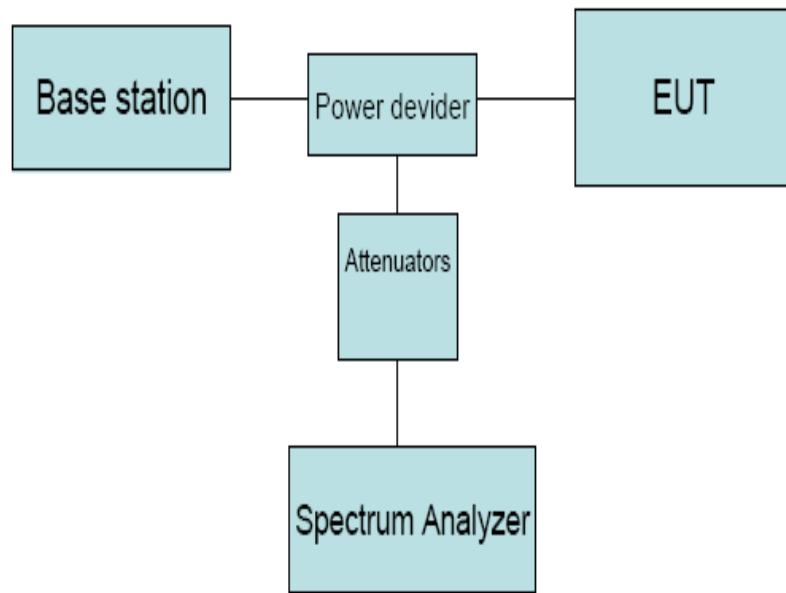
4.1. Block Diagram of Test Setup

4.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz
38.5dBm(ERP)	33dBm(EIRP)

4.3. Test Procedure

1. The EUT was placed on a non-conductive rotating platform with 0.8 meter height in an anechoic chamber. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and a spectrum analyzer with RBW= 3MHz, VBW= 3MHz and peak detector settings.
2. During the measurement, the EUT was enforced in maximum power and linked with a base station. The highest emission was recorded from analyzer power level (LVL) from the 360 degrees rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations
3. Effective Isotropic Radiated Power (EIRP) was measured by substitution method according to TIA/EIA-603-C. The EUT was replaced by dipole antenna (for frequency below 1GHz) or Horn antenna (for frequency above 1GHz) at same location with same polarize of receiver antenna and then a known power of each measure frequency from


S.G. was applied into the dipole antenna or Horn antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain -Substitution antenna Loss(only for Dipole antenna) - Analyzer reading. Then the EUT's EIRP was calculated with the correction factor, $EIRP = LVL + \text{Correction factor}$ and $ERP = EIRP - 2.15$

4.4. Test Result

EUT: Smart watch M/N:SF01					
Power: DC 3.7V					
Ambient Temperature:23°C			Relative Humidity: 60%		
Test date: 2015-10-09		Test site: RF site		Tested by: Simple Guan	
Conclusion: PASS					
Mode	Channel	LVL (dBm)	Correction factor(dB)	ERP (dBm)	EIRP (dBm)
GSM 850	128	4.5	26.61	28.96	/
	190	4.6	26.86	29.31	/
	251	4.6	26.49	28.94	/
PCS 1900	512	4.6	22.27	/	26.87
	661	4.6	22.66	/	27.56
	810	4.5	22.37	/	26.87
ERP=LVL + Correction factor -2.15					
EIRP=LVL+ Correction factor					

