

Test Report 20-1-0194901T16a-C2

Number of pages: 31 Date of Report: 2022-May-19

Testing company: CETECOM GmbH

Im Teelbruch 116 45219 Essen Germany Tel. + 49 (0) 20 54 / 95 19-0 Fax: + 49 (0) 20 54 / 95 19-150 **Applicant:** Eliko Tehnoloogia Arenduskeskus OÜ

Product: Positioning device

Model: ELIKO TAG

FCC ID: 2AF2I-TAG IC: -

Testing has been carried out in accordance with:

CFR Title 47 / Chapter I / Subchapter A Part 15 / §15.519

Deviations, modifications or clarifications (if any) to above mentioned documents are written in each section under "Test method and limit".

Tested Technology: UWB

Test Results:
☐ The EUT complies with the requirements in respect of all parameters subject to the test.

The test results relate only to devices specified in this document

The current version of Test Report 20-1-0194901T16a-C2 replaces the test report 20-1-0194901T16a-C1 dated 22-Apr-27. The replaced test report is herewith invalid.

Signatures:

Dipl.-Ing. Ninovic Perez
Test Lab Manager

Authorization of test report

Dipl.-Ing. Christian Lorenz Test manager Responsible of test report

Test Report 20-1-0194901T16a-C2

Ta	ble of	f Annex	3
1	G	eneral information	4
	1.1	Disclaimer and Notes	4
	1.2	Attestation	4
	1.3	Summary of Test Results	5
	1.4	Summary of Test Methods	5
2	A	dministrative Data	6
	2.1	Identification of the Testing Laboratory	6
	2.2	General limits for environmental conditions	6
	2.3	Test Laboratories sub-contracted	6
	2.4	Organizational Items	6
	2.5	Applicant's details	6
	2.6	Manufacturer's details	6
	2.7	Equipment under Test (EUT)	7
	2.8	Untested Variant (VAR)	7
	2.9	Auxiliary Equipment (AE)	7
	2.10	Connected cables (CAB)	7
	2.11	Software (SW)	7
	2.12	EUT set-ups	8
	2.13	EUT operation modes	8
3	Ed	quipment under test (EUT)	9
	3.1	General Data of Main EUT as Declared by Applicant	9
	3.2	Detailed Technical data of Main EUT as Declared by Applicant	10
	3.3	Modifications on Test sample	10
4	M	leasurements	11
	4.1	10 dB bandwidth measurement, §15.519(b), §15.503(a)(b)(c)(d)	11
	4.2	Radiated field strength emissions below 30 MHz, §15.519(c), §15.209	12
	4.3	Radiated field strength emissions 30 MHz – 960 MHz, §15.519(c), §15.209	16
	4.4	Radiated field strength emissions above 960 MHz, §15.519(c)	18
	4.5	Radiated emissions in the GPS bands, §15.519(d)	21
	4.6	Fundamental emission peak power, §15.519(e)	23
	4.7	Antenna requirement, §15.203	25
	4.8	Timing of transmission, §15.519(a)(1)	26
	4.9	Equipment lists	28
5	Re	esults from external laboratory	29
6	0	pinions and interpretations	29
7	Li:	st of abbreviations	29
8	M	leasurement Uncertainty valid for conducted/radiated measurements	30

Table of Annex						
Annex No. Contents Reference Description Total Page						
Annex 1	Test result diagrams	CETECOM_TR20-1-0194901T16_A1_C2	47			
Annex 2	Internal photographs of EUT	To be supplied by applicant				
Annex 3	External photographs of EUT	CETECOM_TR20-1-0194901T16a_A3	9			
Annex 4	Annex 4 Test set-up photographs CETECOM_TR20-1-0194901T16a_A4 4					
The listed attachments are separate documents.						

CETECOM_TR20-1-0194901T16a-C2

1 General information

1.1 Disclaimer and Notes

The test results of this test report relate exclusively to the test item specified in this test report as specified in chapter 2.7. CETECOM does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM.

The testing service provided by CETECOM has been rendered under the current "General Terms and Conditions for CETECOM". CETECOM will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM test report include or imply any product or service warranties from CETECOM, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM.

All rights and remedies regarding vendor's products and services for which CETECOM has prepared this test report shall be provided by the party offering such products or services and not by CETECOM.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The test report must always be reproduced in full; reproduction of an excerpt only is subject to written approval of the testing laboratory. The documentation of the testing performed on the tested devices is archived for 10 years at CETECOM.

Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

1.2 Attestation

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All of the above requirements are met in accordance with enumerated standards.

CETECOM_TR20-1-0194901T16a-C2

1.3 Summary of Test Results

The EUT integrates a UWB transmitter. Other implemented wireless technologies were not considered within this test report.

