

FCC TEST REPORT

Product name: Digital Piano
FCC ID: 2AF2ZM230
Model: M230
Standards: FCC CFR 47 PART 15 SUBPART C,
Section 15.247
Applicant: Young Chang Co., Ltd.
Test Report No.: UCSFR-1509-003

UCS Co., Ltd.

#702, AnyangMegavalley, 268 Hagui-ro, Dongan-gu, Anyang-si, Gyeonggi-do, 431-767 Korea.
Tel: +82-31-420-5680 / Fax: +82-31-420-5685 / Open Site: +82-31-355-2666
Online: <http://www.ucs.co.kr>

FCC Test Report

Report Number		UCSFR-1509-003		
Applicant	Company Name	Young Chang Co., Ltd.		
	Address	196, Bongsu-daero, Seo-gu, Incheon, 22840, Korea		
Product	Product Name	Digital Piano		
	FCC ID	2AF2ZM230		
	Model No.	M230		
	Manufacturer	Young Chang Co., Ltd.		
	Serial No.	-	Country of origin	Korea
Other	Receipt Date	2015.09.08	Receipt Number	UCS-R-2015-694
	Issued Date	2015.09.16	Tested Date	2015.09.14 ~ 2015.09.15
Standards		FCC CFR 47 PART 15 SUBPART C, Section 15.247		
Tested by		Y. Choi (Sign)		
Approved by		Y. M. Choi (Sign)		

UCS Co., Ltd.

#702, AnyangMegavally, 268 Hagui-ro, Dongan-gu, Anyang-si, Gyeonggi-do, 431-767 Korea.
 Tel : +82-31-420-5680, Fax : +82-31-420-5685

- o This is certified that the above mentioned products have been tested for the sample provided by client.
- o No part of this document may not be duplicated or reproduced by any means without the express written permission of UCS Co., Ltd.

Contents

1. Applicant Information	4
2. EUT (Equipment under test) Information	4
3. Laboratory Information	5
4. Test Configuration and Condition	6
5. Summary of Test Results and Measurement Procedures	7
6. Test Results	8
7. Radio Frequency Exposure	50
8. Test Equipment Used For Test	51

Revision History

Issued Report No.	Issued Date	Revisions	Effect Section
UCSFR-1409-003	16-Sep-2015	Initial Issue	All

1. Applicant Information

Applicant Name : Young Chang Co., Ltd.
Address : 196, Bongsu-daero, Seo-gu, Incheon, 22840, Korea
Manufacturer : Young Chang Co., Ltd.
Addressant Name : 196, Bongsu-daero, Seo-gu, Incheon, 22840, Korea
Country of Origin : Korea

2. EUT (Equipment under test) Information

Product name	Digital Piano
Model name	M230
Power source	DC 24 V(Used AC/DC Adaptor)
Output Power	MAX 0.000 073 W
Frequency range	2 402 MHz ~ 2 480 MHz
Number of channels	79 CH
Modulation Technique	GFSK for 1 Mbps, $\pi/4$ DQPSK for 2 Mbps 8-DPSK for 3 Mbps
Antenna specification	1.87 dBi gain (Peak Gain)

2.1 Information about the FHSS characteristics:

2.1.1 Pseudorandom frequency hopping sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

2.1.2 Equal hopping frequency use

All channels will be used equally to comply with the requirements stated in Part 15.247(a)(1) and DA 00-705.

All Bluetooth units participating in the piconet are time and hop-synchronized to the channel.

Example of a 79 hopping sequence in data mode:

40, 21, 44, 23, 42, 53, 46, 55, 48, 33, 52, 35, 50, 65, 54, 67, 56, 37, 60, 39, 58, 69, 62, 71, 64, 25, 68, 27, 66, 57, 70, 59, 72, 29, 76, 31, 74, 61, 78, 63, 01, 41, 05, 43, 03, 73, 07, 75, 09, 45, 13, 47, 11, 77, 15, 00, 64, 49, 66, 53, 68, 02, 70, 06, 01, 51, 03, 55, 05, 04

2.1.3 System receiver input bandwidth

Each channel bandwidth is 1 MHz

2.1.4 Equipment description

15.247(a)(1) that the rx input bandwidths shift frequencies in synchronization with the transmitted

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate its channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

3. Laboratory Information

UCS Co., Ltd.

#702, Anyang Megavalley 799, Gwanyang 2-dong, Dongan-gu, Anyang-si, Gyeonggi-do, 431-767, Korea

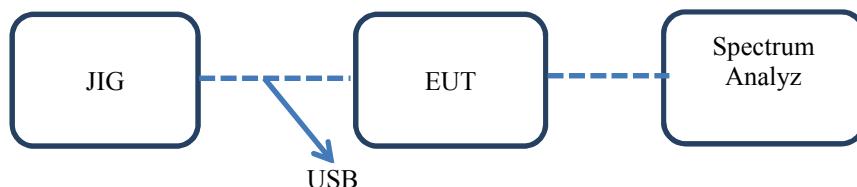
ER Center

#476-4, Hwalcho-dong, Hwaseong-si, Gyeonggi-do, 445-150, Korea

Test site

- FCC Registration Number: 803225
- This test site is in compliance with ISO/IEC 17025 for general requirements for the competence of testing and calibration laboratories.

4. Test Configuration and Condition


4.1 EUT operating condition

- The EUT had been tested under the operating condition.
- There are three channels have been tested as following:
- Channel Low and Channel High with higher data rate were chosen for full testing.

Channel	Frequency (MHz)
Low	2 402
Middle	2 441
High	2 480

- The measurements were taken in continuous transmitting mode using the TEST MODE.
- For controlling the EUT as TEST MODE, the test program and the cable assembly were provided by the applicant.

4.2 EUT test configuration diagram

4.3 Peripheral equipments list for test

Equipment Name	Model	Serial Number	Manufacturer
TEST JIG	-	-	-

4.4 Cable connections

Start		End		Cable	
Name	I/O Port	Name	I/O Port	Length	Spec.

4.5 EUT modifications

- None

5. Summary of Test Results and Measurement Procedures

5.1 Summary of test results

Standard	Test Item	CFR 47 Section	Result
FCC CFR 47 PART 15 SUBPART C, Section 15.247	Antenna Requirement	15.203, 15.247(b)(4)	PASS
	20 dB Bandwidth	15.247(a)(1)	PASS
	Maximum Peak Output Power	15.247(b)(1)	PASS
	Carrier Frequency Separation	15.247(a)(1)	PASS
	Number of Hopping Channels	15.247(a)(1)(iii)	PASS
	Time of Occupancy (Dwell Time)	15.247(a)	PASS
	Spurious Emission, Band Edge, and Restricted bands	15.247(d), 15.209	PASS
	AC Power Line Conducted Emissions	15.247(a)	PASS
	RF Exposure	15.247(i), .1307(b)(1)	PASS

5.2 AC powerline conducted emission test

The EUT was connected to adaptor and the power of adaptor was connected to LISN. All supporting equipments were connected to another LISN. Preliminary Power line Conducted Emission test was performed by using the procedure in ANSI C63.10: 2013 to determine the worse operating conditions.

5.3 Radiated emission test

Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10:2013 to determine the worse operating conditions. The radiated emissions measurements were performed on the 3 m open area test site.

The turntable was rotated through 360 degrees and the EUT was tested by positioned three orthogonal planes to obtain the highest reading on the field strength meter. Once maximum reading was determined, the search antenna was raised and lowered in both vertical and horizontal polarization.

6. Test Results

6.1 Antenna requirement

6.1.1 Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section.

The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

6.1.2 Results: Pass

The transmitter has an integral PCB pattern antenna. The directional gain of the antenna is 1.87 dBi.

6.2 20 dB bandwidth

6.2.1 Regulation

According to §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2 400 MHz ~ 2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

6.2.2 Test condition

- Set RBW of Spectrum analyzer to 10 kHz, Span = 3 MHz, Sweep = auto
- The 20 dB bandwidth is defined as the frequency range where the power is higher than the peak power minus 20 dB. Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

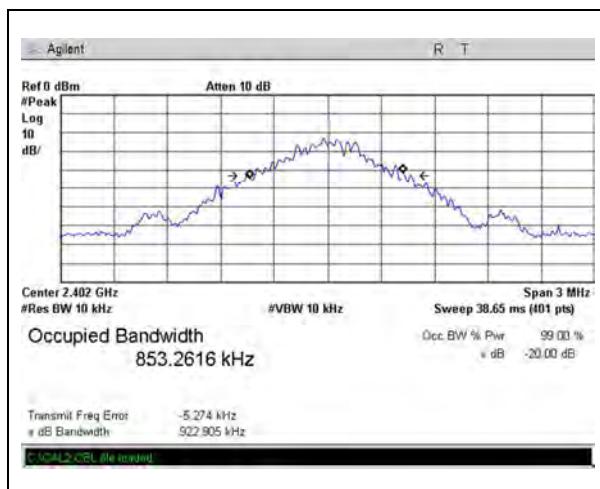
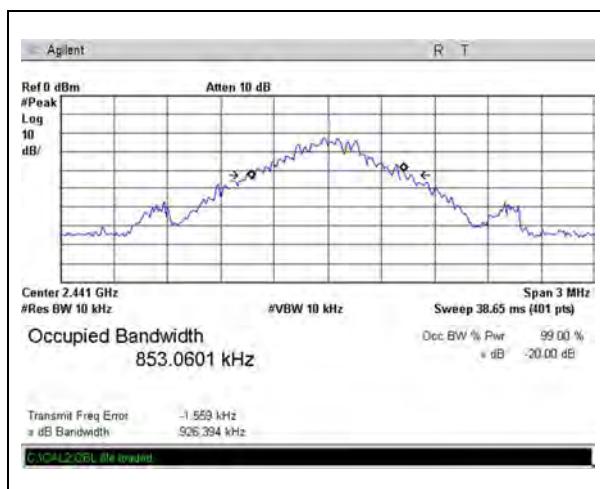
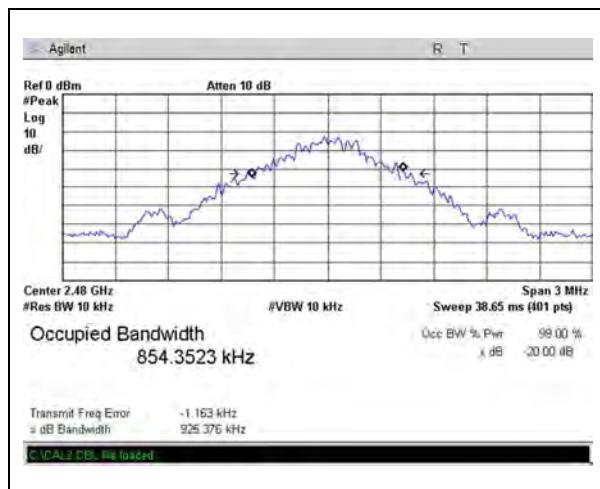

6.2.3 Results: Pass

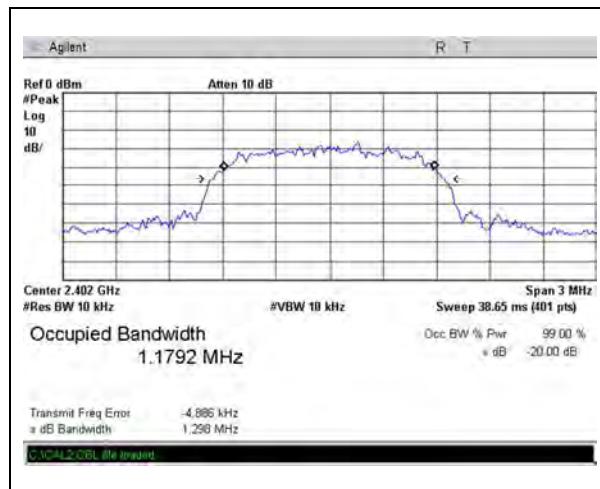
Table 1: Measured values of the 20 dB Bandwidth


Modulation	Frequency [MHz]	Result [kHz]	Limit [kHz]	Verdict
1 Mbps	2 402	922.91	> 25 kHz	Pass
	2 441	926.39		Pass
	2 480	925.38		Pass
2 Mbps	2 402	1 298.00	> 25 kHz	Pass
	2 441	1 297.00		Pass
	2 480	1 271.00		Pass
3 Mbps	2 402	1 312.00	> 25 kHz	Pass
	2 441	1 326.00		Pass
	2 480	1 309.00		Pass

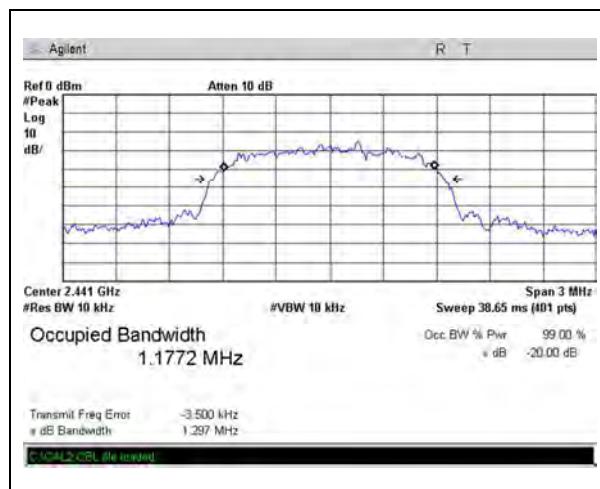
6.2.4 Plot of the 20 dB channel bandwidth


1 Mbps
Lowest Channel

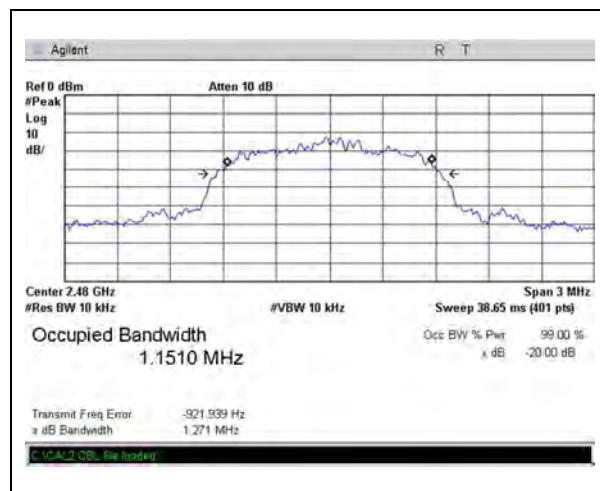
Middle Channel



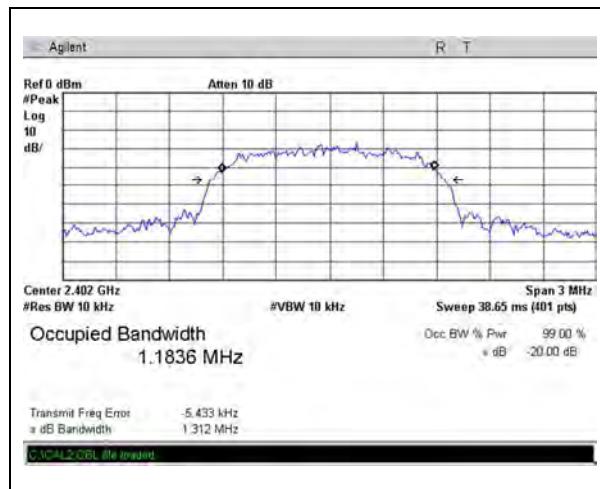
Highest Channel

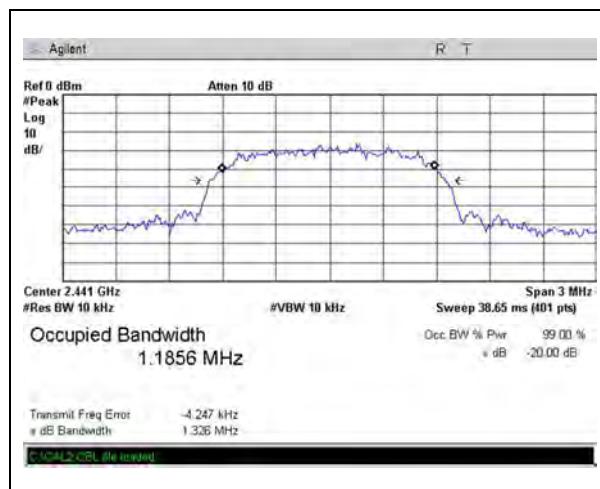


2 Mbps

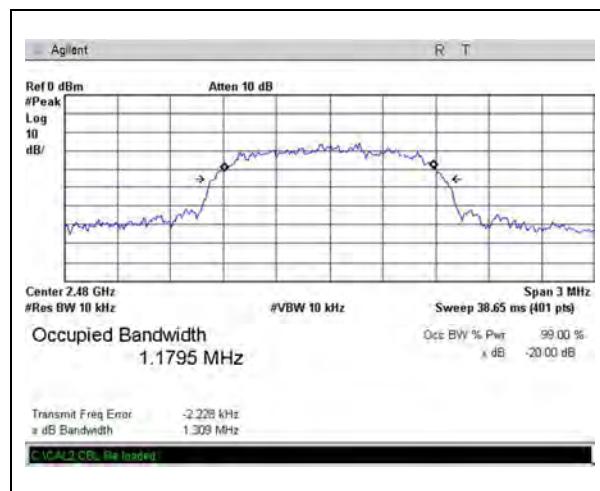

Lowest Channel

Middle Channel


Highest Channel



3 Mbps


Lowest Channel

Middle Channel

Highest Channel

6.3 Maximum peak output power

6.3.1 Regulation

According to §15.247(b)(1), for frequency hopping systems operating in the 2 400 MHz ~ 2 483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725 MHz ~ 5 850 MHz band: 1 watt.

