

SAR Test Report

Product Name : Mobile Phone

Model No. : C50,C50A,C55A,C5,C45,
A4,A4+,A5,A5+,A6,i7,C55,C60,
M3, MG12

FCC ID : 2AEW7SISWOOC50A

Applicant : Shenzhen siswoo mobile technology co.,ltd

Address : room 1701,haisong building,tairang road 9,futian
district shenzhen city,China

Date of Receipt : Jul. 27, 2015

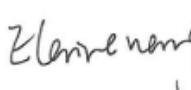
Date of Test : Jul. 27, 2015

Issued Date : Jul. 29, 2015

Report No. : 1560229R-HP-US-P03V01

Report Version : V1.0

The test results relate only to the samples tested.


The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: Jul. 29, 2015

Report No.: 1560229R-HP-US-P03V01

Product Name : Mobile Phone
Applicant : Shenzhen siswoo mobile technology co.,ltd
Address : room 1701,haisong building,tairang road 9,futian district shenzhen city,China
Manufacturer : Shenzhen siswoo mobile technology co.,ltd
Address : room 1701,haisong building,tairang road 9,futian district shenzhen city,China
Model No. : C50,C50A,C55A,C5,C45, A4,A4+,A5,A5+,A6,i7,C55,C60, M3,MG12
Brand Name : APRIX
FCC ID : 2AEW7SISWOOC50A
EUT Voltage : DC 5V
Brand Name : SISWOO
Applicable Standard : IEEE Std. 1528-2013, 47CFR § 2.1093
FCC KDB Publication 447498 D01v05r02
FCC KDB Publication 648474 D04v01r02
FCC KDB Publication 865664 D01v01r03
FCC KDB Publication 941225 D01,D05 and D06
FCC KDB Publication 248227 D01v02r01
Test Result : Max. SAR Measurement (1g)
0.753W/kg(98.6% d/c) for Head position;
0.260W/kg(98.6% d/c) for Body position
Performed Location : Suzhou EMC Laboratory
No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech Development Zone., Suzhou, China
TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098
FCC Registration Number: 800392
Documented By :
Reviewed By :
Approved By :

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C. : BSMI, NCC
USA : FCC
Japan : VCCI
China : CNAS

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site :<http://www.quietek.com/tw/ctg/cts/accreditations.htm>
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site :
<http://www.quietek.com/>
If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory :

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qiongliong Shiang, Hsinchu County 307, Taiwan, R.O.C.
TEL:+886-3-592-8858 / FAX:+886-3-592-8859 E-Mail : service@quietek.com

LinKou Testing Laboratory :

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C.
TEL : 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : service@quietek.com

Suzhou Testing Laboratory :

No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech Development Zone., SuZhou, China
TEL : +86-512-6251-5088 / FAX : 86-512-6251-5098 E-Mail : service@quietek.com

TABLE OF CONTENTS

Description	Page
1. General Information	7
1.1. EUT Description.....	7
1.2. Test Environment.....	9
1.3. EUT Antenna Locations	9
1.4. SAR Test Exclusions Applied.....	11
1.5. Power Reduction for SAR.....	11
1.6. Max Power Reduction for SAR.....	11
1.7. Guidance Documents	11
2. SAR Measurement System	12
2.1. DASY5 System Description	12
2.1.1. Applications	13
2.1.2. Area Scans	13
2.1.3. Zoom Scan (Cube Scan Averaging)	13
2.1.4. Uncertainty of Inter-/Extrapolation and Averaging	13
2.2. DASY5 E-Field Probe	14
2.2.1. Isotropic E-Field Probe Specification	14
2.3. Boundary Detection Unit and Probe Mounting Device	15
2.4. DATA Acquisition Electronics (DAE) and Measurement Server	15
2.5. Robot	16
2.6. Light Beam Unit	16
2.7. Device Holder	17
2.8. SAM Twin Phantom	17
3. Tissue Simulating Liquid	18
3.1. The composition of the tissue simulating liquid	18
3.2. Tissue Calibration Result.....	19
3.3. Tissue Dielectric Parameters for Head and Body Phantoms	20
4. SAR Measurement Procedure	21
4.1. SAR System Validation.....	21
4.1.1. Validation Dipoles.....	21
4.1.2. Validation Result.....	22
4.2. SAR Measurement Procedure.....	23
4.3. Body-Worn Accessory Configurations.....	24
4.4. Wireless Router Configurations.....	25

4.5. SAR Measurement Conditions for UMTS.....	26
4.5.1. Output Power Verification.....	26
4.5.2. Head SAR Measurements for Handsets	26
4.5.3. Body SAR Measurements	26
4.5.4. SAR Measurements for Handsets with Rel 5 HSDPA	26
4.5.5. SAR Measurements for Handsets with Rel 6 HSUPA	27
4.6. SAR Measurement Conditions for LTE	28
4.6.1. Largest channel bandwidth standalone SAR test requirements	28
4.6.1.1. QPSK with 1 RB allocation	28
4.6.1.2. QPSK with 50% RB allocation	28
4.6.1.3. QPSK with 100% RB allocation	28
4.6.1.4. Higher order modulations.....	28
4.6.2. Other channel bandwidth standalone SAR test requirements	28
4.7. SAR Measurement Conditions for LTE	30
4.7.1. Initial Test Configuration Procedures.....	30
4.7.2. Subsequent Test Configuration Procedures.....	30
5. SAR Exposure Limits.....	32
6. Test Equipment List	33
7. Measurement Uncertainty	34
8. Conducted Power Measurement.....	38
9. Test Results	39
9.1. SAR Test Results Summary	39
9.2. SAR Test Notes.....	43
Appendix A. SAR System Validation Data.....	44
Appendix B. SAR measurement Data	46
Appendix C. Test Setup Photographs & EUT Photographs	57
Appendix D. Probe Calibration Data	64
Appendix E. Dipole Calibration Data.....	75
Appendix F. DAE Calibration Data.....	88

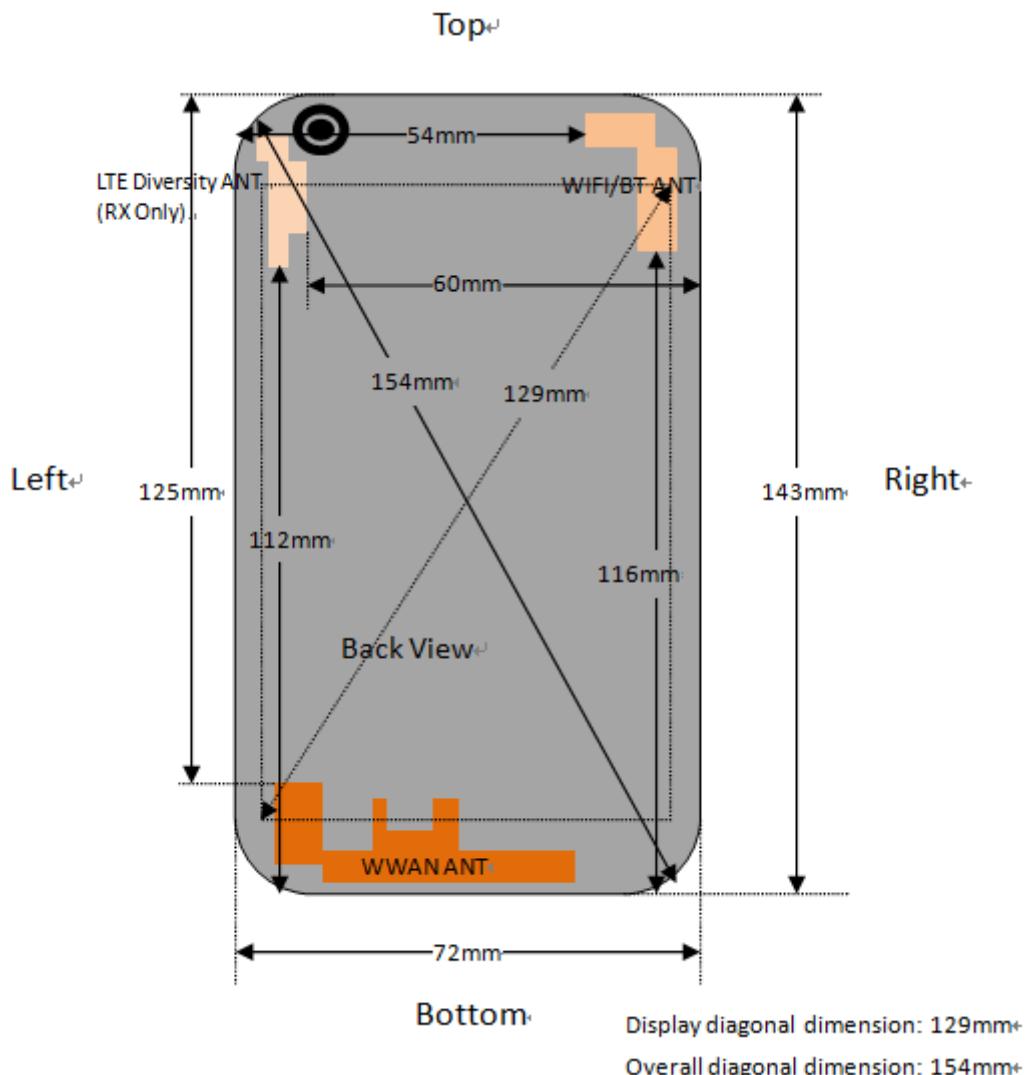
History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
1560229R-HP-US-P03V01	V1.0	Initial Issued Report	Jul. 29, 2015

1. General Information

1.1. EUT Description

Product Name	Mobile Phone
Model No.	C50,C50A,C55A,C5,C45,A4,A4+,A5,A5+,A6,i7,C55,C60 , M3,MG12
Device Category	Portable
RF Exposure Environment	Uncontrolled
Antenna Type	Internal
2G	
Support Band	GSM850/PCS1900
GPRS Class	Class 12
Uplink	GSM 850: 824~849MHz PCS 1900: 1850~1910MHz
Downlink	GSM 850: 869~894MHz PCS 1900: 1930~1990MHz
Release Version	R99
Type of modulation	GMSK for GSM/GPRS
Antenna Gain	GSM 850: 0dBi PCS1900: 0dBi
3G	
Support Band	WCDMA Band II/WCDMA Band IV/ WCDMA Band V
Uplink	WCDMA Band II: 1850-1910MHz WCDMA Band IV: 1710-1755MHz WCDMA Band V: 824-849MHz
Downlink	WCDMA Band II: 1930-1990MHz WCDMA Band IV: 2110-2155MHz WCDMA Band V: 869-894MHz
Release Version	Rel-6
Type of modulation	QPSK for Uplink
Antenna Gain	0dBi
4G	
Support Band	Band II/ Band IV/Band XVII
Uplink	Band II: 1850-1910MHz Band IV: 1710-1755MHz Band XVII: 704-716 MHz
Type of modulation	QPSK/16QAM
Antenna Gain	0dBi


WIFI	
Frequency	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40)) 5150MHz~5250MHz(802.11a/802.11n(H20))
Type of modulation	802.11b: DSSS; 802.11a/g/n: OFDM
Data Rate	802.11b: 11 Mbps 802.11a/g: 54 Mbps 802.11n: up to 150 Mbps
Antenna Gain	0dBi
Bluetooth	
Bluetooth Frequency	2402MHz~2480MHz
Bluetooth Version	3.0HS + Version 4.0
Type of modulation	V3.0+HS: GFSK, Pi/4 DQPSK, 8DPSK V4.0: GFSK
Data Rate	V3.0+HS: 1Mbps(GFSK), 2Mbps(Pi/4 DQPSK), 3Mbps (8DPSK) V4.0: 1Mbps(GFSK)
Antenna Gain	0dBi

1.2. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21.5 ± 2
Humidity (%RH)	30-70	52

1.3. EUT Antenna Locations

Mobile Hotspot Sides for SAR Testing

Mode	Back	Front	Top	Bottom	Right	Left
WIFI	Yes	Yes	Yes	No	Yes	No

Note: Particular DUT edges were not required to be evaluated for Wireless Router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v01r01 guidance, page 2. The antenna photo shows the distances between the transmit antennas and the edges of the device.

1.4. SAR Test Exclusions Applied

(A) WIFI/ Bluetooth

Per FCC KDB 447498 D01v05R02, the SAR exclusion threshold for distances<50mm is defined by the following equation:

$$\frac{\text{Max Power of Channel (mW)}}{\text{Test Separation Dist (mm)}} * \sqrt{\text{Frequency(GHz)}} \leq 3.0$$

Based on the maximum output power of Bluetooth and the antenna to use separation distance, Bluetooth SAR was not required;

$[(2.24\text{mW}/5) * \sqrt{2.402}] = 0.694 < 3.0$ for Head; $[(2.24\text{mW}/10) * \sqrt{2.402}] = 0.347 < 3.0$ for Body.

(B) Licensed Transmitter(s)

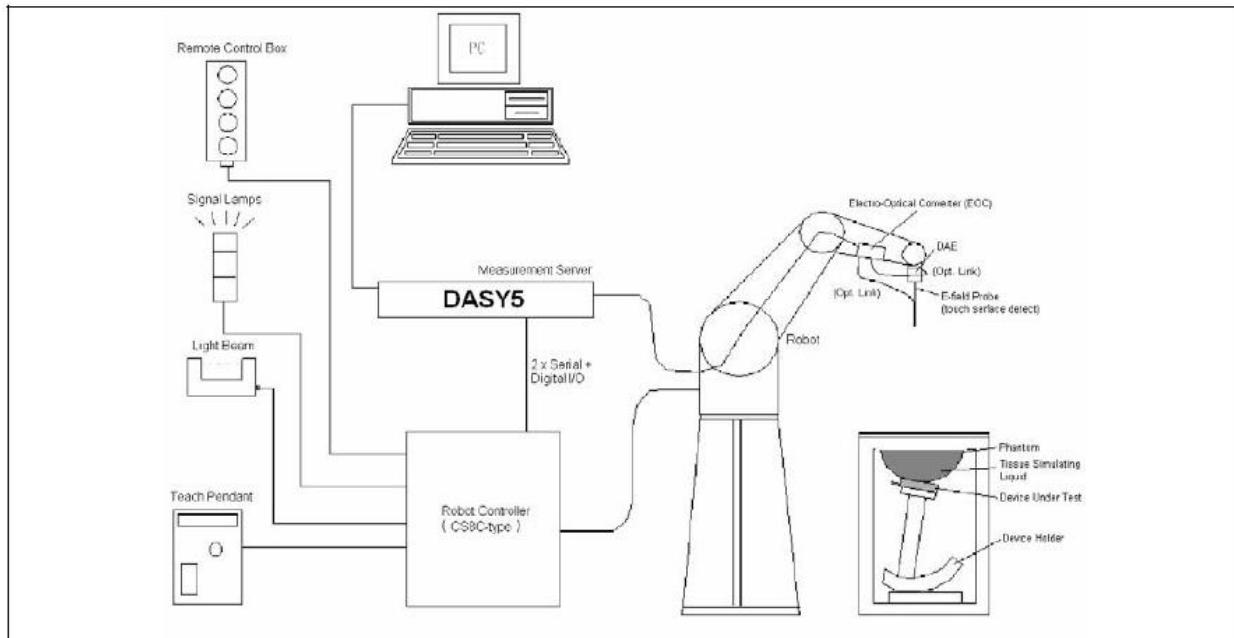
GSM/GPRS DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS Data.