5. Occupied Bandwidth

5.1. Block Diagram of Test Setup

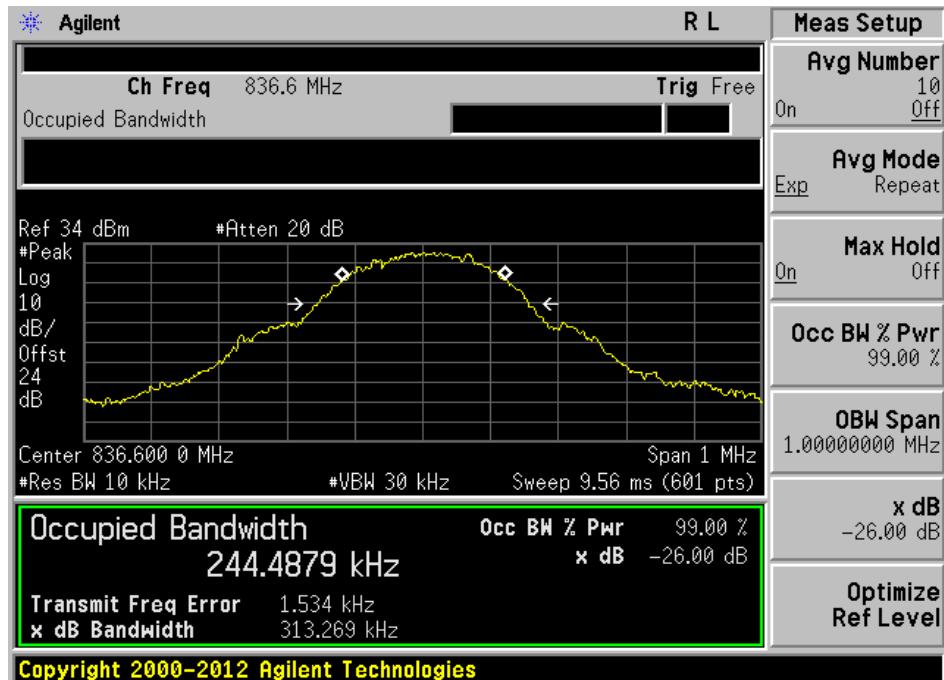
5.2. Limit

N/A

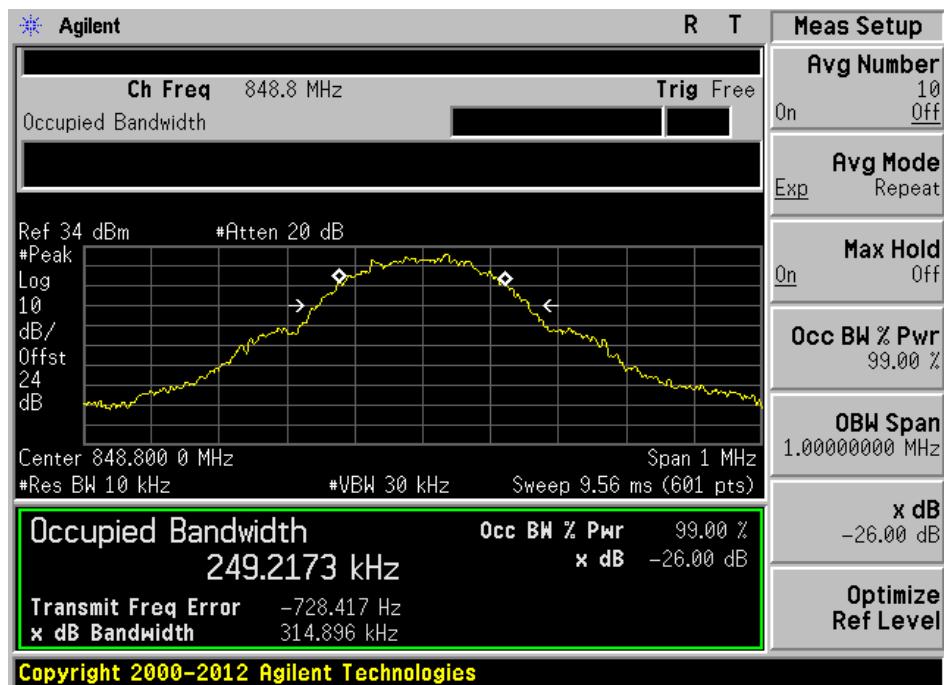
5.3. Test Procedure

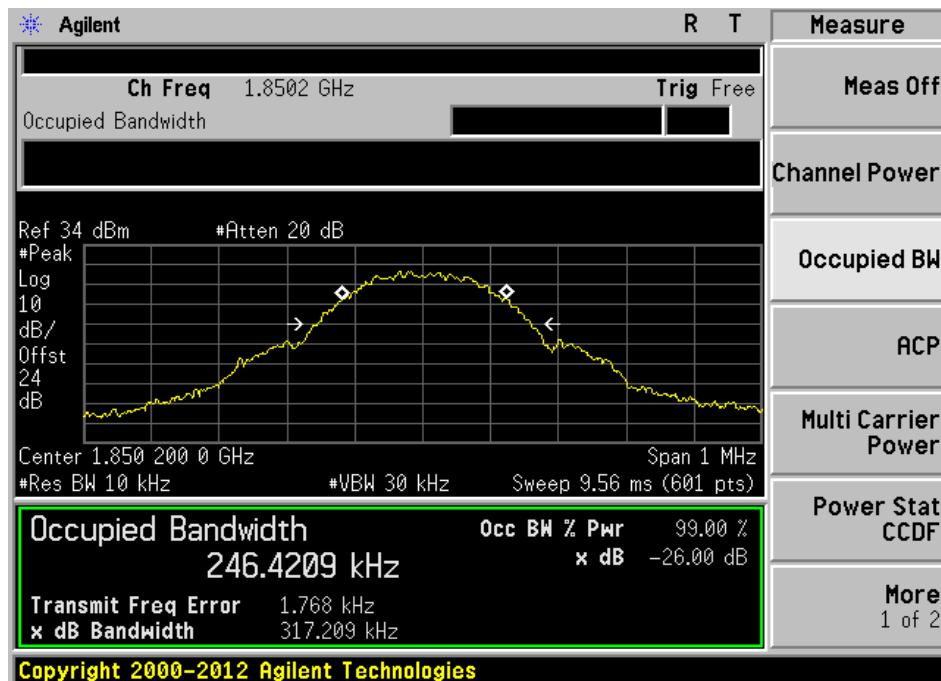
1. The EUT's RF output port was connected to Spectrum Analyzer and Base Station via power divider.
2. Spectrum analyzer's occupied bandwidth measure function was used to measure 99% bandwidth and -26dBc bandwidth
- .

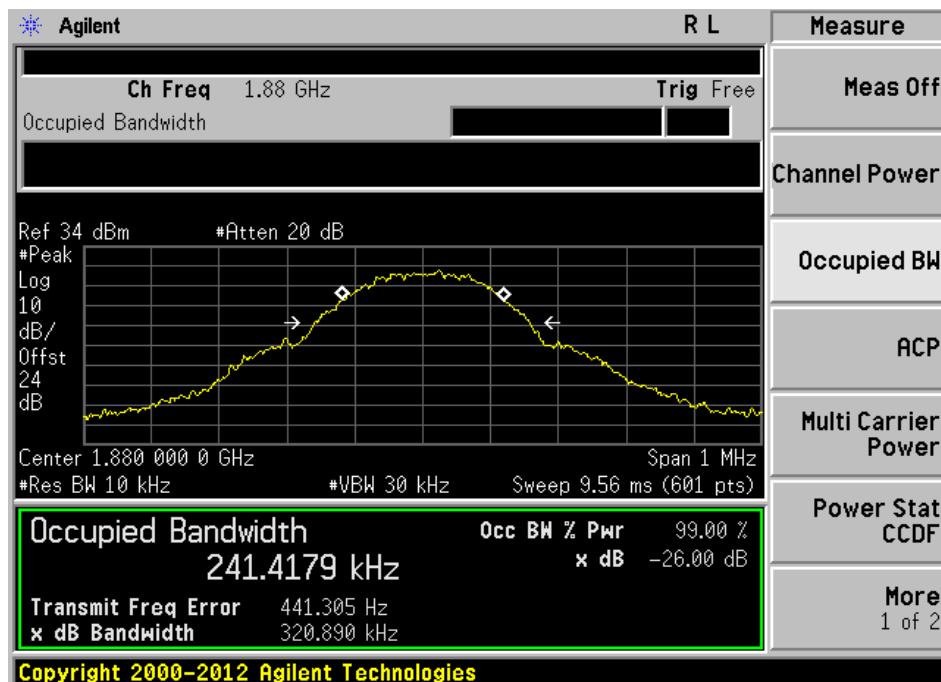
5.4. Test Result


EUT: Smart watch M/N:SF01			
Power: DC 3.7V			
Ambient Temperature:23°C		Relative Humidity: 60%	
Test date: 2015-10-09		Test site: RF site	Tested by: Simple Guan
GSM 850	Mode	Channel	99% bandwidth (KHz)
	128	246.29	317.53
	190	244.49	313.27
PCS 1900	251	249.22	314.90
	512	246.42	317.21
	661	241.42	320.89
	810	247.50	318.28

5.5. Orginal test data

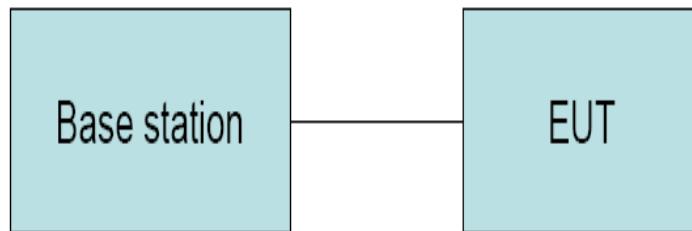

GSM 850 CH128


GSM 850 CH190


GSM 850 CH251


PCS 1900 CH512

PCS 1900 CH661



PCS 1900 CH810

6. Frequency stability

6.1. Block Diagram of Test Setup

6.2. Limit

Cellular Telephone 850MHz	PCS 1900MHz
± 2.5 ppm	Must stay within the authorized frequency block

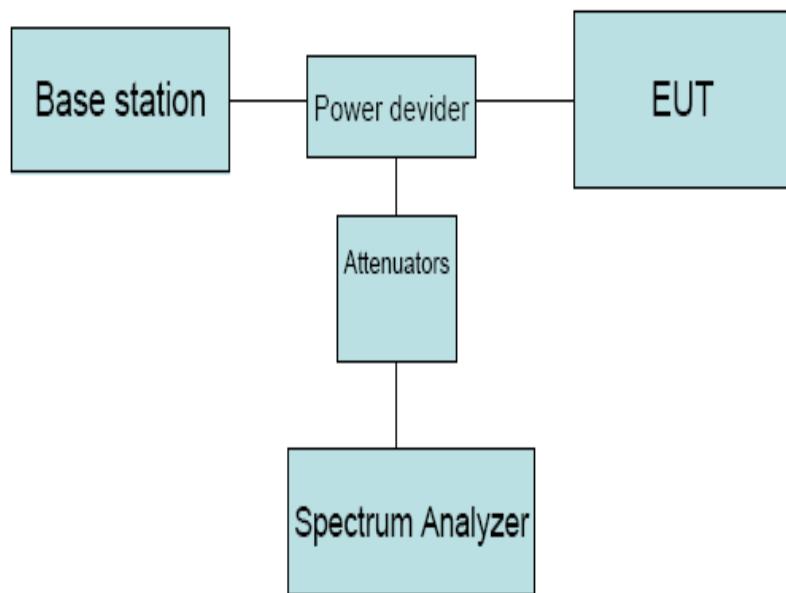
6.3. Test Procedure

Test Procedures for Temperature Variation:

1. The EUT was set up in the thermal chamber and connected with the base station.
2. With power OFF, the temperature was decreased to -30°C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
3. With power OFF, the temperature was raised in -30°C step up to 50°C . The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.
4. If the EUT can not be turned on at -30°C , the testing lowest temperature will be raised in 10°C step until the EUT can be turned on.

Test Procedures for Voltage Variation

1. The EUT was placed in a temperature chamber at $25 \pm 5^{\circ}\text{C}$ and connected with the base station.
2. The power supply voltage to the EUT was varied from DC 5V to 3.5V
3. The variation in frequency was measured for the worst case.