For all other frequency hopping systems in the 2 400 MHz ~ 2 483.5 MHz band: 0.125 watts.

According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

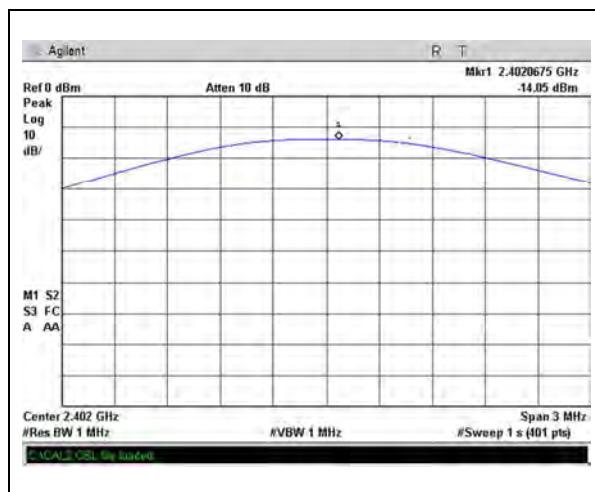
Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

6.3.2 Test condition

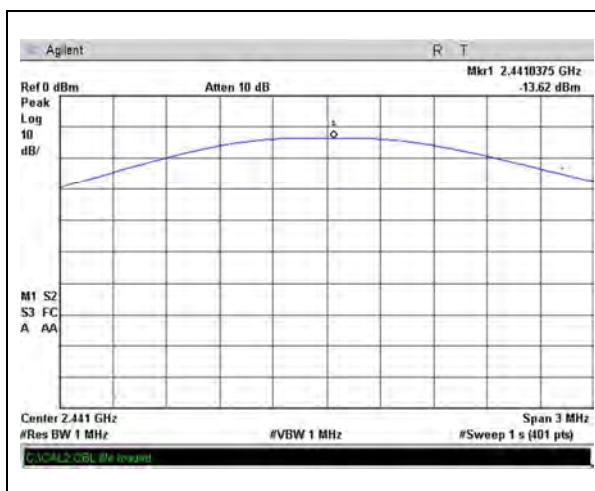
- Set RBW of Spectrum analyzer to 1 MHz
- The Maximum Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level.

For frequency hopping systems operating in the 2 400 MHz ~ 2 483.5 MHz band employing at least 75 hopping channels, and all frequency hopping systems in the 5 725 MHz ~ 5 850 MHz band: 1 watt.

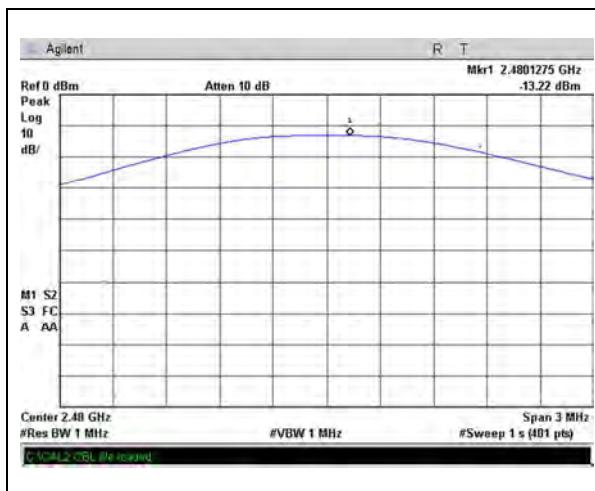
6.3.3 Results: Pass


Table 2: Measured values of the Maximum Peak Output Power (Conducted)

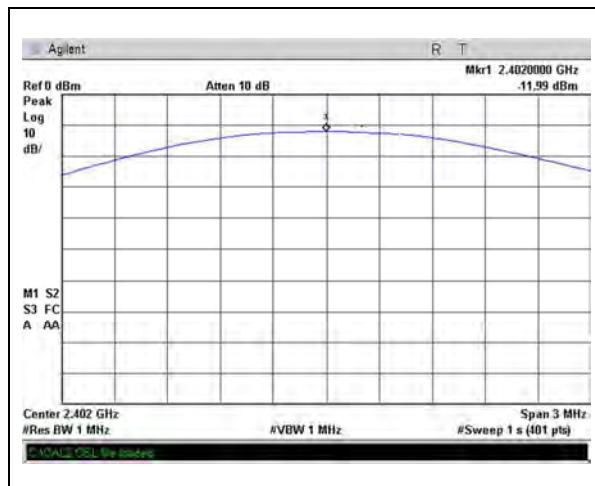
Modulation	Frequency [MHz]	Reading Power [dBm]	Output power [W]	Limit [W]	Verdict
1 Mbps	2 402	-14.05	0.000 039	0.125	Pass
	2 441	-13.62	0.000 043		Pass
	2 480	-13.22	0.000 048		Pass
2 Mbps	2 402	-11.99	0.000 063	0.125	Pass
	2 441	-11.69	0.000 068		Pass
	2 480	-11.37	0.000 073		Pass
3 Mbps	2 402	-11.95	0.000 064	0.125	Pass
	2 441	-11.65	0.000 068		Pass
	2 480	-11.34	0.000 073		Pass


6.3.4 Plot of the maximum peak output power (Conducted)

1 Mbps

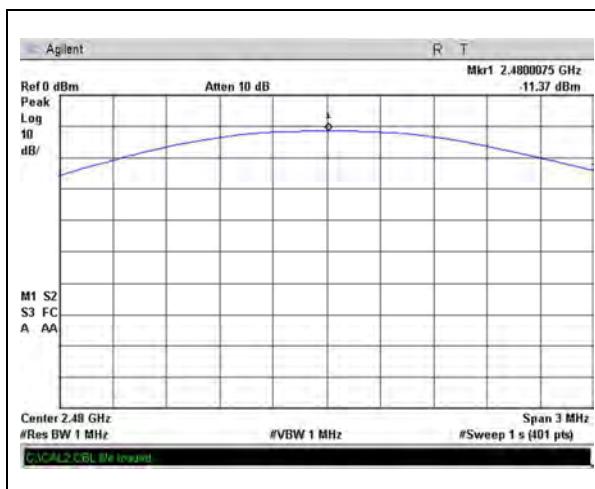

Lowest Channel

Middle Channel

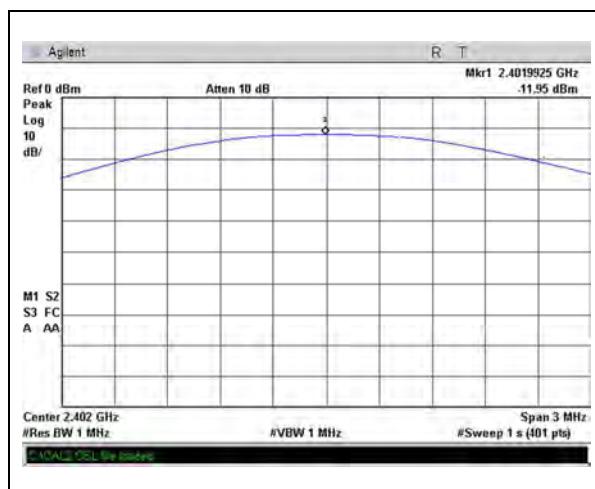


Highest Channel

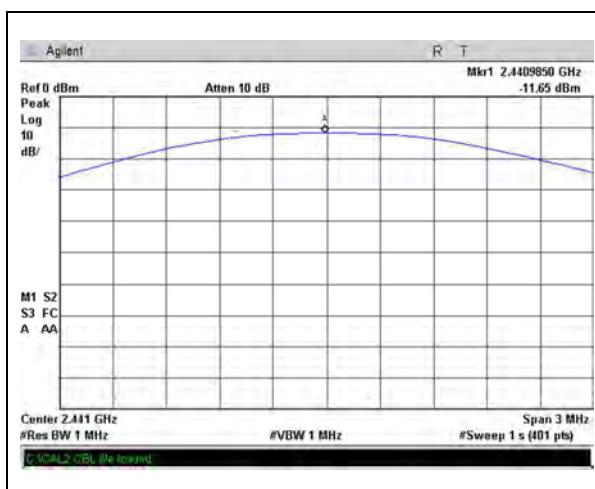
2 Mbps


Lowest Channel

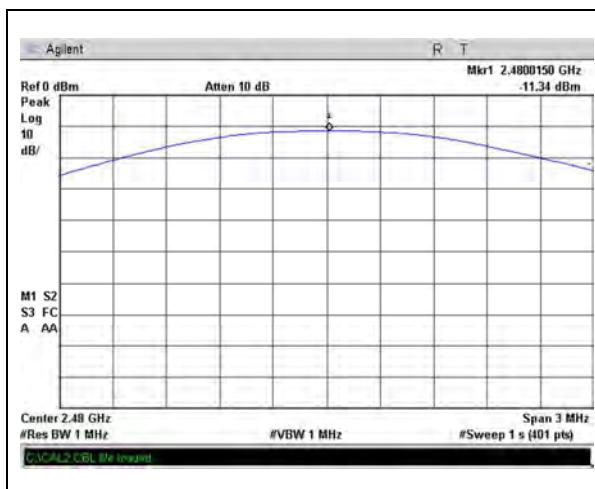
Middle Channel



Highest Channel



3 Mbps


Lowest Channel

Middle Channel

Highest Channel

6.4 Carrier frequency separation

6.4.1 Regulation

According to §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

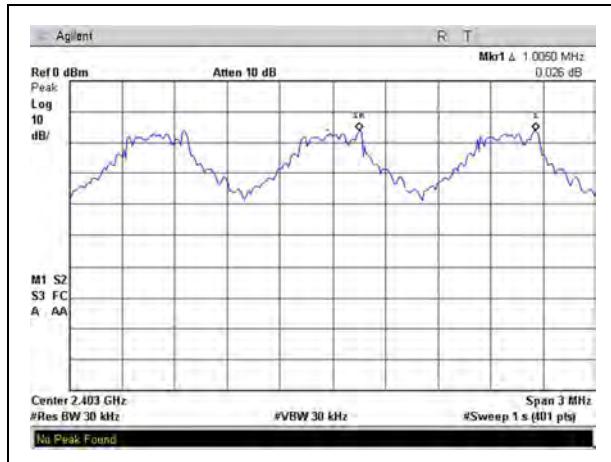
Alternatively, frequency hopping systems operating in the 2 400 ~ 2 483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

The conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

6.4.2 Test condition

- Set RBW of Spectrum analyzer to 10 kHz, Span = 3 MHz, Sweep = auto
- Frequency hopping system shall have hopping channel carrier frequencies separated by minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

6.4.3 Results: Pass


Table 3: Measured values of the Carrier Frequency Separation

Modulation	Operating frequency [MHz]	frequency separation [kHz]	Limit [frequency separation]	Verdict
1 Mbps	2 402 ~ 2 480	1 005.0	> 25 kHz or > 2/3 of the 20 dB BW	Pass
2 Mbps	2 402 ~ 2 480	1 005.0		Pass
3 Mbps	2 402 ~ 2 480	1 012.5		Pass

6.4.4 Plot of the carrier frequency separation

1 Mbps

2 Mbps

3 Mbps

6.5 Number of Hopping Channels

6.5.1 Regulation

According to §15.247(a)(1)(iii), frequency hopping systems in the 2 400 MHz ~ 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

6.5.2 Test condition

- Set RBW of Spectrum analyzer to 100 kHz
- Frequency hopping systems in the 2 400 MHz ~ 2 483.5 MHz band shall use at least 15 channels.

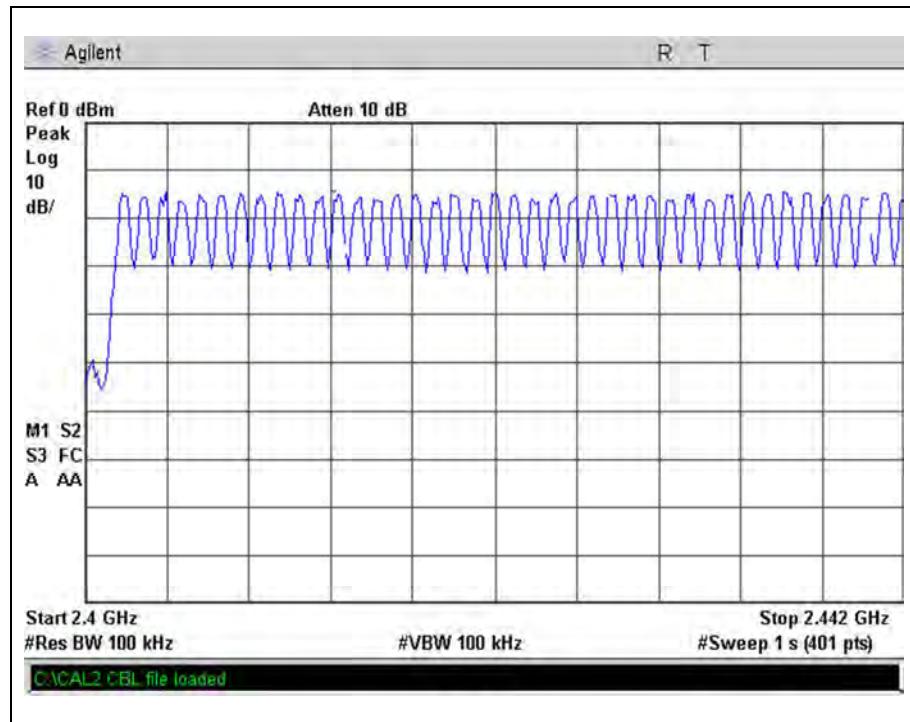
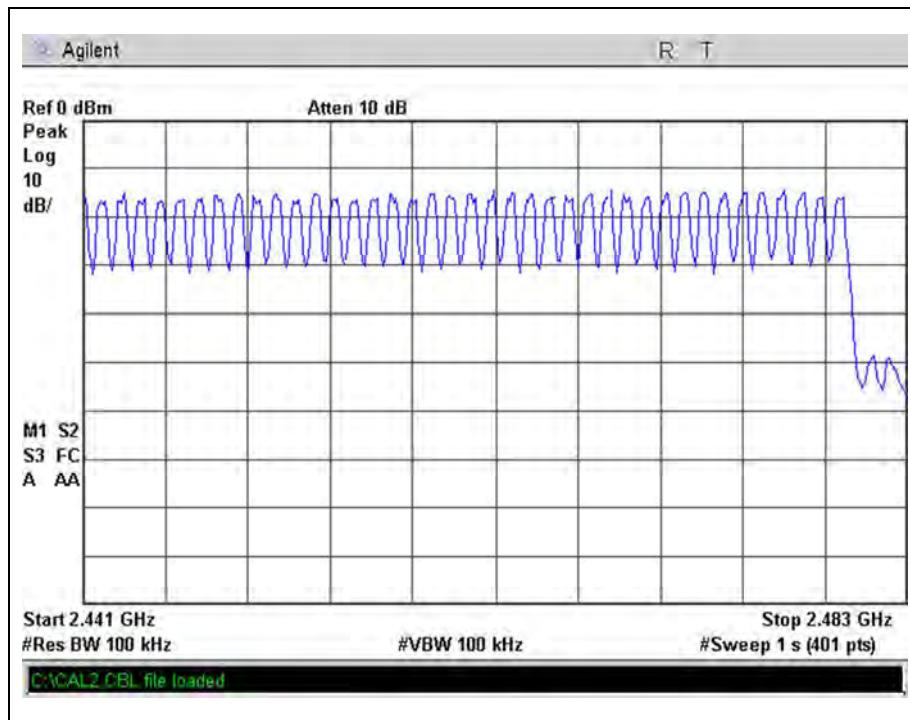
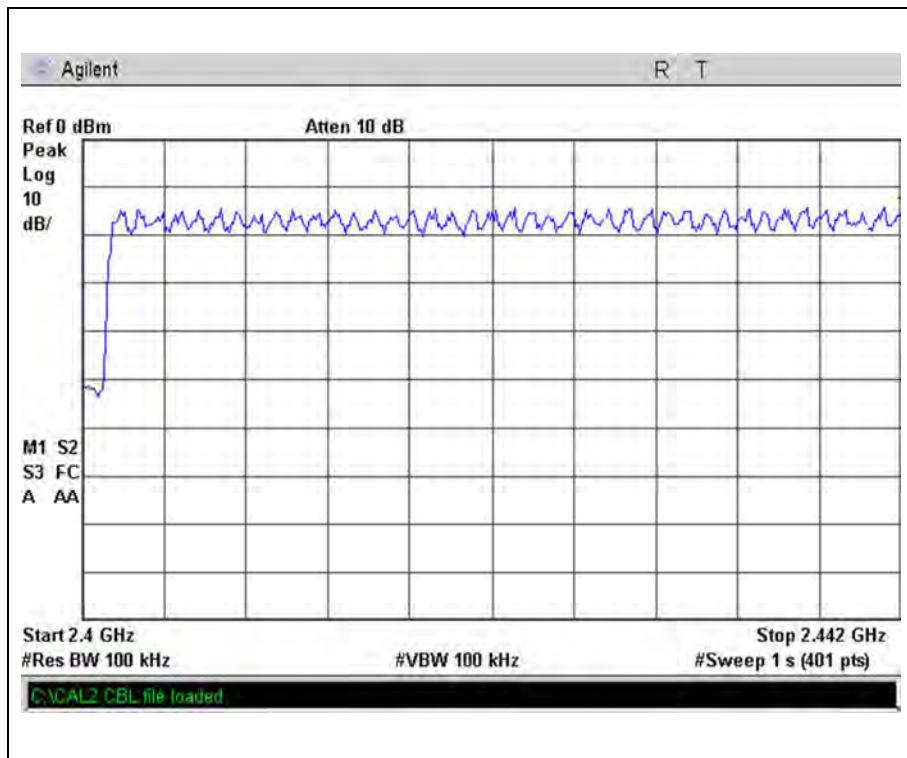