Test case	Reference Clause	Reference	Page	Remark	Result
	FCC 🛛	Clause ISED			
		×			
<u>Transmission time</u>	§15.519(a)(1)		26		PASSED
10 dB bandwidth	§15.519(b)		11		DASSED
	§15.503(a)(b)(c)(d)				PASSED
Radiated field strength emissions below 30 MHz	§15.205(a)		12		PASSED
	§15.209(a)				PASSED
Radiated field strength emissions 30 MHz – 960 MHz			12		PASSED
	§15.209				
	§15.519(c)				
Radiated field strength emissions above 960 MHz			18		PASSED
	§15.521(h)				
	§15.519(c)				
Radiated emissions in the GPS bands	§15.519(d)		21		PASSED
Fundamental emission peak power	§15.519(e)		23		PASSED
Antenna requirement	§15.203				PASSED

PASSED The EUT complies with the essential requirements in the standard.

FAILED The EUT does not comply with the essential requirements in the standard.

NP The test was not performed by the CETECOM Laboratory.

N/A Not applicable

1.4 Summary of Test Methods

Test case	Test method
Transmission time	
10 dB bandwidth	ANSI 63.10-2013, §10.1
Radiated field strenght emissions below 30 MHz	ANSI C63.10-2013 §6.3, §6.4
Radiated field strenght emissions 30 MHz- 1 GHz	ANSI C63.10-2013 §6.3, §6.5
Radiated field strenght emissions above 1 GHz	ANSI C63.10-2013 §6.3, §6.6
Radiated emissions in the GPS bands	ANSI C63.10-2013 §6.3, §6.6
Fundamental emission peak power	ANSI C63.10-2013 §6.3, §6.6
Antenna requirement	

And reference also to Test methods in KDB393764

CETECOM_TR20-1-0194901T16a-C2 5/31

^{*}The calculation of the measurement uncertainty shows compliance with the "maximum measurement uncertainties" of the tested standard and therefore for result evaluation the stated uncertainties will not be additionally added to the measured results.

2 Administrative Data

2.1 Identification of the Testing Laboratory

Company name: CETECOM GmbH
Address: Im Teelbruch 116

45219 Essen - Kettwig

Germany

Responsible for testing laboratory: Dipl.-Ing. Ninovic Perez

Accreditation scope: DAkkS Webpage: FCC ISED

IC Lab company No. / CAB ID: 3462D / DE0005

Test location: CETECOM GmbH; Im Teelbruch 116; 45219 Essen - Kettwig

2.2 General limits for environmental conditions

Temperature:	22±2 °C
Relative. humidity:	45±15% rH

2.3 Test Laboratories sub-contracted

Company name: --

2.4 Organizational Items

Responsible test manager: Dipl.-Ing. Christian Lorenz

Receipt of EUT: 2021-Apr-08

Date(s) of test: 09-20-2021 to 16-12-2021

Version of template: 22.0101

2.5 Applicant's details

Applicant's name: Eliko Tehnoloogia Arenduskeskus OÜ

Address: Aiandi 13/1 12918 Tallinn

Estonia

Contact Person: Inderk Ruiso
Contact Person's Email: info@eliko.ee

2.6 Manufacturer's details

Manufacturer's name: Eliko Tehnoloogia Arenduskeskus OÜ

Address: Aiandi 13/1
12918 Tallinn
Estland

2.7 Equipment under Test (EUT)

EUT	Sample No.	Product	Model	Туре	SN	HW	SW
No.*)							
EUT 1	20-1-01949S40_C02	Positioning device	ELIKO TAG		000A8E	5D.11	3.1.0

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

2.8 Untested Variant (VAR)

2.9 Auxiliary Equipment (AE)

AE	Sample No.	Auxiliary Equipment	Model	SN	HW	SW
No.*)						
01	20-1-01949S46_C02	Positioning device	ELIKO ANCHOR	0009C1	4.9	3.1.0
02	20-1-01949S13_C01	Notebook	NP900X3C	J9VZ91DCB0006		Win10+
				4B		TeraTer
						m
03	20-1-01949S31_C01	Ethernet Switch	TEF1109P-8-63W	E6442013938000		
				304		
04	20-1-01949S32_C01	Power supply for AE03	BN031-A65051			
05	20-1-01949S28_C01	USB power supply	63053			
		(AC/DC)				

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report. If the table above does not show any other line than the headline, no AE was used during testing nor was taken into account for evaluation

2.10 Connected cables (CAB)

CAB No.*)	Sample No.	Cable Type	Connectors / Details	Length
01	20-1-01949S69_C01	CAT5e PoE	DC power	1.5m
02	20-1-01949S05_C01	Ethernet cable	RJ45	3.0
03	20-1-01949S09_C01	USB A to microUSB cable		18cm
04	20-1-01949S26_C01	USB cable	USB A to micro USB	1.2m

^{*)} CAB short description is used to simplify the identification of the connected cables in this test report. If the table above does not show any other line than the headline, no cable was used during testing nor was taken into account for evaluation

2.11 Software (SW)

SW No.*)	Sample No.	SW Name	Description	SW Status
SW 1		Commands on Terminal SW	For different Tests: TX and Timing	N/A

^{*)} SW short description is used to simplify the identification of the used software in this test report. If the table above does not show any other line than the headline, no SW was used during testing nor was taken into account for evaluation.