6.4. Test Result

EUT: Smart watch M/N:SF01			
Power: DC 3.7V			
Ambient Temperature:23°C		Relative Humidity: 60%	
Test date: 2015-10-09		Test site: RF site	Tested by: Simple Guan
Conclusion: PASS			
Mode	Voltage (V)	Frequency error (Hz)	frequency error (ppm)
GSM 850 CH 190	8.5V	16.32	0.02
	7.5V	-18.27	-0.02
	6.5V	14.29	0.02
	6.4V	-15.16	-0.02
	6.3V	-16.32	-0.02
PCS 1900 CH661	8.5V	-26.32	-0.01
	7.5V	36.24	0.02
	6.5V	-29.02	-0.02
	6.4V	31.16	0.02
	6.3V	-27.82	-0.02

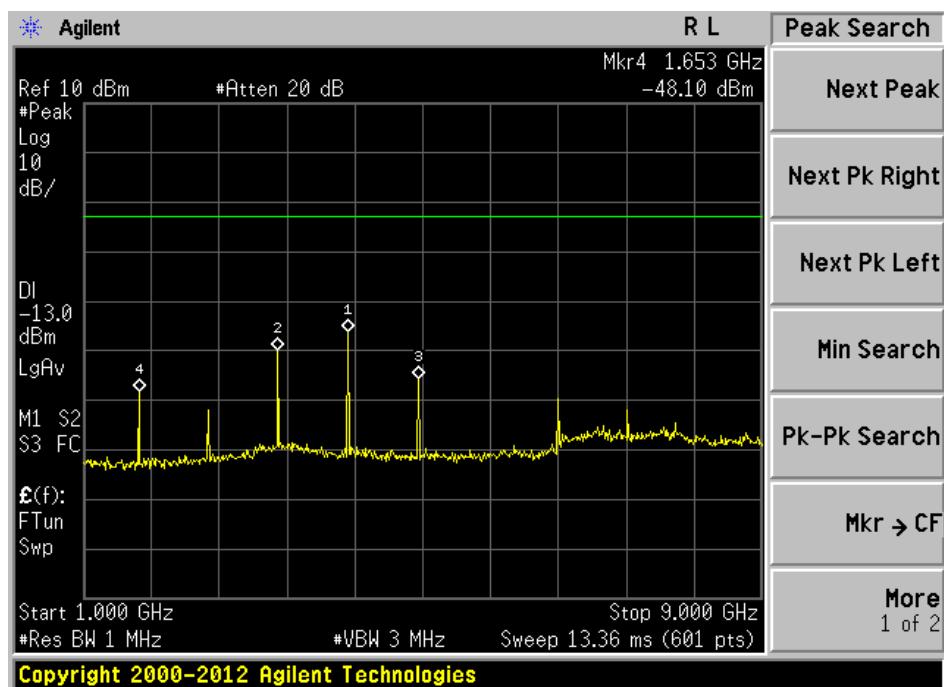
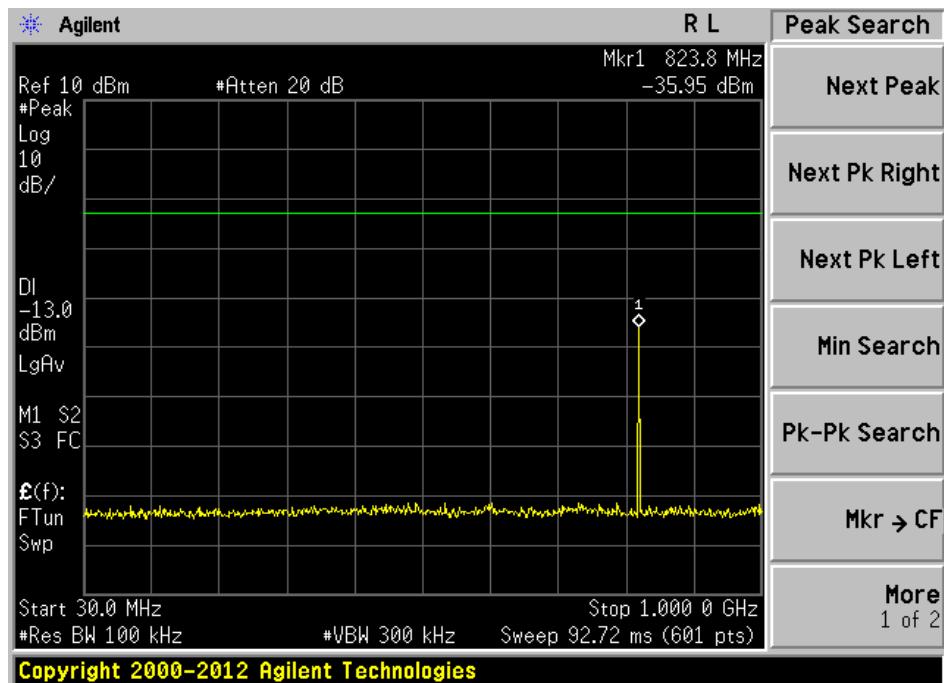
Mode	Temperature (°C)	Frequency error (Hz)	frequency error (ppm)
GSM 850 CH190	-30	20.14	0.02
	-20	15.24	0.02
	-10	14.16	0.02
	0	20.22	0.02
	10	-17.06	-0.02
	20	18.32	0.02
	30	-14.25	-0.02
	40	-16.15	-0.02
	50	-12.34	-0.01
PCS 1900 CH661	-30	32.32	0.02
	-20	20.16	0.01
	-10	32.32	0.02
	0	37.16	0.02
	10	-24.16	-0.01
	20	31.06	0.02
	30	-24.27	-0.01
	40	21.35	0.02
	50	-16.23	-0.02

7. Conducted spurious emissions

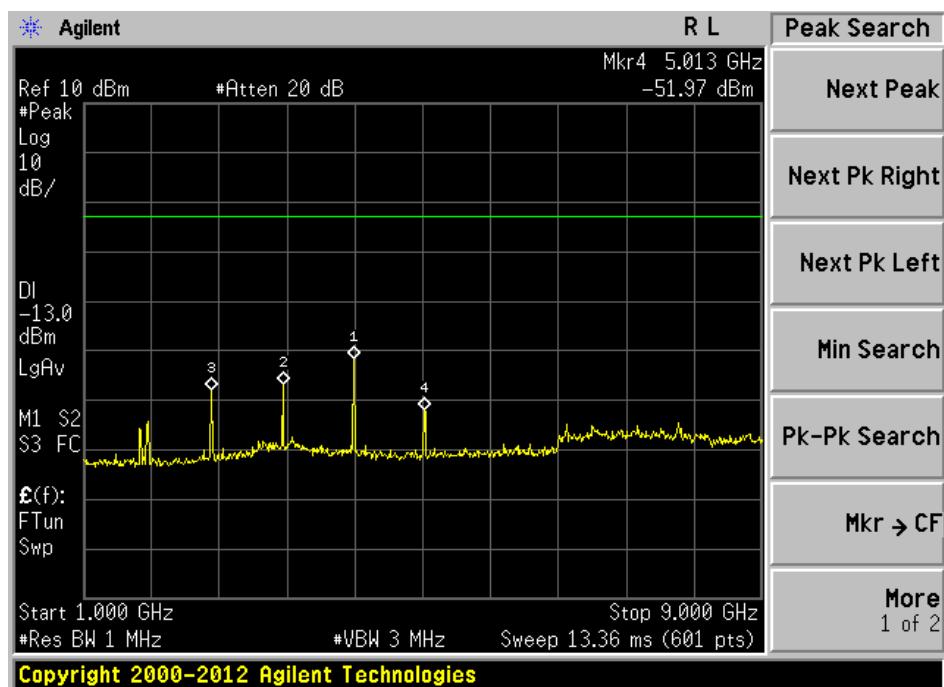
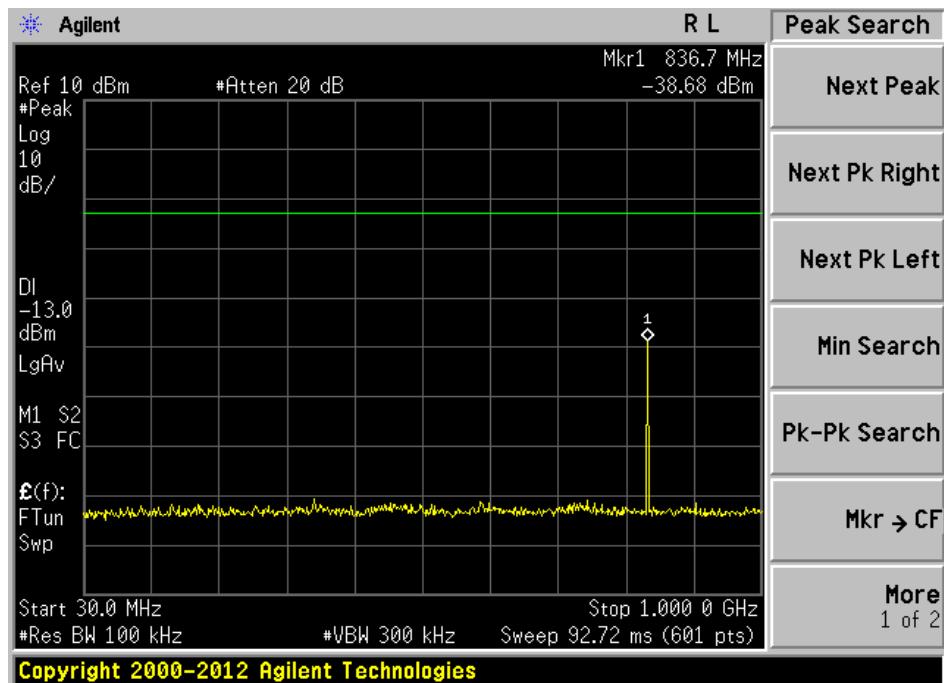
7.1. Block Diagram of Test Setup

