



# TEST REPORT

**Test Report No. : UL-RPT-RP-12654480-116- FCC**

**Applicant** : Playbrush Ltd.

**Model No.** : A116

**FCC ID** : 2AF47A116

**Technology** : Bluetooth – Low Energy

**Test Standard(s)** : FCC Parts 15.207, 15.209(a) & 15.247

For details of applied tests refer to test result summary

1. This test report shall not be reproduced in full or partial, without the written approval of UL International Germany GmbH.
2. The results in this report apply only to the sample tested.
3. The test results in this report are traceable to the national or international standards.
4. Test Report Version 1.0
5. Result of the tested sample: **PASS**

Prepared by: Abdoufataou, Salifou  
Title: Laboratory Engineer  
Date: 11.April.2019

Approved by: Ajit, Phadtare  
Title: Lead Test Engineer  
Date: 11.April.2019



Deutsche  
Akkreditierungsstelle  
D-PL-19381-02-00

This laboratory is accredited by DAkkS.  
The tests reported herein have been performed in  
accordance with its' terms of accreditation.

**UL INTERNATIONAL GERMANY GMBH**

Hedelfinger Str. 61  
70327 Stuttgart, Germany  
STU.CTECHLab@ul.com

This page has been left intentionally blank.

## **Table of Contents**

|                                                                    |           |
|--------------------------------------------------------------------|-----------|
| <b>1. Customer Information.....</b>                                | <b>4</b>  |
| 1.1.Applicant Information                                          | 4         |
| 1.2.Manufacturer Information                                       | 4         |
| <b>2. Summary of Testing.....</b>                                  | <b>5</b>  |
| 2.1. General Information                                           | 5         |
| Applied Standards                                                  | 5         |
| Location                                                           | 5         |
| Date information                                                   | 5         |
| 2.2. Summary of Test Results                                       | 6         |
| 2.3. Methods and Procedures                                        | 6         |
| 2.4. Deviations from the Test Specification                        | 6         |
| <b>3. Equipment Under Test (EUT) .....</b>                         | <b>7</b>  |
| 3.1. Identification of Equipment Under Test (EUT)                  | 7         |
| 3.2. Description of EUT                                            | 7         |
| 3.3. Modifications Incorporated in the EUT                         | 7         |
| 3.4. Additional Information Related to Testing                     | 8         |
| 3.5. Support Equipment                                             | 8         |
| A. Support Equipment (In-house)                                    | 8         |
| B. Support Equipment (Manufacturer supplied)                       | 8         |
| <b>4. Operation and Monitoring of the EUT during Testing .....</b> | <b>9</b>  |
| 4.1. Operating Modes                                               | 9         |
| 4.2. Configuration and Peripherals                                 | 9         |
| <b>5. Measurements, Examinations and Derived Results .....</b>     | <b>10</b> |
| 5.1. General Comments                                              | 10        |
| 5.2. Test Results                                                  | 11        |
| 5.2.1. Transmitter AC Conducted Spurious Emissions                 | 11        |
| 5.2.2. Transmitter Minimum 6 dB Bandwidth                          | 15        |
| 5.2.3. Transmitter Duty Cycle                                      | 17        |
| 5.2.4. Transmitter Maximum Peak Output Power                       | 19        |
| 5.2.5. Transmitter Radiated Emissions                              | 22        |
| 5.2.6. Transmitter Band Edge Radiated Emissions                    | 29        |
| <b>6. Measurement Uncertainty .....</b>                            | <b>33</b> |
| <b>7. Used equipment.....</b>                                      | <b>34</b> |
| <b>8. Report Revision History .....</b>                            | <b>36</b> |

## **1. Customer Information**

### **1.1.Applicant Information**

|                                |                                                            |
|--------------------------------|------------------------------------------------------------|
| <b>Company Name:</b>           | Playbrush Ltd.                                             |
| <b>Company Address:</b>        | 68 Edith Villas, West Kensington Court, W14 9AB London, UK |
| <b>Company Phone No.:</b>      | --                                                         |
| <b>Company E-Mail:</b>         | --                                                         |
| <b>Contact Person:</b>         | Patrick Diem                                               |
| <b>Contact E-Mail Address:</b> | patrick@playbrush.com                                      |
| <b>Contact Phone No.:</b>      | +43 6769243820                                             |

### **1.2.Manufacturer Information**

|                                |                                                  |
|--------------------------------|--------------------------------------------------|
| <b>Company Name:</b>           | Trisa AG                                         |
| <b>Company Address:</b>        | Kantonsstrasse 31, CH-6234 Triengen, SWITZERLAND |
| <b>Company Phone No.:</b>      | +41 41 935 3475                                  |
| <b>Company E-Mail:</b>         | info@trisa.ch                                    |
| <b>Contact Person:</b>         | Martin Neubauer                                  |
| <b>Contact E-Mail Address:</b> | Martin.neubauer@trisa.ch                         |
| <b>Contact Phone No.:</b>      | +41 41 935 3475                                  |

## **2. Summary of Testing**

### **2.1. General Information**

#### **Applied Standards**

|                                 |                                                                                                                                       |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| <b>Specification Reference:</b> | 47CFR15.247                                                                                                                           |
| <b>Specification Title:</b>     | Code of Federal Regulations Volume 47 (Telecommunications):<br>Part 15 Subpart C (Intentional Radiators) - Section 15.247             |
| <b>Specification Reference:</b> | 47CFR15.207 and 47CFR15.209                                                                                                           |
| <b>Specification Title:</b>     | Code of Federal Regulations Volume 47 (Telecommunications):<br>Part 15 Subpart C (Intentional Radiators) - Sections 15.207 and 15.209 |
| <b>Test Firm Registration:</b>  | 399704                                                                                                                                |

#### **Location**

|                             |                                                                                    |
|-----------------------------|------------------------------------------------------------------------------------|
| <b>Location of Testing:</b> | UL International Germany GmbH<br>Hedelfinger Str. 61<br>70327 Stuttgart<br>Germany |
|-----------------------------|------------------------------------------------------------------------------------|

#### **Date information**

|                      |                                      |
|----------------------|--------------------------------------|
| <b>Order Date:</b>   | 14 December 2018                     |
| <b>EUT arrived:</b>  | 5 February 2019 & 21 February 2019   |
| <b>Test Dates:</b>   | 19 February 2019 to 22 February 2019 |
| <b>EUT returned:</b> | -/-                                  |

## **2.2. Summary of Test Results**

| Clause                   | Measurement                                     | Complied                            | Did not comply           | Not performed                       | Not applicable           |
|--------------------------|-------------------------------------------------|-------------------------------------|--------------------------|-------------------------------------|--------------------------|
| Part 15.207              | Transmitter AC Conducted Emissions              | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/>            | <input type="checkbox"/> |
| Part 15.247(a)(2)        | Transmitter Minimum 6 dB Bandwidth              | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/>            | <input type="checkbox"/> |
| Part 15.35(c)            | Transmitter Duty Cycle                          | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/>            | <input type="checkbox"/> |
| Part 15.247(e)           | Transmitter Power Spectral Density <sup>1</sup> | <input type="checkbox"/>            | <input type="checkbox"/> | <input checked="" type="checkbox"/> | <input type="checkbox"/> |
| Part 15.247(b)(3)        | Transmitter Maximum Peak Output Power           | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/>            | <input type="checkbox"/> |
| Part 15.247(d)/15.209(a) | Transmitter Radiated Emissions                  | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/>            | <input type="checkbox"/> |
| Part 15.247(d)/15.209(a) | Transmitter Band Edge Radiated Emissions        | <input checked="" type="checkbox"/> | <input type="checkbox"/> | <input type="checkbox"/>            | <input type="checkbox"/> |

**Note:**

1. In accordance with FCC KDB 558074 refering ANSI C63.10 Section 11.10.1, PSD is not required if the maximum conducted output power is less than the PSD limit of 8 dBm / 3 kHz. The PSD level is therefore deemed to be equal to the measured total output power.

## **2.3. Methods and Procedures**

|                   |                                                                                                                                |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------|
| <b>Reference:</b> | ANSI C63.10-2013                                                                                                               |
| <b>Title:</b>     | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices                                 |
| <b>Reference:</b> | KDB 558074 D01 DTS Meas Guidance v05r01 February11, 2019                                                                       |
| <b>Title:</b>     | Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 of the FCC rules |
| <b>Reference:</b> | KDB 174176 D01 Line Conducted FAQ v01r01 June 3, 2015                                                                          |
| <b>Title:</b>     | AC Power-Line Conducted Emissions Frequently Asked Questions                                                                   |

## **2.4. Deviations from the Test Specification**

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

### **3. Equipment Under Test (EUT)**

#### **3.1. Identification of Equipment Under Test (EUT)**

|                                   |                       |
|-----------------------------------|-----------------------|
| <b>Brand Name:</b>                | Playbrush             |
| <b>Model Name or Number:</b>      | A116                  |
| <b>Test Sample Serial Number:</b> | Conducted Test Sample |
| <b>Hardware Version Number:</b>   | 1.4x                  |
| <b>Firmware Version Number:</b>   | 1.04                  |
| <b>FCC ID:</b>                    | 2AF47A116             |

|                                   |                      |
|-----------------------------------|----------------------|
| <b>Brand Name:</b>                | Playbrush            |
| <b>Model Name or Number:</b>      | A116                 |
| <b>Test Sample Serial Number:</b> | Radiated Test Sample |
| <b>Hardware Version Number:</b>   | 1.4x                 |
| <b>Firmware Version Number:</b>   | 1.04                 |
| <b>FCC ID:</b>                    | 2AF47A116            |

#### **3.2. Description of EUT**

The equipment under test was a Powered toothbrush for kids with Bluetooth Low Energy functionality.