2.12 EUT set-ups

set-up no.*)	Combination of EUT and AE	Description
1	EUT 1 + (CAB03 + AE02)	Used for Radiated measurements. AE02 and CAB03 used temporary for set-up.
2	EUT 1 + (CAB03 + AE02) + AE05 + CAB04	Used for Radiated measurements. AE02 and CAB03 used temporary for set-up.
3	EUT 1 + AE01+AE02+AE03+AE04+CAB02	Used for Timing measurements

^{*)} EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

2.13 EUT operation modes

EUT operating mode no.*)	Operating modes	Additional information
op. 1	TX-Mode 1	With help of special test firmware TX-mode was set-up. We refer to applicants information/papers for details about necessary commands. Power level 0x05050505 used for measurements.
op. 2	TX/RX	Bidirectional communication link to AE01 on channel 4

^{*)} EUT operating mode no. is used to simplify the test report.

3 Equipment under test (EUT)

3.1 General Data of Main EUT as Declared by Applicant

Firmware	☐ for normal use ☐ Special version for test execution				
Power supply	☐ AC Mains	-			
	☐ DC Mains	V DC via Connector			
	☐ Battery Lithium Ion battery				
Operational conditions	T _{nom} =21 °C	T _{min} = -10 °C			
EUT sample type	Pre-Production				
Weight	0.1 kg				
Size [LxWxH]	63 mm x 42 mm x 13 mm				
Interfaces/Ports	microUSB				
For further details refer Applicants Declar	For further details refer Applicants Declaration & following technical documents				

3.2 Detailed Technical data of Main EUT as Declared by Applicant

Main function	UWB mobile Tag						
Frequency range [MHz]	Ch4 (3999 MHz)						
Type of modulation used	Pulsed	ulsed					
Number of channels	1, Ch4	Ch4					
Emission designator							
Equipment type	☐ Imaging						
	Short-Range comunication device						
	\square a) Indoor						
	⊠ b) Outdoor						
	☐ Field disturbance sensor						
	☐ Short-Range automotive radar						
Antenna Type	☐ External, no RF- connector						
	☐ External, separate RF-connector						
Max EIRP/50MHz (radiated)	-5.54 dBm / 50 MHz RBW						
Max EIRP/1MHz (radiated)	-45.51 dBm/ MHz RBW	-45.51 dBm/ MHz RBW					
FCC label attached	No						
For further details refer Applicants Declar	ation & following technical documents						
Description of Reference Document (supp	lied by applicant)	Version	Total Pages				
Quick set-up guide		1.1	16				

3.3 Modifications on Test sample

Additions/deviations or exclusions	

4 Measurements

4.1 10 dB bandwidth measurement, §15.519(b), §15.503(a)(b)(c)(d)

Testing method:

The frequency at which the maximum power level is measured with the peak detector is designated f_M (RBW=1 MHz, VBW= 3 MHz, peak detection, maxhold). The outermost 1 MHz segments above and below f_M , where the peak power falls by 10 dB relative to the level at f_M , are designated as f_H and f_L . The UWB transmission, and the -10 dB bandwidth (B - 10), is defined as $(f_H$ - f_L). -10 dB bandwidth should be \geq 500 MHz and must be contained between 3100 MHz and 10.600 MHz.

Test method	Radiated, 3m distance
Remarks	-

EUT settings

The measurement is made radiated. The EUT was instructed to transmit continuously with maximum power (if adjustable) according applicants declared and applicable settings.

Different characteristics have been checked, e.g. data rates which EUT can operate if applicable.

4.1.1 Measurement Location

Test site	120907 - FAC2 - Radiated Emissions
-----------	------------------------------------

4.1.2 Limit

Test limit [GHz]	
3.1 – 10.6	

4.1.3 Spectrum-Analyzer Settings

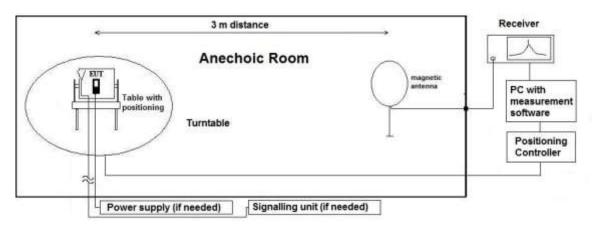
Span	1.5 GHz
Resolution Bandwidth (RBW)	ANSI 63.10-2013, chapter 10.1
Video Bandwidth (VBW)	Minimum 3 times the resolution bandwidth
Sweep time	Auto-coupled
Detector	Peak detector
Sweep mode	Repetitive Mode, MAX-HOLD, trace stabilization

4.1.4 Result

Measurement diagram	Mode	Measurement antenna polarisation	Frequency with the maximum power f _M [MHz]	Power at the frequency f _M [dBm]	Lowest frequency bound f _L [MHz]	Highest frequency bound f _H [MHz]	-10 dB bandwidth [MHz]	Result
D16_40a	Op. Mode 1	horizontal	4088.1	-30.77 (PK)	3740.0	4323.2	583.2	Passed
D16_40b	Op. Mode 1	vertical	4036.1	-31.12 (PK)	3677.889526	4338.4	660.510473	Passed (remark2)

Remark:

- 1. for more information and graphical plot see annex A1 CETECOM_TR20-1-0194901T16a_A1-C2
- 2. maximum value for measurement antenna: vertical polarisation


4.2 Radiated field strength emissions below 30 MHz, §15.519(c), §15.209

4.2.1 Description of the general test setup and methodology, see below example:

Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables Summary of Test Results and Summary of Test Methods on page 5)

Exploratory, preliminary measurements

The EUT and it's associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90°, range 0°to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT), the emission spectrum was recorded.