6.5.3 Results: Pass

Table 4: Measured values of the Number of Hopping Channels

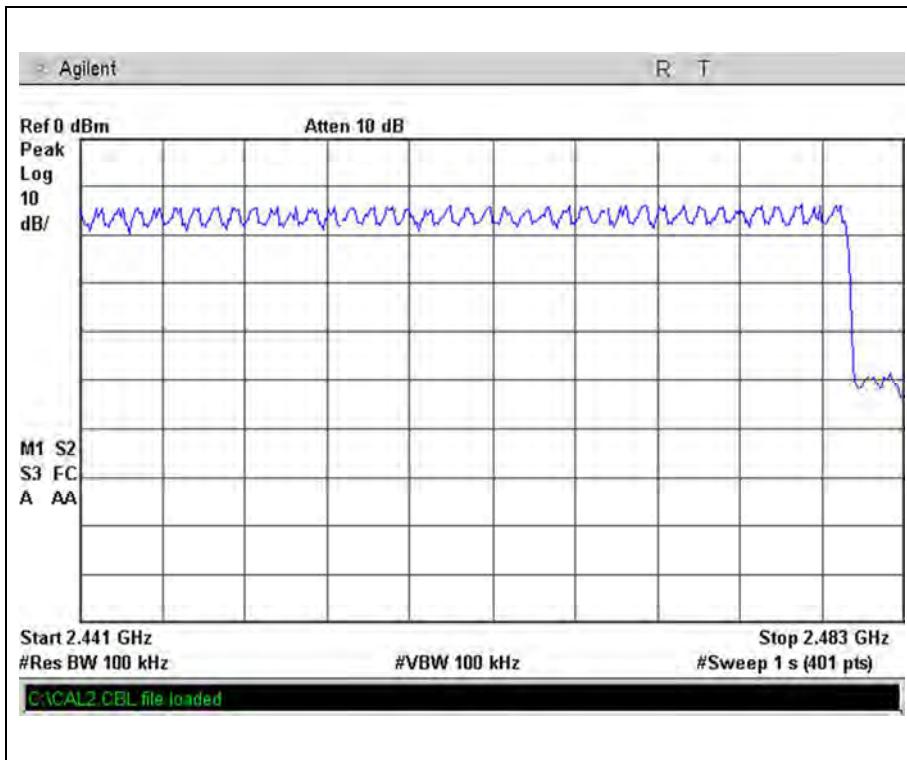

Modulation	Operating frequency [MHz]	Result [channel])	Limit [channel]	Verdict
1 Mbps	2 402 ~ 2 480	79		Pass
2 Mbps	2 402 ~ 2 480	79	> 15	Pass
3 Mbps	2 402 ~ 2 480	79		Pass

6.5.4 Plot of the number of hopping channels

1 Mbps
2 402 MHz ~ 2 441MHz



2 442 MHz ~ 2 480MHz

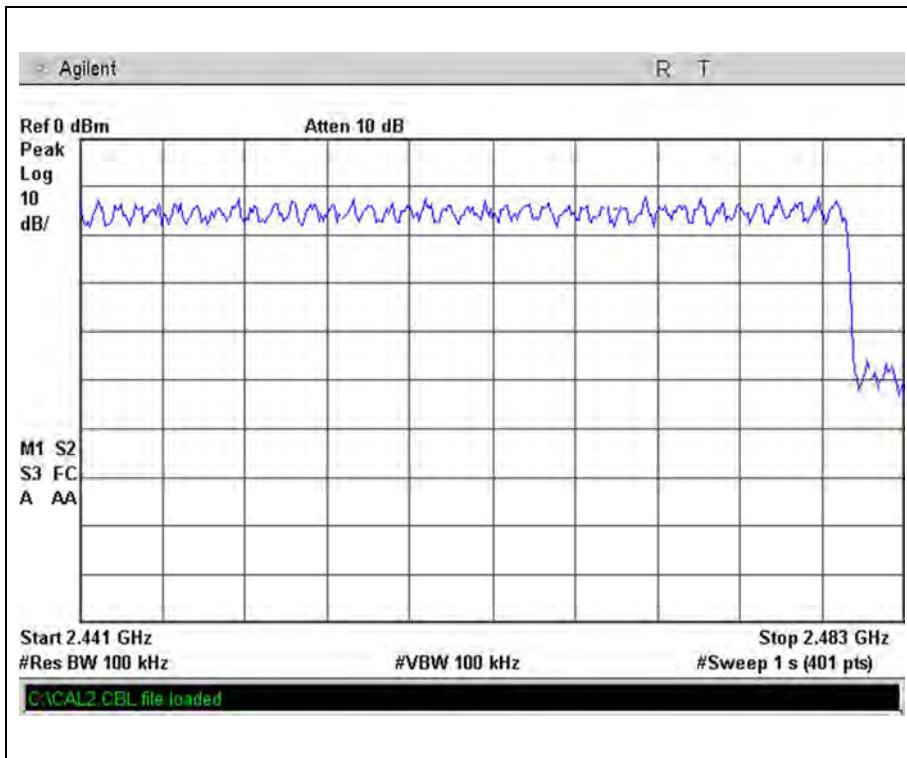


2 Mbps

2 402 MHz ~ 2 441MHz



2 442 MHz ~ 2 480MHz



3 Mbps

2 402 MHz ~ 2 441MHz

2 442 MHz ~ 2 480MHz

6.6 Time of occupancy (Dwell time)

6.6.1 Regulation

According to §15.247(a)(1)(iii), frequency hopping systems in the 2 400 MHz ~ 2 483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

6.6.2 Test condition

- Set RBW of Spectrum analyzer to 1 MHz, sweep time is 4.0 ms
- Frequency hopping systems in the 2 400 MHz ~ 2 483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds.

6.6.3 Results: Pass

Table 5: Measured values of the Dwell Time

Modulation	Operating frequency [MHz]	Reading [ms]	Hops per second with channels	Number of hopping Channels	Period Time [ms]	Dwell time [ms]	Limits [ms]	Verdict
1 Mbps	2 402	2.887	3.38	79	31.6	308.4	≤ 400	Pass
	2 441	2.887	3.38	79	31.6	308.4		Pass
	2 480	2.888	3.38	79	31.6	308.5		Pass
2 Mbps	2 402	2.887	3.38	79	31.6	308.4	≤ 400	Pass
	2 441	2.887	3.38	79	31.6	308.4		Pass
	2 480	2.888	3.38	79	31.6	308.5		Pass
3 Mbps	2 402	2.888	3.38	79	31.6	308.5	≤ 400	Pass
	2 441	2.887	3.38	79	31.6	308.4		Pass
	2 480	2.888	3.38	79	31.6	308.5		Pass

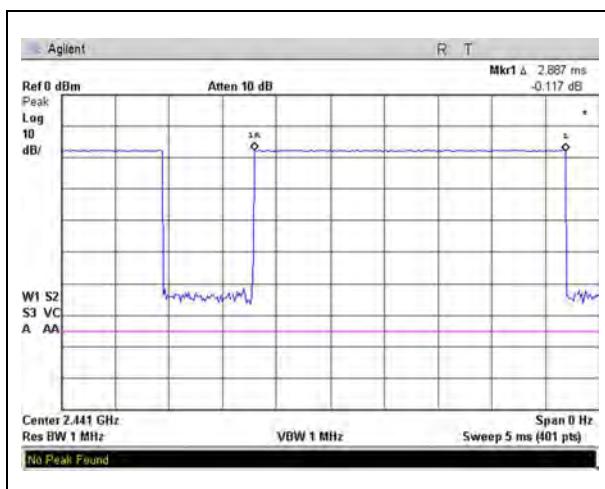
Dwell time = Reading X (Hop rate / Number of hopping Channels) X Period Time

Period Time = $0.4[\text{milliseconds} / \text{channel}] \times 79[\text{channel}] = 31.6 \text{ [milliseconds]}$

Note: The EUT makes worst case 1600 hops second or 1 time slot has a length of 625us with 79 channels.


The DH5 packet need 5 times slot for transmitting and 1 time slot for receiving.

Then the EUT makes worst case 3.38 times (= 1 600/6/79) hops per second with 79 channels.


6.6.4 Plot of the carrier dwell time

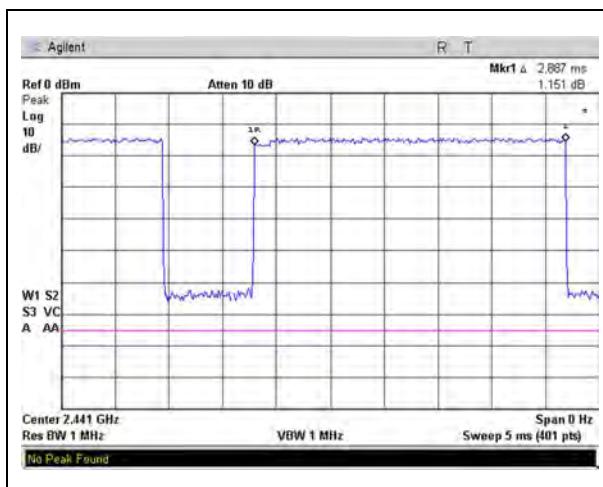
1 Mbps

Lowest Channel

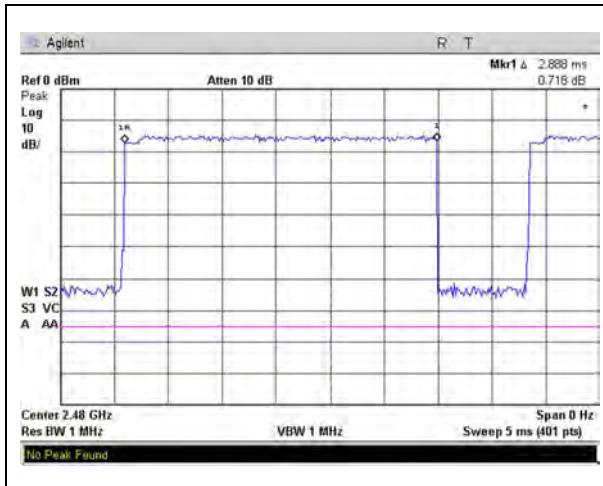
Middle Channel



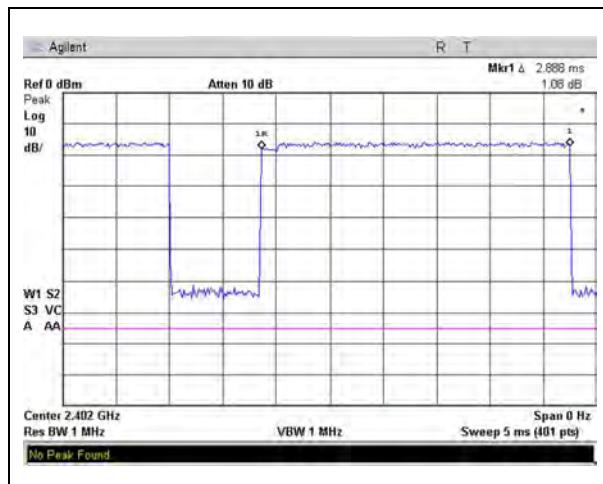
Highest Channel

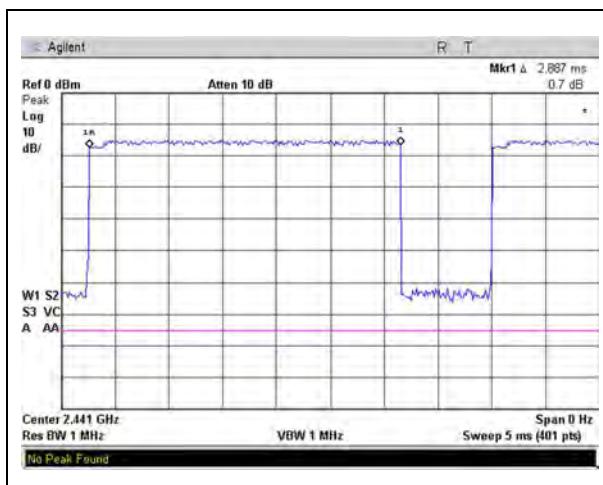


2 Mbps

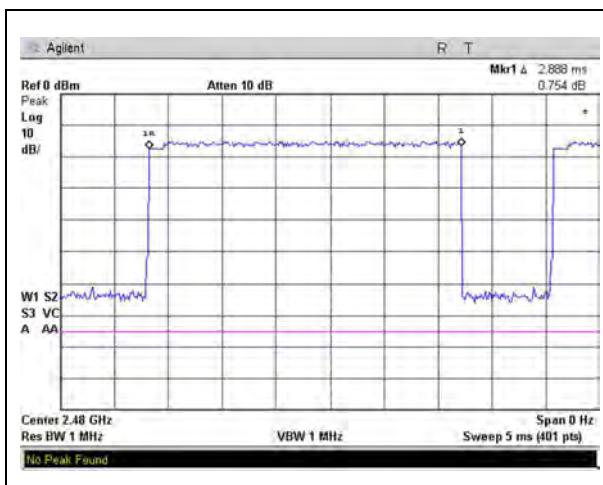

Lowest Channel

Middle Channel


Highest Channel



3 Mbps


Lowest Channel

Middle Channel

Highest Channel

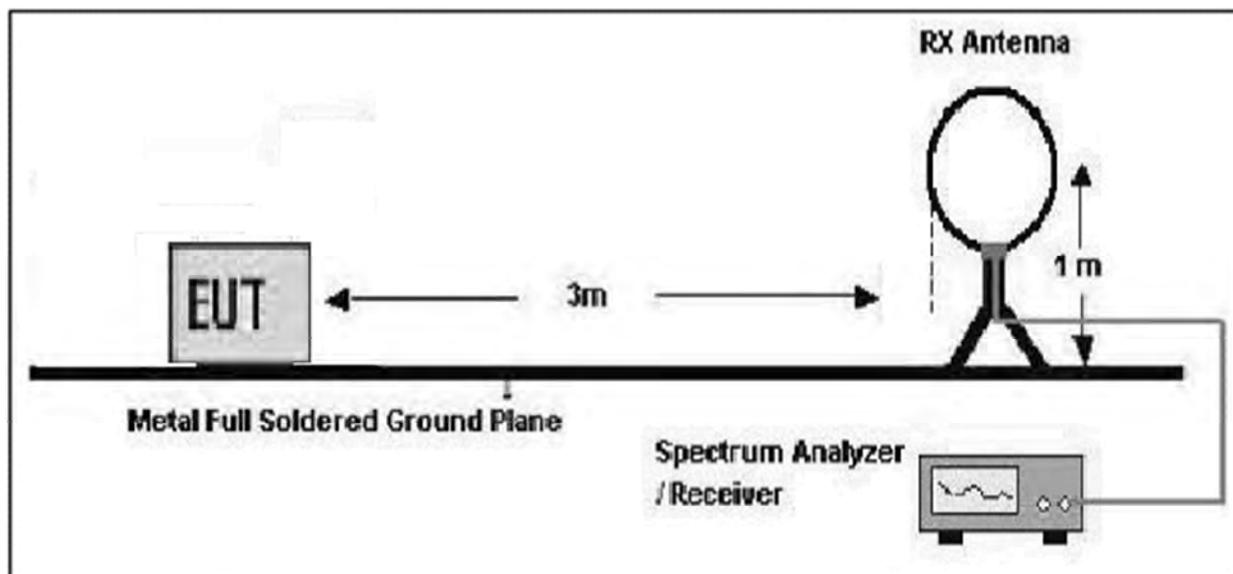
6.7 Spurious emissions and band edge, restricted bands