#### **3.3. Modifications Incorporated in the EUT**

No modifications were applied to the EUT during testing.

### **3.4. Additional Information Related to Testing**

|                                                 |                                                      |                         |                                |  |  |
|-------------------------------------------------|------------------------------------------------------|-------------------------|--------------------------------|--|--|
| <b>Technology Tested:</b>                       | Bluetooth Low Energy (Digital Transmission System)   |                         |                                |  |  |
| <b>Type of Unit:</b>                            | Transceiver                                          |                         |                                |  |  |
| <b>Channel Spacing:</b>                         | 2 MHz                                                |                         |                                |  |  |
| <b>Modulation:</b>                              | GFSK                                                 |                         |                                |  |  |
| <b>Data Rate:</b>                               | 1 Mbps                                               |                         |                                |  |  |
| <b>Power Supply Requirement(s):</b>             | Nominal                                              | 1.2 V NiMH battery      |                                |  |  |
| <b>Power Supply Type(s):</b>                    | Internal Rechargeable Battery via WPT AC /DC Charger |                         |                                |  |  |
| <b>Internal Rechargeable Battery Detail(s):</b> | 1.2 V NiMH battery                                   |                         |                                |  |  |
| <b>WPT AC /DC Charger Detail(s):</b>            | TRT   Type:4680   100-240 V/50-60Hz 0.9W             |                         |                                |  |  |
| <b>Maximum Conducted Output Power:</b>          | -1.8 dBm                                             |                         |                                |  |  |
| <b>Antenna Gain:</b>                            | 0.0 dBi                                              |                         |                                |  |  |
| <b>Antenna Type:</b>                            | PCB antenna                                          |                         |                                |  |  |
| <b>Antenna Details:</b>                         | PCB whip antenna                                     |                         |                                |  |  |
| <b>Transmit Frequency Range:</b>                | 2402 MHz to 2480 MHz                                 |                         |                                |  |  |
| <b>Transmit Channels Tested:</b>                | <b>Channel ID</b>                                    | <b>RF Channel Index</b> | <b>Channel Frequency (MHz)</b> |  |  |
|                                                 | Bottom                                               | 0                       | 2402                           |  |  |
|                                                 | Middle                                               | 19                      | 2440                           |  |  |
|                                                 | Top                                                  | 39                      | 2480                           |  |  |

### **3.5. Support Equipment**

The following support equipment was used to exercise the EUT during testing:

#### **A. Support Equipment (In-house)**

| Item | Description | Brand Name | Model Name or Number | Serial Number |
|------|-------------|------------|----------------------|---------------|
| 1    | --          | --         | --                   | --            |

#### **B. Support Equipment (Manufacturer supplied)**

| Item | Description                  | Brand Name | Model Name or Number                | Serial Number |
|------|------------------------------|------------|-------------------------------------|---------------|
| 1    | Wireless (WPT) AC/DC Charger | TRT        | Type:4680<br>100-240 V/50-60Hz 0.9W | Not Stated    |

## **4. Operation and Monitoring of the EUT during Testing**

### **4.1.Operating Modes**

The EUT was tested in the following operating mode(s):

- Transmitting at maximum power in *Bluetooth* LE mode with modulation, maximum possible data length available and Pseudorandom Bit Sequence 9.

### **4.2.Configuration and Peripherals**

The EUT was tested in the following configuration(s):

- The customer supplied a document containing the setup instructions "PBe- DUT description UL 2019 Feb.pdf".
- All tests were performed with fully charged internal battery.
- Following test modes were activated during testing; by pressing the Play button on the device.
  - mode 4 (indicated with blue LED): Tx on channel 0 (PRBS9)
  - mode 5 (indicated with turquoise LED): Tx on channel 19 (PRBS9)
  - mode 6 (indicated with yellow LED): Tx on channel 39 (PRBS9)
- The EUT was transmitting with 100% duty cycle therefore no duty cycle correction was required.
- The EUT conducted sample was used for 6 dB bandwidth, 99% emission bandwidth, power spectral density and maximum peak output power.
- The EUT radiated sample was used for AC conducted emissions and radiated spurious emissions tests.
- EMC32 V10.1.0 Software was used for the Radiated spurious emission measurement.
- AC conducted emissions tests was performed with empty battery charging mode by placing tooth brush on it's wireless (WPT) charger.

## **5. Measurements, Examinations and Derived Results**

### **5.1. General Comments**

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to Section 6 *Measurement Uncertainty* for details.

In accordance with DAkkS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

## **5.2. Test Results**

### **5.2.1. Transmitter AC Conducted Spurious Emissions**

#### **Test Summary:**

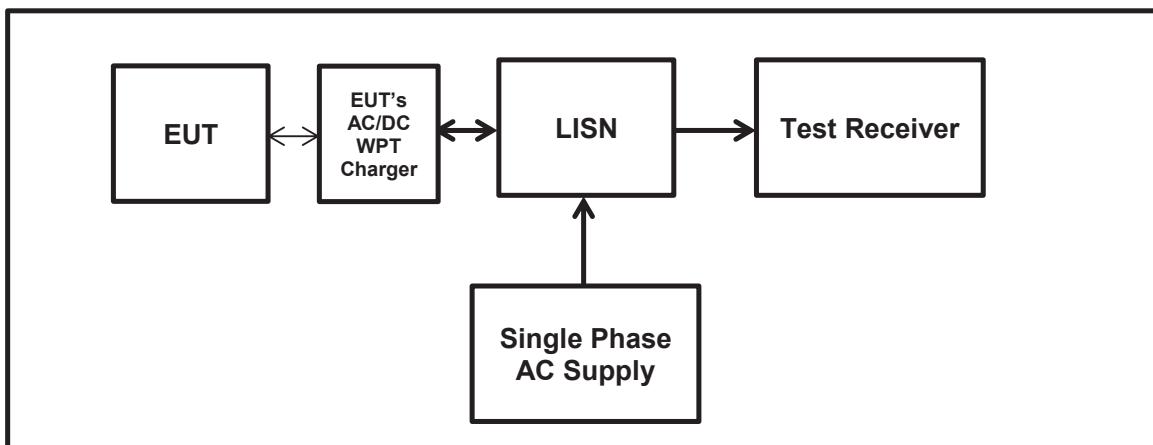
|                                   |                      |                   |                  |
|-----------------------------------|----------------------|-------------------|------------------|
| <b>Test Engineer:</b>             | Asim Shahzad         | <b>Test Date:</b> | 21 February 2019 |
| <b>Test Sample Serial Number:</b> | Radiated Test Sample |                   |                  |
| <b>Test Site Identification</b>   | SR 7/8               |                   |                  |

|                     |                                                          |
|---------------------|----------------------------------------------------------|
| <b>Clause:</b>      | Part 15.207                                              |
| <b>Test Method:</b> | ANSI C63.10 Section 6.2 / FCC KDB 174176 and notes below |

#### **Environmental Conditions:**

|                               |    |
|-------------------------------|----|
| <b>Temperature (°C):</b>      | 20 |
| <b>Relative Humidity (%):</b> | 31 |

#### **Settings of the Instrument**


|                 |                          |
|-----------------|--------------------------|
| <b>Detector</b> | Quasi Peak/ Average Peak |
|-----------------|--------------------------|

#### **Note(s):**

1. The EUT was plugged onto a wireless (WPT) AC/DC charger. The AC charger was connected to 120 VAC 60 Hz single phase supply via a LISN.
2. The final measured value, for the given emission, in the table below incorporates the cable loss.
3. All other emissions shown on the pre-scan plot were investigated and found to be ambient or >20 dB below the applicable limit or below the measurement system noise floor.
4. Measurements were performed in shielded room (SR7/ 8 Asset Number 1603671). The EUT was placed at a height of 80 cm above the reference ground plane and in a distance of 40 cm from the vertical ground plane at the edge of the table.
5. The EUT was operating in mode 4 (indicated with blue LED): Tx on channel 0 (PRBS9).