The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A \hspace{1cm} AF = Antenna \ factor$

C_L = Cable loss

 $M = L_T - E_C$ $D_F = Distance correction factor (if used)$

 E_C = Electrical field – corrected value

E_R = Receiver reading

G_A = Gain of pre-amplifier (if used)

 L_T = Limit M = Margin

All units are dB-units, positive margin means value is below limit.

4.2.2 Correction factors due to reduced meas. distance (f < 30 MHz):

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors

Frequency	f	Lambda	Far-Field	Distance Limit	1st	2nd Condition	Distance
Range	[kHz/MHz]	[m]	Point	accord. 15.209	Condition	(Limit distance	Correction
ge	[2,2]	[]	[m]	[m]	(dmeas <	bigger dnear-	accord.
			[]	[]	Dnear-field)	field)	Formula
	0	22222 22	5205.47		-		
	9	33333.33	5305.17	-	fullfilled	not fullfilled	-80.00
	10	30000.00	4774.65	-	fullfilled	not fullfilled	-80.00
	20	15000.00	2387.33	-	fullfilled	not fullfilled	-80.00
	30	10000.00	1591.55	-	fullfilled	not fullfilled	-80.00
	40	7500.00	1193.66	-	fullfilled	not fullfilled not fullfilled	-80.00
	50	6000.00	954.93	-	fullfilled		-80.00
	60	5000.00	795.78	-	fullfilled fullfilled	not fullfilled	-80.00
	70 80	4285.71	682.09	300	fullfilled	not fullfilled	-80.00 -80.00
	90	3750.00	596.83	-	fullfilled	not fullfilled	
kHz	100	3333.33 3000.00	530.52 477.47	-	fullfilled	not fullfilled not fullfilled	-80.00 -80.00
KIIZ				-	fullfilled		
	125 200	2400.00	381.97	-	fullfilled	not fullfilled fullfilled	-80.00
	300	1500.00	238.73	-	fullfilled	fullfilled	-78.02 -74.49
	400	1000.00 750.00	159.16 119.37	-	fullfilled	fullfilled	
				-	fullfilled	fullfilled	-72.00 70.22
	490 500	612.24 600.00	97.44 95.49		fullfilled	not fullfilled	-70.23 -40.00
	600			-	fullfilled	not fullfilled	-40.00
	700	500.00 428.57	79.58 68.21		fullfilled	not fullfilled	-40.00
	800	375.00	59.68		fullfilled	not fullfilled	-40.00
	900	333.33	53.05		fullfilled	not fullfilled	-40.00
	1.00	300.00	47.75		fullfilled	not fullfilled	-40.00
	1.59	188.50	30.00		fullfilled	not fullfilled	-40.00
	2.00	150.00	23.87		fullfilled	fullfilled	-38.02
	3.00	100.00	15.92		fullfilled	fullfilled	-34.49
	4.00	75.00	11.94		fullfilled	fullfilled	-32.00
	5.00	60.00	9.55		fullfilled	fullfilled	-30.06
	6.00	50.00	7.96		fullfilled	fullfilled	-28.47
	7.00	42.86	6.82		fullfilled	fullfilled	-27.13
	8.00	37.50	5.97		fullfilled	fullfilled	-25.97
	9.00	33.33	5.31	1	fullfilled	fullfilled	-24.95
	10.00	30.00	4.77	30	fullfilled	fullfilled	-24.04
	10.60	28.30	4.50	- 55	fullfilled	fullfilled	-23.53
	11.00	27.27	4.34		fullfilled	fullfilled	-23.21
MHz	12.00	25.00	3.98		fullfilled	fullfilled	-22.45
	13.56	22.12	3.52		fullfilled	fullfilled	-21.39
	15.00	20.00	3.18		fullfilled	fullfilled	-20.51
	15.92	18.85	3.00		fullfilled	fullfilled	-20.00
	17.00	17.65	2.81		not fullfilled	fullfilled	-20.00
	18.00	16.67	2.65	1	not fullfilled	fullfilled	-20.00
	20.00	15.00	2.39	1	not fullfilled	fullfilled	-20.00
	21.00	14.29	2.27	1	not fullfilled	fullfilled	-20.00
	23.00	13.04	2.08	1	not fullfilled	fullfilled	-20.00
	25.00	12.00	1.91	1	not fullfilled	fullfilled	-20.00
	27.00	11.11	1.77	1	not fullfilled	fullfilled	-20.00
	29.00	10.34	1.65	1	not fullfilled	fullfilled	-20.00
	30.00	10.00	1.59		not fullfilled	fullfilled	-20.00