7.2. Limit

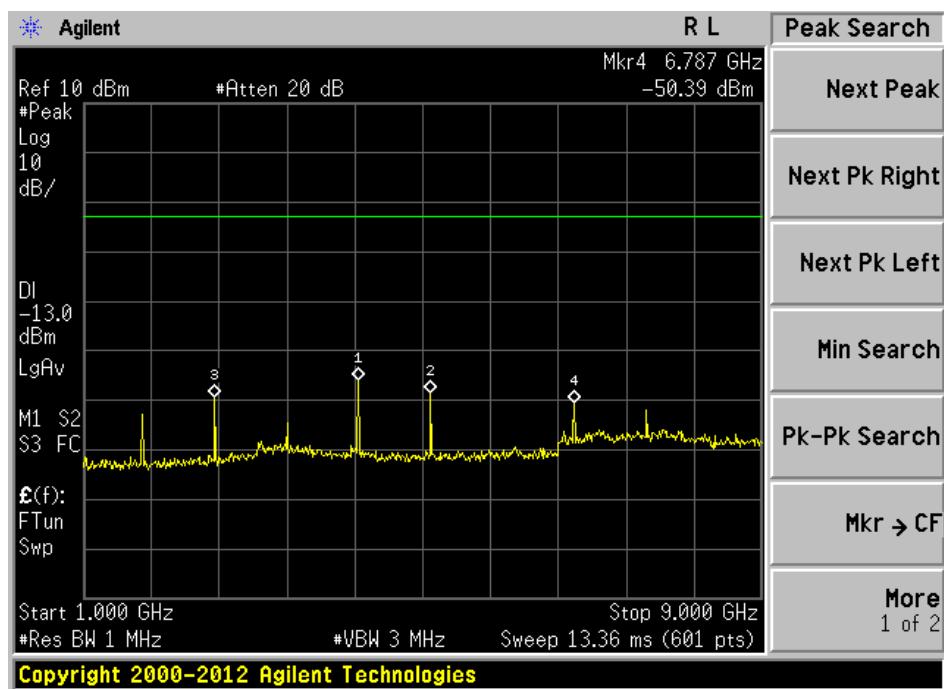
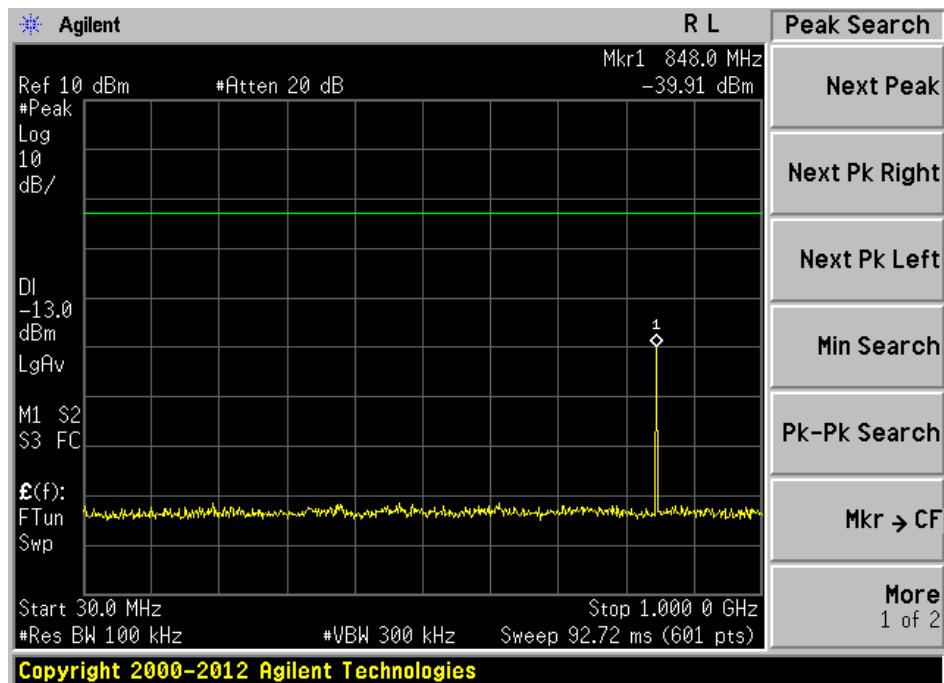
The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P)$ dB, in this case, -13dBm.

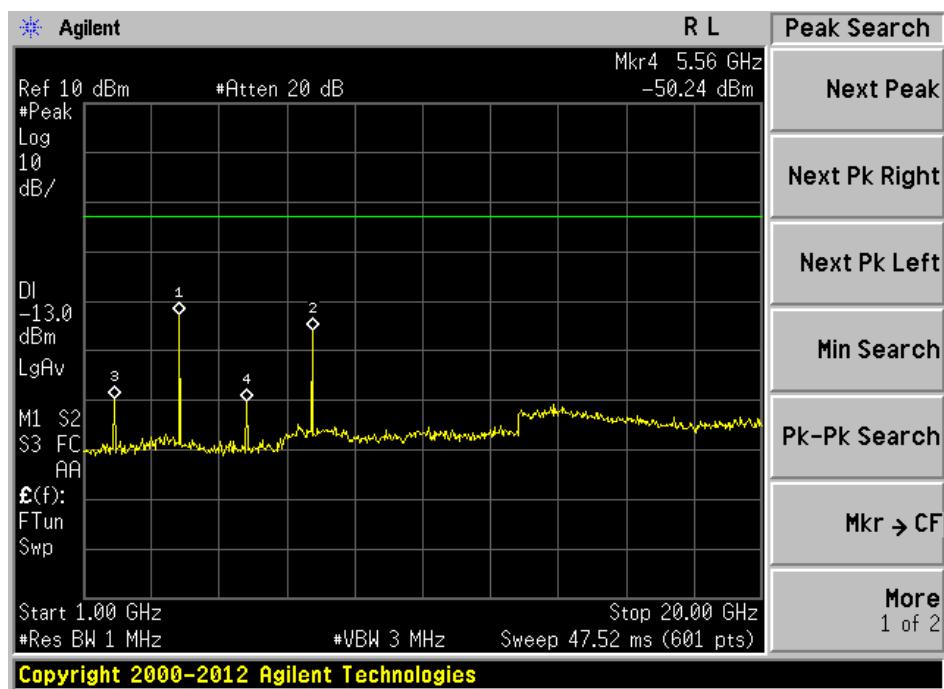
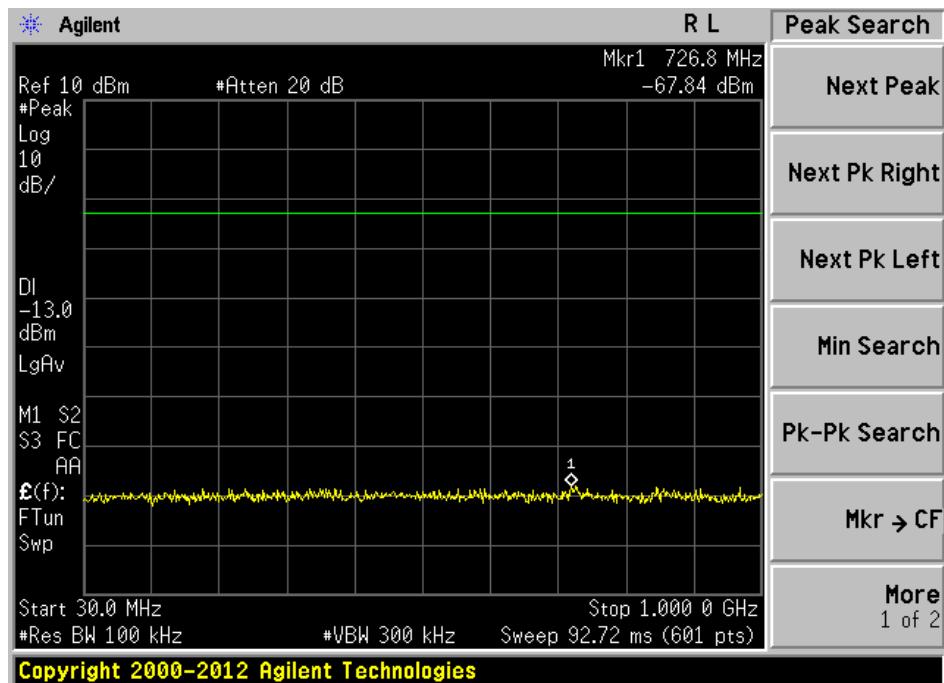