**Transmitter AC Conducted Spurious Emissions (continued)**

**Test setup :**



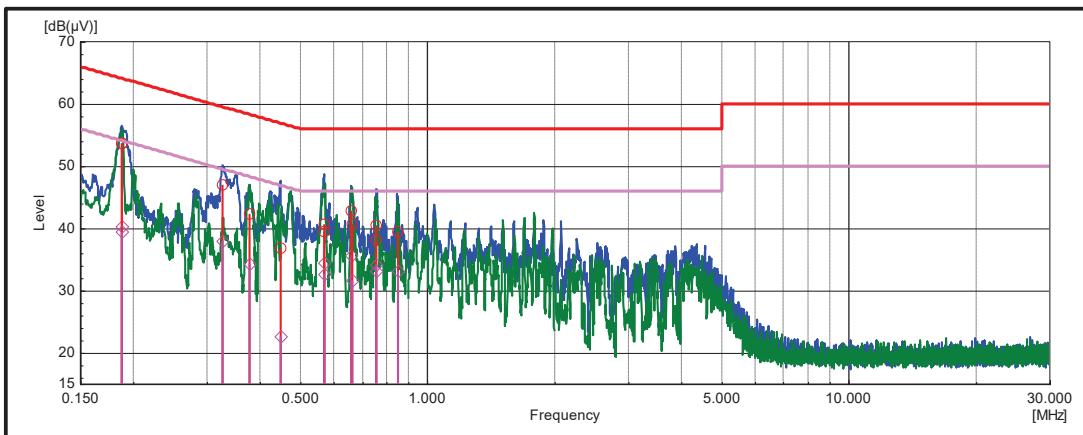
**Results: Live / Quasi Peak (QP) Detector / 120 VAC 60 Hz**

| Frequency (MHz) | Line | QP Level (dB $\mu$ V) | QP Limit (dB $\mu$ V) | QP Margin (dB) | Result   |
|-----------------|------|-----------------------|-----------------------|----------------|----------|
| 0.18858         | Live | 53.6                  | 64.1                  | 10.5           | Complied |
| 0.37745         | Live | 42.4                  | 58.3                  | 15.9           | Complied |
| 0.56834         | Live | 39.5                  | 56.0                  | 16.5           | Complied |
| 0.66152         | Live | 40.6                  | 56.0                  | 15.4           | Complied |
| 0.75471         | Live | 40.5                  | 56.0                  | 15.5           | Complied |
| 0.84890         | Live | 39.5                  | 56.0                  | 16.5           | Complied |

**Results: Live / Average (AV) Detector / 120 VAC 60 Hz**

| Frequency (MHz) | Line | AV Level (dB $\mu$ V) | AV Limit (dB $\mu$ V) | AV Margin (dB) | Result   |
|-----------------|------|-----------------------|-----------------------|----------------|----------|
| 0.18858         | Live | 39.4                  | 54.1                  | 14.7           | Complied |
| 0.37745         | Live | 34.4                  | 48.3                  | 13.9           | Complied |
| 0.56834         | Live | 32.6                  | 46.0                  | 13.4           | Complied |
| 0.66152         | Live | 31.7                  | 46.0                  | 14.3           | Complied |
| 0.75471         | Live | 34.2                  | 46.0                  | 11.8           | Complied |
| 0.84890         | Live | 33.1                  | 46.0                  | 12.9           | Complied |

**Results: Neutral / Quasi Peak (QP) Detector / 120 VAC 60 Hz**


| Frequency (MHz) | Line    | QP Level (dB $\mu$ V) | QP Limit (dB $\mu$ V) | QP Margin (dB) | Result   |
|-----------------|---------|-----------------------|-----------------------|----------------|----------|
| 0.18808         | Neutral | 53.7                  | 64.1                  | 10.4           | Complied |
| 0.32685         | Neutral | 47                    | 59.5                  | 12.5           | Complied |
| 0.44709         | Neutral | 36.8                  | 56.9                  | 20.1           | Complied |
| 0.56834         | Neutral | 40.6                  | 56.0                  | 15.4           | Complied |
| 0.65952         | Neutral | 42.8                  | 56.0                  | 13.2           | Complied |
| 0.75671         | Neutral | 38.2                  | 56.0                  | 17.8           | Complied |

**Results: Neutral / Average (AV) Detector / 120 VAC 60 Hz**

| Frequency (MHz) | Line    | AV Level (dB $\mu$ V) | AV Limit (dB $\mu$ V) | AV Margin (dB) | Result   |
|-----------------|---------|-----------------------|-----------------------|----------------|----------|
| 0.18808         | Neutral | 40.3                  | 54.1                  | 13.8           | Complied |
| 0.32685         | Neutral | 38                    | 49.5                  | 11.5           | Complied |
| 0.44709         | Neutral | 22.7                  | 46.9                  | 24.2           | Complied |
| 0.56834         | Neutral | 34.5                  | 46.0                  | 11.5           | Complied |
| 0.65952         | Neutral | 35.7                  | 46.0                  | 10.3           | Complied |
| 0.75671         | Neutral | 33.2                  | 46.0                  | 12.8           | Complied |

**Result: Pass**

**Plot: Live and Neutral Line**



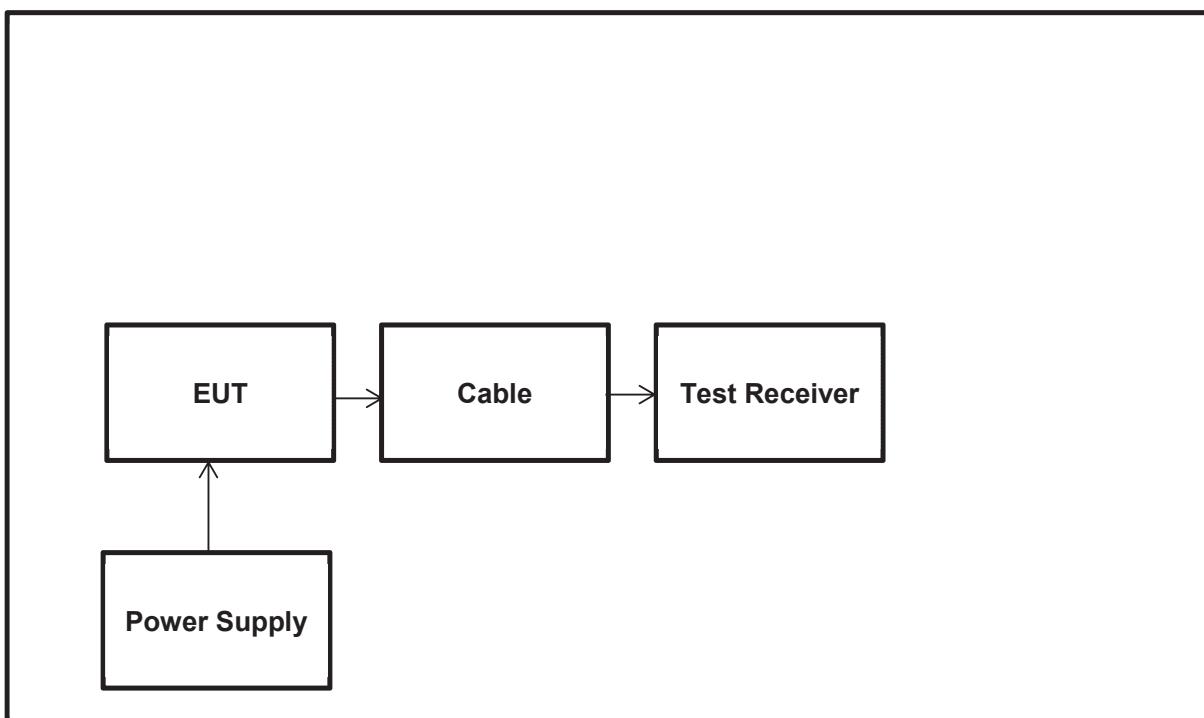
*Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.*

### **5.2.2. Transmitter Minimum 6 dB Bandwidth**

#### **Test Summary:**

|                                   |                       |                   |                  |
|-----------------------------------|-----------------------|-------------------|------------------|
| <b>Test Engineer:</b>             | Abdoufataou Salifou   | <b>Test Date:</b> | 22 February 2019 |
| <b>Test Sample Serial Number:</b> | Conducted Test Sample |                   |                  |
| <b>Test Site Identification</b>   | SR 9                  |                   |                  |

|                          |                                                                                  |
|--------------------------|----------------------------------------------------------------------------------|
| <b>FCC Reference:</b>    | Part 15.247(a)(2)                                                                |
| <b>Test Method Used:</b> | FCC KDB 558074 Section 8.2 referring<br>ANSI C63.10:2013 Section 11.8.1 Option 1 |


#### **Environmental Conditions:**

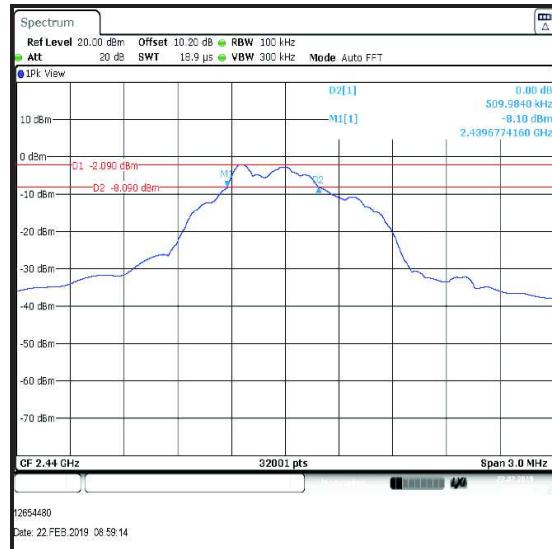
|                               |      |
|-------------------------------|------|
| <b>Temperature (°C):</b>      | 21.9 |
| <b>Relative Humidity (%):</b> | 30   |

#### **Notes:**

1. 6 dB DTS bandwidth tests were performed using a spectrum analyser in accordance with FCC KDB 558074 Section 8.2 referring ANSI C63.10 Section 11.8 (11.8.1 Option 1 measurement procedure). The spectrum analyser resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The DTS bandwidth was measured at 6 dB down from the peak of the signal.
2. The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values takes into consideration the external attenuation correction factors. The RF cable attenuation (maximum 0.4 dB@2.4GHz) from the EUT to Analyzer including the 10 dB attenuation at the Spectrum Analyzer input was added as a reference level offset (10.4 dB) to each of the conducted plots.