When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.

1.5. Power Reduction for SAR

There is no power reduction used for any band mode implemented in this device for SAR purposes.

1.6. Max Power Reduction for SAR


MPR is not supported.

1.7. Guidance Documents

- 1) FCC KDB Publication 941225 D01,D05 and D06 (2G, 3G and Hotspot)
- 2) FCC KDB Publication 447498 D01v05r02(General SAR Guidance)
- 3) FCC KDB Publication 865664 D01v01r03(SAR measurement 100 MHz to 6 GHz)
- 4) FCC KDB Publication 648474 D04v01r02(SAR Evaluation Considerations for Wireless Handsets)
- 5) FCC KDB Publication 248227 D01v02r01 (SAR Guidance for IEEE 802.11(Wi-Fi) Transmitters)

2. SAR Measurement System

2.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2013 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x, y, z) = Ae^{-\frac{z}{2a}} \cos^2 \left(\frac{\pi}{2} \frac{\sqrt{x'^2 + y'^2}}{5a} \right)$$

$$f_2(x, y, z) = Ae^{-\frac{z}{a}} \frac{a^2}{a^2 + x'^2} \left(3 - e^{-\frac{2z}{a}} \right) \cos^2 \left(\frac{\pi}{2} \frac{y'}{3a} \right)$$

$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a + 2z)^2} \right)$$

2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

2.2.1. Isotropic E-Field Probe Specification

Model	EX3DV4
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μ W/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

2.3. Boundary Detection Unit and Probe Mounting Device

The DASY5 probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.

2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions.

During probe rotations, the probe tip will keep its actual position.

2.7. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon_r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

INGREDIENT (% Weight)	5200MHz Head	5200MHz Body
Water	65.53	75.68
Salt	0.00	0.43
Sugar	0.00	0.00
HEC	0.00	0.00
Preventol	0.00	0.00
DGBE	17.24	4.42
Triton X-100	17.24	19.47

3.2. Tissue Calibration Result

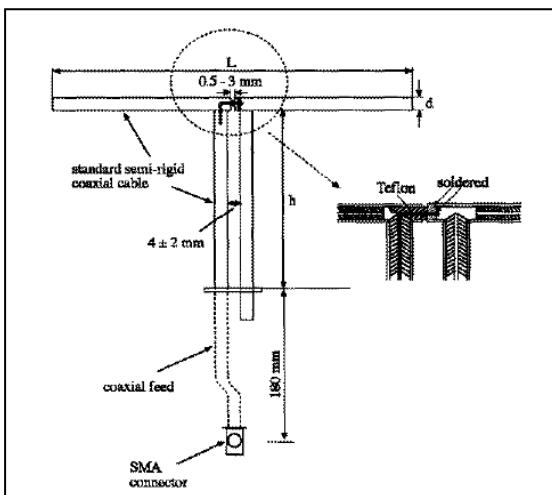
The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

Head Tissue Simulant Measurement				
Frequency [MHz]	Description	Dielectric Parameters		Tissue Temp. [°C]
		ϵ_r	σ [s/m]	
5200MHz	Reference result ± 5% window	36.0 34.20 to 37.80	4.66 4.43 to 4.89	N/A
	07-27-2015	37.14	4.56	21.0

Body Tissue Simulant Measurement				
Frequency [MHz]	Description	Dielectric Parameters		Tissue Temp. [°C]
		ϵ_r	σ [s/m]	
5200MHz	Reference result ± 5% window	49.0 46.55 to 51.45	5.30 5.04 to 5.57	N/A
	07-27-2015	48.94	5.15	21.0

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.


Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
2600	39.0	1.96	52.5	2.16
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and $\rho = 1000$ kg/m³)

4. SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
5200MHz	20.6	14.2	3.6

4.1.2. Validation Result

System Performance Check at 5200MHz for Head.

Validation Dipole: D5200V2, SN: 1078

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
5200 MHz	Reference result ± 10% window	78.4 70.56 to 86.24	22.4 20.16 to 24.64	N/A
	07-27-2015	80.5	22.8	21.0

Note: All SAR values are normalized to 1W forward power.

System Performance Check at 5200MHz for Body

Validation Dipole: D5200V2, SN: 1078

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
5200 MHz	Reference result ± 10% window	80.7 72.63 to 88.77	22.8 20.52 to 25.08	N/A
	07-27-2015	81.6	22.9	21.0

Note: All SAR values are normalized to 1W forward power.

4.2. SAR Measurement Procedure

The DASY5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

σ : represents the simulated tissue conductivity

ρ : represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

4.3. Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04 v01r02, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 v05r02 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

4.4. Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of Wi-Fi simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v01r01 where SAR test considerations for handsets ($L \times W \geq 9 \text{ cm} \times 5 \text{ cm}$) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the Wi-Fi transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the Wi-Fi transmitter according to FCC KDB Publication 447498 D01v05r02 publication procedures. The “Portable Hotspot” feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

4.5. SAR Measurement Conditions for UMTS

4.5.1. Output Power Verification

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all “1s”.

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC (transmit power control) set to all “1s” or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

4.5.2. Head SAR Measurements for Handsets

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all “1s”. SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

4.5.3. Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all “1s”.

4.5.4. SAR Measurements for Handsets with Rel 5 HSDPA

Body SAR for HSDPA is not required for handsets with HSDPA capabilities when the maximum average output power of each RF channel with HSDPA active is less than 0.25 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is $\leq 75\%$ of the SAR limit. Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration measured in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that resulted in the highest SAR in 12.2 kbps RMC mode for that RF channel.

The H-set used in FRC for HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HSPDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the applicable H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the FRC for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 2 ms to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors of $\beta_c=9$ and $\beta_d=15$, and power offset parameters of $\Delta ACK = \Delta NACK = 5$ and $\Delta CQI = 2$ is used. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the FRC.

4.5.5. SAR Measurements for Handsets with Rel 6 HSUPA

Body SAR for HSUPA is not required when the maximum average output of each RF channel with HSUPA/HSDPA active is less than 0.25 dB higher than as measured without HSUPA/HSDPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is $\leq 75\%$ of the SAR limit. Otherwise SAR is measured on the maximum output channel for the body exposure configuration produced highest SAR in 12.2 kbps RMC for that RF channel, using the additional procedures under "Release 6 HSPA data devices"

Head SAR for VOIP operations under HSPA is not required when maximum average output of each RF channel with HSPA is less than 0.25 dB higher than as measured using 12.2 kbps RMC. Otherwise SAR is measured using same HSPA configuration as used for body SAR.

Sub-test	β_c	β_d	β_d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	β_{rc}	β_{rd}	β_{rd} (SF)	β_{rd} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$\beta_{rd1}: 47/15$ $\beta_{rd2}: 47/15$	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15		56/75	4	1	3.0	2.0	17
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: $\Delta ACK = \Delta NACK$ and $\Delta CQI = 8 \Leftrightarrow A_{12} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$.

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: β_{rd} can not be set directly; it is set by Absolute Grant Value.

4.6. SAR Measurement Conditions for LTE

4.6.1. Largest channel bandwidth standalone SAR test requirements

4.6.1.1. QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel.

When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

4.6.1.2. QPSK with 50% RB allocation

The procedures required for 1 RB allocation in section 4.2.1 are applied to measure the SAR for QPSK with 50% RB allocation.

4.6.1.3. QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in sections 4.2.1 and 4.2.2 are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

4.6.1.4. Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in sections 4.2.1, 5.2.2 and 4.2.3 to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is $> \frac{1}{2}$ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

4.6.2. Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section 4.2 to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is $> \frac{1}{2}$ dB higher than the equivalent channel configurations in the

largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is $> 1.45 \text{ W/kg}$. The equivalent channel configuration for the RB allocation, RB offset and modulation etc. is determined for the smaller channel bandwidth according to the same number of RB allocated in the largest channel bandwidth. For example, 50 RB in 10 MHz channel bandwidth does not apply to 5 MHz channel bandwidth; therefore, this cannot be tested in the smaller channel bandwidth. However, 50% RB allocation in 10 MHz channel bandwidth is equivalent to 100% RB allocation in 5 MHz channel bandwidth; therefore, these are the equivalent configurations to be compared to determine the specific channel and configuration in the smaller channel bandwidth that need SAR testing.

4.7. SAR Measurement Conditions for LTE

4.7.1. Initial Test Configuration Procedures

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required. SAR test reduction for subsequent highest output test channels is determined according to reported SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration.

When the reported SAR of the initial test configuration is $> 0.8 \text{ W/kg}$, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is $\leq 1.2 \text{ W/kg}$ or all required channels are tested.

4.7.2. Subsequent Test Configuration Procedures

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, the procedures in section 5.3.2 are applied to determine the test configuration. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- 1) When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- 2) When the highest reported SAR for the initial test configuration (when applicable,

include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

3) The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.

a) SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.

b) SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested.

i) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.

4) SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by recursively applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:

a) replace “subsequent test configuration” with “next subsequent test configuration” (i.e., subsequent next highest specified maximum output power configuration)

b) replace “initial test configuration” with “all tested higher output power configurations”

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

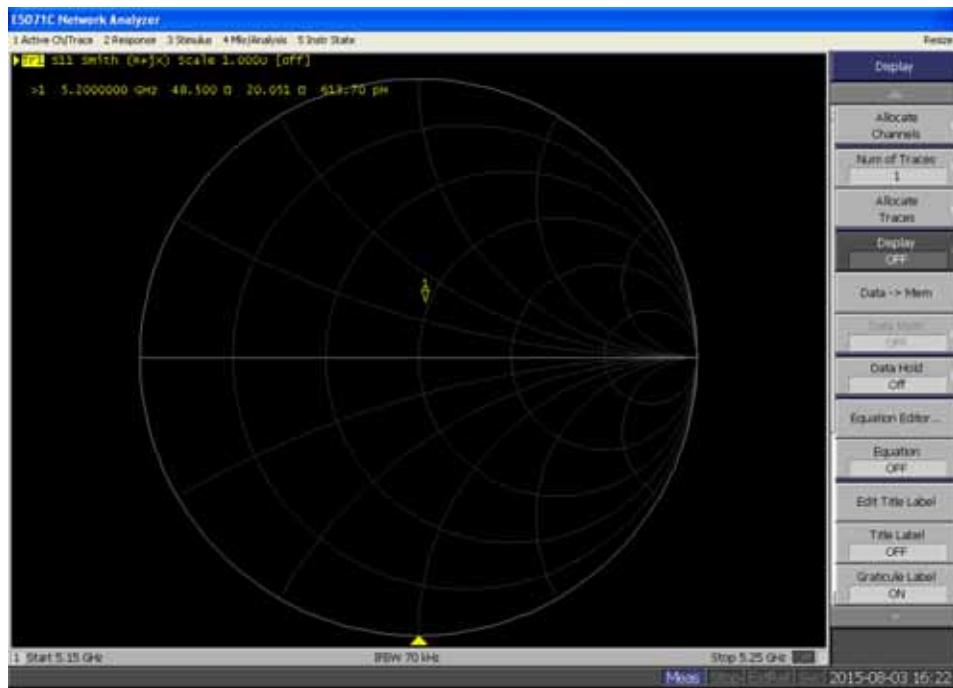
Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

6. Test Equipment List

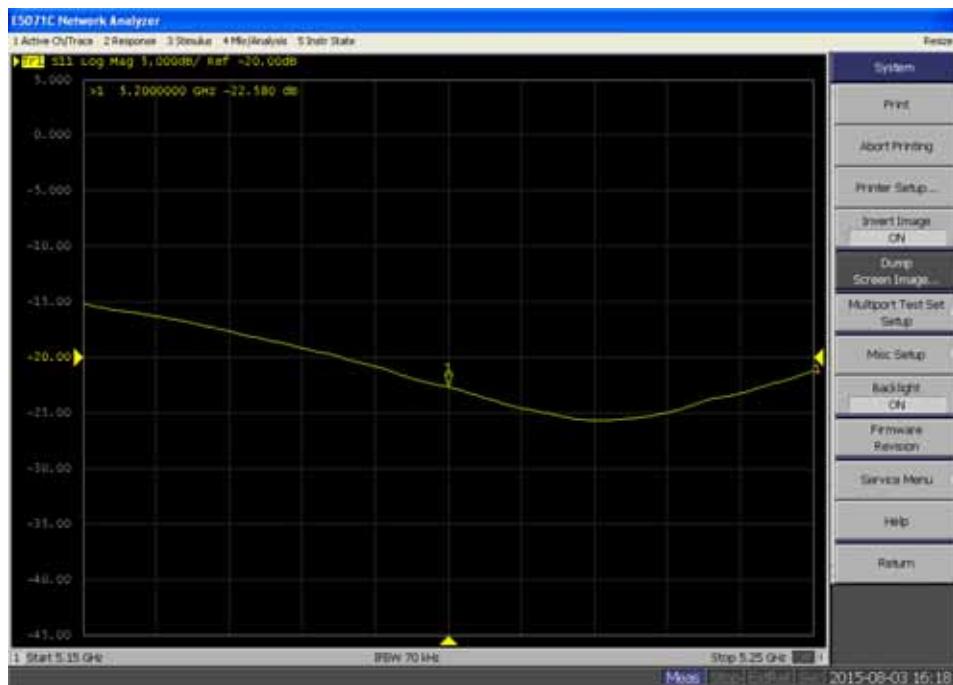
Instrument	Manufacturer	Model No.	Serial No.	Cali. Due Date
Stäubli Robot TX60L	Stäubli	TX60L	F10/5C90A1/A/01	N/A
Controller	Stäubli	SP1	S-0034	N/A
Dipole Validation Kits	Speag	D5GHzV2	1078	2016.03.02
SAM Twin Phantom	Speag	SAM	TP-1561/1562	N/A
Device Holder	Speag	SD 000 H01 HA	N/A	N/A
Data Acquisition Electronic	Speag	DAE4	1220	2016.01.19
E-Field Probe	Speag	EX3DV4	3710	2016.03.26
SAR Software	Speag	DASY5	V5.2 Build 162	N/A
Power Amplifier	Mini-Circuit	ZVA-183-S+	N657400950	N/A
Directional Coupler	Agilent	778D	20160	N/A
Universal Radio Communication Tester	R&S	CMU 200	117088	2016.03.10
Vector Network	Agilent	E5071C	MY48367267	2016.03.10
Signal Generator	Agilent	E4438C	MY49070163	2016.03.10
Power Meter	Anritsu	ML2495A	0905006	2015.10.29
Wide Bandwidth Sensor	Anritsu	MA2411B	0846014	2015.10.29