7.3. Test Procedure

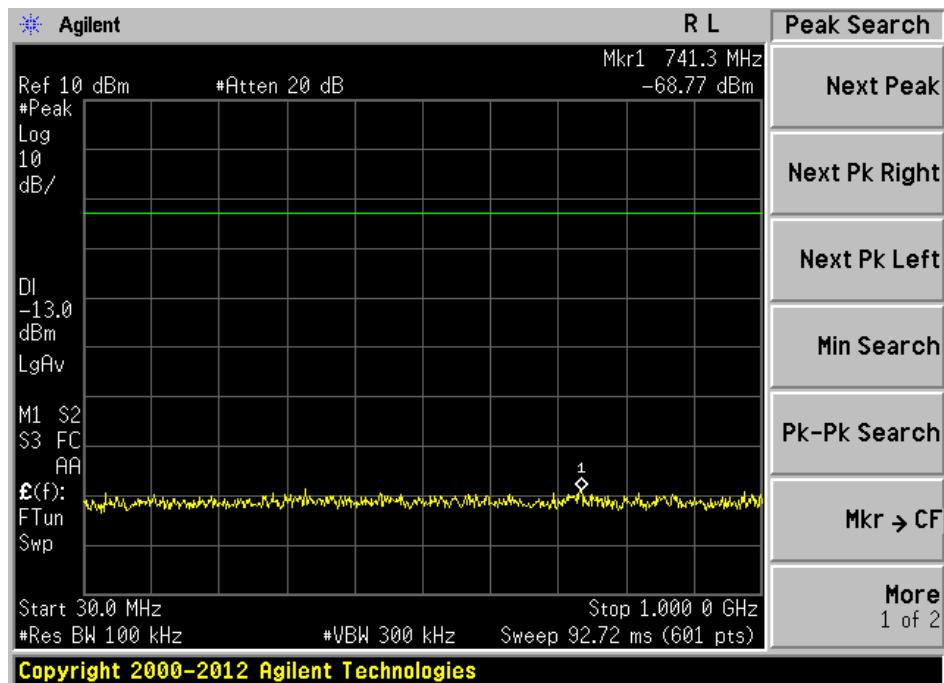
1. The EUT was connected to spectrum analyzer and base station via power divider.
2. The low, middle and high channels of each band and mode's spurious emissions for 30MHz to 10th Harmonic were measured by Spectrum analyzer.

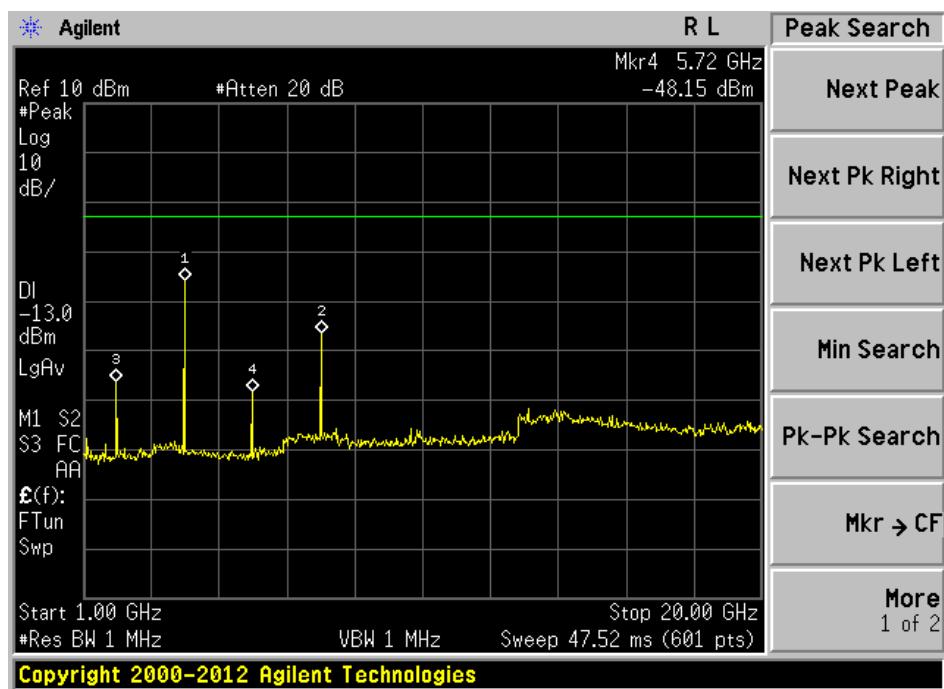
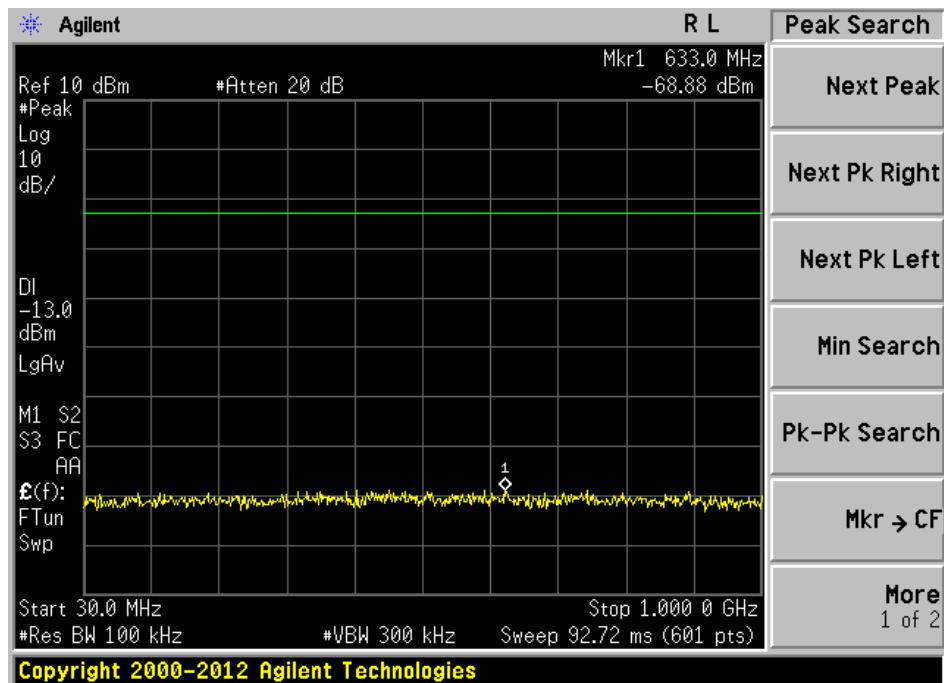