#### **Test Setup:**




**Transmitter Minimum 6 dB Bandwidth (continued)**

**Results:**

| Test Channel | 6 dB Bandwidth (kHz) | Limit (kHz) | Margin (kHz) | Result   |
|--------------|----------------------|-------------|--------------|----------|
| Bottom       | 509.140              | ≥500        | 9.140        | Complied |
| Middle       | 509.984              | ≥500        | 9.984        | Complied |
| Top          | 513.640              | ≥500        | 13.640       | Complied |



**Bottom Channel**



**Middle Channel**



**Top Channel**

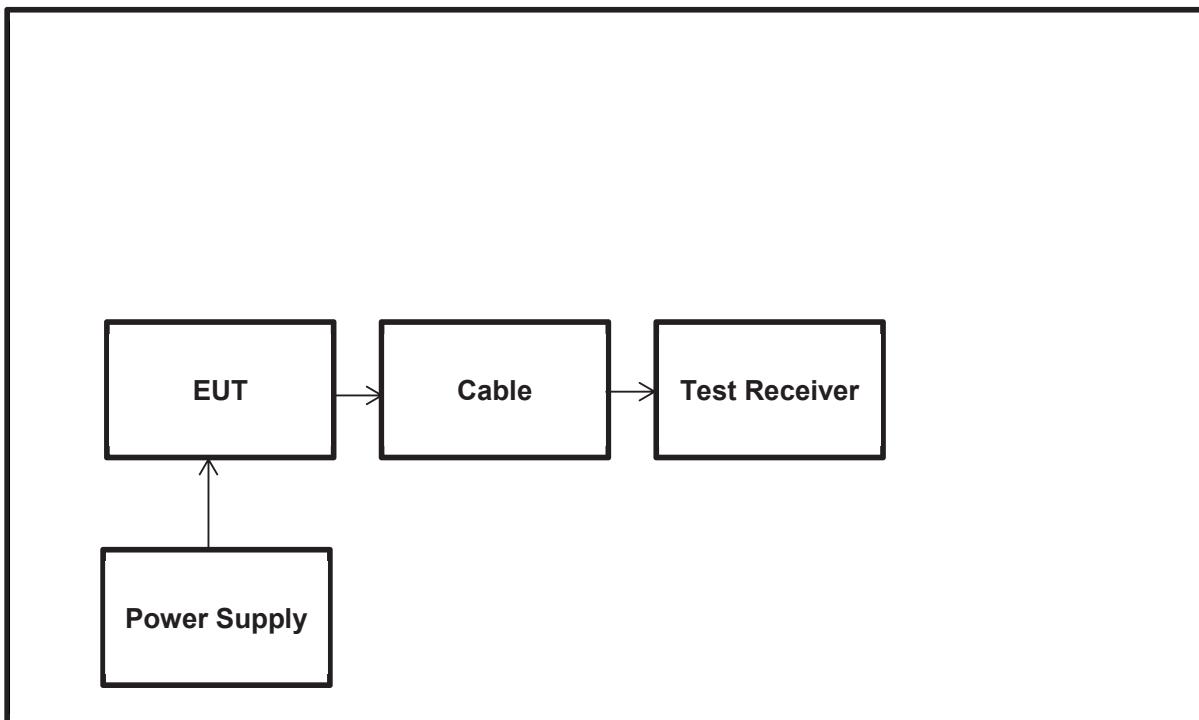
**Result: Pass**

### **5.2.3. Transmitter Duty Cycle**

#### **Test Summary:**

|                                   |                       |                   |                  |
|-----------------------------------|-----------------------|-------------------|------------------|
| <b>Test Engineer:</b>             | Abdoufataou Salifou   | <b>Test Date:</b> | 22 February 2019 |
| <b>Test Sample Serial Number:</b> | Conducted Test Sample |                   |                  |
| <b>Test Site Identification</b>   | SR 9                  |                   |                  |

|                          |                            |
|--------------------------|----------------------------|
| <b>FCC Reference:</b>    | Part 15.35(c)              |
| <b>Test Method Used:</b> | FCC KDB 558074 Section 6.0 |


#### **Environmental Conditions:**

|                               |      |
|-------------------------------|------|
| <b>Temperature (°C):</b>      | 22.8 |
| <b>Relative Humidity (%):</b> | 26   |

#### **Note:**

The transmitter duty cycle was observed several times & measured using a spectrum analyser in the time domain. It was found that EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to 98 %). As the EUT was transmitting with 100% duty cycle therefore no duty cycle correction was required.

#### **Test Setup:**



### Transmitter Duty Cycle (continued)

#### Results:

| Pulse Duration<br>( $\mu$ s) | Period<br>( $\mu$ s) | Duty Cycle Correction<br>(dB) |
|------------------------------|----------------------|-------------------------------|
| --                           | --                   | Not Applicable (Refer Note)   |

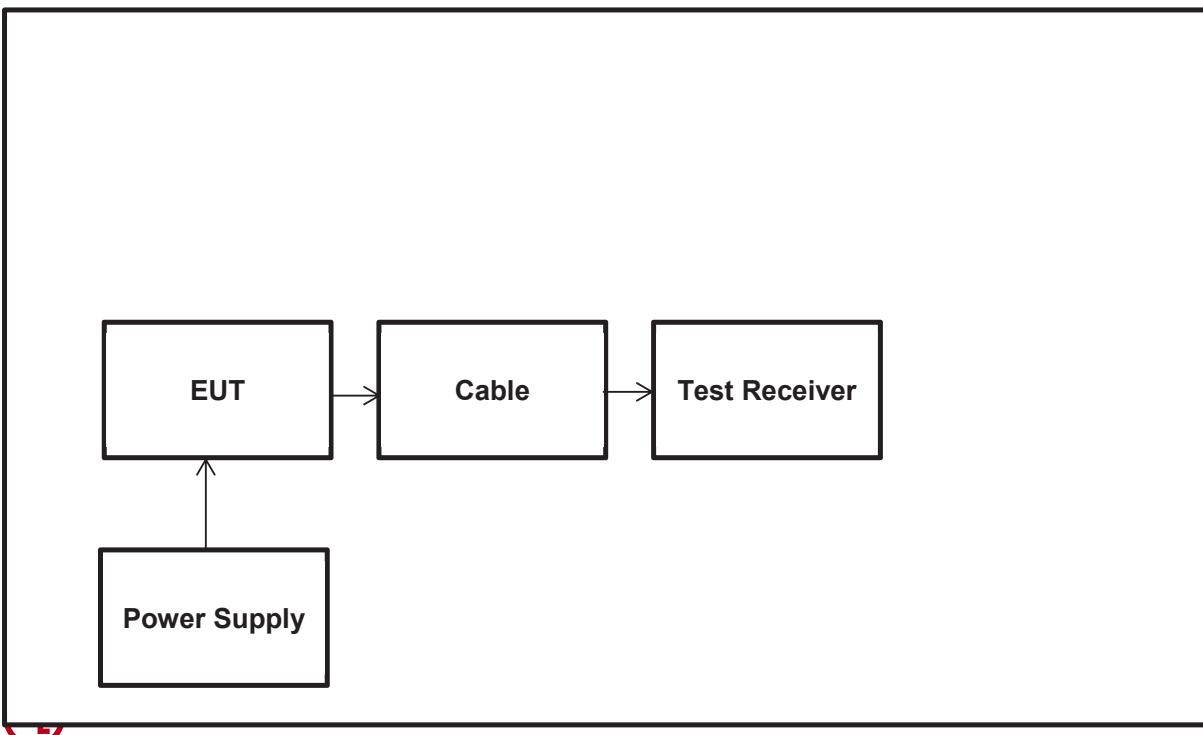


### **5.2.4. Transmitter Maximum Peak Output Power**

#### **Test Summary:**

|                                   |                       |                   |                  |
|-----------------------------------|-----------------------|-------------------|------------------|
| <b>Test Engineer:</b>             | Abdoufataou Salifou   | <b>Test Date:</b> | 22 February 2019 |
| <b>Test Sample Serial Number:</b> | Conducted Test Sample |                   |                  |
| <b>Test Site Identification</b>   | SR 9                  |                   |                  |

|                          |                                                                          |
|--------------------------|--------------------------------------------------------------------------|
| <b>FCC Reference:</b>    | Part 15.247(b)(3)                                                        |
| <b>Test Method Used:</b> | FCC KDB 558074 Section 8.3.1.1<br>referring ANSI C63.10 Section 11.9.1.1 |