7. Measurement Uncertainty

DASY5 Uncertainty								
Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram / 10 gram.								
Error Description	Uncert. value	Prob. Dist.	Div.	(ci) 1g	(ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(vi) veff
Measurement System								
Probe Calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Liquid Conductivity (target)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity (meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid Permittivity (target)	±5.0%	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity (meas.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
Combined Std. Uncertainty						±11.0%	±10.8%	387
Expanded STD Uncertainty						±22.0%	±21.5%	

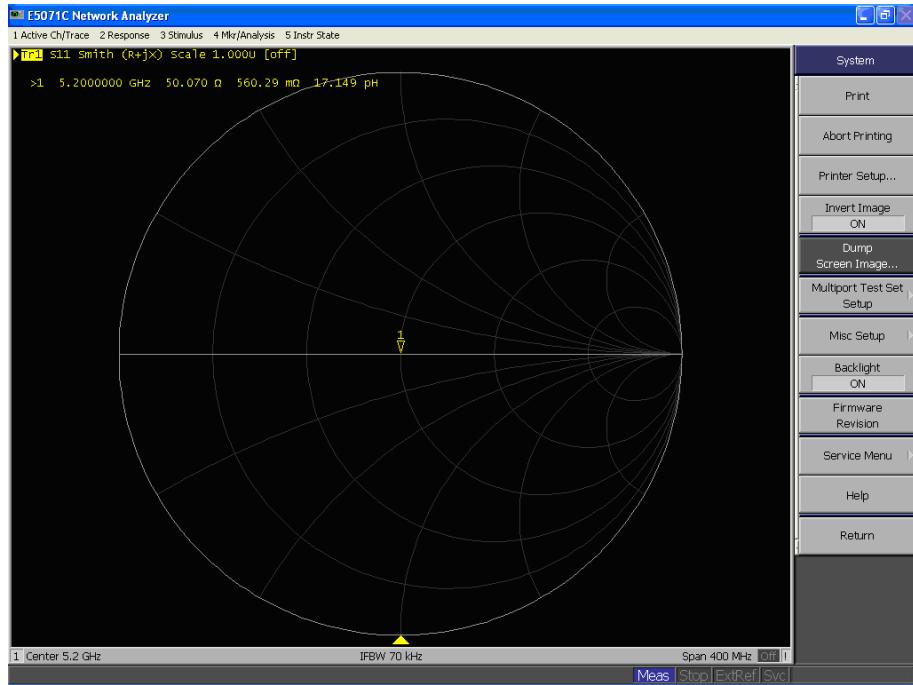

DASY5 Uncertainty

Measurement uncertainty for 3 GHz to 6 GHz averaged over 1 gram / 10 gram.

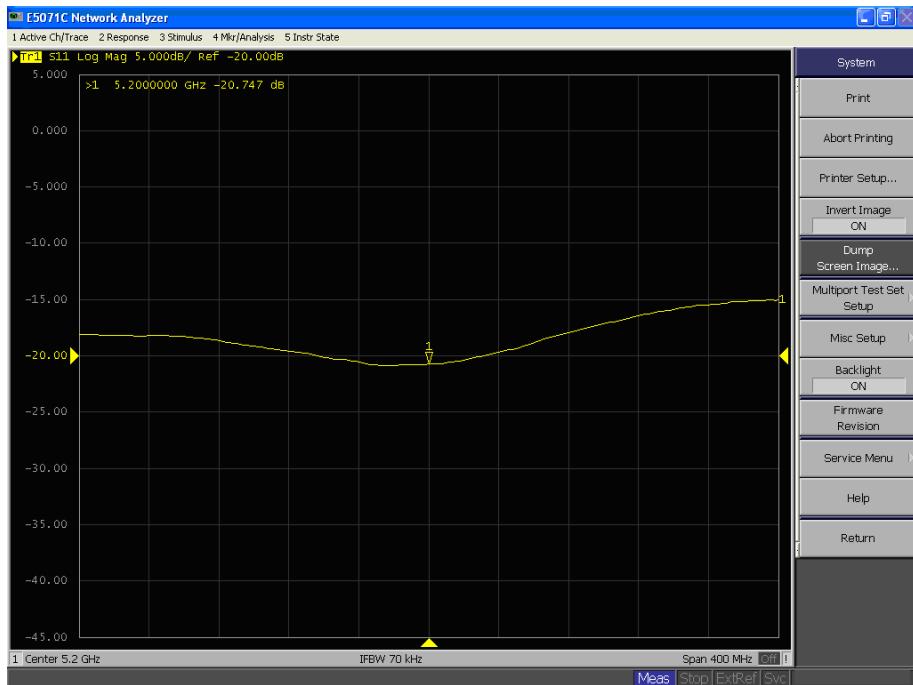

Error Description	Uncert. value	Prob. Dist.	Div.	(ci) 1g	(ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(vi) veff
Measurement System								
Probe Calibration	±6.55%	N	1	1	1	±6.55%	±6.55%	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±2.0%	R	$\sqrt{3}$	1	1	±1.2%	±1.2%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Probe Positioning	±9.9%	R	$\sqrt{3}$	1	1	±5.7%	±5.7%	∞
Max. SAR Eval.	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Liquid Conductivity (target)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity (meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid Permittivity (target)	±5.0%	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity (meas.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
Combined Std. Uncertainty						±12.8%	±12.6%	330
Expanded STD Uncertainty						±25.6%	±25.2%	

5200 Head

Calibrated impedance: 52.3 Ω; Measured impedance: 48.5 Ω (within 5Ω)



Calibrated return loss: -19.7 dB; Measured return loss: -22.58dB (within 20%)



5200 Body

Calibrated impedance: 52.0 Ω ; Measured impedance: 50.1 Ω (within 5 Ω)

Calibrated return loss: -20.9 dB; Measured return loss: -20.7dB (within 20%)

8. Conducted Power Measurement

WIFI Power

Test Mode	Frequency (MHz)	Avg. Output Power (dBm)	Max. Power (dBm)	Scaling Factor
802.11a	5180	13.62	14.0	1.091
	5200	13.31	13.5	1.045
	5220	12.37	12.5	1.030
	5240	12.62	13.0	1.091
802.11n(20MHz)	5180	13.61	14.0	1.094
	5200	13.24	13.5	1.062
	5220	12.47	12.5	1.007
	5240	13.61	14.0	1.094

9. Test Results

9.1. SAR Test Results Summary

SAR MEASUREMENT														
Ambient Temperature (°C) : 21.5 ± 2					Relative Humidity (%): 52									
Liquid Temperature (°C) : 21.0 ± 2					Depth of Liquid (cm):>15									
Product: Mobile phone														
Test Mode: 802.11a 5.2G														
Test Position Head	Antenna Position	Frequency		Conduc- ted Power (dBm)	Power Drift ($<\pm 0.2$)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)	Limit (W/kg)					
Left-Cheek	Fixed	36	5180	13.62	0.06	0.393	1.091	0.429	1.6					
Left-Tilted	Fixed	36	5180	13.62	0.20	0.397	1.091	0.433	1.6					
Right-Cheek	Fixed	36	5180	13.62	0.20	0.513	1.091	0.560	1.6					
Right-Tilted	Fixed	36	5180	13.62	-0.18	0.683	1.091	0.745	1.6					
Right-Tilted	Fixed	48	5240	12.62	0.07	0.528	1.091	0.576	1.6					
Note: All the test channels are selected according to KDB 248227 D01v02.														

SAR MEASUREMENT														
Ambient Temperature (°C) : 21.5 ± 2					Relative Humidity (%): 52									
Liquid Temperature (°C) : 21.0 ± 2					Depth of Liquid (cm):>15									
Product: Mobile phone														
Test Mode: 802.11a 5.2G														
Test Position Head	Antenna Position	Frequency		Conduc- ted Power (dBm)	Scaled SAR 1g (W/kg)	Duty cycle (%)	Duty factor	Duty Cycle Scaled SAR 1g (W/kg)	Limit (W/kg)					
		Channel	MHz											
Left-Cheek	Fixed	36	5180	13.62	0.429	98.6	1.01	0.433	1.6					
Left-Tilted	Fixed	36	5180	13.62	0.433	98.6	1.01	0.437	1.6					
Right-Cheek	Fixed	36	5180	13.62	0.560	98.6	1.01	0.565	1.6					
Right-Tilted	Fixed	36	5180	13.62	0.745	98.6	1.01	0.753	1.6					
Right-Tilted	Fixed	48	5240	12.62	0.576	98.6	1.01	0.582	1.6					

Note 1: When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.

Note 2: When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

Note 3: SAR need to be scaled to the maximum tune-up power according to KDB 447498D01v05r02.

Note 4: the reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit according to KDB 248227D01v02r01.

SAR MEASUREMENT														
Ambient Temperature (°C): 21.5 ± 2					Relative Humidity (%): 52									
Liquid Temperature (°C): 21.0 ± 2					Depth of Liquid (cm): >15									
Product: Mobile phone														
Body-worn Accessory SAR Configurations														
Test Mode: 802.11a 5.2G														
Test position Body (10mm gap)	Antenna Position	Frequency		Conducted Power (dBm)	Power Drift (± 0.2)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)	Limit (W/kg)					
		Channel	MHz											
Body-worn	Fixed	36	5180	13.62	0.11	0.158	1.091	0.172	1.6					
Hotspot SAR Configurations														
Test Mode: 802.11a 5.2G														
Back	Fixed	36	5180	13.62	0.11	0.158	1.091	0.172	1.6					
Front	Fixed	36	5180	13.62	-0.14	0.172	1.091	0.188	1.6					
Front	Fixed	48	5240	12.62	0.02	0.236	1.091	0.257	1.6					
Right side	Fixed	36	5180	13.62	0.09	0.042	1.091	0.046	1.6					
Top	Fixed	36	5180	13.62	-0.03	0.154	1.091	0.168	1.6					
Note: All the test channels are selected according to KDB 248227 D01v02.														

SAR MEASUREMENT												
Ambient Temperature (°C): 21.5 ± 2					Relative Humidity (%): 52							
Liquid Temperature (°C): 21.0 ± 2					Depth of Liquid (cm): >15							
Product: Mobile phone												
Body-worn Accessory SAR Configurations												
Test Mode: 802.11a 5.2G												
Test Position Body (10mm gap)	Antenna Position	Frequency		Scaled SAR 1g (W/kg)	Duty cycle (%)	Duty factor	Duty Cycle Scaled SAR 1g (W/kg)	Limit (W/kg)				
		Channel	MHz									
Body-worn	Fixed	36	5180	0.172	98.6	1.01	0.174	1.6				
Hotspot SAR Configurations												
Test Mode: 802.11a 5.2G												
Back	Fixed	36	5180	0.172	98.6	1.01	0.174	1.6				
Front	Fixed	36	5180	0.188	98.6	1.01	0.190	1.6				
Front	Fixed	48	5240	0.257	98.6	1.01	0.260	1.6				
Right side	Fixed	36	5180	0.046	98.6	1.01	0.046	1.6				
Top	Fixed	36	5180	0.168	98.6	1.01	0.170	1.6				

Note 1: When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.

Note 2: When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

Note 3: SAR need to be scaled to the maximum tune-up power according to KDB 447498D01v05r02.

Note 4: the reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit according to KDB 248227D01v02r01.

9.2. SAR Test Notes

9.2.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE1528. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.

9.2.2. Body SAR with Headset

Per FCC KDB Publication 648474 D04v01r02, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was $\leq 1.2 \text{ W/kg}$, no additional SAR evaluations using a headset cable were required.

9.2.3. Hotspot Operation Mode

During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v01r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with Wi-Fi) was not activated.