4.2.3 Measurement Location

Test site	120901 - SAC - Radiated Emission <1GHz
-----------	--

4.2.4 Limit

Radiated emissions limits (3 meters)							
Frequency Range [MHz]	Limit [μV/m]	Limit [dBµV/m]	Distance [m]	Detector	RBW [kHz]		
0.009 - 0.09	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2		
0.09 - 0.11	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Quasi peak	0.2		
0.11 - 0.15	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	0.2		
0.15 - 0.49	2400 / f [kHz]	67.6 – 20Log(f) (kHz)	300	Pk & Avg	9		
0.49 - 1.705	24000 / f	87.6 – 20Log(f) (kHz)	30	Quasi peak	9		
	[kHz]						
1.705 - 30	30	29.5	30	Quasi peak	9		

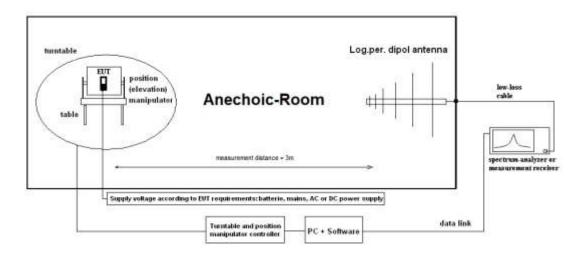
^{*}Remark: set-up 2 used

4.2.5 Result

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 0.009 – 30 MHz	Result
D16_2.01	4	Op.Mode1	< 20.07 (Noise level)	Passed
D16_2.02	4	Op.Mode1	< 20.0 (Noise level)	Passed

Remark: for more information and graphical plot see annex A1 CETECOM_TR20-1-0194901T16a_A1-C2

CETECOM_TR20-1-0194901T16a-C2



4.3 Radiated field strength emissions 30 MHz – 960 MHz, §15.519(c), §15.209

4.3.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A$ (1) AF = Antenna factor $C_L = Cable loss$

 $M = L_T - E_C$ (2) $D_F = Distance correction factor (if used)$ $<math>E_C = Electrical field - corrected value$

 E_R = Receiver reading

G_A = Gain of pre-amplifier (if used)

L_T = Limit

M = Margin

All units are dB-units, positive margin means value is below limit.

4.3.2 Measurement Location

Test site 120901 - SAC - Radiated Emission <1GHz	
--	--

4.3.3 Limit

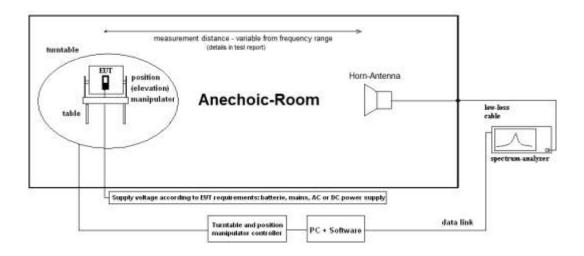
Radiated emissions limits (3 meters)						
Frequency Range	Frequency Range Limit Limit Detector [MHz] [μV/m] [dBμV/m]					
	-, , -		Over i mank	[kHz]		
30 - 88	100	40.0	Quasi peak	100 / 300		
88 - 216	150	43.5	Quasi peak	100 / 300		
216 - 960	200	46.0	Quasi peak	100 / 300		
960 - 1000	500	54.0	Quasi peak	100 / 300		

4.3.4 Result

Diagram	Channel	Mode	Maximum Level [dBμV/m] Frequency Range 30 – 960 MHz	Result
D16_3.01	4	Op.Mode1	35.224	Passed
D16_3.02	4	Op.Mode1	38.43	Passed

Remark

- 1. for more information and graphical plot see annex A1 CETECOM_TR20-1-0194901T16a_A1-C2
- 2. Set-up 2 used



4.4 Radiated field strength emissions above 960 MHz, §15.519(c)

4.4.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $P_{EIRP} = P_{MEAS} + C_L + FSL - G_A (1)$

P_{MEAS} = measured power at instrument

M = Margin

 $L_T = Limit$

FSL = Free Space loss = Function(frequency, measurement distance)

 $M = L_T - P_{EIRP}$

C_t= cable loss

G_A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

4.4.2 Measurement Location

Test site1	120902 - SAC - Radiated Emission >1GHz
Test site2	120907 – FAC2

4.4.3 Limit

Frequency Range [MHz]	EIRP [dBm]	Detector	RBW / VBW [kHz]
960-1610	-75.3	RMS	1000 / 3000
1610-1990	-63.3	RMS	1000 / 3000
1990-3100	-61.3	RMS	1000 / 3000
3100-10600	-41.3	RMS	1000 / 3000
Above 10600	-61.3	RMS	1000 / 3000

4.4.4 Measurement distance

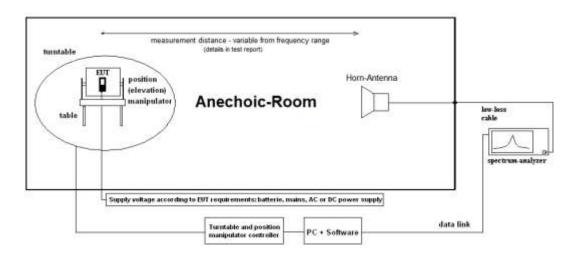
Frequency Range [MHz]	Measurement distance [m]
960-1610	2.0
1610-1990	2.0
1990-4193	2.0
4193-10600	3.0
10600- 12400	2.0
12400 - 18000	2.0
18000-33000	2.0
33000-40000	1.0