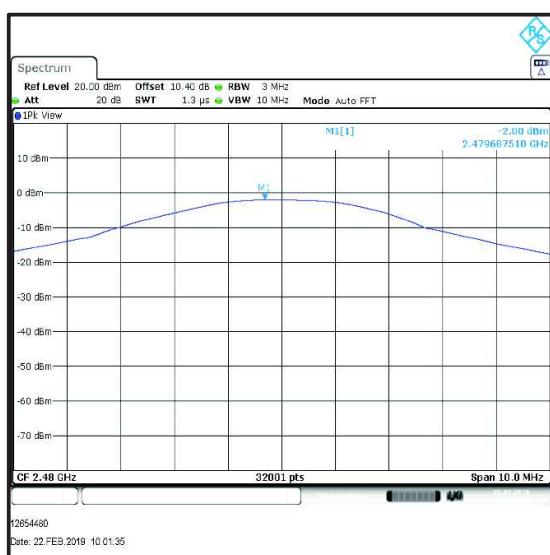
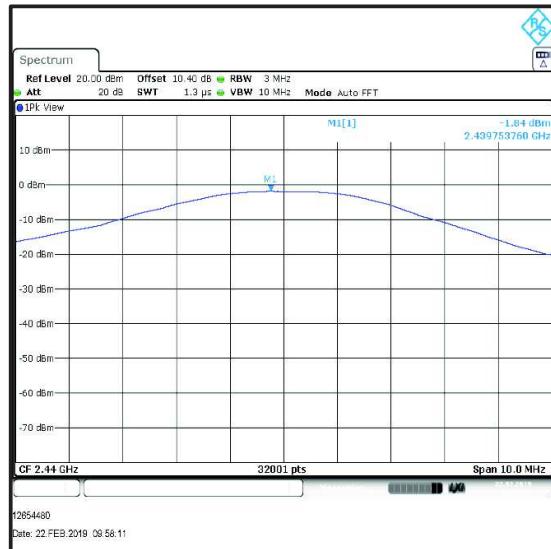
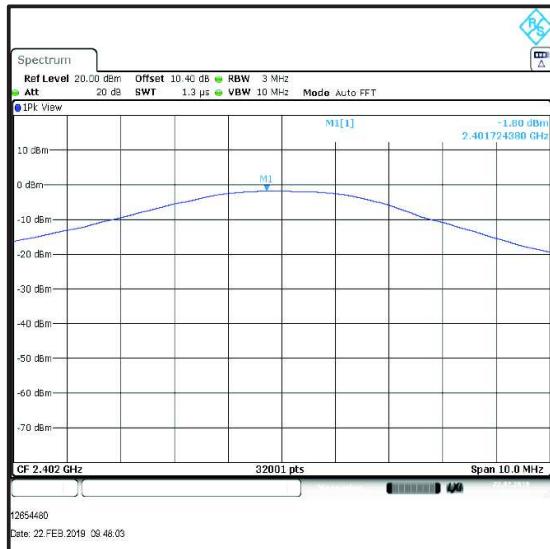

#### **Environmental Conditions:**

|                               |      |
|-------------------------------|------|
| <b>Temperature (°C):</b>      | 22.1 |
| <b>Relative Humidity (%):</b> | 29   |

#### **Notes:**

1. Conducted power tests were performed using a spectrum analyser in accordance with FCC KDB 558074 Section 8.3.1.1 with the  $RBW \geq DTS \text{ bandwidth}$  referring ANSI C63.10 Section 11.9.1.1.
2. The signal analyser resolution bandwidth was set to 3 MHz and video bandwidth of 10 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 10 MHz. A marker was placed at the peak of the signal and the results recorded in the table below.
3. The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values takes into consideration the external attenuation correction factors. The RF cable attenuation (maximum 0.4 dB@2.4GHz) from the EUT to Analyzer including the 10 dB attenuation at the Spectrum Analyzer input was added as a reference level offset (10.4 dB) to each of the conducted plots.
4. The EUT was transmitting with 100% duty cycle.
5. The declared antenna gain was added to conducted power to obtain the EIRP.

#### **Test setup:**


**Transmitter Maximum Peak Output Power (continued)****Results:**

| Test Channel | Conducted Peak Power (dBm) | Conducted Peak Power Limit (dBm) | Margin (dB) | Result   |
|--------------|----------------------------|----------------------------------|-------------|----------|
| Bottom       | -1.8                       | 30.0                             | 31.8        | Complied |
| Middle       | -1.8                       | 30.0                             | 31.8        | Complied |
| Top          | -2.0                       | 30.0                             | 32.0        | Complied |

| Test Channel | Conducted Peak Power (dBm) | Declared Antenna Gain (dBi) | Peak EIRP (dBm) | De Facto EIRP Limit (dBm) | Margin (dB) | Result   |
|--------------|----------------------------|-----------------------------|-----------------|---------------------------|-------------|----------|
| Bottom       | -1.8                       | 0.0                         | -1.8            | 36.0                      | 37.8        | Complied |
| Middle       | -1.8                       | 0.0                         | -1.8            | 36.0                      | 37.8        | Complied |
| Top          | -2.0                       | 0.0                         | -2.0            | 36.0                      | 38.0        | Complied |

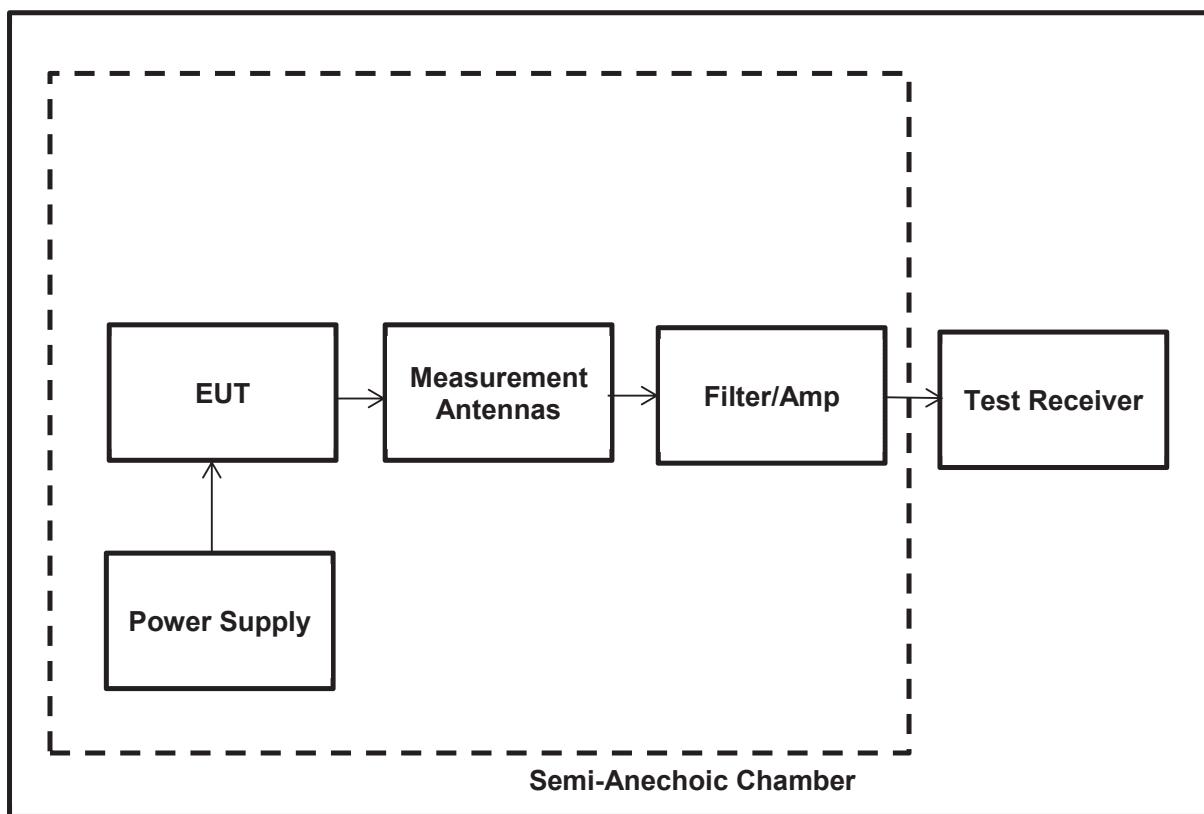
**Result: Pass**

Transmitter Maximum Peak Output Power (continued)

### **5.2.5. Transmitter Radiated Emissions**

#### **Test Summary:**

|                                   |                      |                   |                  |
|-----------------------------------|----------------------|-------------------|------------------|
| <b>Test Engineer:</b>             | Segun Adeniji        | <b>Test Date:</b> | 19 February 2019 |
| <b>Test Sample Serial Number:</b> | Radiated Test Sample |                   |                  |
| <b>Test Site Identification</b>   | SR 1/2               |                   |                  |

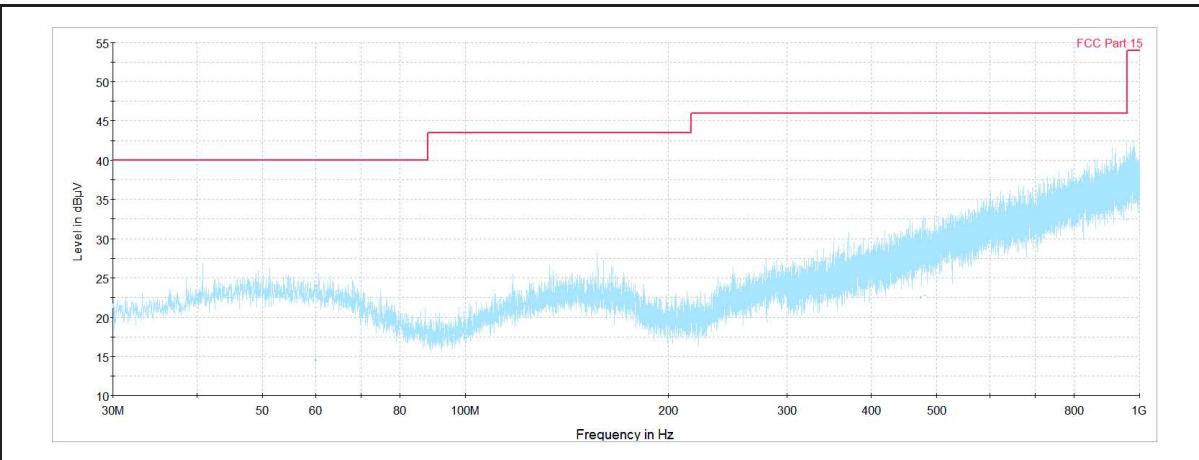

|                          |                                                                                                                              |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------|
| <b>FCC Reference:</b>    | Parts 15.247(d) & 15.209(a)                                                                                                  |
| <b>Test Method Used:</b> | FCC KDB 558074 Sections 8.5 & 8.6<br>referring ANSI C63.10 Sections 11.11 and 11.12<br>ANSI C63.10:2013 Sections 6.3 and 6.5 |
| <b>Frequency Range</b>   | 30 MHz to 1000 MHz                                                                                                           |

#### **Environmental Conditions:**

|                               |    |
|-------------------------------|----|
| <b>Temperature (°C):</b>      | 23 |
| <b>Relative Humidity (%):</b> | 35 |

#### **Note(s):**

1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
2. The preliminary scans showed similar emission levels below 1 GHz, for each channel of operation. Therefore final radiated emissions measurements were performed with the EUT set to the worst case i.e. middle channel only.
3. Measurements below 1 GHz were performed in a semi-anechoic chamber at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
4. Pre-scans were performed and markers placed on the highest measured levels. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold.
5. Final measurements were performed on the marker frequencies and the results entered into the table below. The test receiver resolution bandwidth was set to 120 kHz, using a CISPR quasi-peak detector and span big enough to see the whole emission.
6. The EUT was transmitting with 100% duty cycle.