6.7.1 Regulation

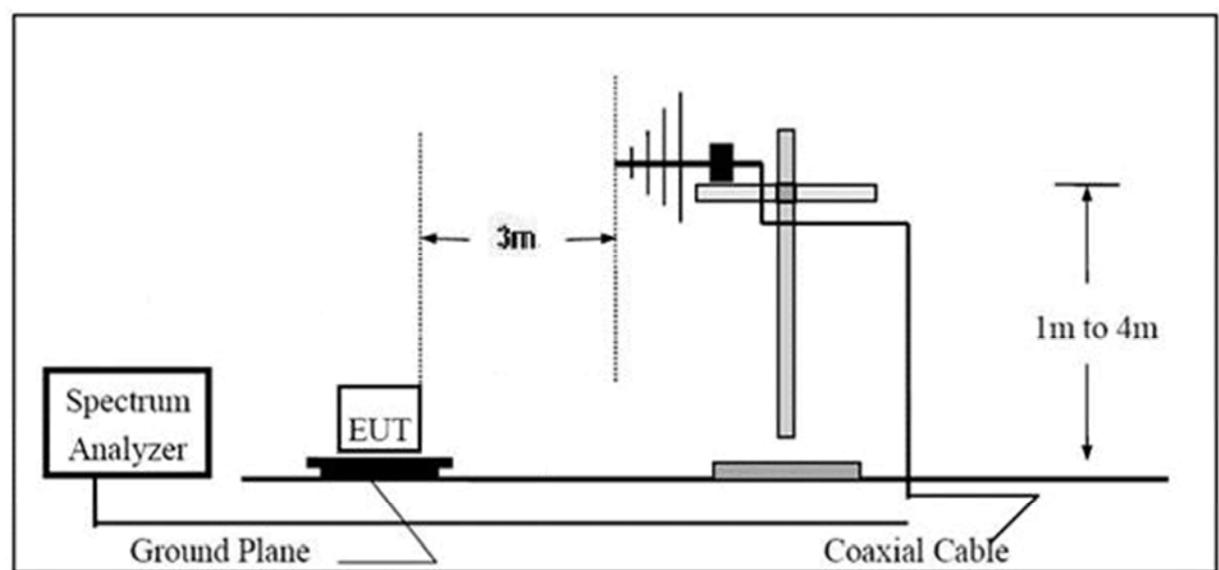
According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

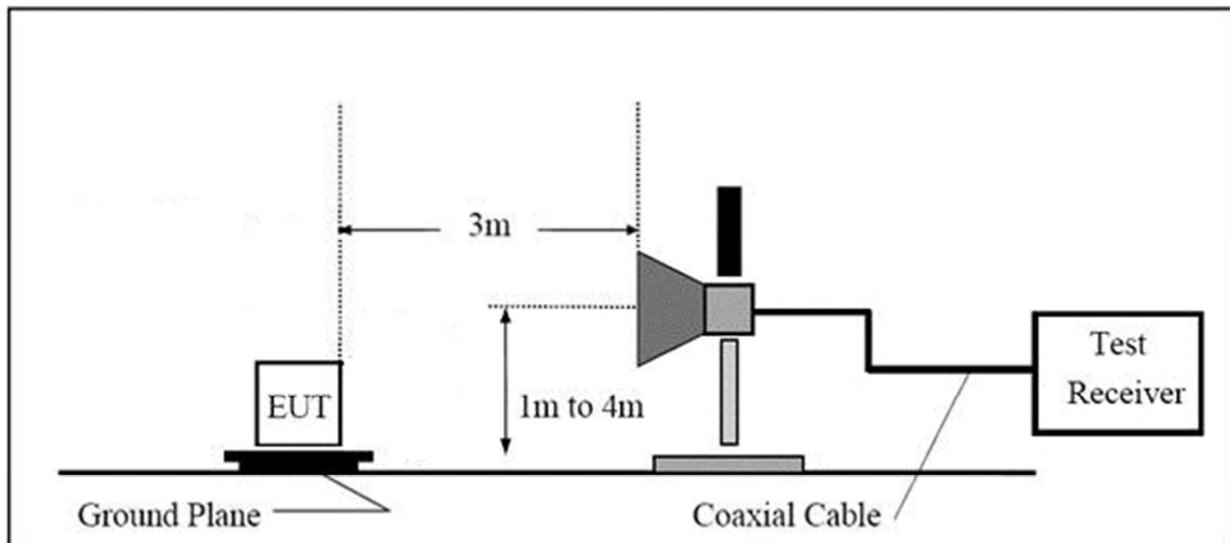
Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).


According to §15.209(a), for an intentional device, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency [MHz]	Field strength [μ V/m]	Field strength [dB μ V/m]	Measurement distance [m]
0.009 ~ 0.490	2 400 / F (kHz)	-	300
0.490 ~ 1.705	24 000 / F (kHz)	-	30
1.705 ~ 30	30	29.5	30
30 ~ 88	100	40.0	3
88 ~ 216	150	43.5	3
216 ~ 960	200	46.0	3
Above 960	500	54.0	3


The emission limits shown in the above table are based on measurement instrumentation employing a CISPR quasi-peak detector and above 1 000 MHz are based on the average value of measured emissions.

6.7.2 Test setup layout


6.7.2.1 Radiated emission test set-up, frequency below 30 MHz

6.7.2.2 Radiated emission test set-up, frequency below 1 000 MHz

6.7.2.3 Radiated emission test set-up, frequency above 1 000 MHz

6.7.3 Test procedure

1) Band-edge Compliance of RF Conducted Emissions

1. Set the spectrum analyzer as follows:

Span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation

RBW \geq 1 % of the span

VBW \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

2. Allow the trace to stabilize. Set the marker on the emission at the band-edge, or on the highest modulation product outside of the band, if this level is greater than that at the band-edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.
3. Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

2) Spurious RF Conducted Emissions:

1. Set the spectrum analyzer as follows:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz

VBW \geq RBW

Sweep = auto

Detector function = peak

Trace = max hold

2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.

3) Spurious Radiated Emissions:

1. The preliminary radiated measurements were performed to determine the frequency producing the maximum emissions in an anechoic chamber at a distance of 3 meters for above 30 MHz, and at 1 meter distance for below 30 MHz.
2. The EUT was placed on the top of the ground plane. To find the maximum emission levels, the height of a measuring antenna was changed and the was rotated 360°.
3. The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 kHz to 30 MHz using the loop antenna, from 30 to 1 000 MHz using the Trilog broadband antenna, and from 1 GHz to tenth harmonic of the highest fundamental frequency using the horn antenna.

4. To obtain the final measurement data, the EUT was arranged on a turntable situated on a 4×4 meter at the Open Area Test Site. The EUT was tested at a distance 3 meters.
5. Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
6. The EUT is situated in three orthogonal planes (if appropriate)
7. The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT.
8. If the emission on which a radiated measurement must be made is located at the edge of the authorized band of operation, then the alternative "marker-delta" method may be employed.

4) Marker-Delta Method at the edge of the authorized band of operation:

1. Perform an in-band field strength measurement of the fundamental emission using the RBW and detector function as the above Spurious Radiated Emissions test procedure.
2. Choose a spectrum analyzer span that encompasses both the peak of the fundamental emission and the band-edge emission under investigation. Set the analyzer RBW to 1 % of the total span (but never less than 30 kHz) with a video bandwidth equal to or greater than the RBW. Record the peak levels of the fundamental emission and the relevant band-edge emission (i.e., run several sweeps in peak hold mode). Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not a field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band-edge relative to the highest fundamental emission level.
3. Subtract the delta measured in step (2) from the field strengths measured in step (1). The resultant field strengths (CISPR QP, average, or peak, as appropriate) are then used to determine band-edge compliance as required by Section 15.205.
4. The above "delta" measurement technique may be used for measuring emissions that are up to two "standard" bandwidths away from the band-edge, where a "standard" bandwidth is the bandwidth specified by C63.4 for the frequency being measured. For example, for band-edge measurements in the restricted band that begins at 2483.5 MHz, C63.4 specifies a measurement bandwidth of at least 1 MHz. Therefore you may use the "delta" technique for measuring emissions up to 2 MHz removed from the band-edge. Radiated emissions that are removed by more than two "standard" bandwidths must be measured as the above Spurious Radiated Emissions test procedure.

6.7.4 Results: Pass

Band-edge compliance of RF conducted/radiated emissions was shown in the 6.7.5 and 6.7.6.

NOTE: We took the insertion loss of the cable loss into consideration within the measuring instrument.

Spurious RF conducted emissions were shown in the 6.7.7.

NOTE: We took the insertion loss of the cable loss into consideration within the measuring instrument.

Table 6: Measured values of the Field strength of spurious emission (1 Mbps Transmit mode)