4.4.5 Result

Diagram	Frequency range [MHz]	Mode	Set-up	Remark	Result
D16_048a	960 - 3100	Op.Mode1	2	AntH, EUT laying	Passed
D16_048a	960 - 3100	Op.Mode1	2	Ant H, EUT standing	Passed
D16_048b	960 - 3100	Op.Mode1	2	Ant V, EUT laying	Passed
D16_048b	960 - 3100	Op.Mode1	2	AntV, EUT standing	Passed
D16_044a	3100 - 10600	Op.Mode1	1	AntH	Passed
D16_044b	3100 - 10600	Op.Mode1	1	AntV	Passed
D16_045a	10600 - 12400	Op.Mode1	1	AntH	Passed
D16_045b	10600 - 12400	Op.Mode1	1	Ant V	Passed
D16_046a	12400 - 18000	Op.Mode1	1	AntH	Passed
D16_046b	12400 - 18000	Op.Mode1	1	AntV	Passed
D16_47a	18000 - 33000	Op.Mode1	1	AntH	Passed
D16_47b	18000 - 33000	Op.Mode1	1	AntV	Passed
D16_049a	33000 – 40000	Op.Mode1	1	AntH	Passed
D16_049b	33000 - 40000	Op.Mode1	1	AntV	Passed

Remark

^{1.)} for more information and graphical plot see annex A1 CETECOM_TR20-1-0194901T16a_A1-C2



4.5 Radiated emissions in the GPS bands, §15.519(d)

4.5.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $P_{EIRP} = P_{MEAS} + C_L + FSL - G_A$ (1)

P_{MEAS} = measured power at instrument

M = Margin

 $L_T = Limit$

FSL = Free Space loss = Function(frequency, measurement distance)

 $M = L_T - P_{EIRP}$

C_t= cable loss

 G_A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

4.5.2 Measurement Location

Test site	120907 – FAC2
-----------	---------------

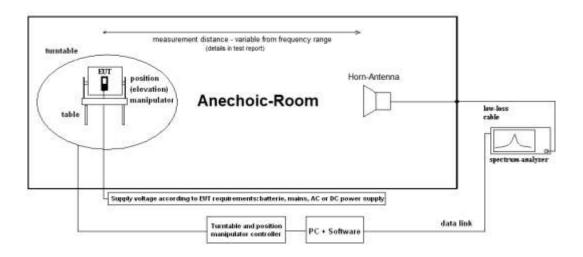
4.5.3 Limit

Radiated emissions limits (3 meters)					
Frequency Range [MHz] EIRP [dBm] Detector RBW / VBW [kHz]					
1164-1240	-85.3	RMS	1/3		
1559-1610	-85.3	RMS	1/3		

4.5.4 **Result**

Diagram	Frequency range [MHz]	Mode	Set-up	Remark	Result
D16_42a	1164-1240	Op.Mode1	1	Ant H	Passed
D16_42b		Op.mode1	1	Ant V	Passed
D16_43a	1559-1610	Op.Mode1	1	Ant H	Passed
D16_43b		Op.mode1	1	Ant V	Passed

Remark: for more information and graphical plot see annex A1 CETECOM_TR20-1-0194901T16a_A1-C2



4.6 Fundamental emission peak power, §15.519(e)

4.6.1 Description of the general test setup and methodology, see below example:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 18-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

The measurement is made according to relevant reference clauses: (See Tables *Summary of Test Results* and *Summary of Test Methods* on page 5)

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions or three axis scan for portable/small equipment.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

Formula:

 $P_{EIRP} = P_{MEAS} + C_L + FSL - G_A (1)$

P_{MEAS} = measured power at instrument

M = Margin

 $L_T = Limit$

FSL = Free Space loss = Function(frequency, measurement distance)

 $M = L_T - P_{EIRP}$

C_t= cable loss

G_A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

4.6.2 Measurement Location

Test site 120907 - FAC2 - Radiated Emissions	
--	--

4.6.3 Limit

Radiated emissions limits (3 meters)					
Frequency Range [MHz] EIRP [dBm] Detector RBW / VBW [MH					
Frequency with the highest radiated emission	0	MaxPeak	50 / 80		
contained within a 50 MHz bandwidth					

4.6.4 Result

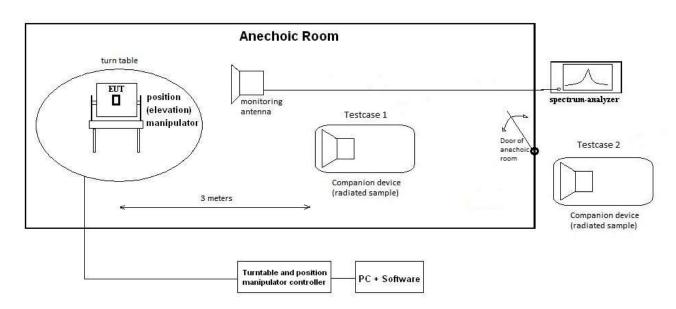
Diagram	fc [MHz]	fmax [MHz]	Pmax [dBm]	Mode	Remark	Result
06a	4097.00	4097.00	-7.25	Op.Mode 1	Ant H	Passed
06b	4002.60	4002.60	-5.54	Op.Mode 1	Ant V	Passed
					(Max. value)	

Remark1: frequency with the highest radiated emission contained within a 50 MHz bandwidth from the measurement is the frequency inside of the fundamental emission.