7.4. Test Result

PASS

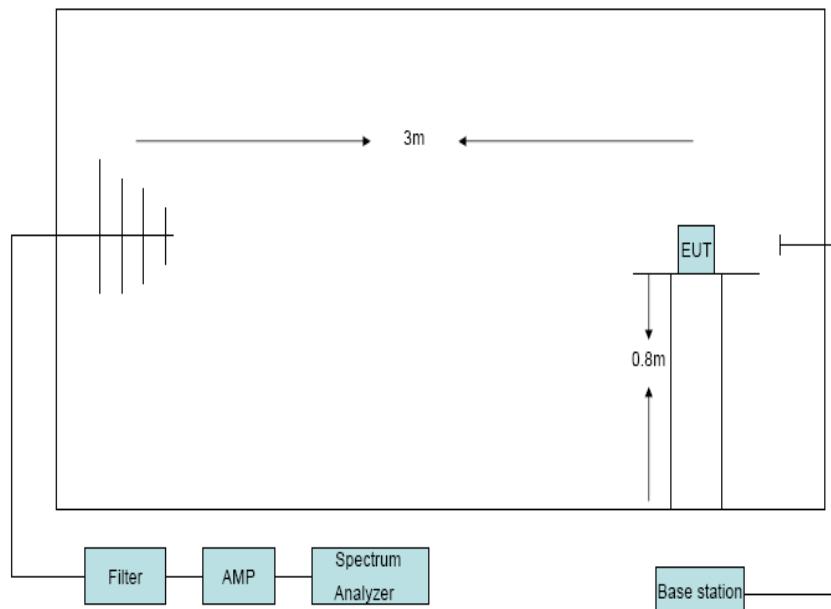


Test Mode: GSM 850 CH 128



Test Mode: GSM 850 CH 190


Test Mode: GSM 850 CH 251



Test Mode: GSM 1900 CH 512

Test Mode: GSM 1900 CH 661



Test Mode: GSM 1900 CH 810

8. Radiated spurious emissions

8.1. Block Diagram of Test Setup

8.2. Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P)$ dB, in this case, -13dBm.

8.3. Test Procedure

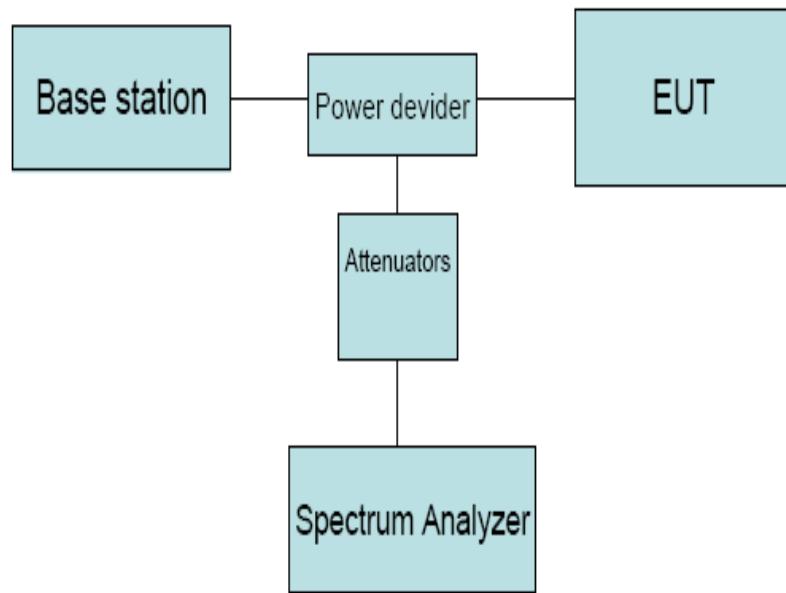
1. The EUT was placed on a non-conductive rotating platform with 0.8 meter height in an anechoic chamber. The radiated spurious emissions from 30MHz to 10th harmonious of fundamental frequency were measured at 3m with a test antenna and a spectrum analyzer with RBW= 1MHz, VBW= 1MHz ,peak detector settings.
2. During the measurement, the EUT was enforced in maximum power and linked with a base station. All the spurious emissions (record as LVL) at 3m were measured by rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
3. Final spurious emissions levels were measured by substitution method according to TIA/EIA-603-C. The EUT was replaced by dipole antenna (for frequency below 1GHz) or Horn antenna (for frequency above 1GHz) at same location with same polarize of receiver antenna and then a known power of each measure frequency from S.G. was

applied into the dipole antenna or Horn antenna through a Tx cable, and then recorded the maximum Analyzer reading through raised and lowered the test antenna. The correction factor (in dB) = S.G. - Tx Cable loss + Substitution antenna gain -Substitution antenna Loss (only for Dipole antenna) - Analyzer reading. Then final spurious emissions were calculated with the correction factor, EIRP= LVL + Correction factor and ERP = EIRP - 2.15

8.4. Test Result

EUT: Smart watch M/N:SF01												
Power: DC 3.7V												
Test Date: 2015-10-09	Test site: RF Chamber		Tested by: Simple Guan									
Ambient Temperature: 24°C	Relative Humidity: 60%											
Conclusion: PASS												
Test result												
Test Mode: GSM 850 CH128												
Frequency (MHz)	Antenna polarization	LVL (dBm)	Correction factor(dB)	Result (ERP)(dBm)	Limit (dBm)	Margin (dB)						
537.31	H	-57.71	-6.53	-64.24	-13	51.24						
537.31	V	-57.48	-6.53	-64.01	-13	51.01						
1648.4	H	-55.21	11.5	-43.71	-13	30.71						
1648.4	V	-52	10.56	-41.44	-13	28.44						
Test Mode: GSM 850 CH190												
1673.2	H	-56.74	10.94	-45.8	-13	32.8						
1673.2	V	-51.34	10.9	-40.44	-13	27.44						
Test mode: GSM 850 CH251												
1697.6	H	-58.7	11.67	-47.03	-13	34.03						
1697.6	V	-52.04	11.13	-40.91	-13	27.91						

Test Mode: GSM 1900 CH512						
Frequency (MHz)	Antenna polarization	LVL (dBm)	Correction factor(dB)	Result (EIRP)(dBm)	Limit (dBm)	Margin (dB)
537.31	H	-57.72	-6.53	-64.25	-13	51.25
537.31	V	-57.21	-6.53	-63.74	-13	50.74
3700.4	H	-56.01	8.57	-47.44	-13	34.44
3700.4	V	-51.11	8.37	-42.74	-13	29.74


Test Mode: GSM 1900 CH661						
Frequency (MHz)	Antenna polarization	LVL (dBm)	Correction factor(dB)	Result (EIRP)(dBm)	Limit (dBm)	Margin (dB)
3760	H	-53.77	8.75	-45.02	-13	32.02
3760	V	-50.31	8.55	-41.76	-13	28.76