Appendix A. SAR System Validation Data

Date/Time: 07-27-2015

Test Laboratory: QuieTek Lab

System Check Head 5200MHz

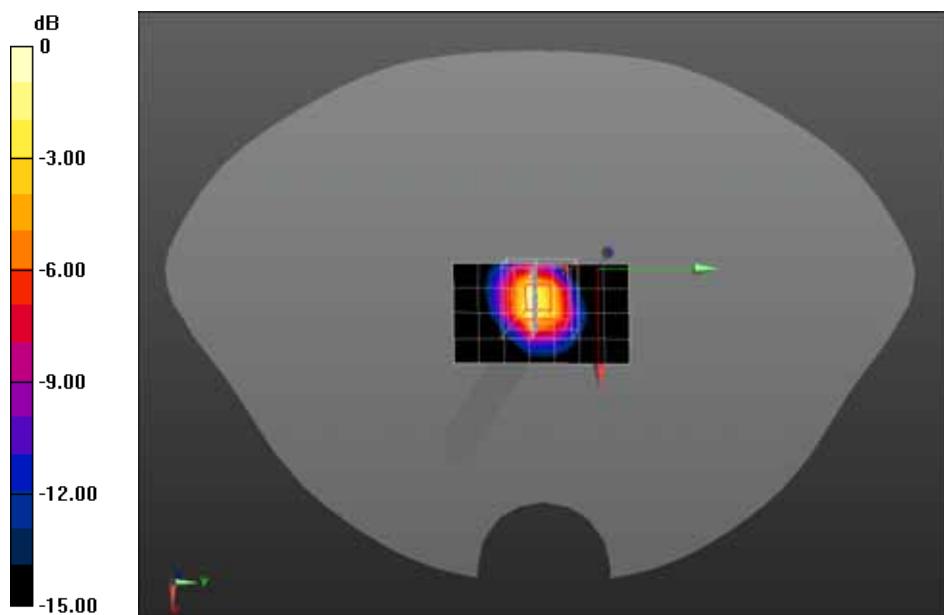
DUT: Dipole D5GHzV2; Type: D5GHzV2

Communication System: UID 0, CW; Communication System Band: 5GHz; Duty Cycle: 1:1; Frequency: 5200 MHz; Medium parameters used: $f = 5200$ MHz; $\sigma = 4.56$ S/m; $\epsilon_r = 37.14$; $\rho = 1000$ kg/m³ ; Phantom section: Flat Section ; Input Power=100mW

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(5.39, 5.39, 5.39); Calibrated: 27/03/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Head 5200MHz/Area Scan (5x8x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 12.0 W/kg

Configuration/Head 5200MHz/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm; Reference Value = 38.74 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 34.1 W/kg

SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 15.9 W/kg

0 dB = 15.9 W/kg = 12.01 dBW/kg

Date/Time: 07-27-2015

Test Laboratory: QuieTek Lab

System Check Body 5200MHz

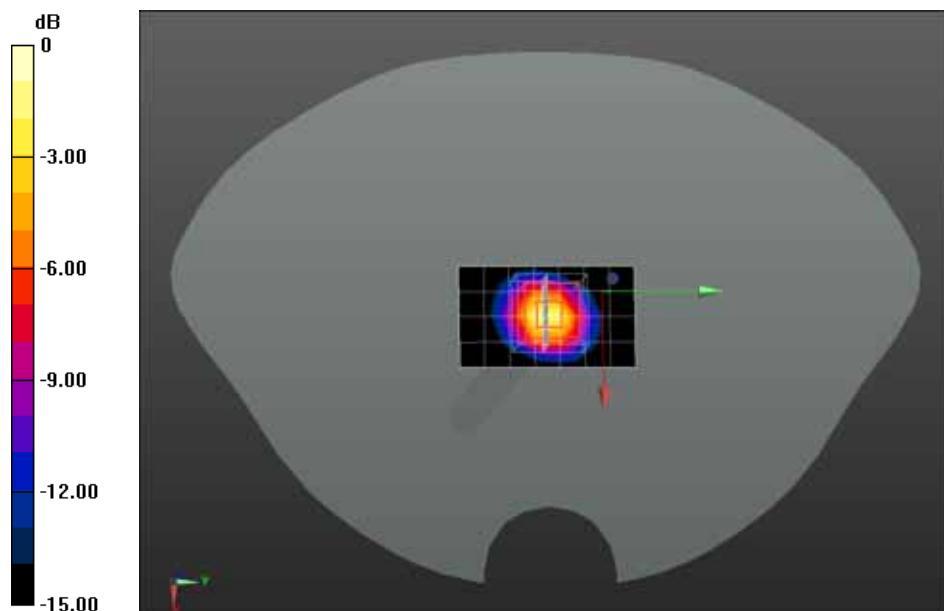
DUT: Dipole D5GHzV2; Type: D5GHzV2

Communication System: UID 0, CW; Communication System Band: 5GHz; Duty Cycle: 1:1; Frequency: 5200 MHz; Medium parameters used: $f = 5200$ MHz; $\sigma = 5.15$ S/m; $\epsilon_r = 48.94$; $\rho = 1000$ kg/m³ ; Phantom section: Flat Section ; Input Power=100mW

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(4.42, 4.42, 4.42); Calibrated: 27/03/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/Body 5200MHz/Area Scan (5x8x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 12.2 W/kg

Configuration/Body 5200MHz/Zoom Scan (8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm; Reference Value = 44.14 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 31.5 W/kg

SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 16.0 W/kg

Appendix B. SAR measurement Data

Date/Time: 07-27-2015

Test Laboratory: QuieTek Lab

802.11a 5180MHz Touch-Left

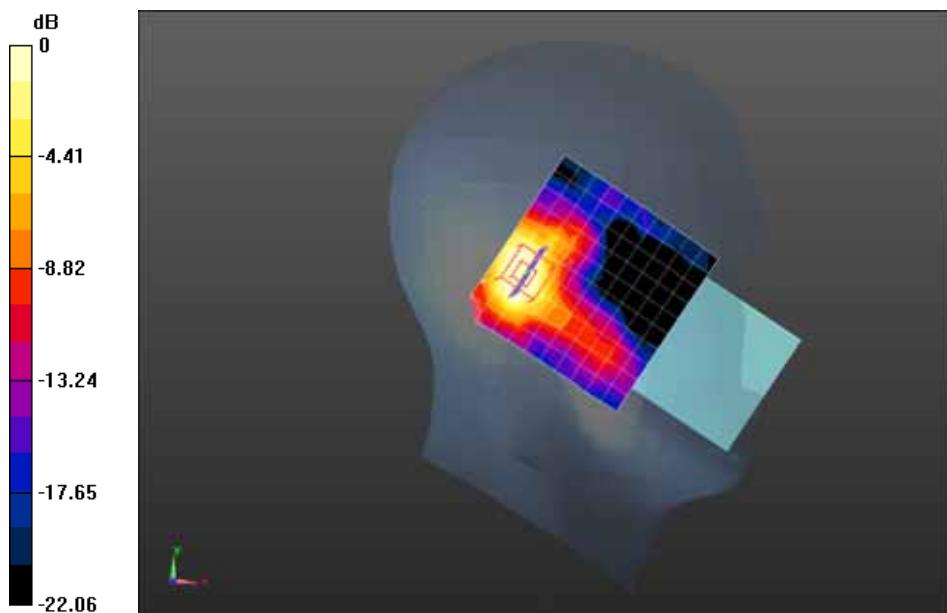
DUT: Mobile Phone; Type: C50

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty Cycle: 1:1.0; Frequency: 5180 MHz; Medium parameters used: $f = 5180$ MHz; $\sigma = 4.54$ S/m; $\epsilon_r = 37.23$; $\rho = 1000$ kg/m³; Phantom section: Left Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(5.39, 5.39, 5.39); Calibrated: 27/03/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5180MHz Touch-Left/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.807 W/kg

Configuration/802.11a 5180MHz Touch-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 4.665 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.393 W/kg; SAR(10 g) = 0.146 W/kg Maximum value of SAR (measured) = 0.471 W/kg

0 dB = 0.471 W/kg = -3.27 dBW/kg

Date/Time: 07-27-2015

Test Laboratory: QuieTek Lab

802.11a 5180MHz Tilt-Left

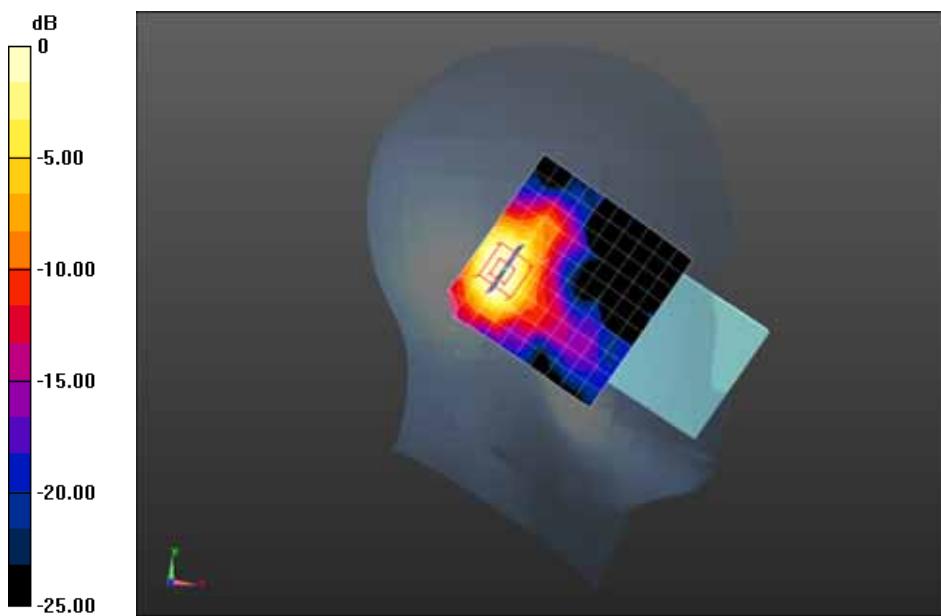
DUT: Mobile Phone; Type: C50

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty Cycle: 1:1.0; Frequency: 5180 MHz; Medium parameters used: $f = 5180$ MHz; $\sigma = 4.54$ S/m; $\epsilon_r = 37.23$; $\rho = 1000$ kg/m³ ; Phantom section: Left Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(5.39, 5.39, 5.39); Calibrated: 27/03/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5180MHz Tilt-Left/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.804 W/kg

Configuration/802.11a 5180MHz Tilt-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 5.494 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.397 W/kg; SAR(10 g) = 0.142 W/kg Maximum value of SAR (measured) = 0.479 W/kg

0 dB = 0.479 W/kg = -3.20 dBW/kg

Date/Time: 07-27-2015

Test Laboratory: QuieTek Lab

802.11a 5180MHz Touch-Right

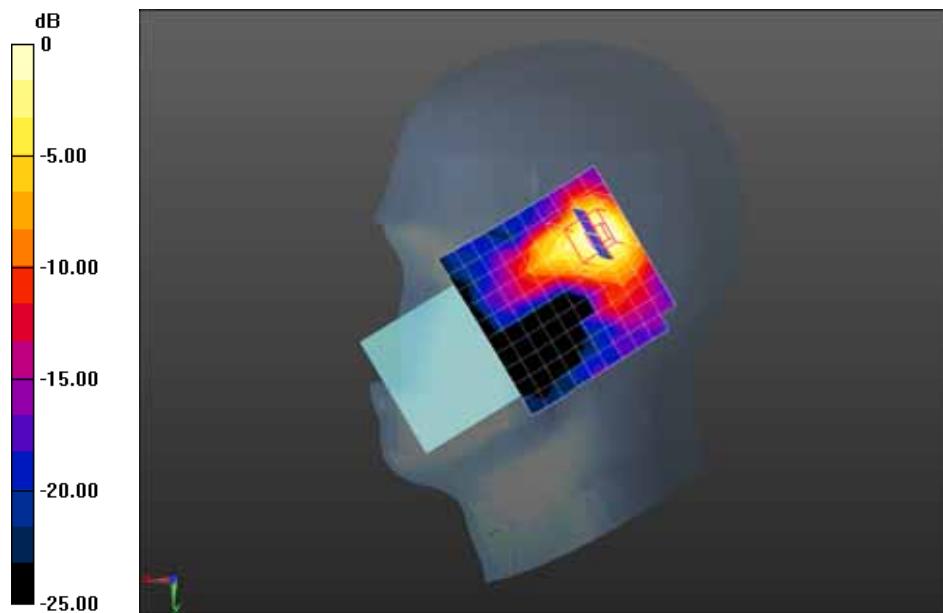
DUT: Mobile Phone; Type: C50

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty Cycle: 1:1.0; Frequency: 5180 MHz; Medium parameters used: $f = 5180$ MHz; $\sigma = 4.54$ S/m; $\epsilon_r = 37.23$; $\rho = 1000$ kg/m³ ; Phantom section: Right Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(5.39, 5.39, 5.39); Calibrated: 27/03/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5180MHz Touch-Right/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.884 W/kg

Configuration/802.11a 5180MHz Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 5.028 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 1.55 W/kg

SAR(1 g) = 0.513 W/kg; SAR(10 g) = 0.174 W/kg Maximum value of SAR (measured) = 0.678 W/kg

0 dB = 0.678 W/kg = -1.69 dBW/kg

Date/Time: 07-27-2015

Test Laboratory: QuieTek Lab

802.11a 5180MHz Tilt-Right

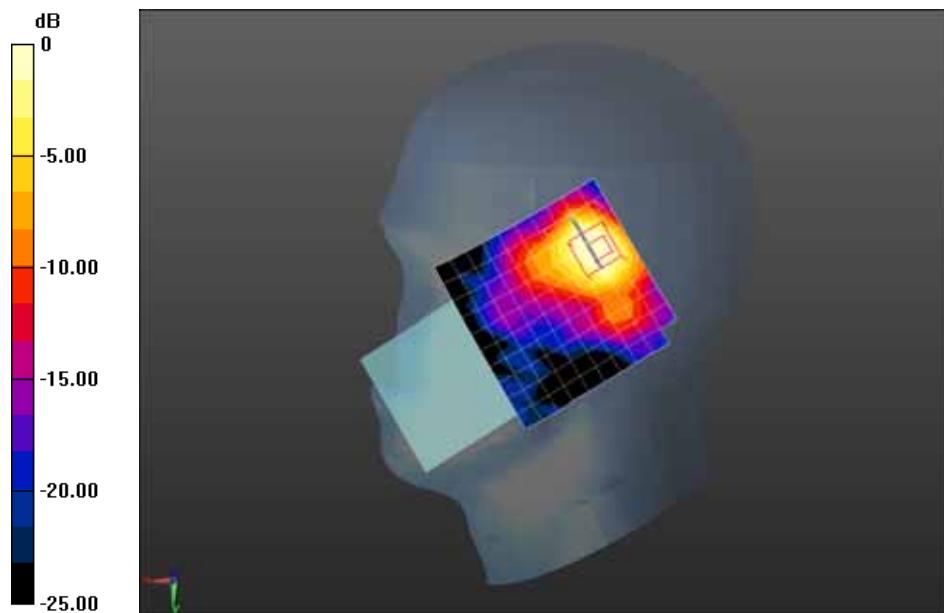
DUT: Mobile Phone; Type: C50

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty Cycle: 1:1.0; Frequency: 5180 MHz; Medium parameters used: $f = 5180$ MHz; $\sigma = 4.54$ S/m; $\epsilon_r = 37.23$; $\rho = 1000$ kg/m³ ; Phantom section: Right Section