Remark2: for more information and graphical plot see annex A1 CETECOM_TR20-1-0194901T16a_A1-C2

4.7 Antenna requirement, §15.203

The antenna is integrated inside the case, no external connector.



4.8 Timing of transmission, §15.519(a)(1)

4.8.1 Description of the general test setup location and methodology, see below example

The tests are performed in a CISPR 16-1-4:2010 compliant fully anechoic room (FAR). The measurement distance was set to a proper valuable distance for good traffic link communication between the main EUT/DUT and the companion device.

4.8.2 Schematic:

4.8.3 Testing method:

- The tests have been performed in a Fully-Anechoic-Chamber of normative 3m measurement distance or other suitable distance as indicated as typical distance of the system by the applicant. Constraints are the physical distance of the anchoic room.
- Radiated tests at nominal environmental conditions have been performed
- A monitoring horn antenna (1GHz-18GHz) is connected to an spectrum-analyzer (time domain) and is placed nearby the EUT/DUT. Therefore its regular transmission and reaction is captured for two possible test cases: companion device placed near-by DUT/EUT and a second test case companion device not placed near-by DUT/EUT. For both cases a timing diagram is recorded to show the RF-transmissions. In case the communication link system can'not communicate (Anechoic-room door closed) no other transmissions are allowed except for physical detection of the device. In no case data transmissions are allowed.

4.8.4 Measurement Location

Test site 120907 - FAC2 - Radiated Emissions

CETECOM_TR20-1-0194901T16a-C2 26 / 31

4.8.5 Limits

Title 47 / Chapter I / Subchapter A/ Part 15	
\$15.519(a)(1)	Cease of transmissions within 10seconds

4.8.6 Result

Diagram No.	TX-on [s]	TX-off [s]	Duty-Cycle [%]	Reaction of EUT	Remarks	Verdict
D16_050a		10.06		Multiple	No	Passed
				discovery ping	companion	(no data transmissions)
				transmissions	device	
					present	
D16_051a				Data	Companion	
				transmissions	device	1.)
					present	
D16_052a				Data	Companion	
				transmissions	device	1.)
					present	
D16_053a				Data	Companion	
				transmissions	device	1.)
					present	
D16_054a				TX cease of		Passed
				data after		(Interruption of data
				9.9642seconds		transmissions)
D16_056a				Data	Companion	
				transmissions	device	1.)
					present	

Remarks:

- 1.) D16_051a/052a/053a/056a show regular transmissions to associated receiver for the used case, no verdict necessary
- 2.) Set-up3 used

4.9 Equipment lists

ID	Description	Manufacturer	SerNo	CheckType	Last Check	Interval	Next Check
	120901 - SAC - Radiated Emission <1GHz			calchk	cal: 07-21-2015	cal: 10Y	cal: July 2025
					chk: 05-19-2020	chk: 12M	chk: May 2021
20574	Biconilog Hybrid Antenna BTA-L	Frankonia GmbH	980026L	cal	cal: 05-03-2019	cal: 36M	cal: May 2022
20341	Digital Multimeter Fluke 112	Fluke Deutschland GmbH	81650455	cal	cal: 05-25-2020	cal: 24M	cal: May 2022
20620	EMI Test Receiver ESU26	Rohde & Schwarz Messgerätebau GmbH	100362	cal	cal: 05-21-2021	cal: 12M	cal: May 2022
20482	filter matrix Filter matrix SAR 1	CETECOM GmbH	-	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
25038	Loop Antenna HFH2-Z2	Rohde & Schwarz Messgerätebau GmbH	879824/13	cal	cal: 04-07-2020	cal: 24M	cal: April 2022
20885	Power Supply EA3632A	Agilent Technologies Deutschland GmbH	75305850	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20442	Semi Anechoic Chamber	ETS-Lindgren Gmbh / Taufkirchen	-	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
	120902 - SAC - Radiated Emission >1GHz			calchk	cal: 07-15-2017	cal: 10Y	cal: July 2027
					chk: 12-02-2021	chk: 24M	chk: December 2023
20376	Horn Antenna BBHA9120 E	Schwarzbeck Mess-Elektronik OHG	BBHA 9120 E 179	cal	cal: 04-08-2020	cal: 36M	cal: April 2023
	120907 - FAC2 - Radiated Emissions			chk			
					chk: 08-30-2021	chk: 12M	chk: August 2022
20836	1-18 GHz Amplifier	Wright Technologies, Inc., Inc.	0001	chk			
						chk: 36M	
20412	Fully Anechoic Chamber 2	ETS-Lindgren Gmbh / Taufkirchen	without	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20133	Horn Antenna 3115 (Meas 1)	EMCO Elektronik GmbH	9012-3629	cal	cal: 04-08-2020	cal: 36M	cal: April 2023
20811	Horn Antenna ASY-SGH-124-SMA	Antenna Systems Solutions S.L	29F14182337	cal	cal: 10-20-2021	cal: 36M	cal: October 2024
20302	Horn Antenna BBHA9170 (Meas 1)	Schwarzbeck Mess-Elektronik OHG	155	calchk	cal: 04-15-2020	cal: 36M	
					chk: 04-15-2020	chk: 12M	
20877	JS42-08001800-16-8P Verstärker	Miteq Inc.	2079991 / 2079992	chk			
					chk: 02-27-2020	chk: 3M	chk: May 2020
20912	Low noise Amplifier Module 0.5-4GHz	RF-Lambda Europe GmbH	19041200083	cnn	cal: -	cal: -	cal: -
					chk: -	chk: -	chk: -
20913	Phase Amplitude Stable Cable Assembly DC-	RF-Lambda Europe GmbH	AC19040001	cnn	cal: -	cal: -	cal: -
	40GHz				chk: -	chk: -	chk: -
20732	Signal- and Spectrum Analyzer FSW67	Rohde & Schwarz Messgerätebau GmbH	104023	cal	cal: 05-27-2021	cal: 12M	cal: May 2022
20817	Waveguide Rectangular Horn Antenna SAR- 2309-22-S2	ERAVAN	13254-01	cal	cal: 07-29-2020	cal: 36M	cal: July 2023