**Transmitter Radiated Emissions (continued)****Test Setup:**

### **Transmitter Radiated Emissions (continued)**

#### **Results: Middle Channel**

| Frequency (MHz)                | Antenna Polarization | Peak Level (dB $\mu$ V/m) | Limit (dB $\mu$ V/m) | Margin (dB) | Result |
|--------------------------------|----------------------|---------------------------|----------------------|-------------|--------|
| No critical spurious was found |                      |                           |                      |             |        |

**Plot: 30 MHz – 1GHz (Middle channel) with Peak detector**



*Note: This plot is a pre-scan and for indication purposes only. For final measurements, see accompanying table.*

**Result: Pass**

**Test Summary:**

|                                   |                      |                   |                       |
|-----------------------------------|----------------------|-------------------|-----------------------|
| <b>Test Engineer:</b>             | Segun Adeniji        | <b>Test Date:</b> | 19 & 22 February 2019 |
| <b>Test Sample Serial Number:</b> | Radiated Test Sample |                   |                       |
| <b>Test Site Identification</b>   | SR 1/2               |                   |                       |

|                          |                                                                                                                              |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------|
| <b>FCC Reference:</b>    | Parts 15.247(d) & 15.209(a)                                                                                                  |
| <b>Test Method Used:</b> | FCC KDB 558074 Sections 8.5 & 8.6<br>referring ANSI C63.10 Sections 11.10 and 11.12<br>ANSI C63.10:2013 Sections 6.3 and 6.6 |
| <b>Frequency Range</b>   | 1 GHz to 25 GHz                                                                                                              |

**Environmental Conditions:**

|                               |           |
|-------------------------------|-----------|
| <b>Temperature (°C):</b>      | 23 & 22.6 |
| <b>Relative Humidity (%):</b> | 35 & 30   |

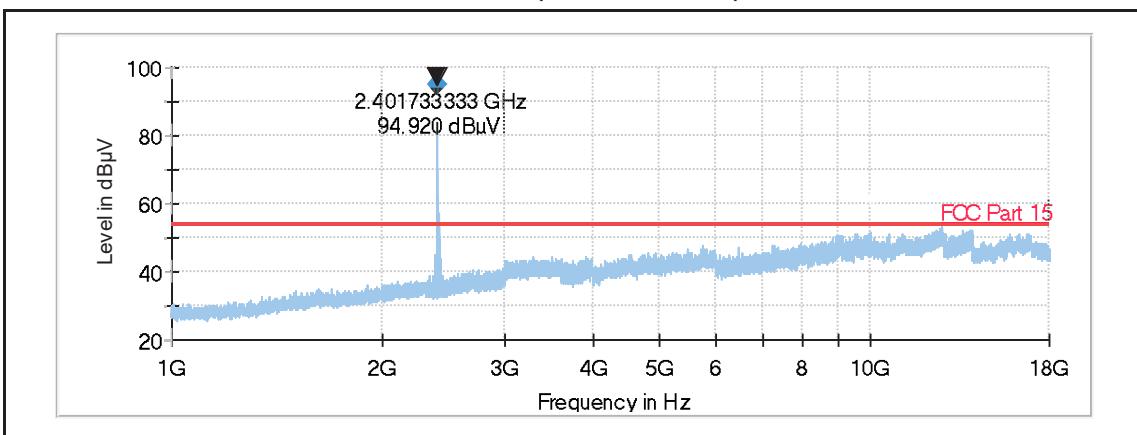
**Notes:**

1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
2. All the spurious emissions detected were re-investigated and re-measured with an average detector and in this case the emission was compared to the peak limit. For frequency range between 18 GHz and 25 GHz, no critical emission was found so only the measurement receiver noise floor level has been measured and recorded in the table. The peak level was compared to the average limit as opposed to being compared to the peak limit because this is the more onerous limit. Only the middle channel plot was included in the report as similar result was obtained on both bottom and top channels.
3. The emission shown around the 2.4 GHz is the EUT fundamental.
4. Measurements above 1 GHz were performed in a semi-anechoic chamber at a distance of 3 metres. The EUT was placed at a height of 1.5 m above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
5. Pre-scans were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto.
6. \*In accordance with ANSI C63.10 Section 6.6.4.3, Note 1, if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.
7. The EUT was transmitting with 100% duty cycle therefore no duty cycle correction was required.

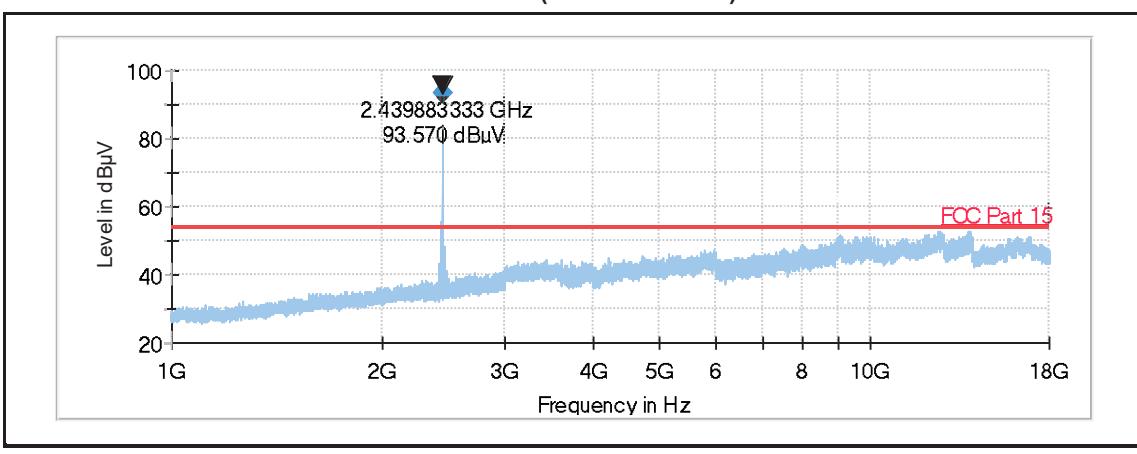
**Transmitter Radiated Emissions (continued)**

**Results: Peak (PK) Detector / Bottom Channel**

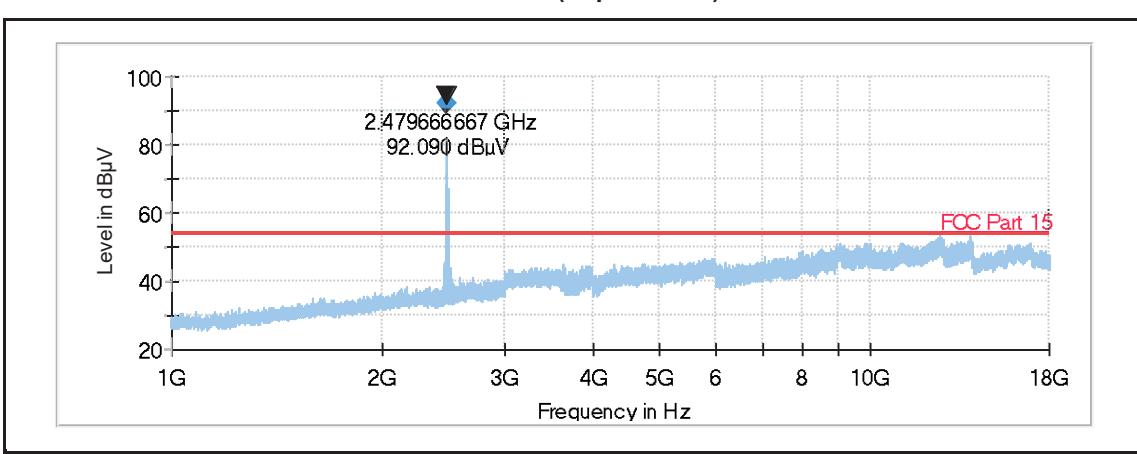
| Frequency (MHz)                | Antenna Polarization | PK Level (dB $\mu$ V/m) | PK Limit (dB $\mu$ V/m) | Margin (dB) | Result |
|--------------------------------|----------------------|-------------------------|-------------------------|-------------|--------|
| No critical spurious was found |                      |                         |                         |             |        |