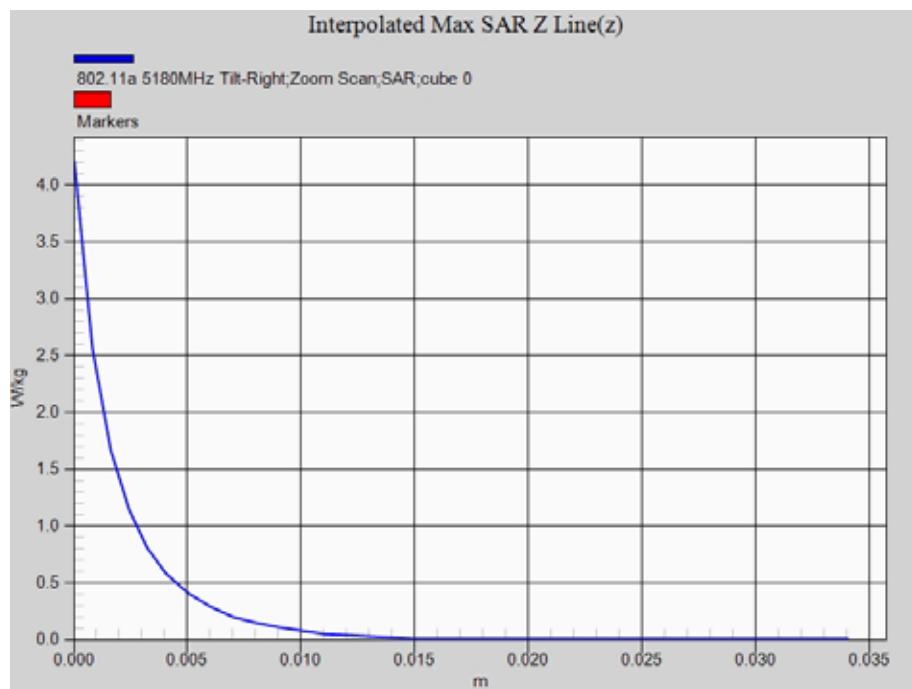
Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(5.39, 5.39, 5.39); Calibrated: 27/03/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5180MHz Tilt-Right/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.06 W/kg


Configuration/802.11a 5180MHz Tilt-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 7.049 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 4.21 W/kg

SAR(1 g) = 0.683 W/kg; SAR(10 g) = 0.213 W/kg Maximum value of SAR (measured) = 0.565 W/kg

Z-Axis Plot

Date/Time: 07-27-2015

Test Laboratory: QuieTek Lab

802.11a 5240MHz Tilt-Right

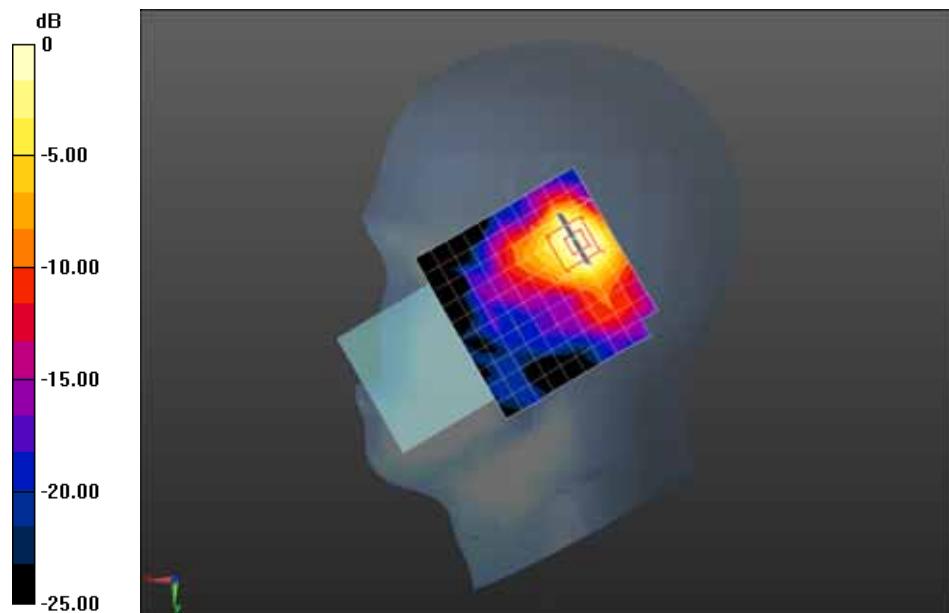
DUT: Mobile Phone; Type: C50

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty Cycle: 1:1.0; Frequency: 5240 MHz; Medium parameters used: $f = 5240$ MHz; $\sigma = 4.6$ S/m; $\epsilon_r = 36.96$; $\rho = 1000$ kg/m³ ; Phantom section: Right Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(5.39, 5.39, 5.39); Calibrated: 27/03/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5240MHz Tilt-Right/Area Scan (11x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.976 W/kg

Configuration/802.11a 5240MHz Tilt-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm; Reference Value = 5.864 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.59 W/kg

SAR(1 g) = 0.528 W/kg; SAR(10 g) = 0.176 W/kg Maximum value of SAR (measured) = 0.696 W/kg

0 dB = 0.696 W/kg = -1.57 dBW/kg

Date/Time: 07-27-2015

Test Laboratory: QuieTek Lab

802.11a 5180MHz Body-Back

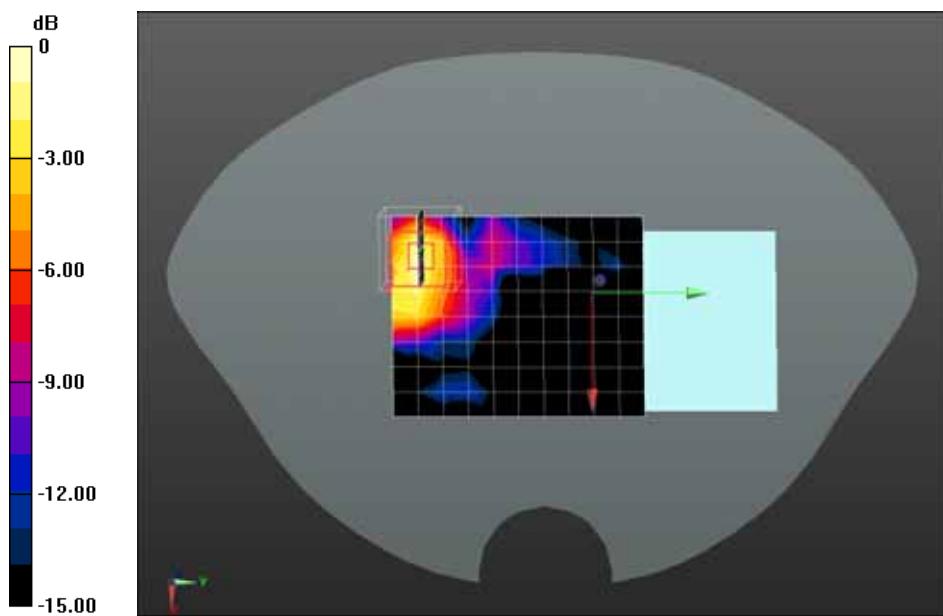
DUT: Mobile Phone; Type: C50

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty Cycle: 1:1.0; Frequency: 5180 MHz; Medium parameters used: $f = 5180$ MHz; $\sigma = 5.12$ S/m; $\epsilon_r = 49.02$; $\rho = 1000$ kg/m³ ; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(4.42, 4.42, 4.42); Calibrated: 27/03/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5180MHz Body-Back/Area Scan (9x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.276 W/kg

Configuration/802.11a 5180MHz Body-Back/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm; Reference Value = 0.6560 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.510 W/kg

SAR(1 g) = 0.158 W/kg; SAR(10 g) = 0.055 W/kg Maximum value of SAR (measured) = 0.307 W/kg

Date/Time: 07-27-2015

Test Laboratory: QuieTek Lab

802.11a 5180MHz Body-Front

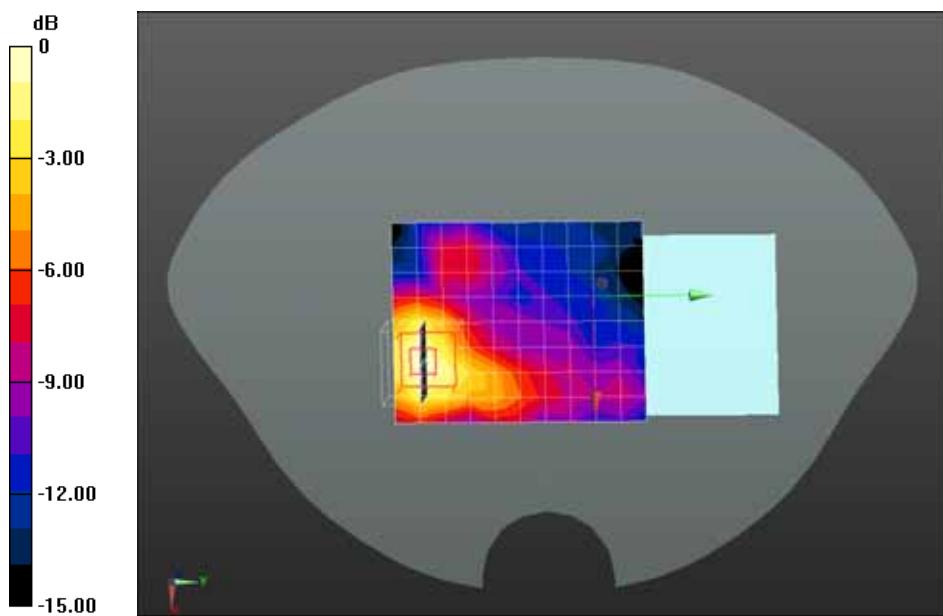
DUT: Mobile Phone; Type: C50

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty Cycle: 1:1.0; Frequency: 5180 MHz; Medium parameters used: $f = 5180$ MHz; $\sigma = 5.12$ S/m; $\epsilon_r = 49.02$; $\rho = 1000$ kg/m³ ; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(4.42, 4.42, 4.42); Calibrated: 27/03/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5180MHz Body-Front/Area Scan (9x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.321 W/kg

Configuration/802.11a 5180MHz Body-Front/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm; Reference Value = 2.548 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.508 W/kg

SAR(1 g) = 0.172 W/kg; SAR(10 g) = 0.067 W/kg Maximum value of SAR (measured) = 0.334 W/kg

0 dB = 0.334 W/kg = -4.76 dBW/kg

Date/Time: 07-27-2015

Test Laboratory: QuieTek Lab

802.11a 5180MHz Body-Right side

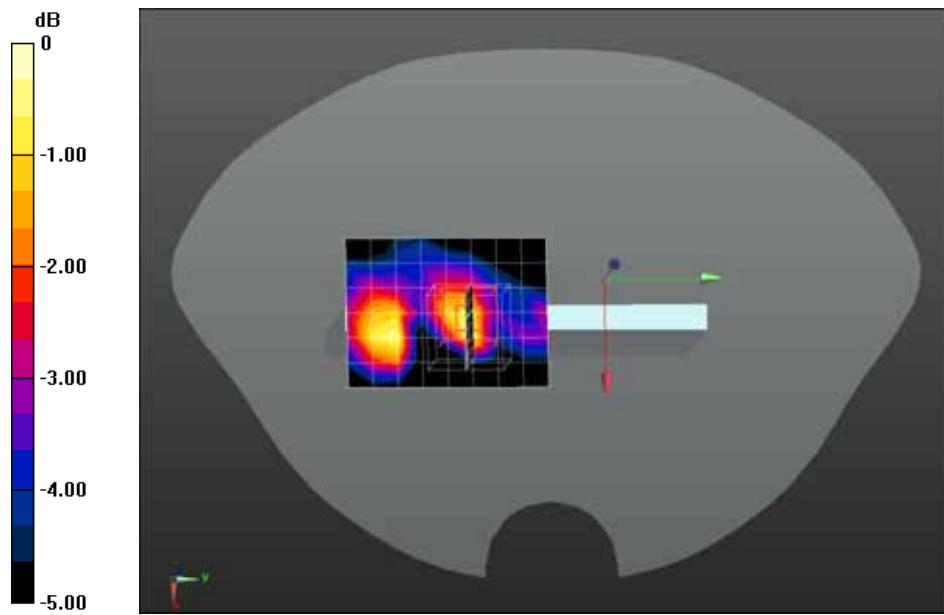
DUT: Mobile Phone; Type: C50

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty Cycle: 1:1.0; Frequency: 5180 MHz; Medium parameters used: $f = 5180$ MHz; $\sigma = 5.12$ S/m; $\epsilon_r = 49.02$; $\rho = 1000$ kg/m³ ; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(4.42, 4.42, 4.42); Calibrated: 27/03/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5180MHz Body-Left side/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.0787 W/kg

Configuration/802.11a 5180MHz Body-Left side/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm; Reference Value = 1.682 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.138 W/kg

SAR(1 g) = 0.042 W/kg; SAR(10 g) = 0.015 W/kg Maximum value of SAR (measured) = 0.0845 W/kg

Date/Time: 07-27-2015

Test Laboratory: QuieTek Lab

802.11a 5180MHz Body-Top

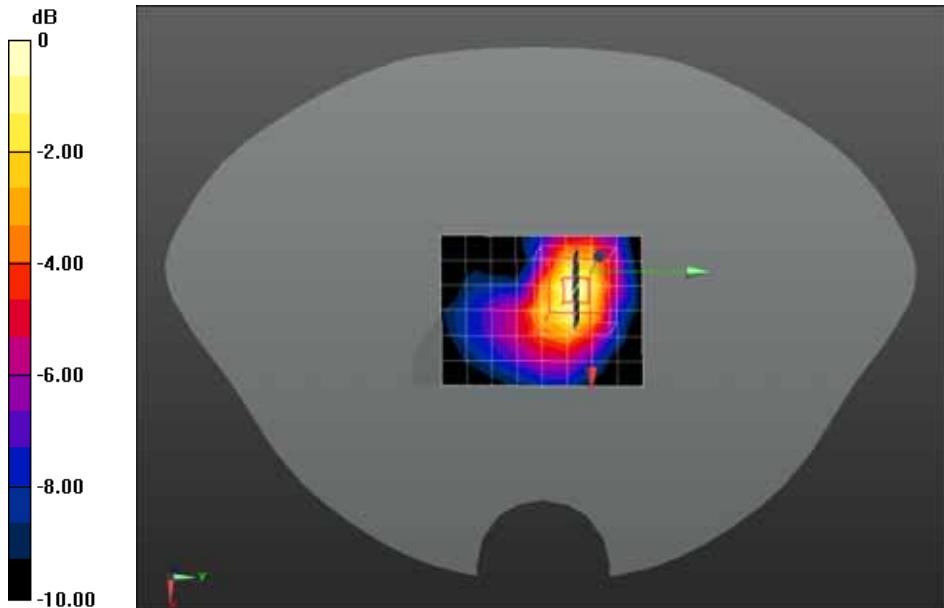
DUT: Mobile Phone; Type: C50

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty Cycle: 1:1.0; Frequency: 5180 MHz; Medium parameters used: $f = 5180$ MHz; $\sigma = 5.12$ S/m; $\epsilon_r = 49.02$; $\rho = 1000$ kg/m³ ; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(4.42, 4.42, 4.42); Calibrated: 27/03/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5180MHz Body-Top/Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.268 W/kg