Frequency [MHz]	Detect Mode	Polarization [V/H]	Emission Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]																																																																																																																																																																	
Average/Peak/Quasi-peak data, emissions below 30 MHz																																																																																																																																																																						
No Critical peaks Found																																																																																																																																																																						
Quasi-peak data, emissions below 1 000 MHz																																																																																																																																																																						
<table border="1"> <tbody> <tr> <td>2 402</td><td>55.06</td><td>Qausi-peak</td><td>V</td><td>34.03</td><td>40.00</td><td>-5.97</td></tr> <tr> <td></td><td>120.05</td><td>Qausi-peak</td><td>H</td><td>34.56</td><td>43.52</td><td>-8.96</td></tr> <tr> <td></td><td>265.60</td><td>Qausi-peak</td><td>H</td><td>34.47</td><td>46.02</td><td>-11.55</td></tr> <tr> <td></td><td>303.48</td><td>Qausi-peak</td><td>H</td><td>37.74</td><td>46.02</td><td>-8.28</td></tr> <tr> <td></td><td>384.00</td><td>Qausi-peak</td><td>H</td><td>30.07</td><td>46.02</td><td>-15.95</td></tr> <tr> <td></td><td>456.98</td><td>Qausi-peak</td><td>V</td><td>38.44</td><td>46.02</td><td>-7.58</td></tr> <tr> <td></td><td>600.92</td><td>Qausi-peak</td><td>V</td><td>38.92</td><td>46.02</td><td>-7.10</td></tr> <tr> <td> <table border="1"> <tbody> <tr> <td>2 441</td><td>55.12</td><td>Qausi-peak</td><td>V</td><td>33.35</td><td>40.00</td><td>-6.65</td></tr> <tr> <td></td><td>121.84</td><td>Qausi-peak</td><td>H</td><td>35.02</td><td>43.52</td><td>-8.50</td></tr> <tr> <td></td><td>294.76</td><td>Qausi-peak</td><td>H</td><td>36.15</td><td>46.02</td><td>-9.87</td></tr> <tr> <td></td><td>300.55</td><td>Qausi-peak</td><td>H</td><td>37.66</td><td>46.02</td><td>-8.36</td></tr> <tr> <td></td><td>391.18</td><td>Qausi-peak</td><td>H</td><td>33.05</td><td>46.02</td><td>-12.97</td></tr> <tr> <td></td><td>455.91</td><td>Qausi-peak</td><td>V</td><td>38.80</td><td>46.02</td><td>-7.22</td></tr> <tr> <td></td><td>602.38</td><td>Qausi-peak</td><td>V</td><td>38.32</td><td>46.02</td><td>-7.70</td></tr> <tr> <td colspan="6"> <table border="1"> <tbody> <tr> <td>2 480</td><td>54.86</td><td>Qausi-peak</td><td>V</td><td>33.54</td><td>40.00</td><td>-6.46</td></tr> <tr> <td></td><td>122.84</td><td>Qausi-peak</td><td>H</td><td>36.10</td><td>43.52</td><td>-7.42</td></tr> <tr> <td></td><td>292.32</td><td>Qausi-peak</td><td>H</td><td>37.55</td><td>46.02</td><td>-8.47</td></tr> <tr> <td></td><td>301.48</td><td>Qausi-peak</td><td>H</td><td>38.58</td><td>46.02</td><td>-7.44</td></tr> <tr> <td></td><td>391.21</td><td>Qausi-peak</td><td>H</td><td>34.38</td><td>46.02</td><td>-11.64</td></tr> <tr> <td></td><td>453.72</td><td>Qausi-peak</td><td>V</td><td>37.64</td><td>46.02</td><td>-8.38</td></tr> <tr> <td></td><td>601.60</td><td>Qausi-peak</td><td>V</td><td>38.88</td><td>46.02</td><td>-7.14</td></tr> </tbody></table> </td></tr> <tr> <td colspan="6">Peak/Average data, emissions above 1 000 MHz</td></tr> <tr> <td colspan="6" style="text-align: center;">No Critical peaks Found</td></tr> </tbody> </table> </td></tr></tbody></table>	2 402	55.06	Qausi-peak	V	34.03	40.00	-5.97		120.05	Qausi-peak	H	34.56	43.52	-8.96		265.60	Qausi-peak	H	34.47	46.02	-11.55		303.48	Qausi-peak	H	37.74	46.02	-8.28		384.00	Qausi-peak	H	30.07	46.02	-15.95		456.98	Qausi-peak	V	38.44	46.02	-7.58		600.92	Qausi-peak	V	38.92	46.02	-7.10	<table border="1"> <tbody> <tr> <td>2 441</td><td>55.12</td><td>Qausi-peak</td><td>V</td><td>33.35</td><td>40.00</td><td>-6.65</td></tr> <tr> <td></td><td>121.84</td><td>Qausi-peak</td><td>H</td><td>35.02</td><td>43.52</td><td>-8.50</td></tr> <tr> <td></td><td>294.76</td><td>Qausi-peak</td><td>H</td><td>36.15</td><td>46.02</td><td>-9.87</td></tr> <tr> <td></td><td>300.55</td><td>Qausi-peak</td><td>H</td><td>37.66</td><td>46.02</td><td>-8.36</td></tr> <tr> <td></td><td>391.18</td><td>Qausi-peak</td><td>H</td><td>33.05</td><td>46.02</td><td>-12.97</td></tr> <tr> <td></td><td>455.91</td><td>Qausi-peak</td><td>V</td><td>38.80</td><td>46.02</td><td>-7.22</td></tr> <tr> <td></td><td>602.38</td><td>Qausi-peak</td><td>V</td><td>38.32</td><td>46.02</td><td>-7.70</td></tr> <tr> <td colspan="6"> <table border="1"> <tbody> <tr> <td>2 480</td><td>54.86</td><td>Qausi-peak</td><td>V</td><td>33.54</td><td>40.00</td><td>-6.46</td></tr> <tr> <td></td><td>122.84</td><td>Qausi-peak</td><td>H</td><td>36.10</td><td>43.52</td><td>-7.42</td></tr> <tr> <td></td><td>292.32</td><td>Qausi-peak</td><td>H</td><td>37.55</td><td>46.02</td><td>-8.47</td></tr> <tr> <td></td><td>301.48</td><td>Qausi-peak</td><td>H</td><td>38.58</td><td>46.02</td><td>-7.44</td></tr> <tr> <td></td><td>391.21</td><td>Qausi-peak</td><td>H</td><td>34.38</td><td>46.02</td><td>-11.64</td></tr> <tr> <td></td><td>453.72</td><td>Qausi-peak</td><td>V</td><td>37.64</td><td>46.02</td><td>-8.38</td></tr> <tr> <td></td><td>601.60</td><td>Qausi-peak</td><td>V</td><td>38.88</td><td>46.02</td><td>-7.14</td></tr> </tbody></table> </td></tr> <tr> <td colspan="6">Peak/Average data, emissions above 1 000 MHz</td></tr> <tr> <td colspan="6" style="text-align: center;">No Critical peaks Found</td></tr> </tbody> </table>	2 441	55.12	Qausi-peak	V	33.35	40.00	-6.65		121.84	Qausi-peak	H	35.02	43.52	-8.50		294.76	Qausi-peak	H	36.15	46.02	-9.87		300.55	Qausi-peak	H	37.66	46.02	-8.36		391.18	Qausi-peak	H	33.05	46.02	-12.97		455.91	Qausi-peak	V	38.80	46.02	-7.22		602.38	Qausi-peak	V	38.32	46.02	-7.70	<table border="1"> <tbody> <tr> <td>2 480</td><td>54.86</td><td>Qausi-peak</td><td>V</td><td>33.54</td><td>40.00</td><td>-6.46</td></tr> <tr> <td></td><td>122.84</td><td>Qausi-peak</td><td>H</td><td>36.10</td><td>43.52</td><td>-7.42</td></tr> <tr> <td></td><td>292.32</td><td>Qausi-peak</td><td>H</td><td>37.55</td><td>46.02</td><td>-8.47</td></tr> <tr> <td></td><td>301.48</td><td>Qausi-peak</td><td>H</td><td>38.58</td><td>46.02</td><td>-7.44</td></tr> <tr> <td></td><td>391.21</td><td>Qausi-peak</td><td>H</td><td>34.38</td><td>46.02</td><td>-11.64</td></tr> <tr> <td></td><td>453.72</td><td>Qausi-peak</td><td>V</td><td>37.64</td><td>46.02</td><td>-8.38</td></tr> <tr> <td></td><td>601.60</td><td>Qausi-peak</td><td>V</td><td>38.88</td><td>46.02</td><td>-7.14</td></tr> </tbody></table>						2 480	54.86	Qausi-peak	V	33.54	40.00	-6.46		122.84	Qausi-peak	H	36.10	43.52	-7.42		292.32	Qausi-peak	H	37.55	46.02	-8.47		301.48	Qausi-peak	H	38.58	46.02	-7.44		391.21	Qausi-peak	H	34.38	46.02	-11.64		453.72	Qausi-peak	V	37.64	46.02	-8.38		601.60	Qausi-peak	V	38.88	46.02	-7.14	Peak/Average data, emissions above 1 000 MHz						No Critical peaks Found					
2 402	55.06	Qausi-peak	V	34.03	40.00	-5.97																																																																																																																																																																
	120.05	Qausi-peak	H	34.56	43.52	-8.96																																																																																																																																																																
	265.60	Qausi-peak	H	34.47	46.02	-11.55																																																																																																																																																																
	303.48	Qausi-peak	H	37.74	46.02	-8.28																																																																																																																																																																
	384.00	Qausi-peak	H	30.07	46.02	-15.95																																																																																																																																																																
	456.98	Qausi-peak	V	38.44	46.02	-7.58																																																																																																																																																																
	600.92	Qausi-peak	V	38.92	46.02	-7.10																																																																																																																																																																
<table border="1"> <tbody> <tr> <td>2 441</td><td>55.12</td><td>Qausi-peak</td><td>V</td><td>33.35</td><td>40.00</td><td>-6.65</td></tr> <tr> <td></td><td>121.84</td><td>Qausi-peak</td><td>H</td><td>35.02</td><td>43.52</td><td>-8.50</td></tr> <tr> <td></td><td>294.76</td><td>Qausi-peak</td><td>H</td><td>36.15</td><td>46.02</td><td>-9.87</td></tr> <tr> <td></td><td>300.55</td><td>Qausi-peak</td><td>H</td><td>37.66</td><td>46.02</td><td>-8.36</td></tr> <tr> <td></td><td>391.18</td><td>Qausi-peak</td><td>H</td><td>33.05</td><td>46.02</td><td>-12.97</td></tr> <tr> <td></td><td>455.91</td><td>Qausi-peak</td><td>V</td><td>38.80</td><td>46.02</td><td>-7.22</td></tr> <tr> <td></td><td>602.38</td><td>Qausi-peak</td><td>V</td><td>38.32</td><td>46.02</td><td>-7.70</td></tr> <tr> <td colspan="6"> <table border="1"> <tbody> <tr> <td>2 480</td><td>54.86</td><td>Qausi-peak</td><td>V</td><td>33.54</td><td>40.00</td><td>-6.46</td></tr> <tr> <td></td><td>122.84</td><td>Qausi-peak</td><td>H</td><td>36.10</td><td>43.52</td><td>-7.42</td></tr> <tr> <td></td><td>292.32</td><td>Qausi-peak</td><td>H</td><td>37.55</td><td>46.02</td><td>-8.47</td></tr> <tr> <td></td><td>301.48</td><td>Qausi-peak</td><td>H</td><td>38.58</td><td>46.02</td><td>-7.44</td></tr> <tr> <td></td><td>391.21</td><td>Qausi-peak</td><td>H</td><td>34.38</td><td>46.02</td><td>-11.64</td></tr> <tr> <td></td><td>453.72</td><td>Qausi-peak</td><td>V</td><td>37.64</td><td>46.02</td><td>-8.38</td></tr> <tr> <td></td><td>601.60</td><td>Qausi-peak</td><td>V</td><td>38.88</td><td>46.02</td><td>-7.14</td></tr> </tbody></table> </td></tr> <tr> <td colspan="6">Peak/Average data, emissions above 1 000 MHz</td></tr> <tr> <td colspan="6" style="text-align: center;">No Critical peaks Found</td></tr> </tbody> </table>	2 441	55.12	Qausi-peak	V	33.35	40.00	-6.65		121.84	Qausi-peak	H	35.02	43.52	-8.50		294.76	Qausi-peak	H	36.15	46.02	-9.87		300.55	Qausi-peak	H	37.66	46.02	-8.36		391.18	Qausi-peak	H	33.05	46.02	-12.97		455.91	Qausi-peak	V	38.80	46.02	-7.22		602.38	Qausi-peak	V	38.32	46.02	-7.70	<table border="1"> <tbody> <tr> <td>2 480</td><td>54.86</td><td>Qausi-peak</td><td>V</td><td>33.54</td><td>40.00</td><td>-6.46</td></tr> <tr> <td></td><td>122.84</td><td>Qausi-peak</td><td>H</td><td>36.10</td><td>43.52</td><td>-7.42</td></tr> <tr> <td></td><td>292.32</td><td>Qausi-peak</td><td>H</td><td>37.55</td><td>46.02</td><td>-8.47</td></tr> <tr> <td></td><td>301.48</td><td>Qausi-peak</td><td>H</td><td>38.58</td><td>46.02</td><td>-7.44</td></tr> <tr> <td></td><td>391.21</td><td>Qausi-peak</td><td>H</td><td>34.38</td><td>46.02</td><td>-11.64</td></tr> <tr> <td></td><td>453.72</td><td>Qausi-peak</td><td>V</td><td>37.64</td><td>46.02</td><td>-8.38</td></tr> <tr> <td></td><td>601.60</td><td>Qausi-peak</td><td>V</td><td>38.88</td><td>46.02</td><td>-7.14</td></tr> </tbody></table>						2 480	54.86	Qausi-peak	V	33.54	40.00	-6.46		122.84	Qausi-peak	H	36.10	43.52	-7.42		292.32	Qausi-peak	H	37.55	46.02	-8.47		301.48	Qausi-peak	H	38.58	46.02	-7.44		391.21	Qausi-peak	H	34.38	46.02	-11.64		453.72	Qausi-peak	V	37.64	46.02	-8.38		601.60	Qausi-peak	V	38.88	46.02	-7.14	Peak/Average data, emissions above 1 000 MHz						No Critical peaks Found																																																							
2 441	55.12	Qausi-peak	V	33.35	40.00	-6.65																																																																																																																																																																
	121.84	Qausi-peak	H	35.02	43.52	-8.50																																																																																																																																																																
	294.76	Qausi-peak	H	36.15	46.02	-9.87																																																																																																																																																																
	300.55	Qausi-peak	H	37.66	46.02	-8.36																																																																																																																																																																
	391.18	Qausi-peak	H	33.05	46.02	-12.97																																																																																																																																																																
	455.91	Qausi-peak	V	38.80	46.02	-7.22																																																																																																																																																																
	602.38	Qausi-peak	V	38.32	46.02	-7.70																																																																																																																																																																
<table border="1"> <tbody> <tr> <td>2 480</td><td>54.86</td><td>Qausi-peak</td><td>V</td><td>33.54</td><td>40.00</td><td>-6.46</td></tr> <tr> <td></td><td>122.84</td><td>Qausi-peak</td><td>H</td><td>36.10</td><td>43.52</td><td>-7.42</td></tr> <tr> <td></td><td>292.32</td><td>Qausi-peak</td><td>H</td><td>37.55</td><td>46.02</td><td>-8.47</td></tr> <tr> <td></td><td>301.48</td><td>Qausi-peak</td><td>H</td><td>38.58</td><td>46.02</td><td>-7.44</td></tr> <tr> <td></td><td>391.21</td><td>Qausi-peak</td><td>H</td><td>34.38</td><td>46.02</td><td>-11.64</td></tr> <tr> <td></td><td>453.72</td><td>Qausi-peak</td><td>V</td><td>37.64</td><td>46.02</td><td>-8.38</td></tr> <tr> <td></td><td>601.60</td><td>Qausi-peak</td><td>V</td><td>38.88</td><td>46.02</td><td>-7.14</td></tr> </tbody></table>						2 480	54.86	Qausi-peak	V	33.54	40.00	-6.46		122.84	Qausi-peak	H	36.10	43.52	-7.42		292.32	Qausi-peak	H	37.55	46.02	-8.47		301.48	Qausi-peak	H	38.58	46.02	-7.44		391.21	Qausi-peak	H	34.38	46.02	-11.64		453.72	Qausi-peak	V	37.64	46.02	-8.38		601.60	Qausi-peak	V	38.88	46.02	-7.14																																																																																																																
2 480	54.86	Qausi-peak	V	33.54	40.00	-6.46																																																																																																																																																																
	122.84	Qausi-peak	H	36.10	43.52	-7.42																																																																																																																																																																
	292.32	Qausi-peak	H	37.55	46.02	-8.47																																																																																																																																																																
	301.48	Qausi-peak	H	38.58	46.02	-7.44																																																																																																																																																																
	391.21	Qausi-peak	H	34.38	46.02	-11.64																																																																																																																																																																
	453.72	Qausi-peak	V	37.64	46.02	-8.38																																																																																																																																																																
	601.60	Qausi-peak	V	38.88	46.02	-7.14																																																																																																																																																																
Peak/Average data, emissions above 1 000 MHz																																																																																																																																																																						
No Critical peaks Found																																																																																																																																																																						

* Remark: "H": Horizontal, "V": Vertical

* Margin [dB] = Emission Level [dB μ V/m] – Limit [dB μ V/m]

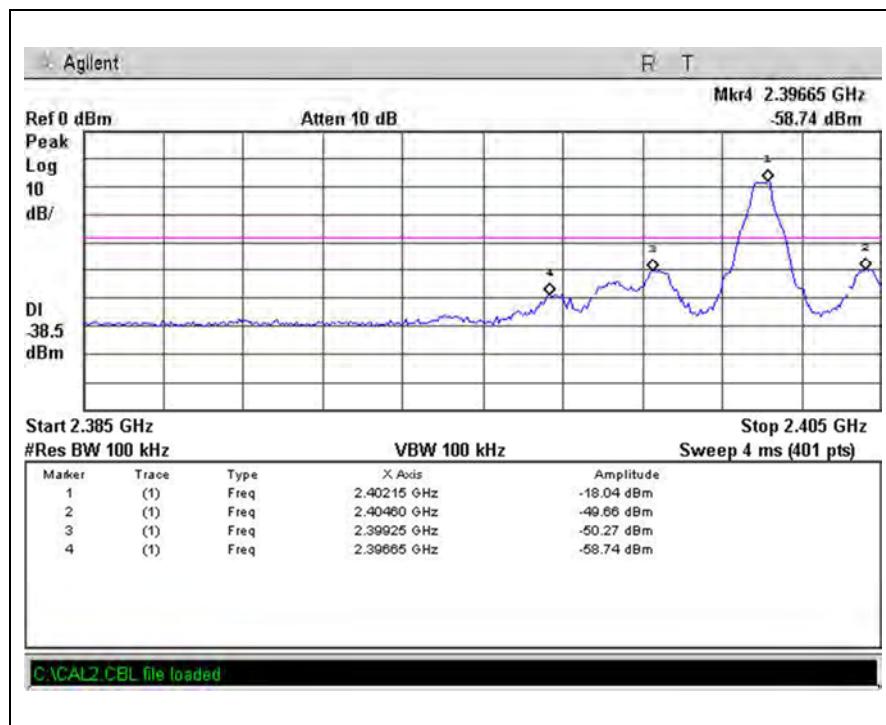
Table 7: Measured values of the Field strength of spurious emission (2 Mbps Transmit mode)

Frequency [MHz]	Detect Mode	Polarization [V/H]	Emission Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	
Average/Peak/Quasi-peak data, emissions below 30 MHz						
		No Critical peaks Found				
Quasi-peak data, emissions below 1 000 MHz						
2 402	55.14	Qausi-peak	V	34.09	40.00	-5.91
	121.20	Qausi-peak	H	34.49	43.52	-9.03
	294.92	Qausi-peak	H	35.52	46.02	-10.50
	300.94	Qausi-peak	H	37.96	46.02	-8.06
	389.23	Qausi-peak	H	31.95	46.02	-14.07
	456.81	Qausi-peak	V	38.70	46.02	-7.32
	601.18	Qausi-peak	V	37.05	46.02	-8.97
2 441	54.93	Qausi-peak	V	33.42	40.00	-6.58
	122.85	Qausi-peak	H	35.17	43.52	-8.35
	293.81	Qausi-peak	H	36.77	46.02	-9.25
	301.41	Qausi-peak	H	38.58	46.02	-7.44
	390.93	Qausi-peak	H	34.24	46.02	-11.78
	454.71	Qausi-peak	V	37.61	46.02	-8.41
	601.88	Qausi-peak	V	39.10	46.02	-6.92
2 480	53.92	Qausi-peak	V	33.46	40.00	-6.54
	123.44	Qausi-peak	H	36.88	43.52	-6.64
	291.29	Qausi-peak	H	38.42	46.02	-7.60
	302.01	Qausi-peak	H	37.74	46.02	-8.28
	390.94	Qausi-peak	H	34.48	46.02	-11.54
	454.27	Qausi-peak	V	37.77	46.02	-8.25
	600.90	Qausi-peak	V	38.78	46.02	-7.24
Peak/Average data, emissions above 1 000 MHz						
		No Critical peaks Found				

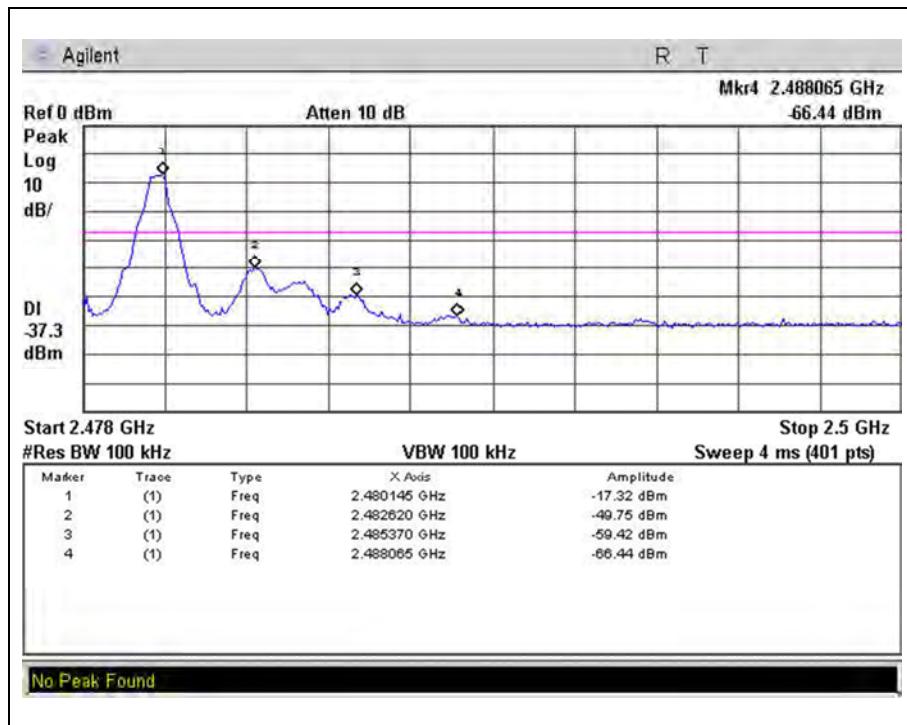
* Remark: "H": Horizontal, "V": Vertical

* Margin [dB] = Emission Level [dB μ V/m] – Limit [dB μ V/m]

Table 8: Measured values of the Field strength of spurious emission (3 Mbps Transmit mode)