**Results: Peak (PK) Detector / Middle Channel**

| Frequency (MHz)                | Antenna Polarization | PK Level (dB $\mu$ V/m) | PK Limit (dB $\mu$ V/m) | Margin (dB) | Result |
|--------------------------------|----------------------|-------------------------|-------------------------|-------------|--------|
| No critical spurious was found |                      |                         |                         |             |        |


**Results: Peak (PK) Detector / Top Channel**

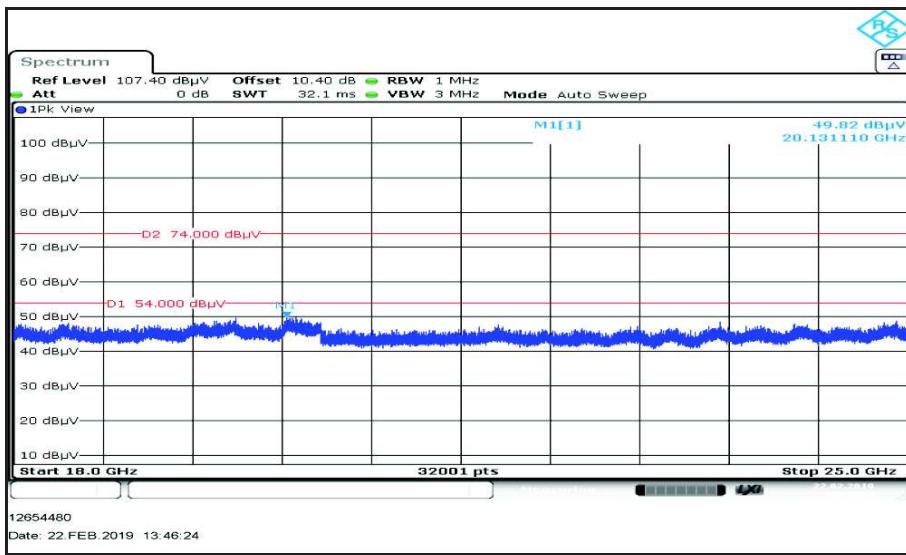
| Frequency (MHz)                | Antenna Polarization | PK Level (dB $\mu$ V/m) | PK Limit (dB $\mu$ V/m) | Margin (dB) | Result |
|--------------------------------|----------------------|-------------------------|-------------------------|-------------|--------|
| No critical spurious was found |                      |                         |                         |             |        |


**Result: Pass**

**Transmitter Radiated Emissions (continued)****Plot: 1 GHz – 18GHz (Bottom channel) with Peak detector**

*Note: This plot is a pre-scan and for indication purposes only. For final measurements, see accompanying table.*

**Plot: 1 GHz – 18GHz (Middle channel) with Peak detector**


*Note: This plot is a pre-scan and for indication purposes only. For final measurements, see accompanying table.*

**Plot: 1 GHz – 18GHz (Top channel) with Peak detector**

*Note: This plot is a pre-scan and for indication purposes only. For final measurements, see accompanying table.*

## Transmitter Radiated Emissions (continued)

Plot: 18 GHz – 25GHz (Middle channel) with Peak detector



*Note: This plot is a pre-scan and for indication purposes only. For final measurements, see accompanying table.*

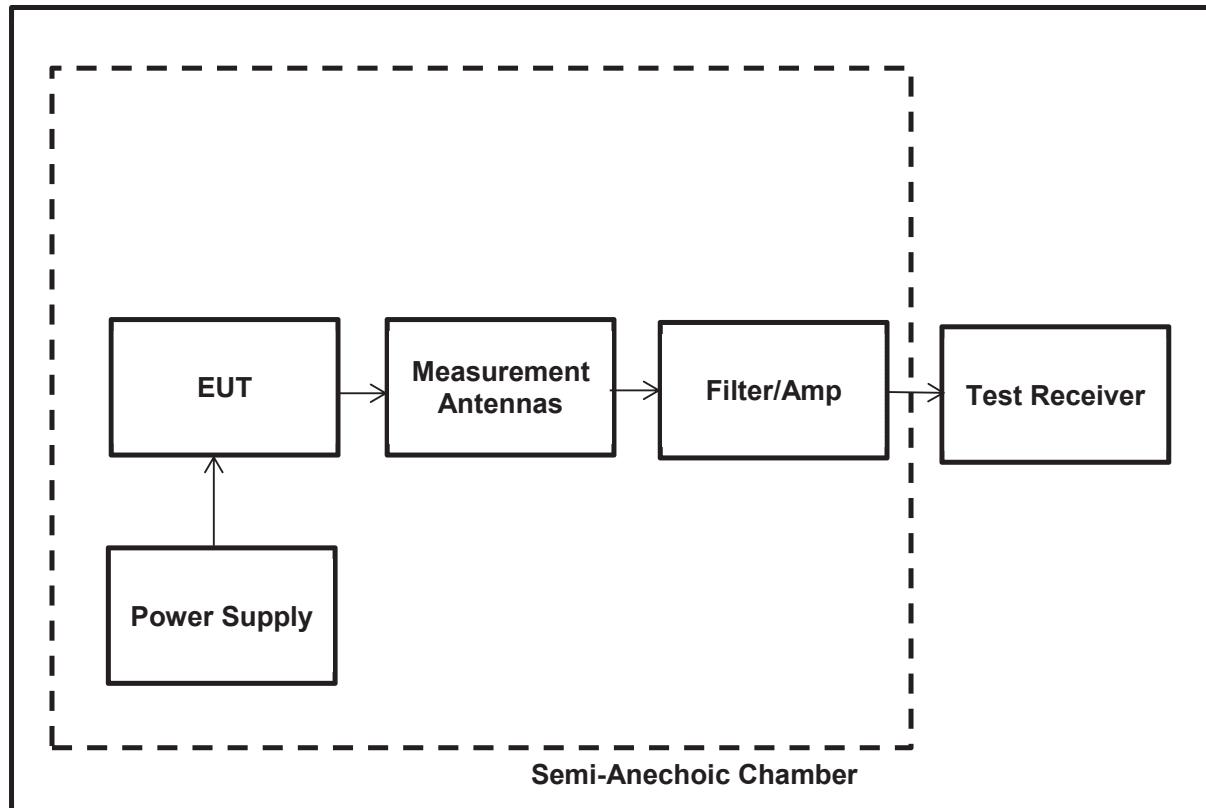
### **5.2.6. Transmitter Band Edge Radiated Emissions**

#### **Test Summary:**

|                                   |                      |                   |                  |
|-----------------------------------|----------------------|-------------------|------------------|
| <b>Test Engineer:</b>             | Segun Adeniji        | <b>Test Date:</b> | 19 February 2019 |
| <b>Test Sample Serial Number:</b> | Radiated Test Sample |                   |                  |
| <b>Test Site Identification</b>   | SR 1/2               |                   |                  |

|                          |                                                                                        |
|--------------------------|----------------------------------------------------------------------------------------|
| <b>FCC Reference:</b>    | Parts 15.247(d) & 15.209(a)                                                            |
| <b>Test Method Used:</b> | FCC KDB 558074 Sections 8.7<br>ANSI C63.10:2013 Section 6.10.4, 6.10.5 & Section 11.11 |

#### **Environmental Conditions:**


|                               |    |
|-------------------------------|----|
| <b>Temperature (°C):</b>      | 23 |
| <b>Relative Humidity (%):</b> | 35 |

#### **Notes:**

1. As the band edges fall within non-restricted bands, only peak measurements are required. In accordance with ANSI C63.10 Section 11.11.1, the test method in Section 11.11.3 was followed: the test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker and corresponding reference level line were placed on the peak of the carrier. As the maximum peak conducted output power was measured using a peak detector in accordance with ANSI C63.10 Section 11.9.1.1 an out-of-band limit line was placed 20 dB below the peak level (ANSI C63.10 Section 11.11.1(a)). A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent non-restricted band of operation (where a higher level emission was present). Marker frequencies and levels were recorded.
2. There is a restricted band 10 MHz below the lower band edge. The test receiver was set up as follows: the RBW set to 1 MHz, the VBW set to 3 MHz, with the sweep time set to auto couple. Peak and average measurements were performed with their respective detectors. Markers were placed on the highest point on each trace.
3. As the upper band edge falls within a restricted band both peak and average measurements were recorded by placing a marker at the edge of the band. For peak measurements the test receiver resolution bandwidth was set to 1 MHz and the video bandwidth 3 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. For average measurements the test receiver resolution bandwidth was set to 1 MHz and the video bandwidth 3 MHz. An average detector was used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent restricted band of operation (where a higher level emission was present). Marker frequencies and levels were recorded. The Top channel final measurement was performed with measurement method as provided by ANSI C63.10:2013 Section 6.10.5
4. \*Emissions in restricted bands: In accordance with ANSI C63.10:2013 Section 6.6.4.3, Note 1, where the peak detected amplitude was shown to comply with the average limit, an average measurement was not performed.
5. The EUT was transmitting with 100% duty cycle therefore no duty cycle correction was required.