Configuration/802.11a 5180MHz Body-Top/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm; Reference Value = 4.312 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.478 W/kg

SAR(1 g) = 0.154 W/kg; SAR(10 g) = 0.058 W/kg Maximum value of SAR (measured) = 0.288 W/kg

Date/Time: 07-27-2015

Test Laboratory: QuieTek Lab

802.11a 5240MHz Body-Front

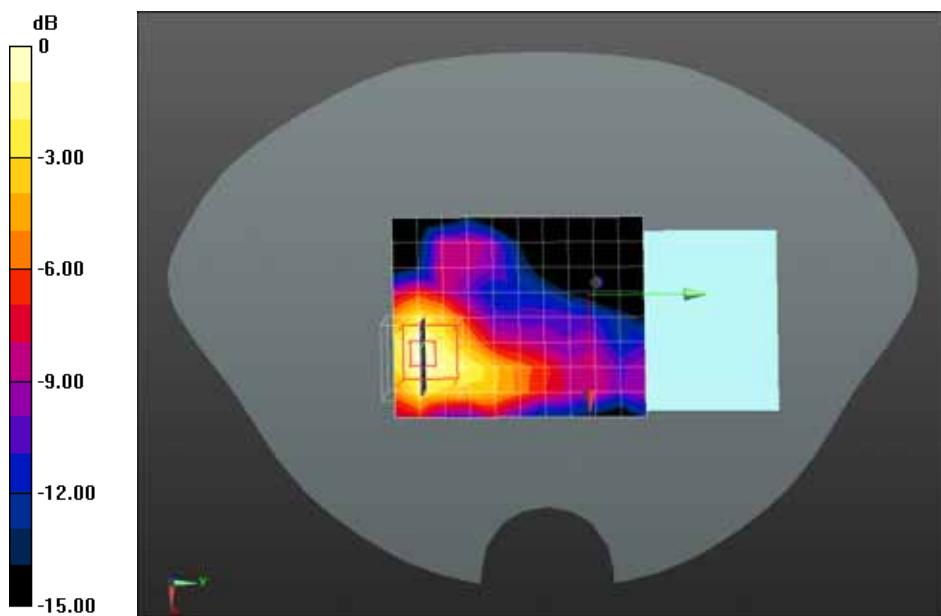
DUT: Mobile Phone; Type: C50

Communication System: UID 0, CW (0); Communication System Band: 5GHz(5000.0-6000.0MHz); Duty Cycle: 1:1.0; Frequency: 5240 MHz; Medium parameters used: $f = 5240$ MHz; $\sigma = 5.21$ S/m; $\epsilon_r = 48.84$; $\rho = 1000$ kg/m³ ; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(4.42, 4.42, 4.42); Calibrated: 27/03/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 20/01/2015
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Configuration/802.11a 5240MHz Body-Front/Area Scan (9x11x1): Measurement grid: dx=10mm, dy=10mm

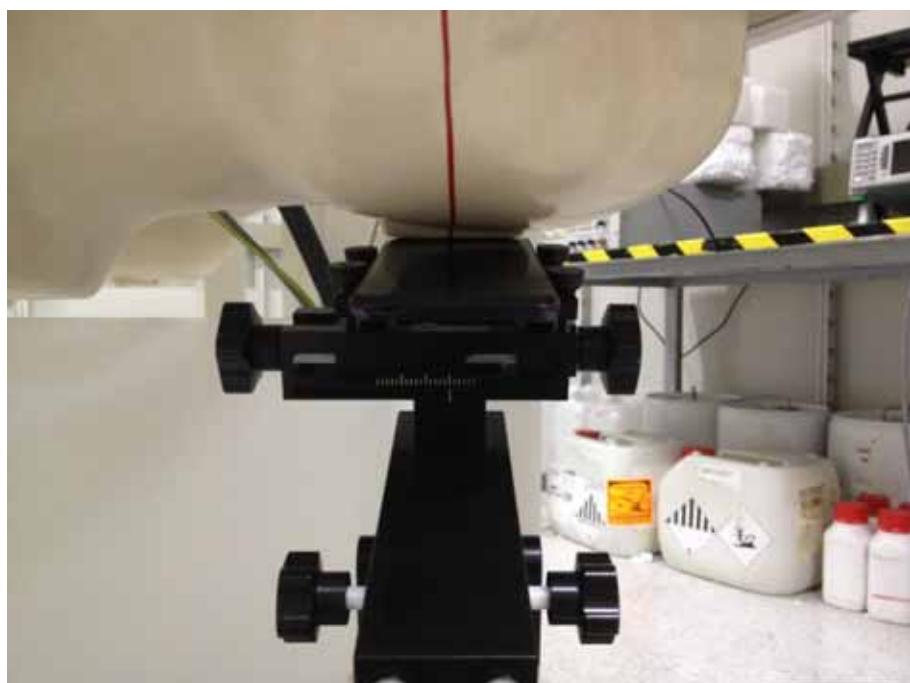
Maximum value of SAR (measured) = 0.453 W/kg

Configuration/802.11a 5240MHz Body-Front/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm; Reference Value = 2.080 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.713 W/kg

SAR(1 g) = 0.236 W/kg; SAR(10 g) = 0.090 W/kg Maximum value of SAR (measured) = 0.459 W/kg

0 dB = 0.459 W/kg = -3.38 dBW/kg


Appendix C. Test Setup Photographs & EUT Photographs

Test Setup Photographs

Left Head (EUT Cheek)

Left Head (EUT Tilted)

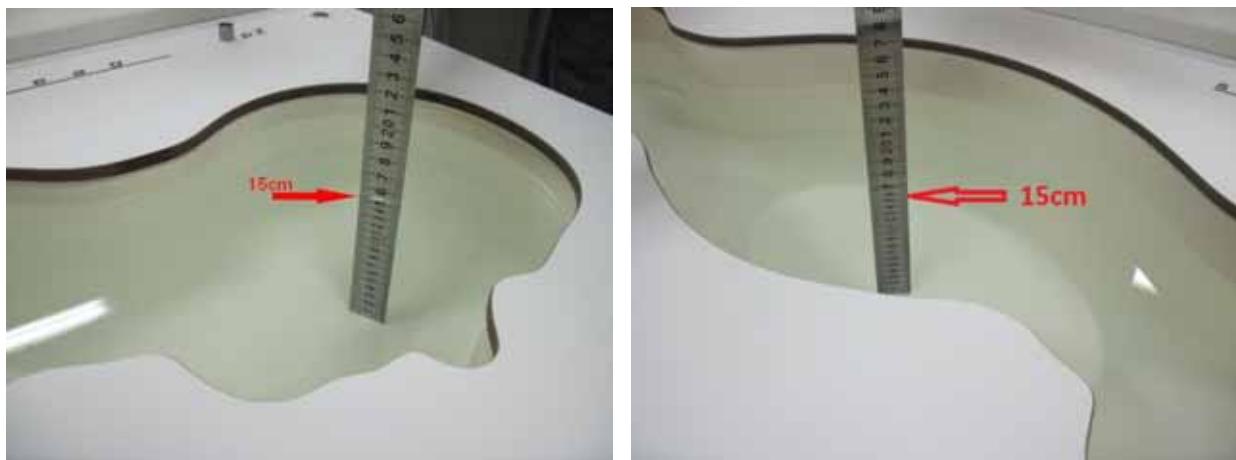
Right Head (EUT Cheek)

Right Head (EUT Tilted)

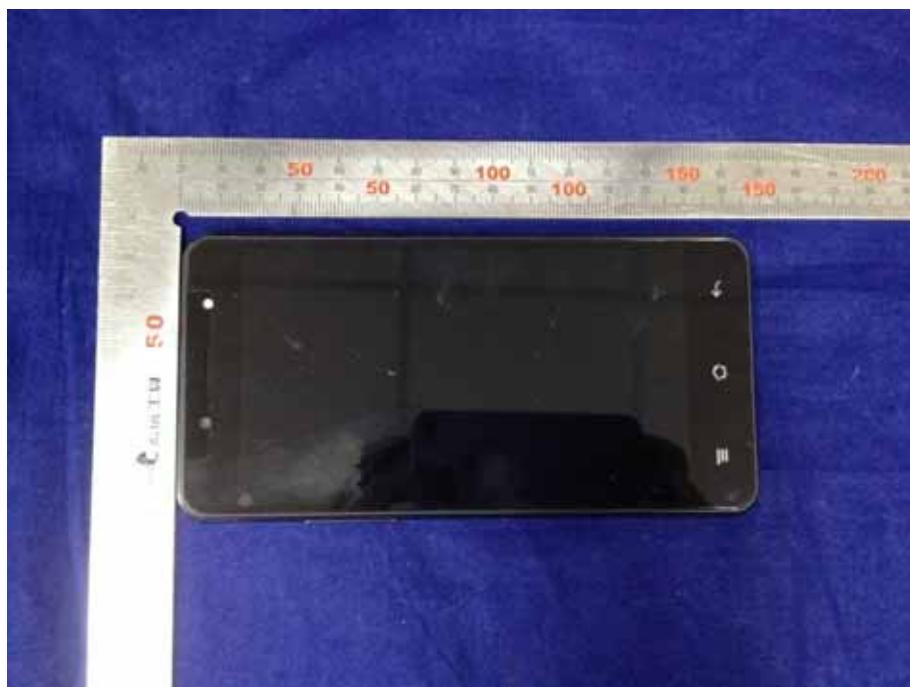
Body Back at 10mm WLAN

Body Front at 10mm WLAN

Body Right side at 10mm WLAN



Body Top at 10mm WLAN


Depth of the liquid in the phantom – Zoom in

Note: The position used in the measurements were according to IEEE 1528 - 2003

EUT Photographs

(1) EUT Photo

(2) EUT Photo

(3) EUT Photo

(4) EUT Photo

Appendix D. Probe Calibration Data

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **Quietek-CN (Auden)**

Certificate No: **EX3-3710_Mar15**

CALIBRATION CERTIFICATE

Object **EX3DV4 - SN:3710**

Calibration procedure(s) **QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5,
QA CAL-25.v6
Calibration procedure for dosimetric E-field probes**

Calibration date: **March 27, 2015**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S5054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S5277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S5129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-14 (No. ES3-3013_Dec14)	Dec-15
DAE4	SN: 660	14-Jan-15 (No. DAE4-660_Jan15)	Jan-16
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:	Name: Jeton Kastrati	Function: Laboratory Technician	Signature:
Approved by:	Katja Pokovic	Technical Manager	

Issued: March 27, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	ϕ rotation around probe axis
Polarization β	β rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\beta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORM_{x,y,z}$: Assessed for E-field polarization $\beta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORM_{x,y,z}$ are only intermediate values, i.e., the uncertainties of $NORM_{x,y,z}$ does not affect the E^2 -field uncertainty inside TSL (see below $ConvF$).
- $NORM(f)x,y,z = NORM_{x,y,z} * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of $ConvF$.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D$ are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for $ConvF$. A frequency dependent $ConvF$ is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle*: The angle is assessed using the information gained by determining the $NORMx$ (no uncertainty required).

EX3DV4 – SN:3710

March 27, 2015

Probe EX3DV4

SN:3710

Manufactured: July 21, 2009
Repaired: March 18, 2015
Calibrated: March 27, 2015

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

EX3DV4- SN:3710

March 27, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	43.5	0.87	10.28	10.28	10.28	0.18	1.60	± 13.3 %
750	41.9	0.89	9.53	9.53	9.53	0.22	1.31	± 12.0 %
835	41.5	0.90	9.16	9.16	9.16	0.27	1.12	± 12.0 %
900	41.5	0.97	8.88	8.88	8.88	0.26	1.16	± 12.0 %
1810	40.0	1.40	7.85	7.85	7.85	0.37	0.80	± 12.0 %
1900	40.0	1.40	7.78	7.78	7.78	0.40	0.84	± 12.0 %
2450	39.2	1.80	7.20	7.20	7.20	0.38	0.86	± 12.0 %
2600	39.0	1.96	7.01	7.01	7.01	0.37	0.92	± 12.0 %
3500	37.9	2.91	6.92	6.92	6.92	0.23	1.40	± 13.1 %
5200	36.0	4.66	5.39	5.39	5.39	0.35	1.80	± 13.1 %
5600	35.5	5.07	4.70	4.70	4.70	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.68	4.68	4.68	0.40	1.80	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:3710

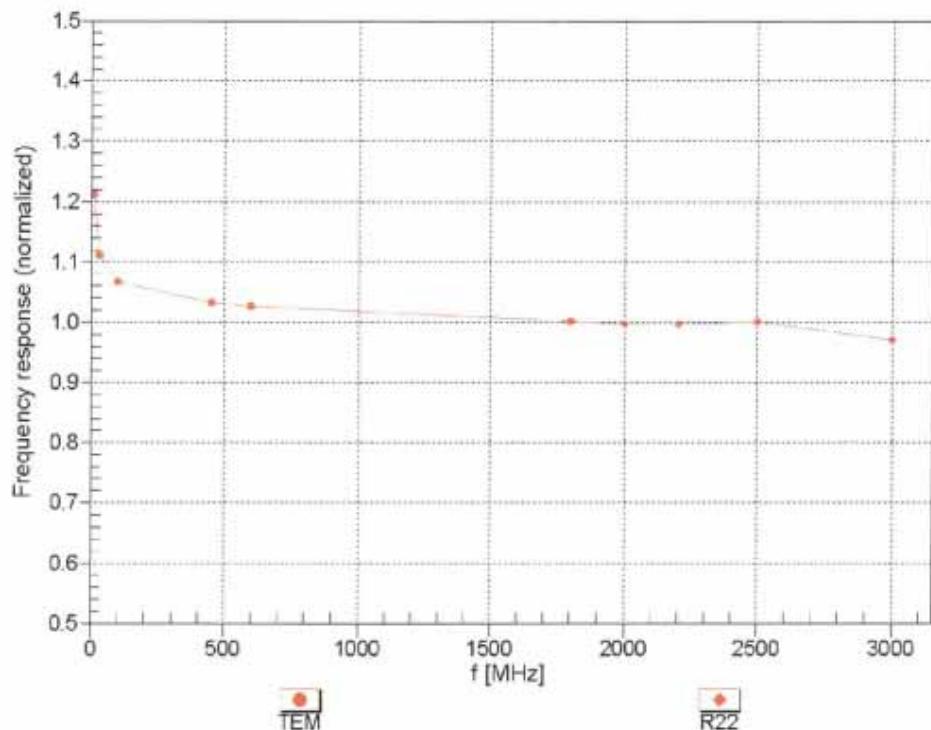
March 27, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
450	56.7	0.94	10.08	10.08	10.08	0.13	1.60	± 13.3 %
750	55.5	0.96	9.18	9.18	9.18	0.17	1.55	± 12.0 %
835	55.2	0.97	9.16	9.16	9.16	0.32	1.06	± 12.0 %
900	55.0	1.05	9.01	9.01	9.01	0.38	0.93	± 12.0 %
1810	53.3	1.52	7.44	7.44	7.44	0.50	0.80	± 12.0 %
1900	53.3	1.52	7.21	7.21	7.21	0.50	0.80	± 12.0 %
2450	52.7	1.95	6.85	6.85	6.85	0.32	0.85	± 12.0 %
2600	52.5	2.16	6.55	6.55	6.55	0.32	0.90	± 12.0 %
3500	51.3	3.31	6.20	6.20	6.20	0.30	1.40	± 13.1 %
5200	49.0	5.30	4.42	4.42	4.42	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.83	3.83	3.83	0.55	1.90	± 13.1 %
5800	48.2	6.00	3.98	3.98	3.98	0.55	1.90	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