Tools used in 'P1M1'

4.9.1 Legend

Note / remarks	Interval of calibration & Verification
12M	12 months
24M	24 months
36M	36 months
10Y	10 Years

Abbreviation Check Type	Description
cnn	Calibration and verification not necessary
cal	Calibration
calchk	Calibration plus intermediate Verification
chk	Verification
сри	Verification before usage

5	5 Results from external laboratory				
None		-			
6	Opinions and i	nterpretations			
No	one	-			
7	List of abbrevia	ations			
No	one	-			

8 Measurement Uncertainty valid for conducted/radiated measurements

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor **k**, such that a confidence level of approximately 95.54% is achieved. For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it contribution to the overall uncertainty according its statistical distribution calculated.

Measurement type	Frequency range of measurement Start [MHz] Stop [MHz]	Calculated Uncertainty based on confidence level of 95.54%	Remarks
Magnetic field strength	0.009 30	4.86	Magnetic loop antenna, Pre-amp on
	30 100 30 100 100 1000 100 1000	4.57 4.91 4.02 4.26	without Pre-Amp with Pre-Amp without Pre-Amp with Pre-Amp
RF-Output power (eirp) Unwanted emissions (eirp) [dB]	1000 18000 1000 18000 18000 33000 33000 50000 40000 60000	4.36 5.23 4.92 4.17 4.69	without Pre-Amp with PreAmp Schwarzbeck BBHA9170 (#20302) Antenna set-up non-waveguide antenna) Set-up for Q-Band (WR-22), non-wave guide antenna Set-up U-Band (WR-19), non-waveguide antenna
	50000 75000 75000 110000 90000 140000 140000 225000 225000 325000	4.06 4.17 5.49 6.22 7.04	External Mixer set-up V-Band (WR-15) External Mixer set-up W-Band (WR-6) External Mixer set-up F-Band (WR-8) External Mixer set-up G-Band (WR-5) External Mixer set-up (WR-3)
Radiated Blocking	325000 500000 1000 18000 18000 33000 33000 50000	2.85 4.66 3.48	External Mixer set-up (WR-2.2) Typical set-up with microwave generator and antenna, value for 7GHz calculated Typical set-up with microwave generator and antenna WR-22 set-up
[dB]	50000 75000 75000 110000 40000 77000	3.73 4.26 276.19	WR-15 set-up WR-6 set-up calculated for 77 GHz (FMCW) carrier
[kHz]	30 6000 30 6000	33.92 1.11 1.20	calculated for 6.5GHz UWB Ch.5 Power measurement with Fast-sampling-detector Power measurement with Spectrum-Analyzer
TS 8997	30 6000 30 7500 0.009 30 2.4 2.48	1.20 1.20 2.56 1.95 ppm	3. Power Spectrum-Density measurement 4. Conducted Spurious emissions: 5. Conducted Spurious emissions: 6a. Bandwidth / 2-Marker Method for 2.4GHz ISM
conducted Parameters	5.18 5.825 5.18 5.825 30 6000 30 6000	7.180 ppm 1.099 ppm 0.11561µs 1.85	6b. Bandwidth / 2-Marker Method for 5GHz WLAN 7 Frequency (Marker method) for 5GHz WLAN 8 Medium-Utilization factor / Timing 9 Blocking-Level of companion device
Conducted emissions	0.009 30	3.57	9 Blocking Generator level

9 Versions of test reports (change history)

Version	Applied changes	Date of release		
	Initial release			
C1	Corrections on measurement uncertainty data	2022-Apr-27		
CI	Corrections regarding upper frequency range of measurements			
C2 Various additional information added for example rule references		2022-May-19		

End Of Test Report