**Transmitter Band Edge Radiated Emissions (continued)**

**Test Setup:**



**Transmitter Band Edge Radiated Emissions (continued)****Results: Lower Band Edge/Peak (PK) Detector**

| Frequency (MHz) | PK Level (dB $\mu$ V/m) | -20 dBc Limit (dB $\mu$ V/m) | Margin (dB) | Result   |
|-----------------|-------------------------|------------------------------|-------------|----------|
| 2394.50         | 53.4                    | 71.2                         | 17.8        | Complied |
| 2400.00         | 52.9                    | 71.2                         | 18.3        | Complied |

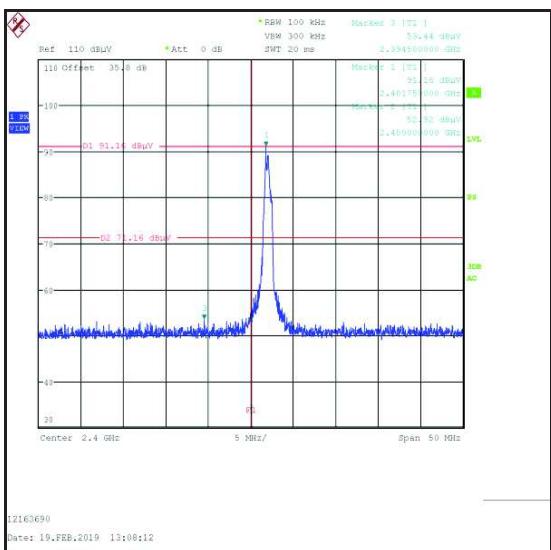
**Results: Upper Band Edge / Restricted Band / Peak(PK) Detector**

| Frequency (MHz) | PK Level (dB $\mu$ V/m) | PK Limit (dB $\mu$ V/m) | Margin (dB) | Result   |
|-----------------|-------------------------|-------------------------|-------------|----------|
| 2483.50         | 67.2                    | 74.0                    | 6.8         | Complied |

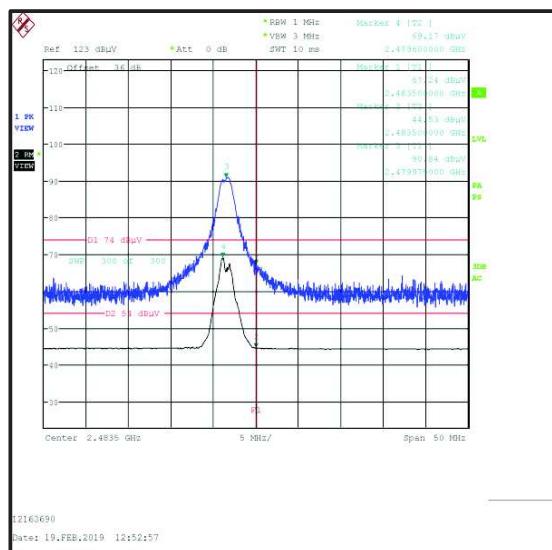
**Results: Upper Band Edge / Restricted Band / RMS Detector**

| Frequency (MHz) | Measured Average Level (dB $\mu$ V/m) | Duty Cycle Correction (dB) | Corrected Average Level (dB $\mu$ V/m) | Average Limit (dB $\mu$ V/m) | Margin (dB) | Result   |
|-----------------|---------------------------------------|----------------------------|----------------------------------------|------------------------------|-------------|----------|
| 2483.50         | 44.5                                  | 0.0                        | 44.5                                   | 54.0                         | 9.5         | Complied |

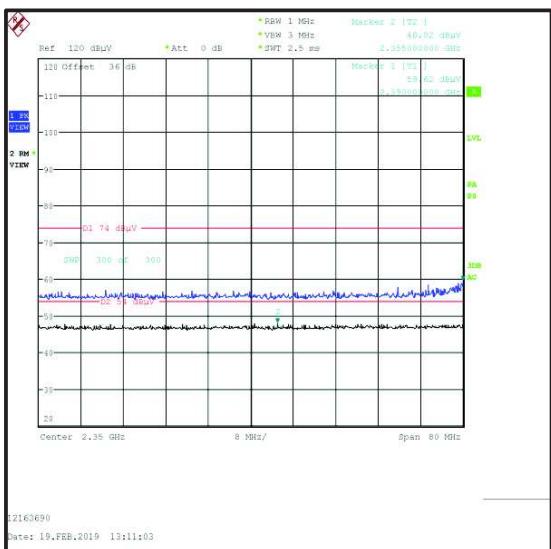
**Results: 2310 to 2390 MHz Restricted Band / Peak(PK) Detector**


| Frequency (MHz) | PK Level (dB $\mu$ V/m) | PK Limit (dB $\mu$ V/m) | Margin (dB) | Result   |
|-----------------|-------------------------|-------------------------|-------------|----------|
| 2390.00         | 59.6                    | 74.0                    | 14.4        | Complied |

**Results: 2310 to 2390 MHz Restricted Band / RMS Detector**


| Frequency (MHz) | Measured Average Level (dB $\mu$ V/m) | Duty Cycle Correction (dB) | Corrected Average Level (dB $\mu$ V/m) | Average Limit (dB $\mu$ V/m) | Margin (dB) | Result   |
|-----------------|---------------------------------------|----------------------------|----------------------------------------|------------------------------|-------------|----------|
| 2355.00         | 48.0                                  | 0.0                        | 48.0                                   | 54.0                         | 6.0         | Complied |

**Result: Pass**


### Transmitter Band Edge Radiated Emissions (continued)



## Lower Band Edge Peak Measurement



## Upper Band Edge Peak & Average Measurement



## 2310 - 2390 MHz Restricted Band Peak & Average Measurement

## **6. Measurement Uncertainty**

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

| Measurement Type                    | Confidence Level (%) | Calculated Uncertainty |
|-------------------------------------|----------------------|------------------------|
| AC Conducted Spurious Emissions     | 95%                  | ±2.49 dB               |
| Conducted Maximum Peak Output Power | 95%                  | ±0.59 dB               |
| Radiated Spurious Emissions         | 95%                  | ±3.10 dB               |
| Band Edge Radiated Emissions        | 95%                  | ±3.10 dB               |
| Minimum 6 dB Bandwidth              | 95%                  | ±0.87 %                |

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

## 7. Used equipment

Test site: SR 1/2

| ID  | Manufacturer           | Type                       | Model        | Serial No.   | Calibration Date | Cal. Cycle |
|-----|------------------------|----------------------------|--------------|--------------|------------------|------------|
| 377 | BONN Elektronik        | Amplifier, Low Noise Pre   | BLMA 0118-1A | 025294B      | 7/12/2018        | 12         |
| 383 | Rohde & Schwarz        | Antenna, Rod               | HFH2-Z1      | 890151/11    | 7/14/2017        | 24         |
| 424 | EMCO                   | Antenna, Horn              | EMCO 3116    | 00046537     | 7/28/2016        | 36         |
| 460 | Deisl                  | Turntable                  | DT 4250 S    |              | n/a              | n/a        |
| 465 | Schwarzbeck            | Antenna, Trilog Broadband  | VULB 9168    | 9168-240     | 8/8/2016         | 36         |
| 496 | Rohde & Schwarz        | Antenna, log. - periodical | HL050        | 100297       | 7/20/2016        | 36         |
| 587 | Maturo                 | antenna mast, tilting      | TAM 4.0-E    | 011/7180311  | n/a              | n/a        |
| 588 | Maturo                 | Controller                 | NCD          | 029/7180311  | n/a              | n/a        |
| 591 | Rohde & Schwarz        | Receiver                   | ESU 40       | 100244/040   | 7/12/2018        | 12         |
| 608 | Rohde & Schwarz        | Switch Matrix              | OSP 120      | 101227       | 4/8/2014         | 60         |
| 615 | Wainwright Instruments | Highpass Filter 1GHz       | WHKX12-      | 3            | Lab verification | n/a        |
| 628 | Maturo                 | Antenna mast               | CAM 4.0-P    | 224/19590716 | n/a              | n/a        |
| 629 | Maturo                 | Kippeinrichtung            | KE 2.5-R-M   | MAT002       | n/a              | n/a        |

**Test site: SR 9**

| ID  | Manufacturer    | Type                     | Model        | Serial No. | Calibration Date | Cal. Cycle |
|-----|-----------------|--------------------------|--------------|------------|------------------|------------|
| 635 | Rohde & Schwarz | Signal generator         | SMB100A      | 179875     | 7/10/2018        | 12         |
| 637 | Rohde & Schwarz | Spectrum Analyzer        | FSV40        | 101587     | 7/11/2018        | 12         |
| 423 | Bonn Elektronik | Amplifier, Low Noise Pre | BLMA 1840-1A | 55929      | 7/12/2018        | 24         |
| 216 | Agilent         | Multimeter               | 34401A       | US36017458 | 7/11/2017        | 24         |

**Test site: SR 7/8**

| ID  | Manufacturer    | Type                     | Model                   | Serial No. | Calibration Date | Cal. Cycle |
|-----|-----------------|--------------------------|-------------------------|------------|------------------|------------|
| 22  | Rohde & Schwarz | Artificial Mains         | 50 Ohm// 50uH           | 831767/014 | 7/11/2018        | 12         |
| 215 | Rohde & Schwarz | Artificial Mains Network | 9 kHz - 30 MHz; 3 phase | 879675/002 | 7/11/2018        | 12         |
| 349 | Rohde & Schwarz | Receiver, EMI Test       | 20 Hz - 7 GHz           | 836697/009 | 7/10/2018        | 12         |
| 616 | Rohde & Schwarz | ISN                      | 8 wire ISN for CAT6     | 101656     | 7/12/2018        | 12         |

## **8. Report Revision History**

| Version Number | Revision Details |        |                 |
|----------------|------------------|--------|-----------------|
|                | Page No(s)       | Clause | Details         |
| 1.0            | -                | -      | Initial Version |

--- END OF REPORT ---