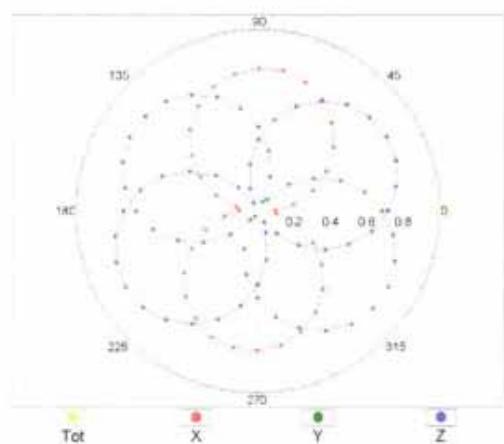

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

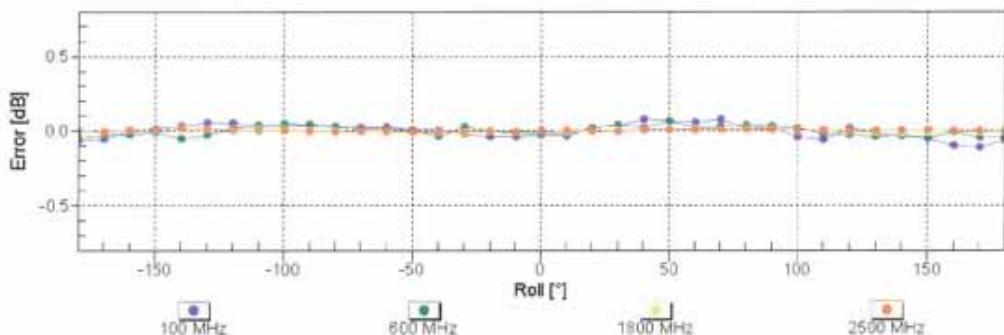
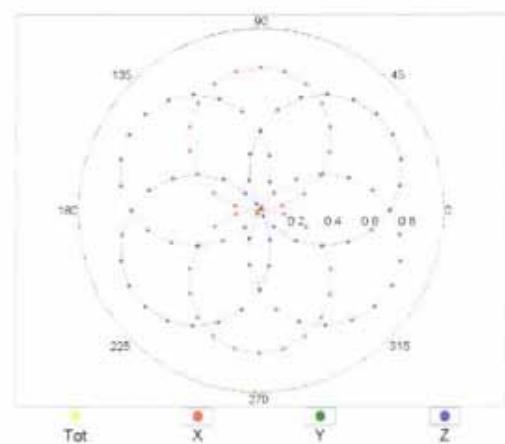
EX3DV4- SN:3710

March 27, 2015

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)

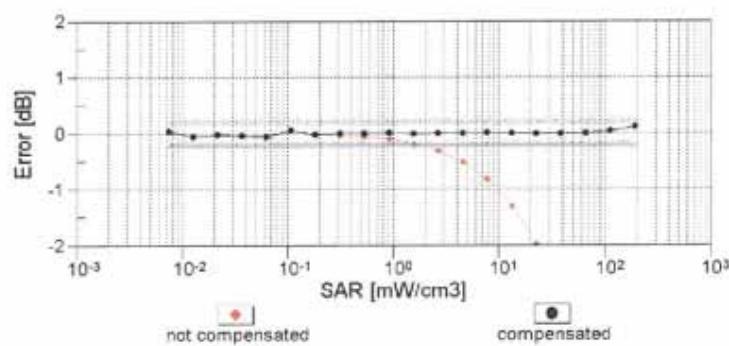
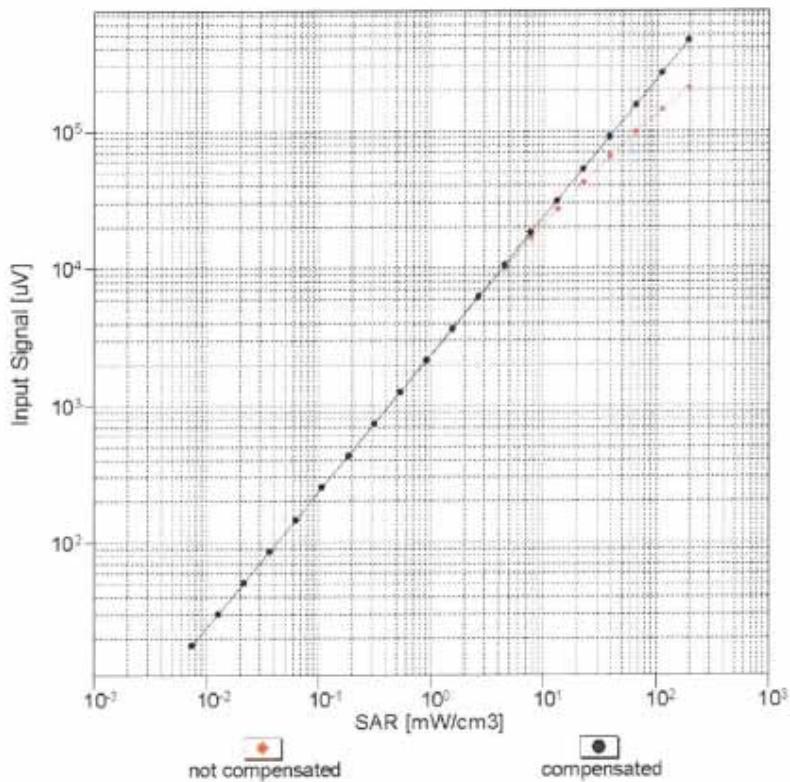
EX3DV4- SN:3710



March 27, 2015

Receiving Pattern (ϕ), $\theta = 0^\circ$

f=600 MHz, TEM

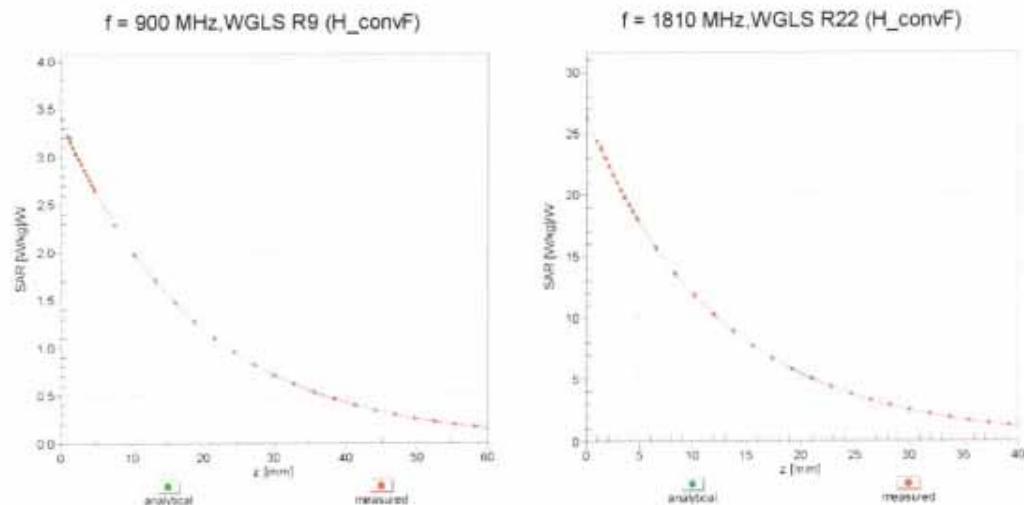
f=1800 MHz, R22



Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

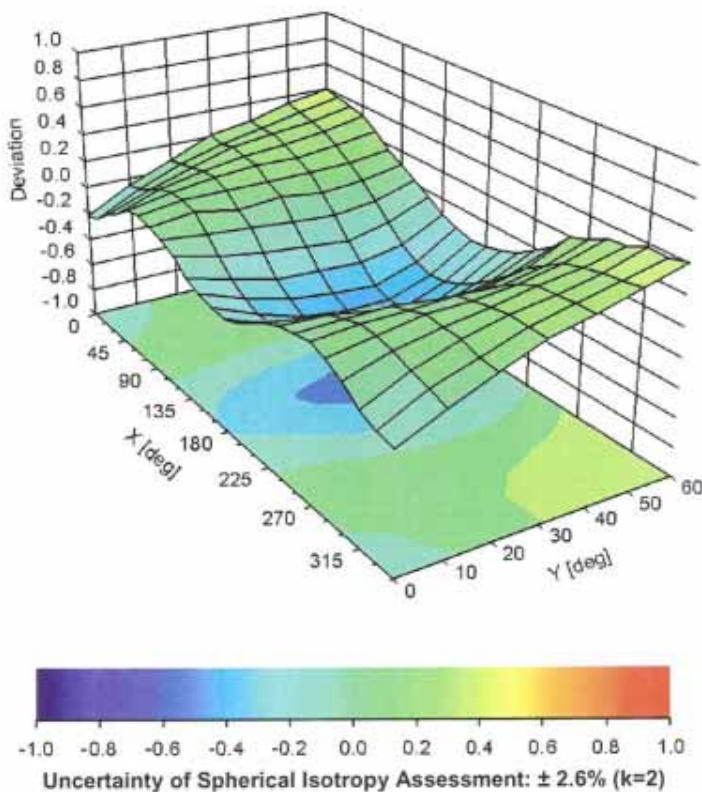
EX3DV4- SN:3710

March 27, 2015

Dynamic Range $f(\text{SAR}_{\text{head}})$
(TEM cell, $f_{\text{eval}} = 1900$ MHz)



Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)


EX3DV4- SN:3710

March 27, 2015

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (ϕ, θ), $f = 900 \text{ MHz}$

EX3DV4- SN:3710

March 27, 2015

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	80.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Appendix E. Dipole Calibration Data

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Quitek-CN (Auden)

Certificate No: D5GHzV2-1078_Mar14

CALIBRATION CERTIFICATE

Object D5GHzV2 - SN: 1078

Calibration procedure(s) QA CAL-22.v2
Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date: March 03, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe EX3DV4	SN: 3503	30-Dec-13 (No. EX3-3503_Dec13)	Dec-14
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14

Calibrated by: Name Jeton Kastrati Function Laboratory Technician

Approved by: Katja Pokovic Technical Manager

Issued: March 3, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"
- c) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$dx, dy = 4.0 \text{ mm}, dz = 1.4 \text{ mm}$	Graded Ratio = 1.4 (Z direction)
Frequency	$5200 \text{ MHz} \pm 1 \text{ MHz}$ $5500 \text{ MHz} \pm 1 \text{ MHz}$ $5800 \text{ MHz} \pm 1 \text{ MHz}$	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0 \text{ }^{\circ}\text{C}$	36.0	4.66 mho/m
Measured Head TSL parameters	$(22.0 \pm 0.2) \text{ }^{\circ}\text{C}$	$37.1 \pm 6 \text{ \%}$	$4.52 \text{ mho/m} \pm 6 \text{ \%}$
Head TSL temperature change during test	$< 0.5 \text{ }^{\circ}\text{C}$	---	---

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.80 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	$78.4 \text{ W/kg} \pm 19.9 \text{ \% (k=2)}$
SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	$22.4 \text{ W/kg} \pm 19.5 \text{ \% (k=2)}$

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0 \text{ }^{\circ}\text{C}$	35.6	4.96 mho/m
Measured Head TSL parameters	$(22.0 \pm 0.2) \text{ }^{\circ}\text{C}$	$36.7 \pm 6 \text{ \%}$	$4.84 \text{ mho/m} \pm 6 \text{ \%}$
Head TSL temperature change during test	$< 0.5 \text{ }^{\circ}\text{C}$	---	---

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	$86.3 \text{ W / kg} \pm 19.9 \text{ \% (k=2)}$
SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	$24.5 \text{ W/kg} \pm 19.5 \text{ \% (k=2)}$

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	5.16 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.03 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.8 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.8 ± 6 %	5.40 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.64 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.2 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.3 ± 6 %	5.80 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	---	---

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.4 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.24 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	6.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.69 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	100 mW input power	2.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	52.3 Ω - 10.4 $j\Omega$
Return Loss	- 19.7 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	50.6 Ω - 6.3 $j\Omega$
Return Loss	- 24.1 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	54.1 Ω - 2.7 $j\Omega$
Return Loss	- 26.5 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	52.0 Ω - 9.0 $j\Omega$
Return Loss	- 20.9 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	51.5 Ω - 5.3 $j\Omega$
Return Loss	- 25.3 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	53.9 Ω - 1.5 $j\Omega$
Return Loss	- 27.8 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 26, 2008

DASY5 Validation Report for Head TSL

Date: 28.02.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1078

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz
Medium parameters used: $f = 5200 \text{ MHz}$; $\sigma = 4.52 \text{ S/m}$; $\epsilon_r = 37.1$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: $f = 5500 \text{ MHz}$; $\sigma = 4.84 \text{ S/m}$; $\epsilon_r = 36.7$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: $f = 5800 \text{ MHz}$; $\sigma = 5.16 \text{ S/m}$; $\epsilon_r = 36.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.52, 5.52, 5.52); Calibrated: 30.12.2013, ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: $dx=4\text{mm}$, $dy=4\text{mm}$, $dz=1.4\text{mm}$

Reference Value = 63.986 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 28.8 W/kg