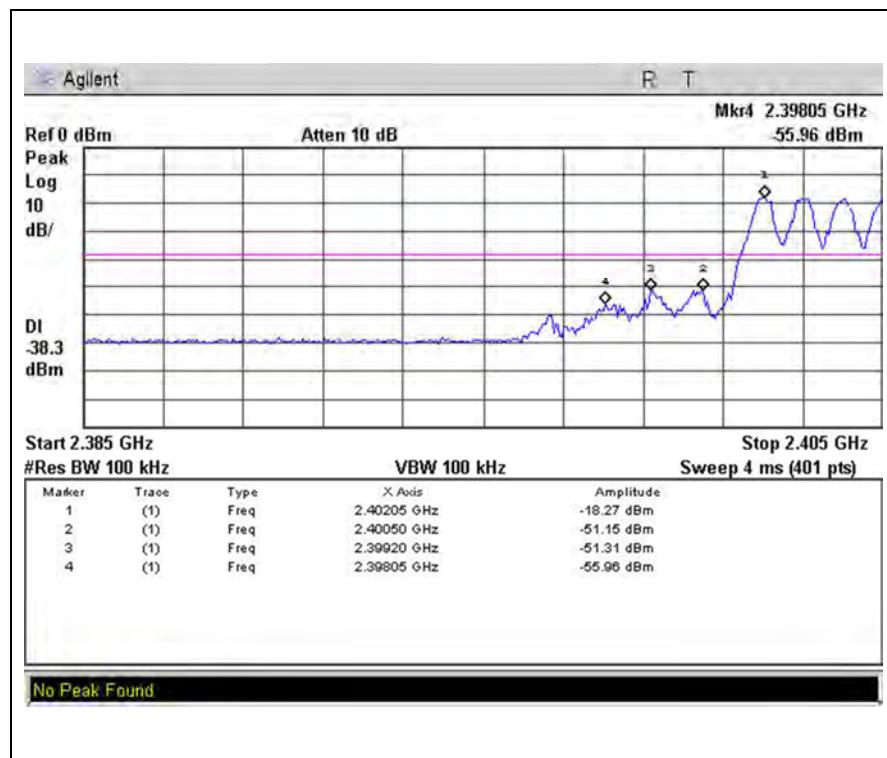

Frequency [MHz]	Detect Mode	Polarization [V/H]	Emission Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]				
Average/Peak/Quasi-peak data, emissions below 30 MHz									
		No Critical peaks Found							
Quasi-peak data, emissions below 1 000 MHz									
2 402									
55.07	Qausi-peak	V	34.04	40.00	-5.96				
122.24	Qausi-peak	H	35.22	43.52	-8.30				
293.88	Qausi-peak	H	35.76	46.02	-10.26				
301.42	Qausi-peak	H	38.20	46.02	-7.82				
390.11	Qausi-peak	H	32.46	46.02	-13.56				
456.72	Qausi-peak	V	38.44	46.02	-7.58				
601.41	Qausi-peak	V	37.70	46.02	-8.32				
2 441									
54.81	Qausi-peak	V	33.55	40.00	-6.45				
122.73	Qausi-peak	H	36.11	43.52	-7.41				
292.76	Qausi-peak	H	37.57	46.02	-8.45				
300.95	Qausi-peak	H	38.56	46.02	-7.46				
391.01	Qausi-peak	H	34.37	46.02	-11.65				
454.69	Qausi-peak	V	37.66	46.02	-8.36				
601.72	Qausi-peak	V	38.89	46.02	-7.13				
2 480									
54.02	Qausi-peak	V	33.57	40.00	-6.43				
123.21	Qausi-peak	H	37.72	43.52	-5.80				
290.99	Qausi-peak	H	38.72	46.02	-7.30				
301.49	Qausi-peak	H	38.46	46.02	-7.56				
391.24	Qausi-peak	H	33.79	46.02	-12.23				
453.87	Qausi-peak	V	37.59	46.02	-8.43				
601.03	Qausi-peak	V	39.08	46.02	-6.94				
Peak/Average data, emissions above 1 000 MHz									
		No Critical peaks Found							

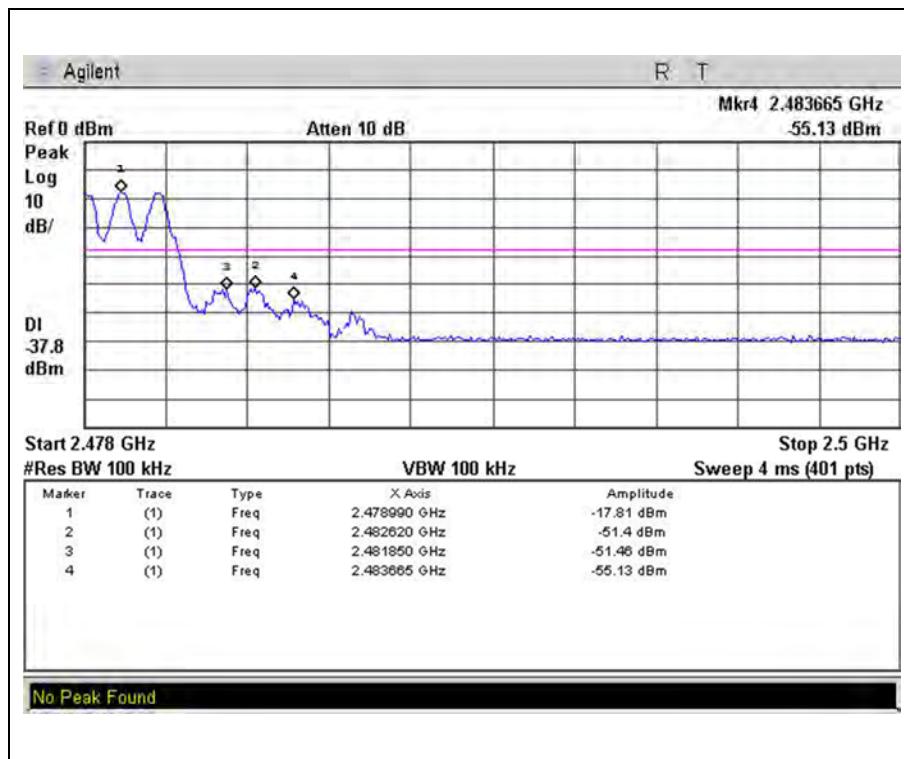
* Remark: "H": Horizontal, "V": Vertical


* Margin [dB] = Emission Level [dB μ V/m] – Limit [dB μ V/m]