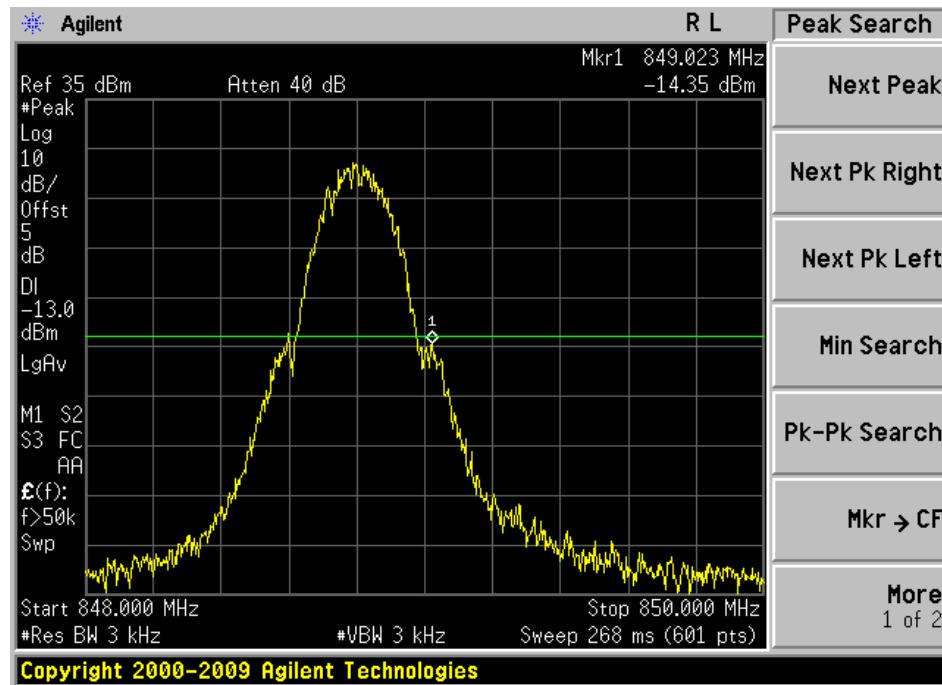
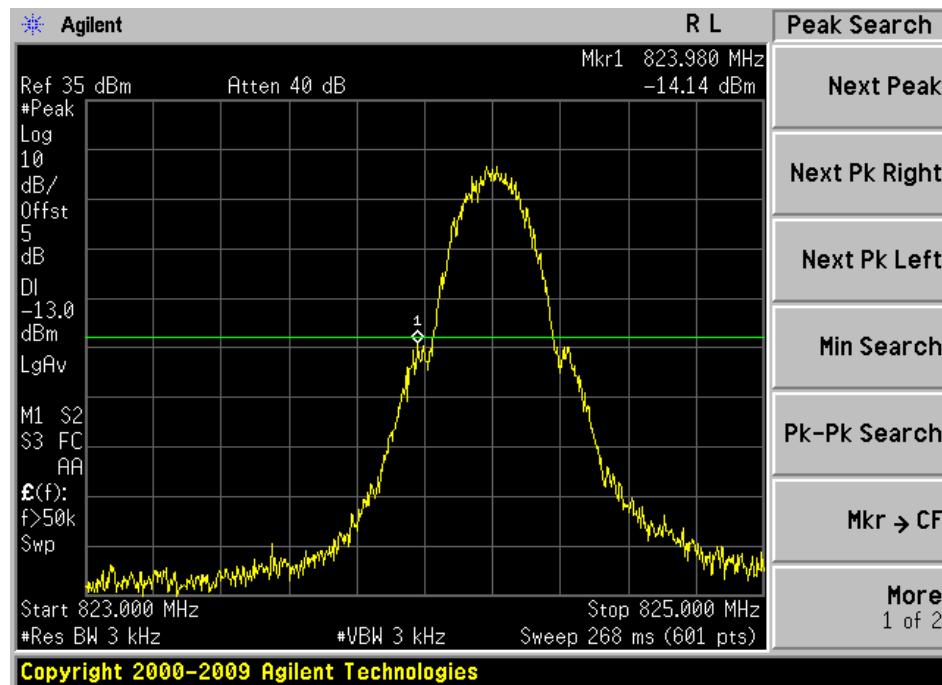
Test mode: GSM 1900 CH810						
Frequency (MHz)	Antenna polarization	LVL (dBm)	Correction factor(dB)	Result (EIRP)(dBm)	Limit (dBm)	Margin (dB)
3819.6	H	-52.16	8.94	-43.22	-13	30.22
3819.6	V	-53.14	8.72	-44.42	-13	31.42

9. Band Edge Compliance

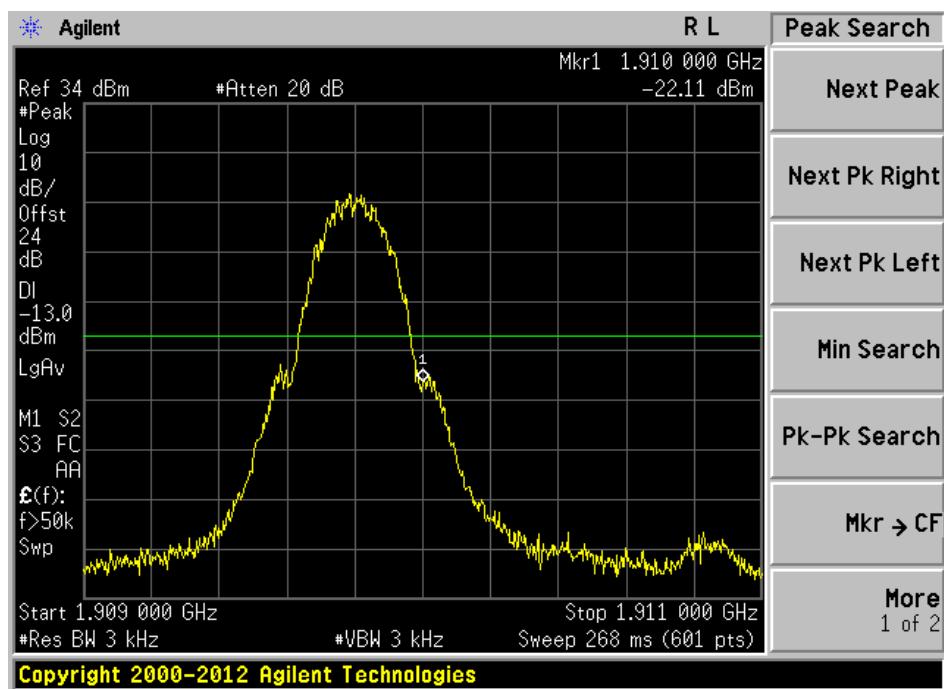
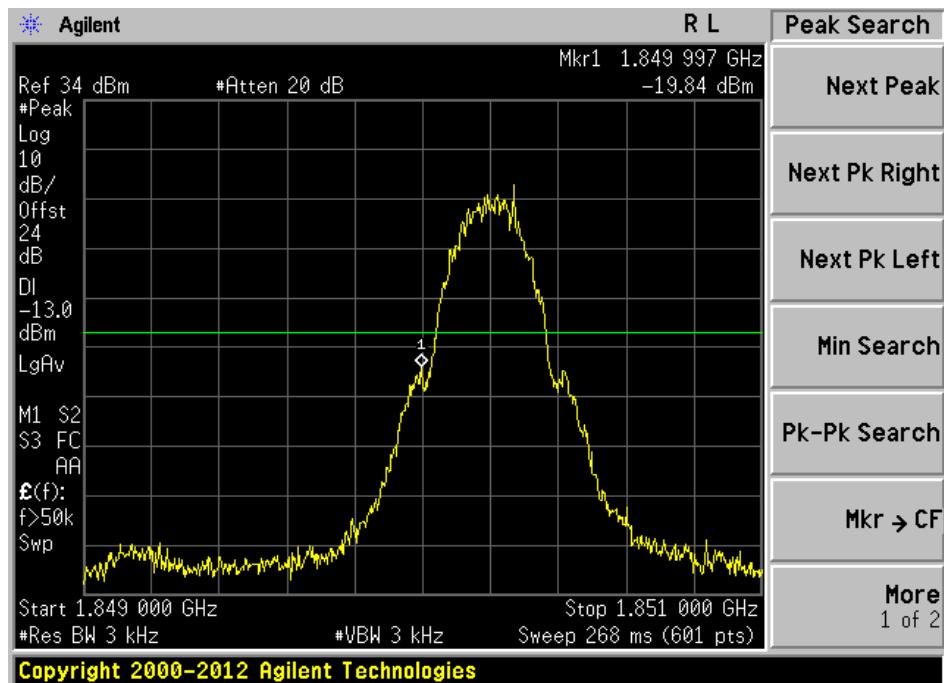
9.1. Block Diagram of Test Setup

9.2. Limit

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P)$ dB, in this case, -13dBm.

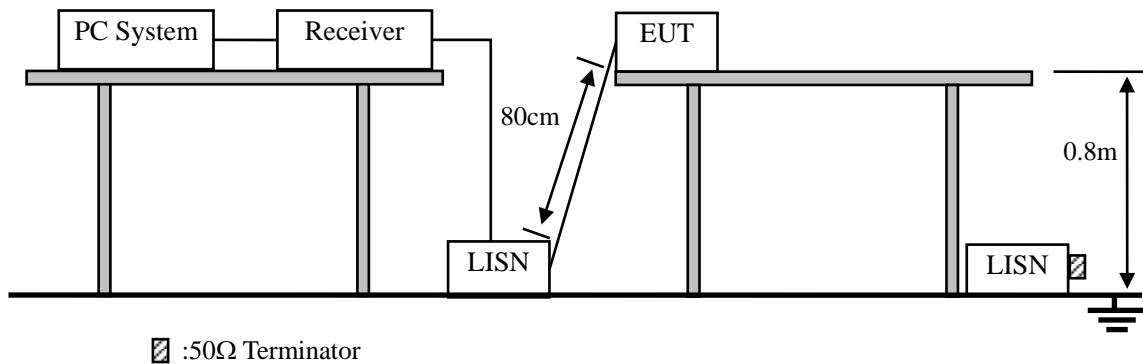


9.3. Test Procedure

1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
2. The band edges of low and high channels for the highest RF powers were measured.