SAR(1 g) = 7.8 W/kg; SAR(10 g) = 2.23 W/kg

Maximum value of SAR (measured) = 18.0 W/kg

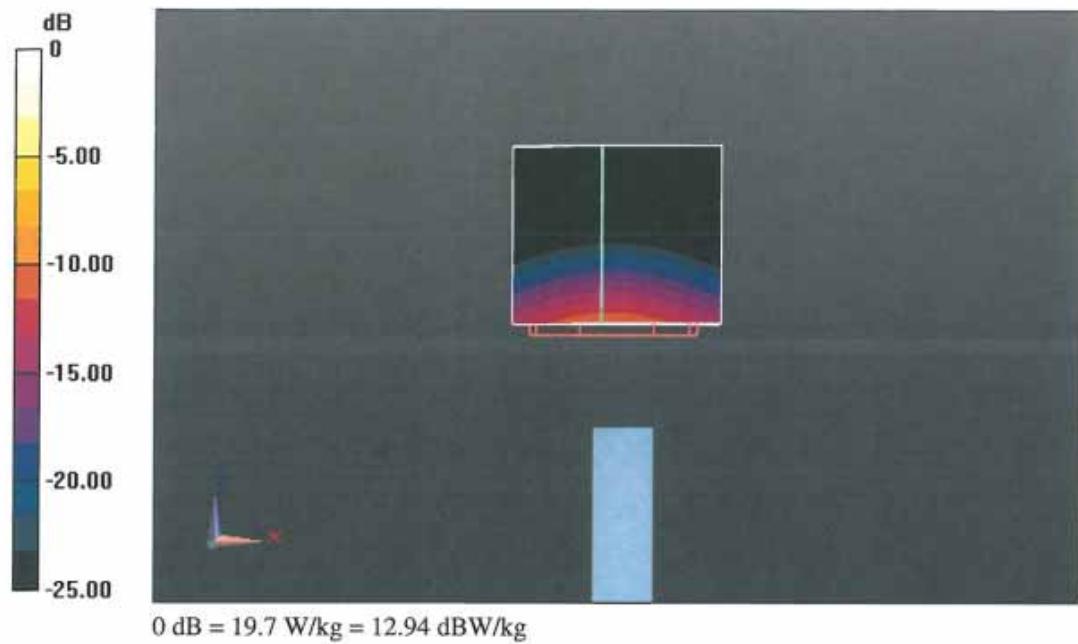
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: $dx=4\text{mm}$, $dy=4\text{mm}$, $dz=1.4\text{mm}$

Reference Value = 65.169 V/m; Power Drift = 0.05 dB

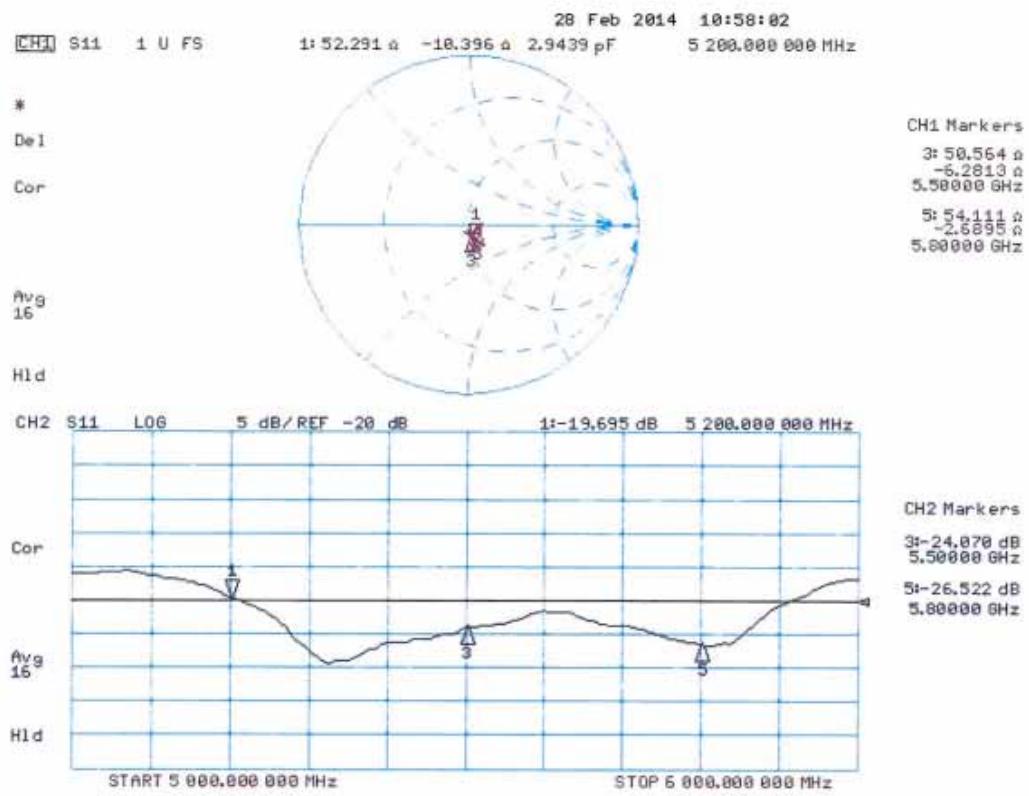
Peak SAR (extrapolated) = 34.6 W/kg

SAR(1 g) = 8.59 W/kg; SAR(10 g) = 2.43 W/kg

Maximum value of SAR (measured) = 20.6 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: $dx=4\text{mm}$, $dy=4\text{mm}$, $dz=1.4\text{mm}$

Reference Value = 61.474 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 34.2 W/kg

SAR(1 g) = 8.03 W/kg; SAR(10 g) = 2.27 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 03.03.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1078

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz
Medium parameters used: $f = 5200 \text{ MHz}$; $\sigma = 5.4 \text{ S/m}$; $\epsilon_r = 47.8$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used:
 $f = 5500 \text{ MHz}$; $\sigma = 5.8 \text{ S/m}$; $\epsilon_r = 47.3$; $\rho = 1000 \text{ kg/m}^3$, Medium parameters used: $f = 5800 \text{ MHz}$; $\sigma = 6.21 \text{ S/m}$; $\epsilon_r = 46.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 - SN3503; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.52, 4.52, 4.52); Calibrated: 30.12.2013, ConvF(4.47, 4.47, 4.47); Calibrated: 30.12.2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: $dx=4\text{mm}$, $dy=4\text{mm}$, $dz=1.4\text{mm}$

Reference Value = 59.230 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 30.8 W/kg

SAR(1 g) = 7.64 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 18.3 W/kg

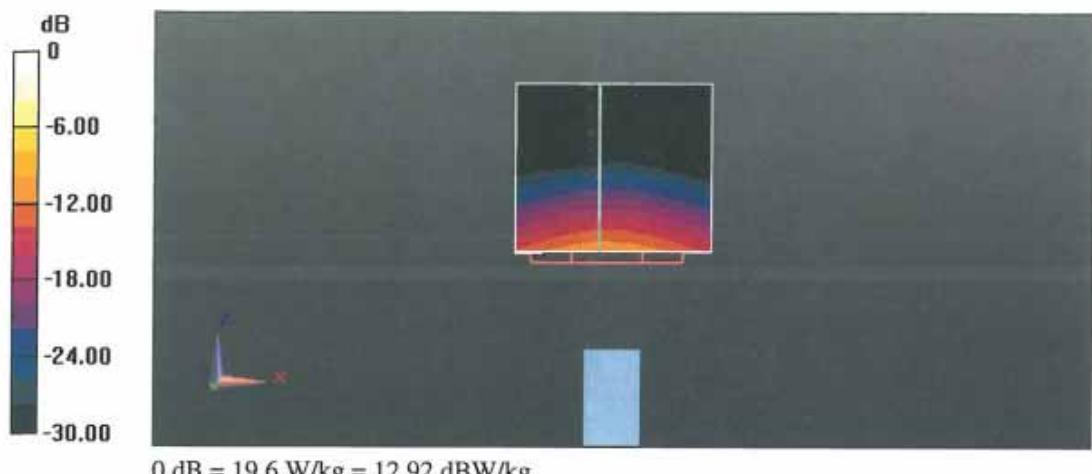
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: $dx=4\text{mm}$, $dy=4\text{mm}$, $dz=1.4\text{mm}$

Reference Value = 58.820 V/m; Power Drift = -0.00 dB

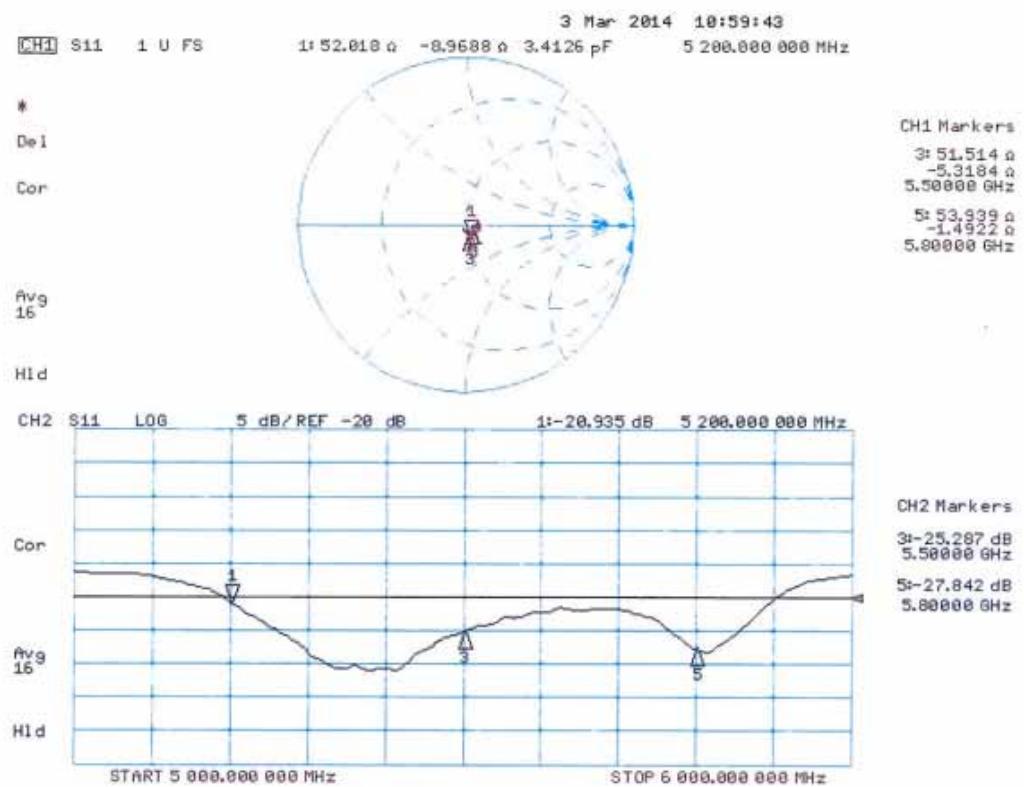
Peak SAR (extrapolated) = 35.7 W/kg

SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.24 W/kg

Maximum value of SAR (measured) = 20.0 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: $dx=4\text{mm}$, $dy=4\text{mm}$, $dz=1.4\text{mm}$

Reference Value = 55.732 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 36.8 W/kg

SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.12 W/kg

Maximum value of SAR (measured) = 19.6 W/kg

Impedance Measurement Plot for Body TSL

Appendix F. DAE Calibration Data

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **Quietek (Auden)**

Certificate No: **DAE4-1220_Jan15**

CALIBRATION CERTIFICATE

Object **DAE4 - SD 000 D04 BM - SN: 1220**

Calibration procedure(s) **QA CAL-06:v29**
 Calibration procedure for the data acquisition electronics (DAE)

Calibration date: **January 20, 2015**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0610278	03-Oct-14 (No:15573)	Oct-15
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit.	SE UWS 053 AA 1001	06-Jan-15 (in house check)	In house check: Jan-16
Calibrator Box V2.1	SE UMS 006 AA 1002	06-Jan-15 (in house check)	In house check: Jan-16

Calibrated by: Name: **Eric Hainfeld** Function: **Technician** Signature:

Approved by: Name: **Fin Bornholt** Function: **Deputy Technical Manager** Signature:

Issued: **January 20, 2015**

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - *DC Voltage Measurement Linearity*: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - *AD Converter Values with inputs shorted*: Values on the internal AD converter corresponding to zero input voltage
 - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current*: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance*: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption*: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu\text{V}$, full range = $-100\dots+300\text{ mV}$

Low Range: 1LSB = 61nV , full range = $-1\dots+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$405.223 \pm 0.02\% \text{ (k=2)}$	$404.945 \pm 0.02\% \text{ (k=2)}$	$404.175 \pm 0.02\% \text{ (k=2)}$
Low Range	$3.97823 \pm 1.50\% \text{ (k=2)}$	$3.99514 \pm 1.50\% \text{ (k=2)}$	$3.98736 \pm 1.50\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$176.0^\circ \pm 1^\circ$
---	---------------------------

Appendix (Additional assessments outside the scope of SCS108)

1. DC Voltage Linearity

High Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	199992.82	-0.19	-0.00
Channel X	+ Input	20002.86	2.81	0.01
Channel X	- Input	-19998.10	3.32	-0.02
Channel Y	+ Input	199994.68	1.45	0.00
Channel Y	+ Input	19999.81	-0.26	-0.00
Channel Y	- Input	-20001.22	0.12	-0.00
Channel Z	+ Input	199994.31	1.35	0.00
Channel Z	+ Input	19998.36	-1.71	-0.01
Channel Z	- Input	-20002.63	-1.17	0.01

Low Range		Reading (µV)	Difference (µV)	Error (%)
Channel X	+ Input	1999.97	0.08	0.00
Channel X	+ Input	200.10	-0.38	-0.19
Channel X	- Input	-199.36	0.04	-0.02
Channel Y	+ Input	2000.09	-0.01	-0.00
Channel Y	+ Input	200.15	-0.56	-0.28
Channel Y	- Input	-199.46	-0.29	0.14
Channel Z	+ Input	2000.03	-0.05	-0.00
Channel Z	+ Input	199.13	-1.44	-0.72
Channel Z	- Input	-200.51	-1.24	0.62

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	9.93	8.00
	-200	-7.88	-9.65
Channel Y	200	-9.33	-9.42
	-200	8.41	8.39
Channel Z	200	12.43	11.97
	-200	-14.76	-14.78

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	1.54	-4.32
Channel Y	200	8.10	-	1.97
Channel Z	200	9.58	6.10	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15888	15493
Channel Y	16012	15900
Channel Z	15706	16099

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	1.13	-0.62	2.79	0.50
Channel Y	-0.89	-2.63	0.76	0.48
Channel Z	-0.60	-2.36	0.94	0.50

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9