6.7.5 Plot of the band edge (Conducted)

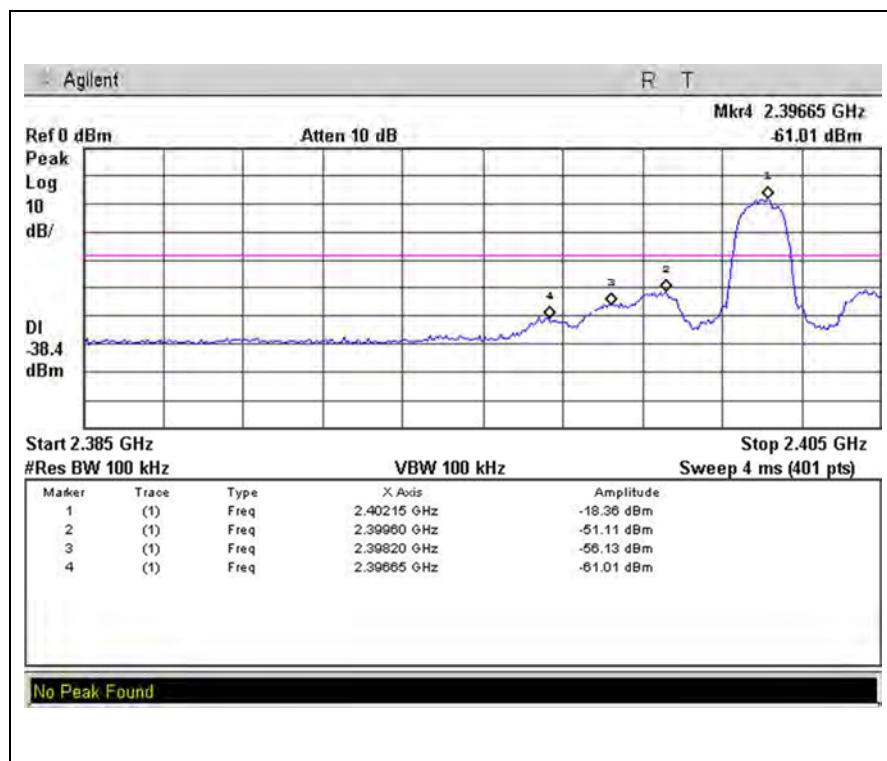
1 Mbps
Lowest Channel

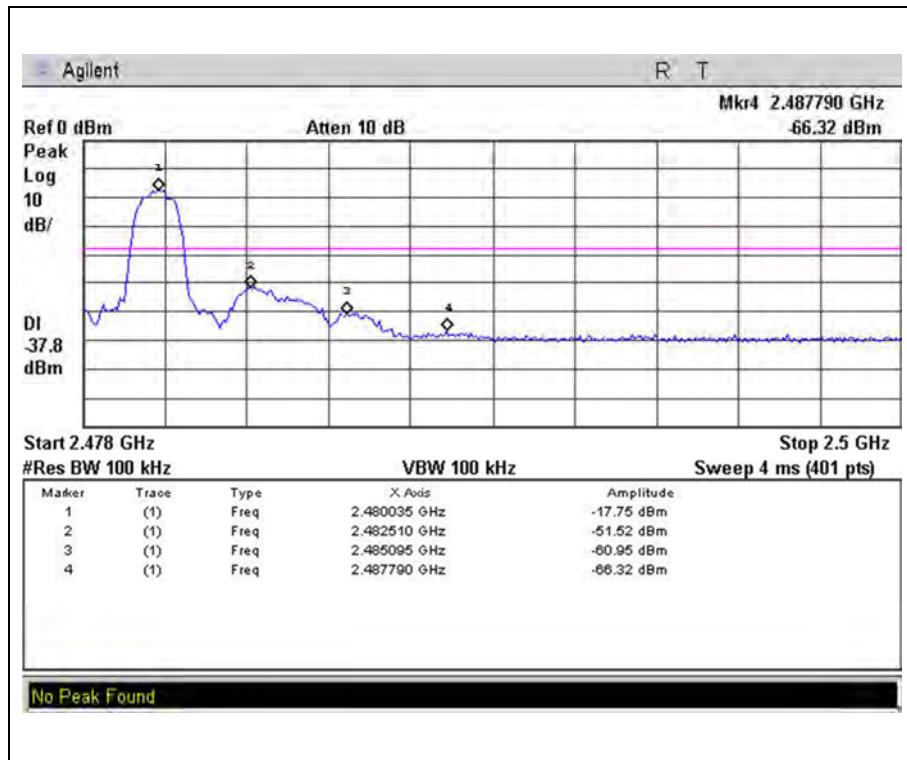

Highest Channel



1 Mbps (Hopping Mode)

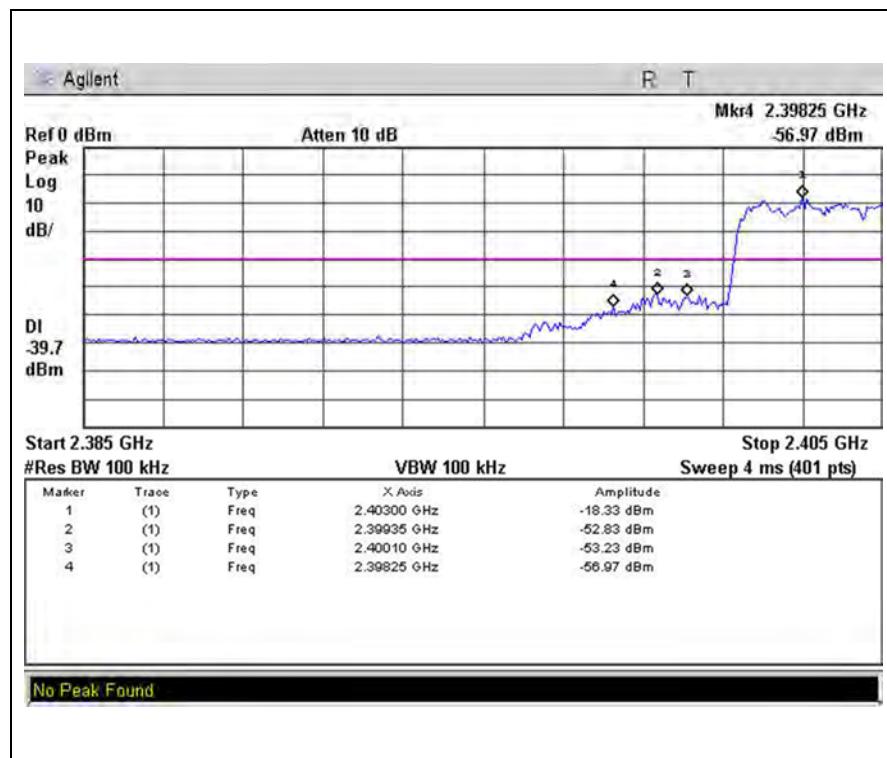
Lowest Channel

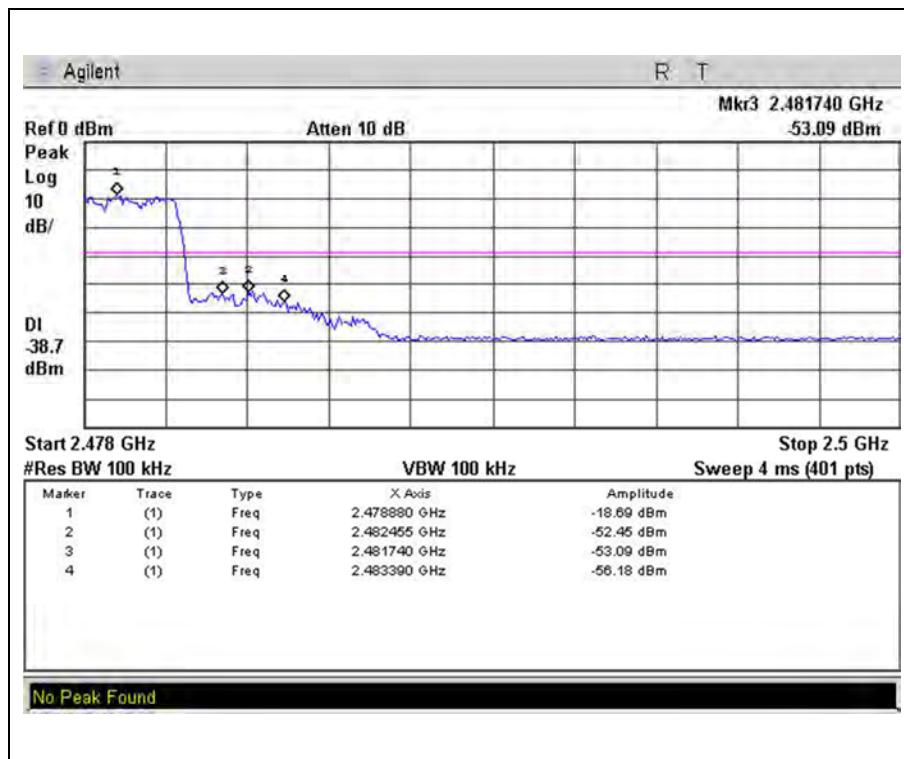

Highest Channel



2 Mbps

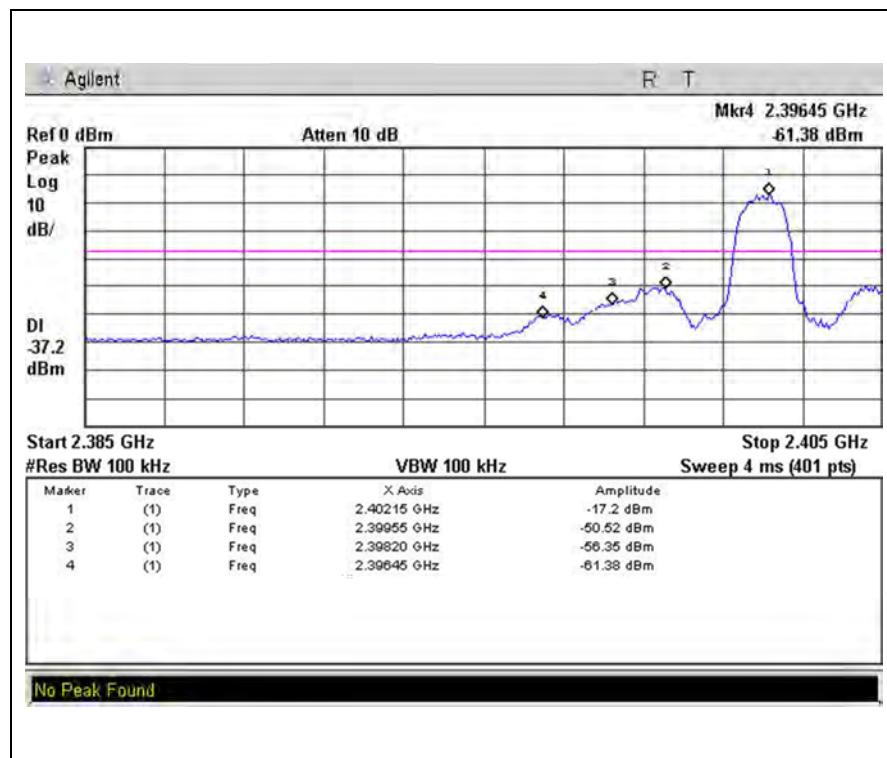
Lowest Channel


Highest Channel

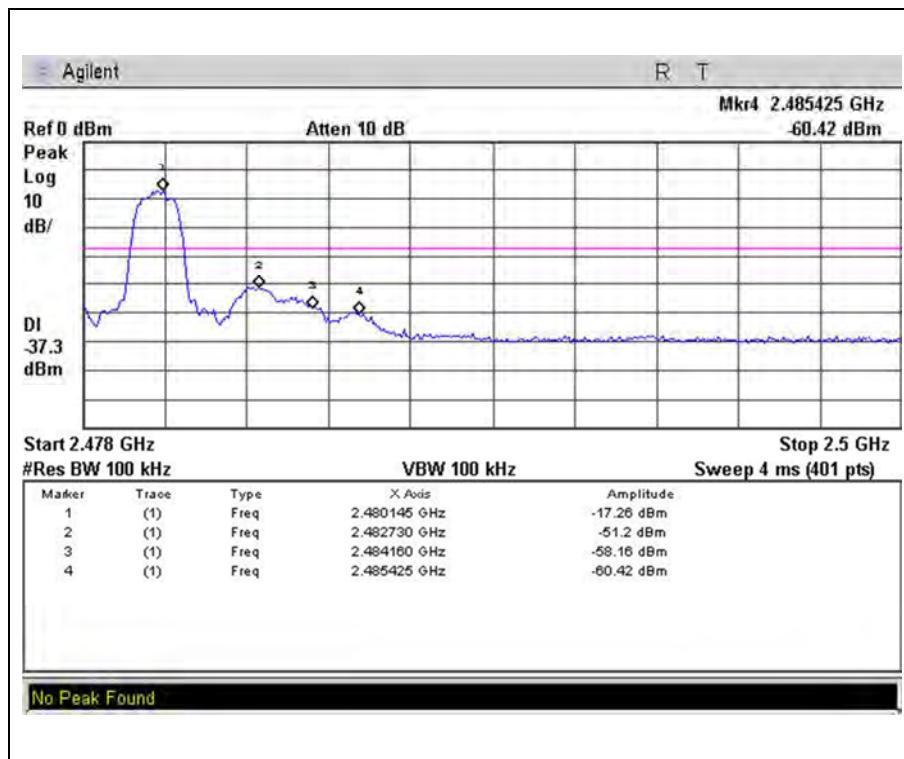


2 Mbps (Hopping Mode)

Lowest Channel



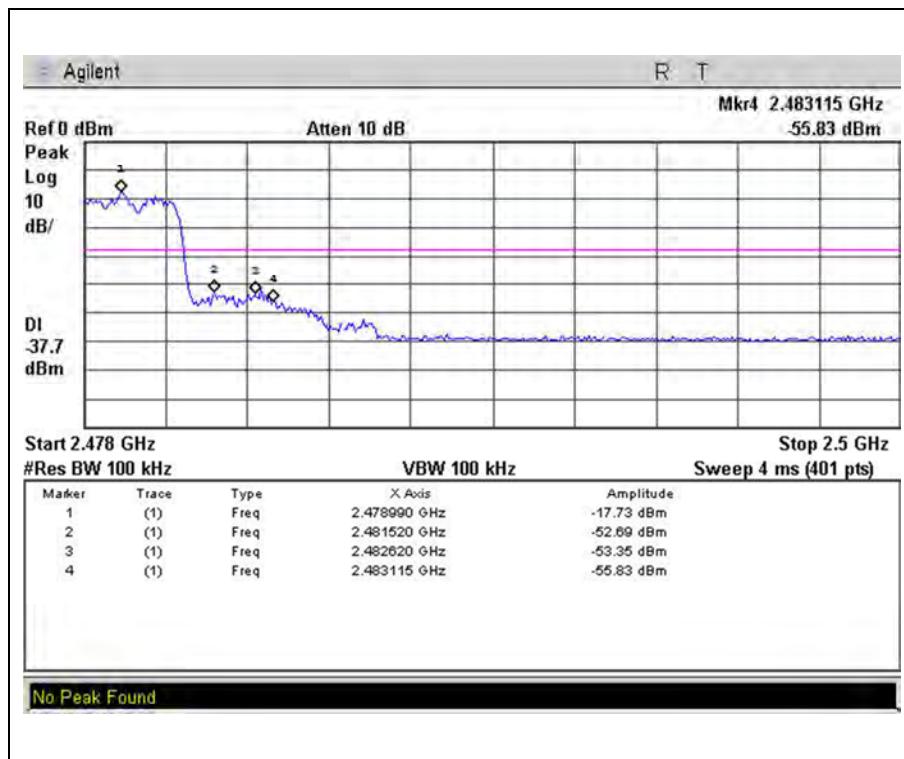
Highest Channel



3 Mbps

Lowest Channel


Highest Channel



3 Mbps (Hopping Mode)

Lowest Channel

Highest Channel

6.7.6 Plot of the band edge (Radiated)

Table 9: Measured values of the Band Edge (1 Mbps Transmit mode)

Frequency [MHz]		Detect Mode	Polarization [V/H]	Emission Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
2 402	2 390.00	Peak	H	48.51	74.00	-25.49
	2 390.00	Average	H	34.16	54.00	-19.84
	2 354.48	Peak	V	48.12	74.00	-25.88
	2 354.48	Average	V	33.02	54.00	-20.98
2 480	2 483.50	Peak	H	60.75	74.00	-13.25
	2 483.50	Average	H	49.86	54.00	-4.14
	2 483.50	Peak	V	50.34	74.00	-23.66
	2 483.50	Average	V	39.18	54.00	-14.82

* Remark: "H": Horizontal, "V": Vertical

* Margin [dB] = Emission Level [dB μ V/m] – Limit [dB μ V/m]

Table 10: Measured values of the Band Edge (2 Mbps Transmit mode)

Frequency [MHz]		Detect Mode	Polarization [V/H]	Emission Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
2 402	2 388.88	Peak	H	48.72	74.00	-25.28
	2 388.88	Average	H	34.14	54.00	-19.86
	2 346.96	Peak	V	50.01	74.00	-23.99
	2 346.96	Average	V	33.10	54.00	-20.90
2 480	2 483.53	Peak	H	62.18	74.00	-11.82
	2 483.53	Average	H	48.16	54.00	-5.84
	2 483.50	Peak	V	51.51	74.00	-22.49
	2 483.50	Average	V	39.44	54.00	-14.56

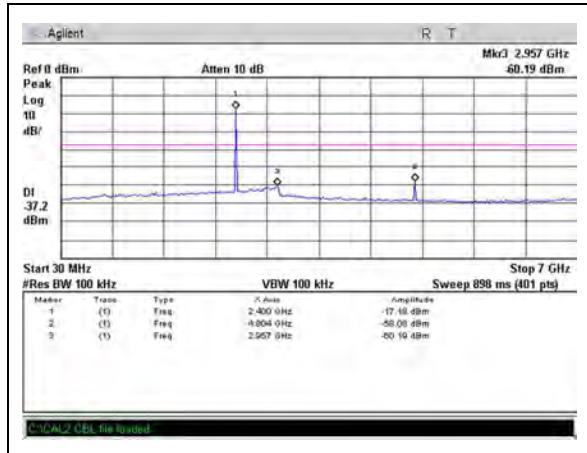
* Remark: "H": Horizontal, "V": Vertical

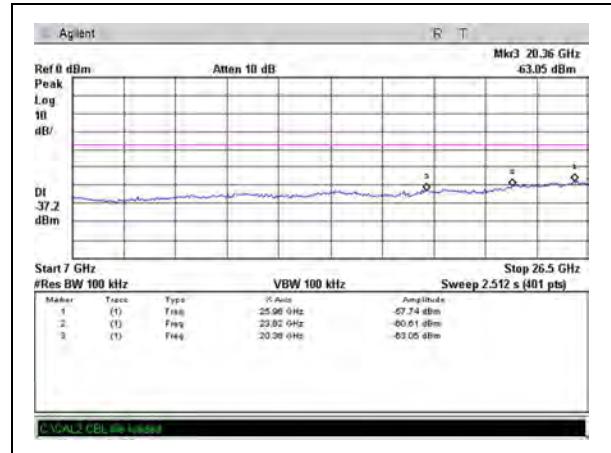
* Margin [dB] = Emission Level [dB μ V/m] – Limit [dB μ V/m]

Table 11: Measured values of the Band Edge (3 Mbps Transmit mode)

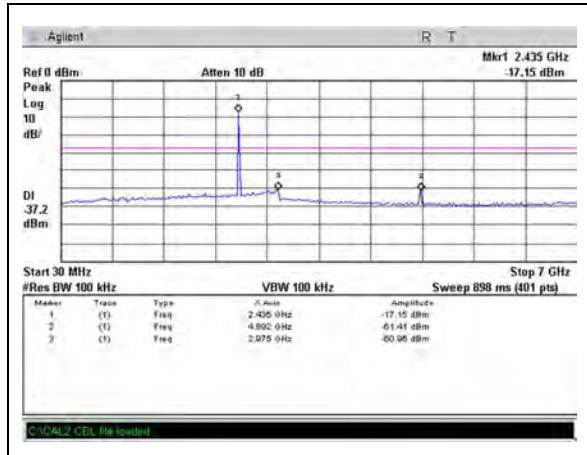
Frequency [MHz]	Detect Mode	Polarization [V/H]	Emission Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]
2 402	2 389.20	Peak	H	48.17	74.00
	2 389.20	Average	H	34.41	54.00
	2 378.48	Peak	V	49.10	74.00
	2 378.48	Average	V	33.23	54.00
2 480	2 483.50	Peak	H	62.72	74.00
	2 483.50	Average	H	49.85	54.00
	2 483.50	Peak	V	51.36	74.00
	2 483.50	Average	V	39.77	54.00

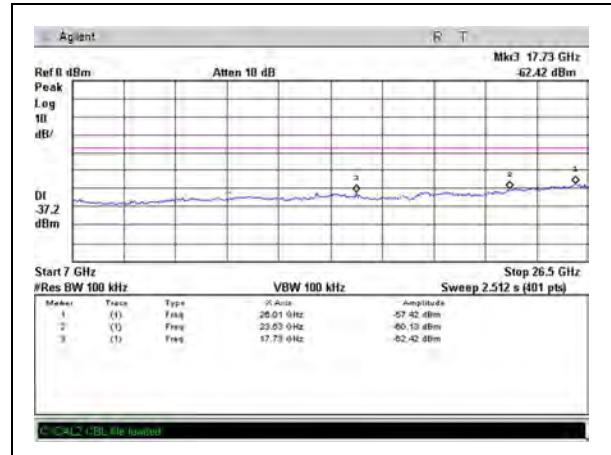
* Remark: "H": Horizontal, "V": Vertical

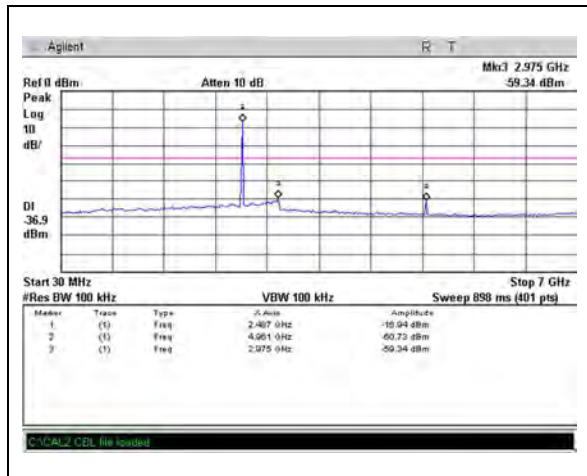

* Margin [dB] = Emission Level [dB μ V/m] – Limit [dB μ V/m]