9.4. Test Result

PASS

Test Mode: GSM 850



Test Mode: GSM 1900

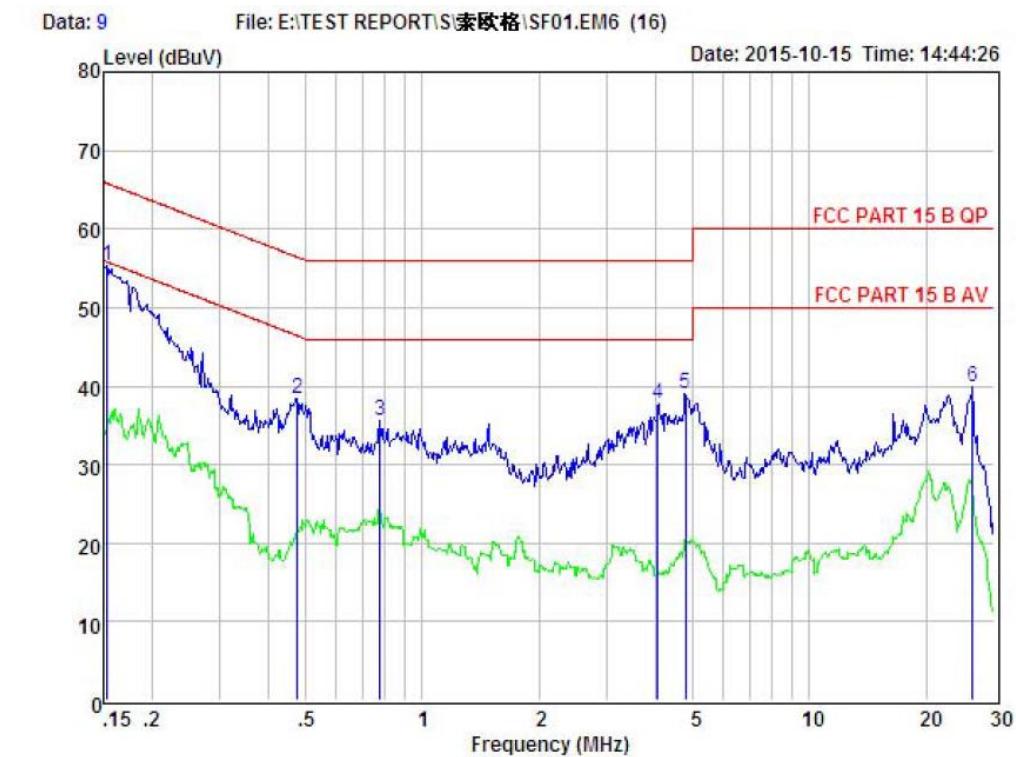
10. Power line conducted emission

10.1. Block Diagram of Test Setup

10.2. Limit

Frequency	Maximum RF Line Voltage	
	Quasi-Peak Level dB(µV)	Average Level dB(µV)
150kHz ~ 500kHz	66 ~ 56*	56 ~ 46*
500kHz ~ 5MHz	56	46
5MHz ~ 30MHz	60	50

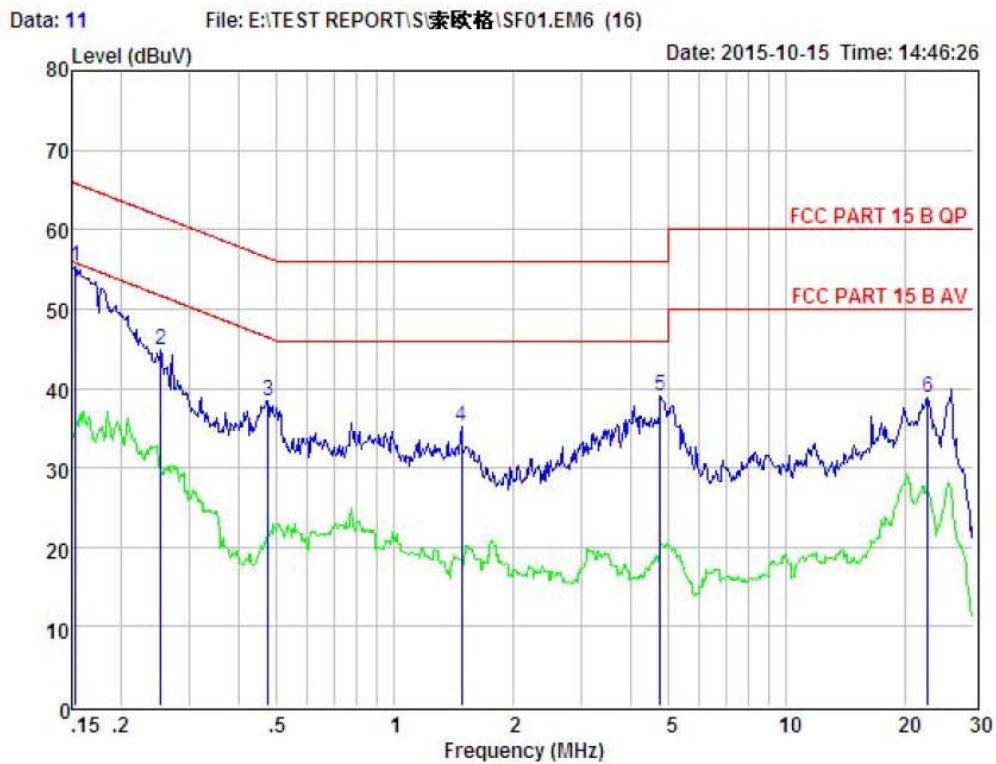
Notes: 1. * Decreasing linearly with logarithm of frequency.


2. The lower limit shall apply at the transition frequencies.

10.3. Test Procedure

- (1) The EUT was placed on a non-metallic table, 80cm above the ground plane.
- (2) Setup the EUT and simulator as shown in 10.1
- (3) The EUT Power connected to the power mains through a power adapter and a line impedance stabilization network (L.I.S.N1). The other peripheral devices power cord connected to the power mains through a line impedance stabilization network (L.I.S.N1), this provided a 50-ohm coupling impedance for the EUT (Please refer to the block diagram of the test setup and photographs). Both sides of power line were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.4 2013 and ANSI C64.10:2009 on conducted Emission test.
- (4) The bandwidth of test receiver is set at 10KHz.
- (5) The frequency range from 150 KHz to 30MHz is checked.

10.4. Test Result


PASS. (See below detailed test data)

Condition : FCC PART 15 B QP POL: LINE Temp: 25.7 °C Hum: 51 %
 EUT :
 Model No : SF01
 Test Mode : GSM
 Power : AC 120V/60Hz
 Test Engineer:
 Remark :

Item	Freq	Read	LISN			Level	Limit	Margin	Remark
			Factor	Factor	Cable				
	MHz	dBuV	dB	dB	Loss	dBuV	dBuV	dBuV	
1	0.153	45.62	0.03	-9.52	0.10	55.27	65.82	-10.55	Peak
2	0.476	28.78	0.03	-9.58	0.10	38.49	56.41	-17.92	Peak
3	0.776	25.94	0.00	-9.60	0.10	35.64	56.00	-20.36	Peak
4	4.054	27.70	0.08	-9.88	0.12	37.78	56.00	-18.22	Peak
5	4.781	28.90	0.10	-9.91	0.12	39.03	56.00	-16.97	Peak
6	26.431	29.01	0.46	-9.83	0.53	39.83	60.00	-20.17	Peak

Remarks: Level = Read + LISN Factor - Preamp Factor + Cable loss

Item	Freq	Read	LISN	Preamp	Cable	Level	Limit	Margin	Remark
			Factor	Factor	Loss	dBuV	dBuV	dBuV	
	MHz	dBuV	dB	dB	dB				
1	0.153	45.62	0.03	-9.52	0.10	55.27	65.82	-10.55	Peak
2	0.253	35.12	0.03	-9.56	0.10	44.81	61.64	-16.83	Peak
3	0.476	28.78	0.03	-9.58	0.10	38.49	56.41	-17.92	Peak
4	1.480	25.36	0.05	-9.68	0.10	35.19	56.00	-20.81	Peak
5	4.772	28.90	0.10	-9.91	0.12	39.03	56.00	-16.97	Peak
6	22.896	28.13	0.42	-9.81	0.43	38.79	60.00	-21.21	Peak

Remarks: Level = Read + LISN Factor - Preamp Factor + Cable loss

-----END OF THE REPORT-----