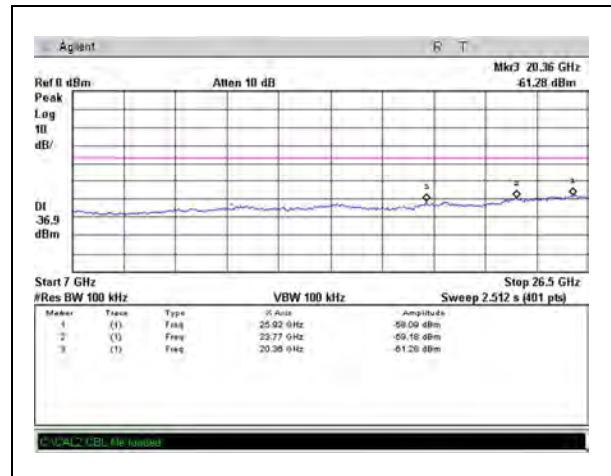

6.7.7 Plot of the spurious RF conducted emissions

1 Mbps

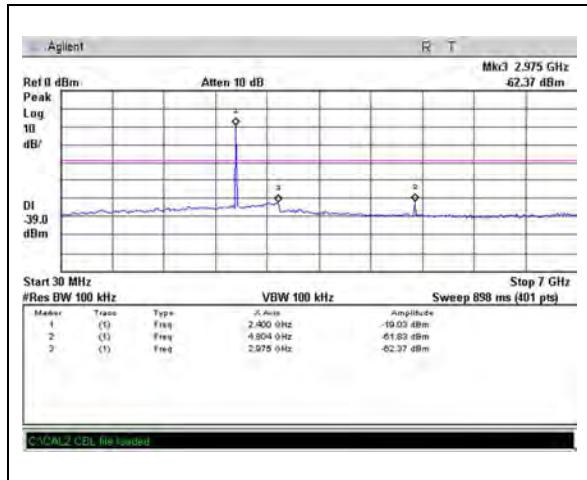

Lowest Channel: 30 MHz ~ 7 GHz

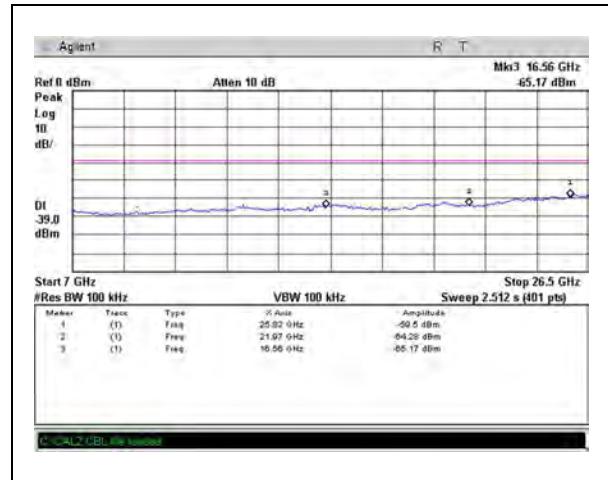

Lowest Channel: 7 GHz ~ 26.5 GHz


Middle Channel: 30 MHz ~ 7 GHz

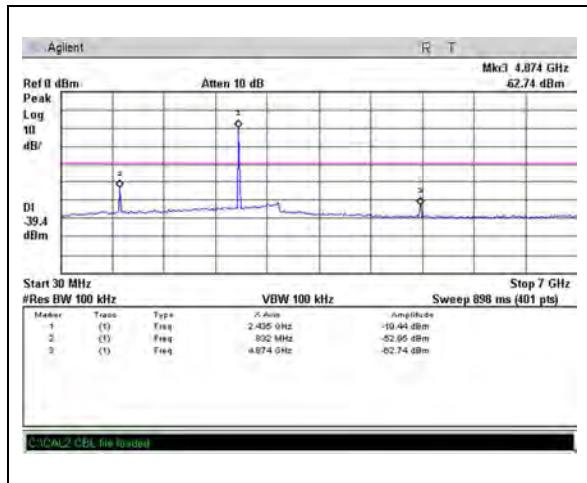

Middle Channel: 7 GHz ~ 26.5 GHz

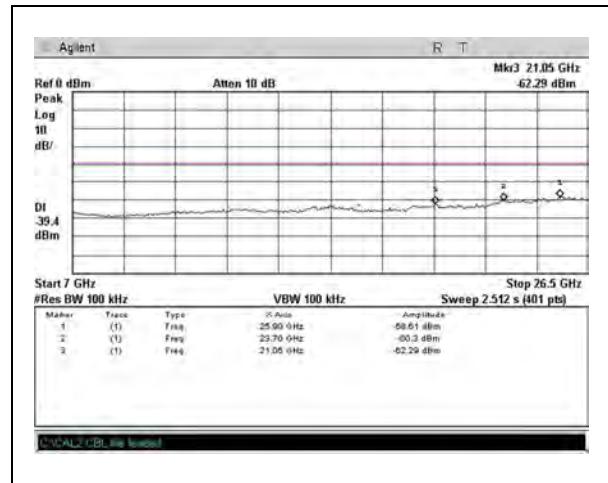
Highest Channel: 30 MHz ~ 7 GHz

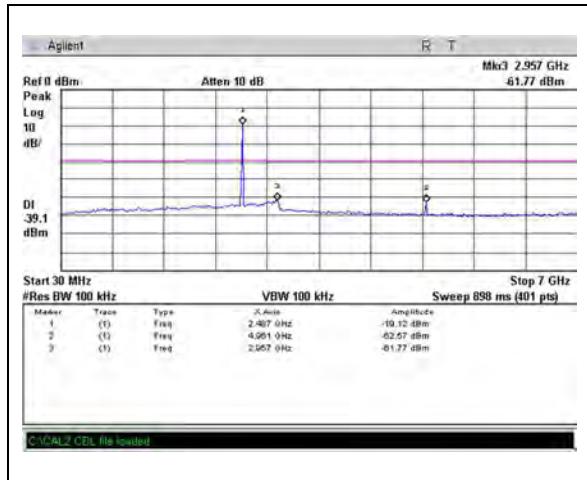

Highest Channel: 7 GHz ~ 26.5 GHz

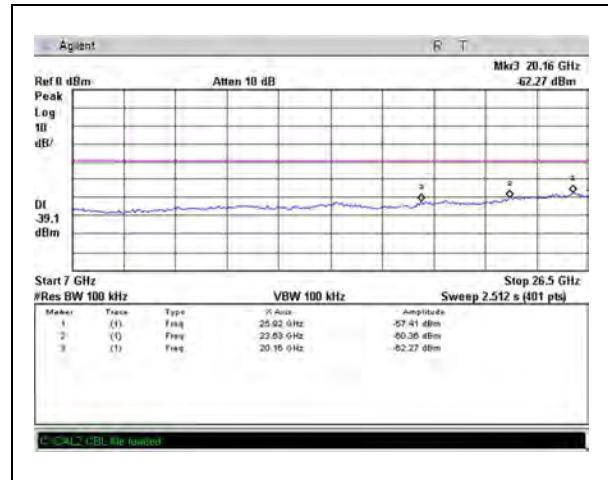


2 Mbps

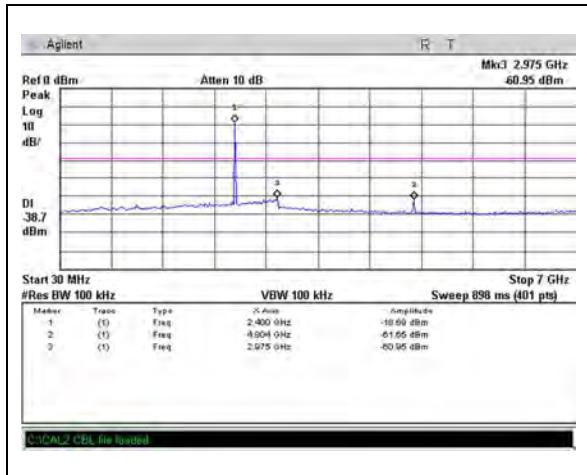

Lowest Channel: 30 MHz ~ 7 GHz

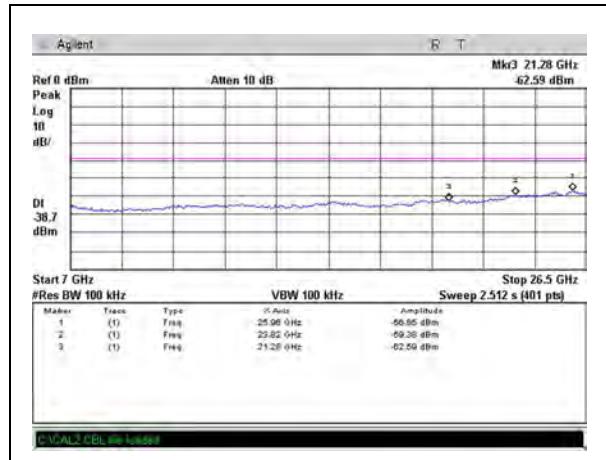

Lowest Channel: 7 GHz ~ 26.5 GHz


Middle Channel: 30 MHz ~ 7 GHz

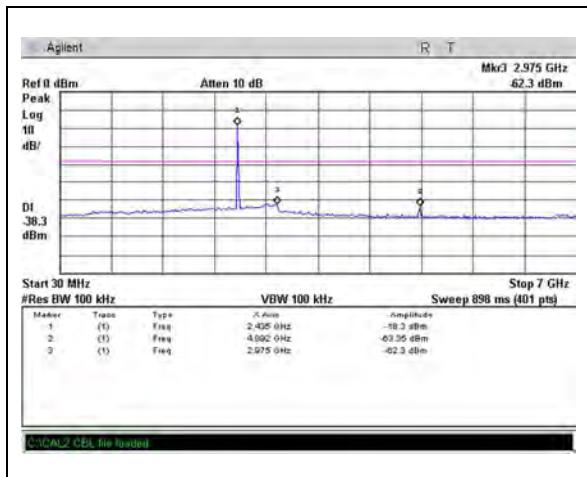

Middle Channel: 7 GHz ~ 26.5 GHz

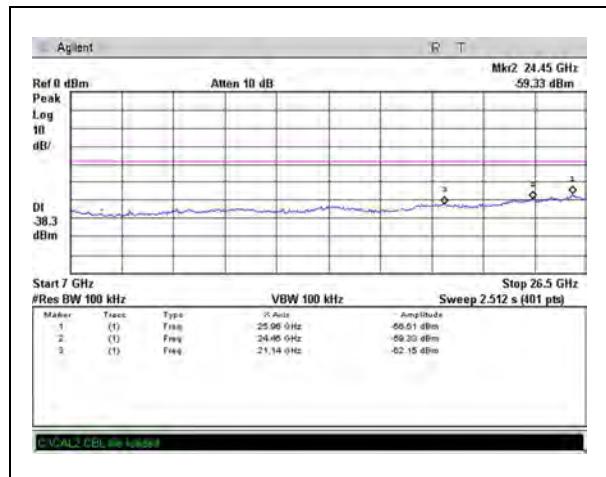
Highest Channel: 30 MHz ~ 7 GHz

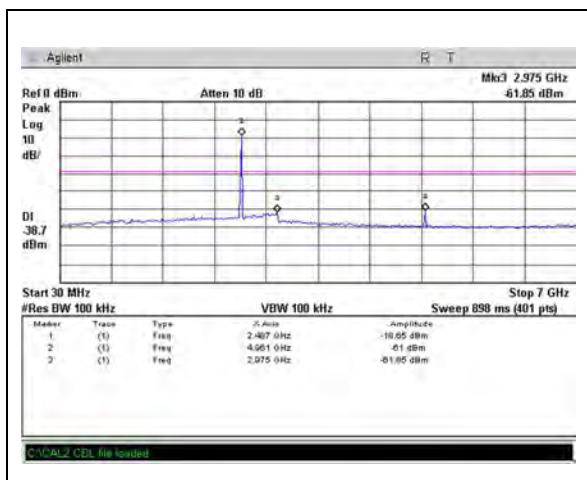

Highest Channel: 7 GHz ~ 26.5 GHz

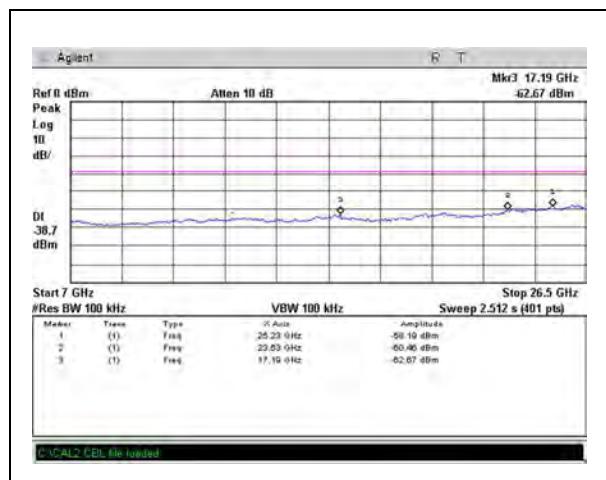


3 Mbps


Lowest Channel: 30 MHz ~ 7 GHz


Lowest Channel: 7 GHz ~ 26.5 GHz


Middle Channel: 30 MHz ~ 7 GHz


Middle Channel: 7 GHz ~ 26.5 GHz

Highest Channel: 30 MHz ~ 7 GHz

Highest Channel: 7 GHz ~ 26.5 GHz

6.8 AC power line conducted emissions

6.8.1 Regulation

According to §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any following table, as measured using a $50\mu\text{H}/50\Omega$ line impedance stabilization network (LISN).

Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

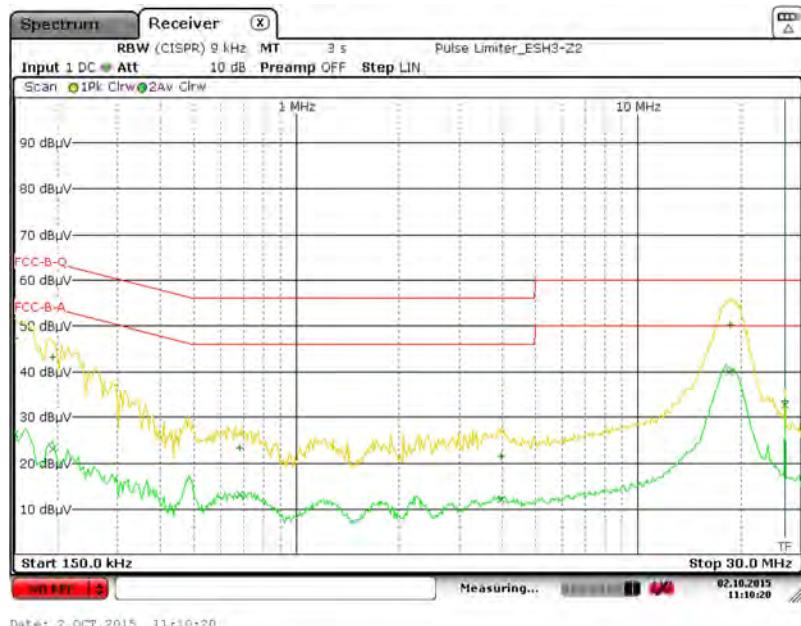
Frequency of emission [MHz]	Conducted limit [dB μ V]	
	Quasi-peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50

* Decreases with the logarithm of the frequency.

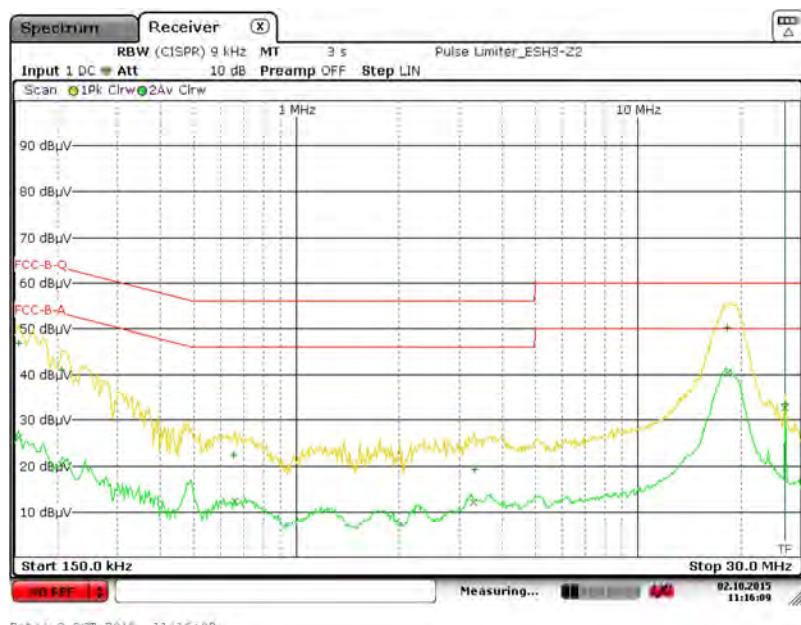
6.8.2 Test procedure

1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
2. Each current-carrying conductor of the EUT power cord was individually connected through a $50\Omega / 50\mu\text{H}$ LISN, which is an input transducer to a Spectrum Analyzer or an EMI/Field Intensity Meter, to the input power source.
3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment in the system) was then performed over the frequency range of 0.15 MHz to 30 MHz.
5. The measurements were made with the detector set to PEAK amplitude within a bandwidth of 10 kHz or to QUASI-PEAK and AVERAGE within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements.

6.8.3 Test Results: Pass


Table 8: Measured values of the AC Power Line Conducted Emissions

Frequency [MHz]	Factor		Line	Quasi-Peak			Average		
	LISN	Cable		Limit	Reading	Results	Limit	Reading	Results
	[dB]	[dB]		[dB μ V]					
0.15	0.10	9.84	H	66.00	47.29	47.42	56.00	26.33	26.46
0.19	0.09	9.84	H	64.04	43.29	43.40	54.04	22.95	23.06
0.68	0.08	9.84	H	56.00	23.24	23.36	46.00	13.32	13.44
3.99	0.17	9.85	H	56.00	21.46	21.75	46.00	12.10	12.39
18.67	0.84	9.90	H	60.00	50.30	51.43	50.00	39.94	41.07
27.00	0.83	9.96	H	60.00	33.54	34.73	50.00	32.64	33.83


* Remark: "H": Hot Line, "N": Neutral Line

6.8.4 Plot of the ac power line conducted emissions

[Hot line]

[Neutral line]

7. Radio Frequency Exposure

7.1 RF exposure limit

According to the FCC rule §1.1310, the limit for General Population/Uncontrolled exposure is 1 mW/cm² for the device operating 1 500 MHz ~ 100 000 MHz.

7.2 RF exposure consideration

This equipment should be operated with a minimum distance of 2 cm between the radiator and front of face.

This equipment should not be placed directly on the ear when the speaker is active.

7.3 EUT description

Kind of EUT	OCR Multi-Player
Operating Frequency Band	<input type="checkbox"/> Wireless Microphone: 494.000 MHz ~ 501.000 MHz and 498.200 MHz ~ 505.200 MHz <input type="checkbox"/> WLAN(802.11b/g/n(HT20)): 2 412 MHz ~ 2 462 MHz <input type="checkbox"/> WLAN(802.11n(HT40)): 2 422 MHz ~ 2 452 MHz <input type="checkbox"/> WLAN: 5 180 MHz ~ 5 320 MHz / 5 500 MHz ~ 5 700 MHz <input type="checkbox"/> WLAN: 5 745 MHz ~ 5 825 MHz <input checked="" type="checkbox"/> Bluetooth: 2 402 MHz ~ 2 480 MHz <input type="checkbox"/> Zigbee: 2 425 MHz, 2 450 MHz, 2 475 MHz
Device Category	<input type="checkbox"/> Portable (< 20 cm separation) <input type="checkbox"/> Mobile (> 20 cm separation) <input checked="" type="checkbox"/> Others
Max. Output Power	0.000 073 W
Used Antenna	Inserted into the bluetooth board (Pattern Antenna)
Used Antenna Gain	1.87 dBi
Exposure Evaluation Applied	<input checked="" type="checkbox"/> MPE <input type="checkbox"/> SAR <input type="checkbox"/> N/A

7.4 Results

According to the procedure, KDB 447498 D01, the standalone SAR test exclusion threshold is $[(\text{Max. Power of channel, including tune-up tolerance, mW}) / (\text{Mim. test separation distance, mm})] \times [\sqrt{f(\text{GHz})}] < 3$ $= [0.073/5] \times \sqrt{2.480} = 0.02$

Conclusion: The SAR test exclusion threshold is less than 3, so the device meets the RF Exposure Requirement and excluded SAR Test.

8. Test Equipment Used For Test

Used	Description	Manufacturer	Model Name	Serial Number	Specifications	Next Cal. Data
■	Spectrum Analyzer	H.P	E4407B	US39010225	9 kHz ~ 26.5 GHz	2016-02-10
□	EPM-P SERIES POWER METER	Agilent	E4416A	GB38272722	1 CH 100-240 VAC	2016-08-05
□	Power Sensor	Agilent	8481A	US41030240	MAX.23 dBm AVG, 18 GHz	2016-08-04
■	Test receiver	ROHDE& SCHWARZ	ESPI3	101171	9 kHz ~ 3 GHz	2016-08-04
■	BI-LOG ANT	SCHWARZBECK	VULB 9163	691	30 MHz ~ 1 GHz	2016-05-28
□	Loop Antenna	EMCO	6502	9801-3191	9 kHz ~ 30 MHz	2016-02-04
□	Horn antenna	Schwarzbeck	BBHA 9120D	769	1 GHz ~ 18 GHz	2015-11-29
■	Horn antenna	Schwarzbeck	BBHA 9120D	768	1 GHz ~ 18 GHz	2015-12-11
■	Horn antenna	Schwarzbeck	BBHA9170	BBHA9170178	18 GHz ~ 40 GHz	2016-02-26
■	Amplifier	310N	291723	SONOMA	9 kHz ~ 1 GHz	2016-08-04
■	Microwave Preamplifier	Agilent	8449B	3008A02014	1 GHz ~ 26.5 GHz	2016-02-12
■	DC Power Supply	Maynuo	M8811	0800109600111030 46	30 V 5 A	2016-08-04
■	EMI TEST RECEIVER	ROHDE & SCHWARZ	ESR7	101120	10 Hz ~ 7 GHz	2016-08-04
■	LISN/AMN	PMM	L3-32	1220X20311	32 A - 6 h	2016-08-05
■	PULSE LIMITER	ROHDE & SCHWARZ	ESH3-Z2	100059	0 MHz ~ 30 MHz	2016-04-16
□	Two-Line V-Network	ROHDE & SCHWARZ	ENV216	3560.6550.12-101874-Rq	9 kHz ~ 30 MHz	2016-08-04